1
|
Bai RY, Wu LH, Wang Y, Guo C, She G, Pang ZD, Li JJ, Zhao XY, Han MZ, Hai XX, Yang YY, Zhang Y, Zhao LM, Jiao LY, Du XJ, Deng XL. Glutaminolysis and α-ketoglutarate-stimulated K Ca3.1 expression contribute to β-adrenoceptor activation-induced myocardial fibrosis in mice. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2811-x. [PMID: 40343579 DOI: 10.1007/s11427-024-2811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/19/2024] [Indexed: 05/11/2025]
Abstract
Heart failure is associated with myocardial fibrosis, a pivotal histopathological feature arising from β-adrenergic receptor (β-AR) stimulation through sympathetic nervous system activation. Augmented glutaminolysis with increased bioavailability of α-ketoglutarate (α-KG) is suggested to contribute to fibrogenesis and changes in cellular gene expression. KCa3.1 is a calcium-activated potassium channel expressed in fibroblasts and has been implicated in mediating fibrosis, yet the putative interactions between glutaminolysis and KCa3.1 in β-AR-mediated cardiac fibrosis remain poorly understood. Here, we performed a series of in vitro and in vivo experiments to investigate how α-KG might influence the expression of KCa3.1 in the context of experimental myocardial fibrosis driven by β-AR activation. In cultured adult mouse cardiac fibroblasts, α-KG exposure resulted in the upregulation of KCa3.1 mRNA and protein levels that were commensurate with the dose and duration of exposure, and also led to increased KCa3.1 channel currents. Exposure to α-KG led to a significant decrease in levels of histone methylation (H3K27me3) within the KCa3.1 promoter, a decrease in the association of the transcription repressor REST from this site, as well as an enrichment of transcription activator AP-1 binding. The exacerbated fibrotic signaling induced by α-KG in cultured fibroblasts was suppressed by functional inhibition of KCa3.1 or by genetic knockdown of Kcnn4. Moreover, β-AR activation by isoproterenol significantly augmented glutaminolysis mediated by glutaminase 1 (GLS1) and significantly increased α-KG levels detected in the supernatant of cultured fibroblasts and cardiomyocytes. In addition, isoproterenol-induced KCa3.1 expression in fibroblasts was curtailed by treatment with the GLS1 inhibitor CB-839, or by GLS1 gene knockdown, or by treatment with the selective β2-AR antagonist, ICI118551. In mouse models of established cardiac fibrosis evoked by isoproterenol-stimulation or β2-AR overexpression, treatment with CB-839 for 4 weeks suppressed the phenotypic features of fibrosis, and this was associated with a decline in α-KG tissue content, a lack of histone demethylation at the KCa3.1 promoter, as well as suppression of KCa3.1 expression. Taken together, our study demonstrates for the first time that glutaminolysis contributes to β-AR activation-induced myocardial fibrosis via α-KG-stimulated KCa3.1 expression. We anticipate that treatments which target the β-AR/GLS1/α-KG/KCa3.1 signaling pathway might be effective for cardiac fibrosis.
Collapse
Affiliation(s)
- Ru-Yue Bai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lin-Hong Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Chen Guo
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zheng-Da Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jing-Jing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xin-Yi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Meng-Zhuan Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xia-Xia Hai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yi-Yi Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China
| | - Li-Mei Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Lian-Ying Jiao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China.
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China.
| |
Collapse
|
2
|
Jiang P, Jiang Z, Li S, Li YX, Chen Y, Li X. The suppressive role of GLS in radiosensitivity and irradiation-induced immune response in LUAD: integrating bioinformatics and experimental insights. Front Immunol 2025; 16:1582587. [PMID: 40308578 PMCID: PMC12040943 DOI: 10.3389/fimmu.2025.1582587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background Radiotherapy elicits immune activation, thereby synergistically enhancing systemic tumor control when combined with immunotherapy. Glutaminase (GLS), a key enzyme for glutamine metabolism, has been found to regulate glutamine availability within tumor microenvironment (TME). However, the precise mechanisms through which GLS modulates radiosensitivity and irradiation-induced immune responses in lung adenocarcinoma (LUAD) and its clinical value remain to be fully elucidated. Methods We employed bulk RNA-seq and single-cell transcriptomics to explore the role of GLS expression in radiosensitivity and immune infiltration. The bioinformatic results were validated by in vitro and in vivo experiments. Co-culture assays and flow cytometry were used to validate the impact of GLS expression on CD8+ T cell activation and cytotoxicity. Moreover, a GLS-DSBr (double strand break repair) prognostic model was developed using machine learning with data from 2,066 LUAD patients. Results In vitro and in vivo experiments demonstrated that GLS silence inhibited DSB repair and promoted ferroptosis, therefore enhancing radiosensitivity. Single-cell and spatial transcriptomics revealed the immunomodulatory effects of GLS expression in the TME. Further, Co-culture assays and flow cytometry experiments indicated that silencing GLS in LUAD cells potentiated the activation and cytotoxicity of CD8+ T cells in the context of radiotherapy. The GLS-DSBr model demonstrated robust predictive performance for overall survival, as well as the efficacy of radiotherapy and immunotherapy in LUAD. The applicability of GLS-DSBr model was further validated through pan-cancer analysis. Conclusion In the contexts of radiotherapy, GLS downregulation exerts dual regulatory effects by modulating ferroptosis and remodeling the immune landscapes, particularly enhancing CD8+ T cell cytotoxicity. Our work suggests that strategies preferentially targeting GLS in tumor cells may represent promising and translatable therapeutic approaches to promote antitumor efficacy of radiotherapy plus immune checkpoint blockade in LUAD patients. Furthermore, the established GLS-DSBr model serves as a robust predictive tool for prognosis and effects of radiotherapy and immunotherapy, which assists personalized treatment optimization in LUAD.
Collapse
Affiliation(s)
- Peicheng Jiang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhifeng Jiang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ye-Xiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqiong Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xinyan Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Lesbats J, Brillac A, Reisz JA, Mukherjee P, Lhuissier C, Fernández-Monreal M, Dupuy JW, Sequeira A, Tioli G, De La Calle Arregui C, Pinson B, Wendisch D, Rousseau B, Efeyan A, Sander LE, D'Alessandro A, Garaude J. Macrophages recycle phagocytosed bacteria to fuel immunometabolic responses. Nature 2025; 640:524-533. [PMID: 40011782 DOI: 10.1038/s41586-025-08629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Macrophages specialize in phagocytosis, a cellular process that eliminates extracellular matter, including microorganisms, through internalization and degradation1,2. Despite the critical role of phagocytosis during bacterial infection, the fate of phagocytosed microbial cargo and its impact on the host cell are poorly understood. In this study, we show that ingested bacteria constitute an alternative nutrient source that skews immunometabolic host responses. By tracing stable isotope-labelled bacteria, we found that phagolysosomal degradation of bacteria provides carbon atoms and amino acids that are recycled into various metabolic pathways, including glutathione and itaconate biosynthesis, and satisfies the bioenergetic needs of macrophages. Metabolic recycling of microbially derived nutrients is regulated by the nutrient-sensing mechanistic target of rapamycin complex C1 and is intricately tied to microbial viability. Dead bacteria, as opposed to live bacteria, are enriched in cyclic adenosine monophosphate, sustain the cellular adenosine monophosphate pool and subsequently activate adenosine monophosphate protein kinase to inhibit the mechanistic target of rapamycin complex C1. Consequently, killed bacteria strongly fuel metabolic recycling and support macrophage survival but elicit decreased reactive oxygen species production and reduced interleukin-1β secretion compared to viable bacteria. These results provide a new insight into the fate of engulfed microorganisms and highlight a microbial viability-associated metabolite that triggers host metabolic and immune responses. Our findings hold promise for shaping immunometabolic intervention for various immune-related pathologies.
Collapse
Affiliation(s)
| | - Aurélia Brillac
- University of Bordeaux, INSERM, MRGM, U1211, Bordeaux, France
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Parnika Mukherjee
- Department of Infectious Diseases, Respiratory Medicine, and Critical Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Charlène Lhuissier
- ImmunoConcEpT, CNRS UMR 5164, INSERM ERL 1303, University of Bordeaux, Bordeaux, France
| | | | - Jean-William Dupuy
- University of Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR3421, OncoProt, Bordeaux, France
- University of Bordeaux, Bordeaux Protéome, Bordeaux, France
| | - Angèle Sequeira
- ImmunoConcEpT, CNRS UMR 5164, INSERM ERL 1303, University of Bordeaux, Bordeaux, France
| | - Gaia Tioli
- University of Bordeaux, INSERM, MRGM, U1211, Bordeaux, France
- Biomedical and Neuromotor Sciences, Alma Mater University of Bologna, Bologna, Italy
| | - Celia De La Calle Arregui
- Metabolism and Cell Signalling Laboratory, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Benoît Pinson
- Service Analyses Métabolomiques, TBMCore, CNRS UAR 3427, INSERM US005, Université Bordeaux, Bordeaux, France
| | - Daniel Wendisch
- Department of Infectious Diseases, Respiratory Medicine, and Critical Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Benoît Rousseau
- University of Bordeaux, Animal Facility A2, Service Commun des Animaleries, Bordeaux, France
| | - Alejo Efeyan
- Metabolism and Cell Signalling Laboratory, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Leif Erik Sander
- Department of Infectious Diseases, Respiratory Medicine, and Critical Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Johan Garaude
- University of Bordeaux, INSERM, MRGM, U1211, Bordeaux, France.
- ImmunoConcEpT, CNRS UMR 5164, INSERM ERL 1303, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
4
|
Reinalda L, van der Stelt M, van Kasteren SI. Lipid Metabolism and Immune Function: Chemical Tools for Insights into T-Cell Biology. Chembiochem 2025:e2400980. [PMID: 40162512 DOI: 10.1002/cbic.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Lipids are essential biomolecules playing critical roles in cellular processes, including energy storage, membrane structure, and signaling. This review highlights the chemical tools that have been developed to study the role of lipid metabolism in immune function, focusing on T-cell biology. Fatty acids (FAs), as core lipid components, influence immune responses through structural, signaling, and metabolic roles. Recent studies reveal how specific FAs modulate T-cell activation, proliferation, and function, with implications for regulatory and effector subsets. Emerging tools, such as fluorescence-based lipids and click chemistry, enable precise tracking of lipid uptake and metabolism at the single-cell level, addressing limitations of traditional bulk methods. Advances in metabolomics and proteomics offer further insights into lipid-mediated immune regulation. Understanding these mechanisms provides opportunities to target lipid metabolism in therapeutic strategies for cancer and other immune-related diseases. The integration of lipidomic technologies into immunology uncovers novel perspectives on how lipids shape immune responses at cellular and molecular scales.
Collapse
Affiliation(s)
- Luuk Reinalda
- Department of Chemical Biology and Immunology, Leiden Institute of Chemistry, Einsteinweg 33, 2333 CC, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Einsteinweg 33, 2333 CC, Leiden, The Netherlands
| | - Sander Izaak van Kasteren
- Department of Chemical Biology and Immunology, Leiden Institute of Chemistry, Einsteinweg 33, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
5
|
Quan T, Li R, Gao T. The Intestinal Macrophage-Intestinal Stem Cell Axis in Inflammatory Bowel Diseases: From Pathogenesis to Therapy. Int J Mol Sci 2025; 26:2855. [PMID: 40243444 PMCID: PMC11988290 DOI: 10.3390/ijms26072855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The gut plays a crucial role in digestion and immunity, so its balance is essential to overall health. This balance relies on dynamic interactions between intestinal epithelial cells, immune cells, and crypt stem cells. Inflammatory bowel disease (IBD), which consists of ulcerative colitis and Crohn's disease, is a chronic relapsing inflammatory disease of the gastrointestinal tract closely related to immune dysfunction. Stem cells, known for their ability to self-renew and differentiate, play an important role in repairing damaged intestinal epithelium and maintaining homeostasis in vivo. Macrophages are key gatekeepers of intestinal immune homeostasis and have a significant impact on IBD. Current research has focused on the link between epithelial cells and stem cells, but interactions with macrophages, which have been recognized as attractive targets for the development of new therapeutic approaches to disease, have been less explored. Recently, the developing field of immunometabolism has reinforced that metabolic reprogramming is a key determinant of macrophage function and subsequent disease progression. The aim of this review is to explore the role of the macrophage-stem cell axis in the maintenance of intestinal homeostasis and to summarize potential approaches to treating IBD by manipulating the cellular metabolism of macrophages, as well as the main opportunities and challenges faced. In summary, our overview provides a framework for understanding the critical role of macrophage immunometabolism in maintaining gut health and potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (T.Q.); (R.L.)
| |
Collapse
|
6
|
Krisna SS, Deagle RC, Ismailova N, Esomojumi A, Roy-Dorval A, Roth F, Berberi G, del Rincon SV, Fritz JH. Immunometabolic analysis of primary murine group 2 innate lymphoid cells: a robust step-by-step approach. Front Immunol 2025; 16:1545790. [PMID: 40181967 PMCID: PMC11966487 DOI: 10.3389/fimmu.2025.1545790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025] Open
Abstract
Group 2 Innate Lymphoid Cells (ILC2s) have recently been shown to exert key regulatory functions in both innate and adaptive immune response networks that drive the establishment and progression of type 2 immunity. Although mainly tissue resident, ILC2s and their crosstalk within tissue microenvironments influence metabolism at both the local and systemic levels. In turn, the energetic demand and metabolic status within these systems shape the diverse phenotypes and effector functions of ILC2s. Deciphering these metabolic networks in ILC2s is therefore essential in understanding their various roles in health as well as their associated pathophysiologies. Here we detail a framework of experimental approaches to study key immunometabolic states of primary murine ILC2s and link them to unique phenotypes and their corresponding functionality. Utilizing flow cytometry, Single Cell ENergetic metabolism by profilIng Translation inHibition (SCENITH), and the Seahorse platform we provide a framework that allows in-depth analysis of cellular bioenergetic states to determine the immunometabolic wiring of ILC2s. Connecting immunometabolic states and networks to ILC2 phenotypes and effector functions with this method will allow future in-depth studies to assess the potential of novel pharmaceutics in altering ILC2 functionality in clinical settings.
Collapse
Affiliation(s)
- Sai Sakktee Krisna
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits (MRCCT), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Rebecca C. Deagle
- McGill University Research Centre on Complex Traits (MRCCT), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Nailya Ismailova
- McGill University Research Centre on Complex Traits (MRCCT), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Ademola Esomojumi
- McGill University Research Centre on Complex Traits (MRCCT), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Audrey Roy-Dorval
- McGill University Research Centre on Complex Traits (MRCCT), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Frederik Roth
- McGill University Research Centre on Complex Traits (MRCCT), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Gabriel Berberi
- McGill University Research Centre on Complex Traits (MRCCT), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Sonia V. del Rincon
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- Department of Oncology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits (MRCCT), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Qiu L, Qiu X, Yang X. PLOD3 as a novel oncogene in prognostic and immune infiltration risk model based on multi-machine learning in cervical cancer. Discov Oncol 2025; 16:294. [PMID: 40067513 PMCID: PMC11896957 DOI: 10.1007/s12672-025-02031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Cervical carcinoma (CC) remains a significant global health issue despite advancements in screening and treatment. To improve prognostic accuracy and therapeutic strategies, we developed a multi-machine learning prognostic model based on metabolic-associated genes. This study integrated genomic, transcriptomic, and spatial data from multiple databases to identify key metabolic genes with a causal relationship to CC. We identified 112 key metabolic genes, which were used to construct and validate a prognostic model through various machine learning algorithms. GO and KEGG enrichment analysis revealed the MAPK cascade plays a crucial role in metabolic processes. To pinpoint key metabolic genes, we constructed WGCNA and extracted 337 key genes. Supervised principal component analysis and random survival forests were incorporated into the final model, which showed strong predictive ability in classifying patients. Furthermore, the model demonstrated notable variations in immune cell infiltration among risk categories, which shown regulatory T cells may be involved in immune suppression, and natural killer cells might have a limited effect in tumor clearance. Spatial transcriptomics and single-cell analyses further validated the model, uncovering tumor heterogeneity and distinct intercellular communication patterns associated with different risk levels. The functional experiment results indicated that down expression of PLOD3 could suppress the proliferation of CC cell. In this study, offer a precision medicine methods for predicting patient outcomes as well as fresh insights into the metabolic foundations, which may contribute to the prognosis and immunotherapy of CC. Additionally, we discovered PLOD3 to be a novel oncogene in CC. These findings imply that this model may be applied to assess prognostic risk and identify potential therapeutic targets for CC patients.
Collapse
Affiliation(s)
- Lingling Qiu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| | - Xiuchai Qiu
- Department of Public Health, Jinjiang City Hospital Jinnan Branch, Fujian Province, China
| | - Xiaoyi Yang
- Department of Oncology, Shanghai General Hospital, , Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
8
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2025; 69:361-379. [PMID: 38631430 PMCID: PMC11954837 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Jevtić B, Stegnjaić G, Stanisavljević S, Lazarević M, Nikolić F, Fraser GL, Miljković Đ, Dimitrijević M. Amelioration of Central Nervous System Autoimmunity Through FFAR2 Agonism Is Associated With Changes in Gut Microbiota. Brain Behav 2025; 15:e70350. [PMID: 40021945 PMCID: PMC11870826 DOI: 10.1002/brb3.70350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 03/03/2025] Open
Abstract
PURPOSE The intestinal immune compartment is increasingly recognized as an important player in central nervous system (CNS) autoimmunity. We have recently reported that oral administration of the free fatty acid receptor 2 (FFAR2) agonist Cpd1 in the inductive phase of experimental autoimmune encephalomyelitis (EAE) in rats ameliorates the disease by stimulating the regulatory immune response in the intestine. METHOD Here, the effects of Cpd1 on the gut microbiota and short-chain fatty acid (SCFA) composition were investigated in the same experimental system. FINDING Increased levels of the phylum Proteobacteria, the class Gammaproteobacteria, the orders Burkholderiales and Erysipelotrichales, the families Sutterellaceae and Erysipelotrichaceae, and the genera Parasutterella and Faecalibaculum were observed in agonist-treated rats. The genera Allobaculum and Ileibacterium were only detected in the agonist-treated group. The treatment led to changes in the functional profile of the gut microbiota both in the KEGG orthologous pathways and in the clusters of orthologous genes. In addition, an altered profile of intestinal SCFA content was observed in the agonist-treated group. CONCLUSION The effects of Cpd1 on the gut microbiota and SCFA composition are relevant to the observed treatment benefit of FFAR2 agonism in the EAE model during the inductive phase of the disease.
Collapse
MESH Headings
- Animals
- Gastrointestinal Microbiome/drug effects
- Rats
- Receptors, G-Protein-Coupled/agonists
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Fatty Acids, Volatile/metabolism
- Autoimmunity/drug effects
- Female
- Central Nervous System/immunology
- Central Nervous System/drug effects
- Rats, Inbred Lew
Collapse
Affiliation(s)
- Bojan Jevtić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Goran Stegnjaić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Milica Lazarević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Filip Nikolić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”–National Institute of Republic of SerbiaUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
10
|
LeGrand EK. Beyond nutritional immunity: immune-stressing challenges basic paradigms of immunometabolism and immunology. Front Nutr 2025; 12:1508767. [PMID: 40013164 PMCID: PMC11860096 DOI: 10.3389/fnut.2025.1508767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Pathogens have the well-known advantage of rapid evolution due to short generation times and large populations. However, pathogens have the rarely noted disadvantage of the vulnerability to stress involved in proliferation as well as being localized. Presented here are numerous new paradigms in immunology, and especially immunometabolism, which are derived from examining how hosts capitalize on pathogen vulnerabilities to stress. Universally, proliferation requires both resources and synthesis, which are vulnerable to resource-limiting stress and damaging/noxious stress, respectively. Pathogens are particularly vulnerable to stress at the time when they are most threatening-when they are proliferating. Since immune cells actively controlling pathogens (effector cells) typically do not proliferate at infected sites, there is a "stress vulnerability gap" wherein proliferating pathogens are more vulnerable to any type of stress than are the attacking effector cells. Hosts actively stress vulnerable proliferating pathogens by restricting resources (resource-limiting stress) and generating noxious waste products (damaging/disruptive stress) in a fundamental defense here-in termed "immune-stressing." While nutritional immunity emphasizes denying pathogens micronutrients, immune-stressing extends the concept to restricting all resources, especially glucose and oxygen, coupled with the generation of noxious metabolic products such as lactic acid, reactive oxygen species (ROS), and heat to further harm or stress the pathogens. At present much of the field of immunometabolism centers on how nutrition and metabolism regulate immune function, a central feature being the inefficient use of glucose via aerobic glycolysis (with much lactate/lactic acid production) by effector immune cells. In contrast, immune-stressing emphasizes how the immune system uses nutrition and metabolism to control infections. Immune-stressing addresses effector cell glycolysis at the infected site by noting that the high uptake of glucose linked with high output of lactic acid is an ideal double-pronged stressor targeting proliferating pathogens. Once the basic vulnerability of pathogen proliferation is recognized, numerous other paradigms of immunometabolism, and immunology as a whole, are challenged.
Collapse
Affiliation(s)
- Edmund K. LeGrand
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
11
|
Peter A, Berneman ZN, Cools N. Cellular respiration in dendritic cells: Exploring oxygen-dependent pathways for potential therapeutic interventions. Free Radic Biol Med 2025; 227:536-556. [PMID: 39643130 DOI: 10.1016/j.freeradbiomed.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells crucial for initiating and regulating adaptive immune responses, making them promising candidates for therapeutic interventions in various immune-mediated diseases. Increasing evidence suggests that the microenvironment in which cells are cultured, as well as the milieu in which they perform their functions, significantly impact their immunomodulatory properties. Among these environmental factors, the role of oxygen in DC biology and its significance for both their in vitro generation and in vivo therapeutic application require investigation. Unlike the atmospheric oxygen level of 21 % commonly used in in vitro assays, physiological oxygen levels are much lower (3-9 %), and hypoxia (<1.3 %) is a prevalent condition of both healthy tissues and disease states. This mismatch between laboratory and physiological conditions underscores the critical need to culture and evaluate therapeutic cells under physiologically relevant oxygen levels to improve their translational relevance and clinical outcomes. This review explores the characteristic hallmarks of human DCs that are influenced by oxygen-dependent pathways, including metabolism, phenotype, cytokine secretion, and migration. Furthermore, we discuss the potential of manipulating oxygen levels to refine the generation and functionality of DCs for therapeutic purposes.
Collapse
Affiliation(s)
- Antonia Peter
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
12
|
Li S, Han H, Yang K, Li X, Ma L, Yang Z, Zhao YX. Emerging role of metabolic reprogramming in the immune microenvironment and immunotherapy of thyroid cancer. Int Immunopharmacol 2025; 144:113702. [PMID: 39602959 DOI: 10.1016/j.intimp.2024.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The metabolic reprogramming of cancer cells is a hallmark of many malignancies. To meet the energy acquisition needs of tumor cells for rapid proliferation, tumor cells reprogram their nutrient metabolism, which is caused by the abnormal expression of transcription factors and signaling molecules related to energy metabolic pathways as well as the upregulation and downregulation of abnormal metabolic enzymes, receptors, and mediators. Thyroid cancer (TC) is the most common endocrine tumor, and immunotherapy has become the mainstream choice for clinical benefit after the failure of surgical, endocrine, and radioiodine therapies. TC change the tumor microenvironment (TME) through nutrient competition and metabolites, causing metabolic reprogramming of immune cells, profoundly changing immune cell function, and promoting immune evasion of tumor cells. A deeper understanding of how metabolic reprogramming alters the TME and controls immune cell fate and function will help improve the effectiveness of TC immunotherapy and patient outcomes. This paper aims to elucidate the metabolic communication that occurs between immune cells around TC and discusses how metabolic reprogramming in TC affects the immune microenvironment and the effectiveness of anti-cancer immunotherapy. Finally, targeting key metabolic checkpoints during metabolic reprogramming, combined with immunotherapy, is a promising strategy.
Collapse
Affiliation(s)
- Shouhua Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Hengtong Han
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Kaili Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoxiao Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Libin Ma
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Ze Yang
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xun Zhao
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
13
|
Xie H, Halimulati M, Dou Y, Zhang H, Jiang X, Peng L. Systemic immune-inflammation states in US adults with seropositivity to infectious pathogens: A nutrient-wide association study. JPEN J Parenter Enteral Nutr 2025; 49:94-102. [PMID: 39380423 DOI: 10.1002/jpen.2695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Limited understanding exists regarding the association between daily total dietary nutrient intakes and immune-inflammation states in US adults exposed to various pathogens. This study sought to examine the correlation between nutrient intakes and immune-inflammation indicators and to assess their performance in distinguishing immune-inflammation states. METHODS This study was derived from the National Health and Nutrition Examination Survey (NHANES), which included 33,804 participants aged 20 years or older between 2005 and 2018. Multivariable linear regression and restricted cubic spline regression were conducted to evaluate the association between nutrient intakes and immune-inflammation indicators. Receiver operating characteristic curve analysis was performed to evaluate the discriminatory performance of identified nutrients for various immune-inflammation states measured by the systemic immune-inflammation index (SII). RESULTS Ten key nutrients were significantly associated with immune-inflammation responses, including calcium, saturated fatty acid (SFA) 4:0, SFA 6:0, SFA 12:0, SFA 14:0, SFA 16:0, vitamin B2, total SFAs, retinol, and lutein + zeaxanthin, which show potential as dietary indicators. The area under the curve for discriminating various immune-inflammation states was improved by at least 0.03 compared with a model that included only covariates, with all P values <0.05 in the Delong tests, indicating a significant enhancement in model performance. CONCLUSIONS Ten nutrients, including calcium, various SFAs, vitamin B2, retinol, and lutein + zeaxanthin, exhibit significant association with SII and potential as dietary indicators for distinguishing between different immune-inflammation states in US adults with seropositivity to various viruses.
Collapse
Affiliation(s)
- He Xie
- Department of Preventive Health Care, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Mairepaiti Halimulati
- Department of Nutrition Science, the University of Texas at Austin, Austin, Texas, USA
| | - Yuqi Dou
- Health Systems and Equity, Eastern Health Clinical School, Monash University, Boxhill, Victoria, Australia
| | - Hanyue Zhang
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Section for General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Xiaowen Jiang
- Department of Epidemiology, School of Clinical Oncology, Peking University, Beijing, China
| | - Lei Peng
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Darby AM, Keith SA, Kalukin AA, Lazzaro BP. Chronic bacterial infections exert metabolic costs in Drosophila melanogaster. J Exp Biol 2025; 228:jeb249424. [PMID: 39801480 PMCID: PMC11832186 DOI: 10.1242/jeb.249424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/12/2024] [Indexed: 02/19/2025]
Abstract
Bacterial infections can substantially impact host metabolic health as a result of the direct and indirect demands of sustaining an immune response and of nutrient piracy by the pathogen itself. Drosophila melanogaster and other insects that survive a sublethal bacterial infection often carry substantial pathogen burdens for the remainder of life. In this study, we asked whether these chronic infections exact metabolic costs for the host, and how these costs scale with the severity of chronic infection. We infected D. melanogaster with four bacterial species (Providencia rettgeri, Serratia marcescens, Enterococcus faecalis and Lactococcus lactis) and assayed metabolic traits in chronically infected survivors. We found that D. melanogaster carrying chronic infections were uniformly more susceptible to starvation than uninfected controls, and that sensitivity to starvation escalated with higher chronic pathogen burden. We observed some evidence for greater depletion of triglyceride and glycogen stores in D. melanogaster carrying chronic bacterial loads, although this varied among bacterial species. Chronically infected flies exhibit sustained upregulation of the immune response, which we hypothesized might contribute to the metabolic costs. Consistent with this prediction, genetic activation of the major innate immune signaling pathways depleted metabolic stores and increased starvation sensitivity even in the absence of infection. These results demonstrate that even sublethal infections can have substantial health and fitness consequences for the hosts, arising in part from pathogen-induced immune activation, and that the consequences scale quantitatively with the severity of infection.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Ananda A. Kalukin
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Rauw WM, Baumgard LH, Dekkers JCM. Review: Feed efficiency and metabolic flexibility in livestock. Animal 2025; 19:101376. [PMID: 39673819 DOI: 10.1016/j.animal.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/16/2024] Open
Abstract
Improving the conversion of feed into product has been a key focus of genetic improvement in all livestock species. Livestock feed efficiency is the amount of product produced per unit of feed intake. Feed efficiency also depends on processes that are not directly related to economically important phenotypes, which can be considered 'waste' from a production point of view but are vital maintenance-related functions that are closely associated with environmental flexibility and adaptation. Resource allocation theory suggests that an animal's resource budget is narrowed when production efficiency is improved through an increase in productive output, along with a decrease in feed intake (capacity) and body reserves (improved leanness). The resulting trade-offs between productivity and vital functions may render the animal less capable of responding to unexpected challenges, potentially leading to negative side effects that are not directly related to economically important phenotypes. However, selection for feed efficiency may not narrow the metabolic space and result in trade-offs if the increase in feed efficiency is the result of increased metabolic flexibility in fuel substrate choice (carbohydrates, lipids, and/or proteins) and other energy-saving strategies. This review evaluates the relationship between metabolic flexibility and feed efficiency during anabolism (growth), fasting, immune activation, general stress, and heat stress, with a focus on pig production. We start with a brief overview of energy processes and substrate metabolism of carbohydrates, lipids, and protein. During muscle metabolism, the type of fuel used depends on fibre type characteristics of the muscle. Selection for improved meat production has resulted in pigs with a greater abundance of fast-twitch fibres with lower energy expenditure and higher metabolic efficiency. Metabolic flexibility for adaptation to disease, and response to regular stress implies that a more reactive immune response and reduced fear response results in higher feed efficiency. The examples presented in this review show that selection for improved feed efficiency does not necessarily narrow the metabolic space and result in trade-offs between productivity and vital functions because of energy-sparing mechanisms.
Collapse
Affiliation(s)
- W M Rauw
- INIA-CSIC, Department of Animal Breeding and Genetics, Ctra. de la Coruña km 7.5, 28040 Madrid, Spain.
| | - L H Baumgard
- Iowa State University, Department of Animal Science, Ames, IA 50011, USA
| | - J C M Dekkers
- Iowa State University, Department of Animal Science, Ames, IA 50011, USA
| |
Collapse
|
16
|
Miyamoto Y, Ishii M. Spatial diversity of in vivo tissue immunity. Int Immunol 2024; 37:91-96. [PMID: 39177484 DOI: 10.1093/intimm/dxae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
The immune system exhibits spatial diversity in in vivo tissues. Immune cells are strategically distributed within tissues to maintain the organ integrity. Advanced technologies such as intravital imaging and spatial transcriptomics have revealed the spatial heterogeneity of immune cell distribution and function within organs such as the liver, kidney, intestine, and lung. In addition, these technologies visualize nutrient and oxygen environments across tissues. Recent spatial analyses have suggested that a functional immune niche is determined by interactions between immune and non-immune cells in an appropriate nutrient and oxygen environment. Understanding the spatial communication between immune cells, environment, and surrounding non-immune cells is crucial for developing strategies to control immune responses and effectively manage inflammatory diseases.
Collapse
Affiliation(s)
- Yu Miyamoto
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan
- Laboratory of Drug Discovery Imaging, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan
- Laboratory of Drug Discovery Imaging, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
17
|
Hani U, Choudhary VT, Ghazwani M, Alghazwani Y, Osmani RAM, Kulkarni GS, Shivakumar HG, Wani SUD, Paranthaman S. Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives. Pharmaceutics 2024; 16:1527. [PMID: 39771506 PMCID: PMC11679327 DOI: 10.3390/pharmaceutics16121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease. Conventional chemotherapy drug delivery suffers from issues such as the risk of damage to benign cells, which can cause toxicity, and a few tumor cells withstand apoptosis, thereby increasing the likelihood of developing tolerance. The side effects of cancer chemotherapy are often more pronounced than its benefits. Regarding drugs used in cancer chemotherapy, their bioavailability and stability in the tumor microenvironment are the most important issues that need immediate addressing. Hence, an effective and reliable drug delivery system through which both rapid and precise targeting of treatment can be achieved is urgently needed. In this work, we discuss the development of various nanobased carriers in the advancement of cancer therapy-their properties, the potential of polymers for drug delivery, and recent advances in formulations. Additionally, we discuss the use of tumor metabolism-rewriting nanomedicines in strengthening antitumor immune responses and mRNA-based nanotherapeutics in inhibiting tumor progression. We also examine several issues, such as nanotoxicological studies, including their distribution, pharmacokinetics, and toxicology. Although significant attention is being given to nanotechnology, equal attention is needed in laboratories that produce nanomedicines so that they can record themselves in clinical trials. Furthermore, these medicines in clinical trials display overwhelming results with reduced side effects, as well as their ability to modify the dose of the drug.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Vikram T. Choudhary
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Gururaj S. Kulkarni
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Hosakote G. Shivakumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India;
| | - Sathishbabu Paranthaman
- Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India;
| |
Collapse
|
18
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau DD, Shapiro VS, Springer W, Sun J, Boothby MR, Zeng H. The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness. Nat Commun 2024; 15:10163. [PMID: 39580479 PMCID: PMC11585635 DOI: 10.1038/s41467-024-54344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
Germinal center (GC) formation, which is an integrant part of humoral immunity, involves energy-consuming metabolic reprogramming. Rag-GTPases are known to signal amino acid availability to cellular pathways that regulate nutrient distribution such as the mechanistic target of rapamycin complex 1 (mTORC1) pathway and the transcription factors TFEB and TFE3. However, the contribution of these factors to humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and to generate plasmablasts during both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish the Rag GTPase-TFEB/TFE3 pathway as a likely mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, USA.
| |
Collapse
|
19
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
20
|
Sharma P, Guo A, Poudel S, Boada-Romero E, Verbist KC, Palacios G, Immadisetty K, Chen MJ, Haydar D, Mishra A, Peng J, Babu MM, Krenciute G, Glazer ES, Green DR. An early, novel arginine methylation of KCa3.1 attenuates subsequent T cell exhaustion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593421. [PMID: 38798680 PMCID: PMC11118966 DOI: 10.1101/2024.05.09.593421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
T cell receptor (TCR) engagement initiates the activation process, and this signaling event is regulated in multifaceted ways. Nutrient availability in the immediate niche is one such mode of regulation 1-3 . Here, we investigated how the availability of an essential amino acid methionine (Met) and TCR signaling might interplay in the earliest events of T cell activation to affect subsequent T cell fate and function. We found that limiting Met during only the initial 30 minutes of CD8 + T cell activation increased Ca 2+ influx, Ca 2+ -mediated NFAT1 ( Nfatc2 ) activation, NFAT1 promoter occupancy, and T cell exhaustion. We identified changes in the protein arginine methylome during the initial 30 min of TCR engagement and discovered a novel arginine methylation of a Ca 2+ -activated potassium transporter, KCa3.1, which regulates Ca 2+ -mediated NFAT1 signaling to ensure optimal activation. Ablation of arginine methylation in KCa3.1 led to increased NFAT1 activation, rendering T cells dysfunctional in murine tumour and infection models. Furthermore, acute Met supplementation at early stages reduced nuclear NFAT1 in tumour-infiltrating T cells and augmented their anti-tumour activity. Our findings identify a metabolic event occurring early after T cell activation that influences the subsequent fate of the cell.
Collapse
|
21
|
Gantner BN, Palma FR, Pandkar MR, Sakiyama MJ, Arango D, DeNicola GM, Gomes AP, Bonini MG. Metabolism and epigenetics: drivers of tumor cell plasticity and treatment outcomes. Trends Cancer 2024; 10:992-1008. [PMID: 39277448 DOI: 10.1016/j.trecan.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Emerging evidence indicates that metabolism not only is a source of energy and biomaterials for cell division but also acts as a driver of cancer cell plasticity and treatment resistance. This is because metabolic changes lead to remodeling of chromatin and reprogramming of gene expression patterns, furthering tumor cell phenotypic transitions. Therefore, the crosstalk between metabolism and epigenetics seems to hold immense potential for the discovery of novel therapeutic targets for various aggressive tumors. Here, we highlight recent discoveries supporting the concept that the cooperation between metabolism and epigenetics enables cancer to overcome mounting treatment-induced pressures. We discuss how specific metabolites contribute to cancer cell resilience and provide perspective on how simultaneously targeting these key forces could produce synergistic therapeutic effects to improve treatment outcomes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Flavio R Palma
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Madhura R Pandkar
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Marcelo J Sakiyama
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Marcelo G Bonini
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
22
|
Brusnic O, Onisor D, Boicean A, Hasegan A, Ichim C, Guzun A, Chicea R, Todor SB, Vintila BI, Anderco P, Porr C, Dura H, Fleaca SR, Cristian AN. Fecal Microbiota Transplantation: Insights into Colon Carcinogenesis and Immune Regulation. J Clin Med 2024; 13:6578. [PMID: 39518717 PMCID: PMC11547077 DOI: 10.3390/jcm13216578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) constitutes a significant global health challenge, with recent studies underscoring the pivotal role of the gut microbiome in its pathogenesis and progression. Fecal microbiota transplantation (FMT) has emerged as a compelling therapeutic approach, offering the potential to modulate microbial composition and optimize treatment outcomes. Research suggests that specific bacterial strains are closely linked to CRC, influencing both its clinical management and therapeutic interventions. Moreover, the gut microbiome's impact on immunotherapy responsiveness heralds new avenues for personalized medicine. Despite the promise of FMT, safety concerns, particularly in immunocompromised individuals, remain a critical issue. Clinical outcomes vary widely, influenced by genetic predispositions and the specific transplantation methodologies employed. Additionally, rigorous donor selection and screening protocols are paramount to minimize risks and maximize therapeutic efficacy. The current body of literature advocates for the establishment of standardized protocols and further clinical trials to substantiate FMT's role in CRC management. As our understanding of the microbiome deepens, FMT is poised to become a cornerstone in CRC treatment, underscoring the imperative for continued research and clinical validation.
Collapse
Affiliation(s)
- Olga Brusnic
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania; (O.B.); (D.O.)
| | - Danusia Onisor
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania; (O.B.); (D.O.)
| | - Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Andreea Guzun
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Radu Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Samuel Bogdan Todor
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Bogdan Ioan Vintila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Paula Anderco
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Corina Porr
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Sorin Radu Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| | - Adrian Nicolae Cristian
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (A.H.); (A.G.); (R.C.); (B.I.V.); (P.A.); (C.P.); (H.D.); (S.R.F.); (A.N.C.)
| |
Collapse
|
23
|
Miyamoto Y, Ishii M. Spatial heterogeneity and functional zonation of living tissues and organs in situ. J Biochem 2024; 176:271-276. [PMID: 38953373 DOI: 10.1093/jb/mvae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
In most organs, resources such as nutrients, oxygen and physiologically active substances are unevenly supplied within the tissue spaces. Consequently, different tissue functions are exhibited in each space. This spatial heterogeneity of tissue environments arises depending on the spatial arrangement of nutrient vessels and functional vessels, leading to continuous changes in the metabolic states and functions of various cell types from regions proximal to these vessels to distant regions. This phenomenon is referred to as 'zonation'. Traditional analytical methods have made it difficult to investigate this zonation in detail. However, recent advancements in intravital imaging, spatial transcriptomics and single-cell transcriptomics technologies have facilitated the discovery of 'zones' in various organs and elucidated their physiological roles. Here, we outline the spatial differences in the immune system within each zone of organs. This information provides a deeper understanding of organs' immune systems.
Collapse
Affiliation(s)
- Yu Miyamoto
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
24
|
Zhang M, Hao J, Wu Y, Gao Z, Wang M. Value of the lung immune prognostic index in patients with advanced small cell lung cancer treated with programmed death-ligand 1 and programmed death-1 inhibitors in the Chinese alpine region. Front Oncol 2024; 14:1411548. [PMID: 39391237 PMCID: PMC11464291 DOI: 10.3389/fonc.2024.1411548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose To assess the potential added value of the lung immune prognostic index (LIPI) in patients with small cell lung cancer (SCLC), treated with programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) inhibitors, who lived in the Chinese alpine region. Methods 120 SCLC patients treated with PD-L1/PD-1 inhibitors were divided into three LIPI groups, from July 2018 to April 2021. Cox regression models were used to evaluate the prognostic effect of three LIPI groups on overall survival (OS) and progression-free survival (PFS). Logistic regression analysis was conducted to explore the association between immune-related adverse events (irAEs) and the pretreatment of neutrophil-to-lymphocyte ratio (dNLR), lactate dehydrogenase (LDH), and LIPI. Results The median OS was 4.5, 6.3, and 10.0 months (p=0.001) and the median PFS was 2.5, 4.3, and 5.3 months (p=0.049) for Poor, Intermediate, and Good LIPI, respectively. The disease control rate (DCR) was also higher in the Good LIPI group (p=0.003). Moreover, multivariate analysis confirmed that worse LIPI was correlated with shorter OS and PFS. dNLR was associated with the onset of irAEs, not LIPI. Conclusion: The LIPI might be a promising predictive and prognostic biomarker in SCLC patients treated with PD-L1/PD-1 inhibitors in the Chinese Alpine region.
Collapse
Affiliation(s)
| | | | | | | | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
Britt EC, Qing X, Votava JA, Lika J, Wagner AS, Shen S, Arp NL, Khan H, Schieke SM, Fletcher CD, Huttenlocher A, Fan J. Activation induces shift in nutrient utilization that differentially impacts cell functions in human neutrophils. Proc Natl Acad Sci U S A 2024; 121:e2321212121. [PMID: 39284072 PMCID: PMC11441510 DOI: 10.1073/pnas.2321212121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/29/2024] [Indexed: 09/25/2024] Open
Abstract
Neutrophils utilize a variety of metabolic sources to support their crucial functions as the first responders in innate immunity. Here, through in vivo and ex vivo isotopic tracing, we examined the contributions of different nutrients to neutrophil metabolism under specific conditions. Human peripheral blood neutrophils, in contrast to a neutrophil-like cell line, rely on glycogen storage as a major metabolic source under resting state but rapidly switch to primarily using extracellular glucose upon activation with various stimuli. This shift is driven by a substantial increase in glucose uptake, enabled by rapidly increased GLUT1 on cell membrane, that dominates the simultaneous increase in gross glycogen cycling capacity. Shifts in nutrient utilization impact neutrophil functions in a function-specific manner: oxidative burst depends on glucose utilization, whereas NETosis and phagocytosis can be flexibly supported by either glucose or glycogen, and neutrophil migration and fungal control are enhanced by the shift from glycogen utilization to glucose utilization. This work provides a quantitative and dynamic understanding of fundamental features in neutrophil metabolism and elucidates how metabolic remodeling shapes neutrophil functions, which has broad health relevance.
Collapse
Affiliation(s)
- Emily C. Britt
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
| | - Xin Qing
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
| | | | - Jorgo Lika
- Morgridge Institute for Research, Madison, WI53715
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
| | - Andrew S. Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Simone Shen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Nicholas L. Arp
- Morgridge Institute for Research, Madison, WI53715
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
| | - Hamidullah Khan
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI53715
- Department of Dermatology, Georgetown University Medical Center Washington DC VA Medical Center, Washington, DC20036
| | - Stefan M. Schieke
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI53715
- Department of Dermatology, Georgetown University Medical Center Washington DC VA Medical Center, Washington, DC20036
| | | | - Anna Huttenlocher
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Carbone Cancer Center, Madison, WI53792
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI53792
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI53715
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI53792
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
- University of Wisconsin Carbone Cancer Center, Madison, WI53792
| |
Collapse
|
26
|
Secchia S, Beilinson V, Chen X, Yang ZF, Wayman JA, Dhaliwal J, Jurickova I, Angerman E, Denson LA, Miraldi ER, Weirauch MT, Ikegami K. Nutrient starvation activates ECM remodeling gene enhancers associated with inflammatory bowel disease risk in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611754. [PMID: 39314475 PMCID: PMC11418948 DOI: 10.1101/2024.09.06.611754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Nutrient deprivation induces a reversible cell cycle arrest state termed quiescence, which often accompanies transcriptional silencing and chromatin compaction. Paradoxically, nutrient deprivation is associated with activated fibroblast states in pathological microenvironments in which fibroblasts drive extracellular matrix (ECM) remodeling to alter tissue environments. The relationship between nutrient deprivation and fibroblast activation remains unclear. Here, we report that serum deprivation extensively activates transcription of ECM remodeling genes in cultured fibroblasts, despite the induction of quiescence. Starvation-induced transcriptional activation accompanied large-scale histone acetylation of putative distal enhancers, but not promoters. The starvation-activated putative enhancers were enriched for non-coding genetic risk variants associated with inflammatory bowel disease (IBD), suggesting that the starvation-activated gene regulatory network may contribute to fibroblast activation in IBD. Indeed, the starvation-activated gene PLAU, encoding uPA serine protease for plasminogen and ECM, was upregulated in inflammatory fibroblasts in the intestines of IBD patients. Furthermore, the starvation-activated putative enhancer at PLAU, which harbors an IBD risk variant, gained chromatin accessibility in IBD patient fibroblasts. This study implicates nutrient deprivation in transcriptional activation of ECM remodeling genes in fibroblasts and suggests nutrient deprivation as a potential mechanism for pathological fibroblast activation in IBD.
Collapse
Affiliation(s)
- Stefano Secchia
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
- Department of Biology, Lund University, Lund, 22362, Sweden
- Present address: Institute of Human Biology, Basel, Switzerland
| | - Vera Beilinson
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
- Present address: California Institute of Technology, Pasadena, California, USA
| | - Xiaoting Chen
- Division of Allergy and Immunology, CCHMC Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zi F Yang
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joseph A Wayman
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jasbir Dhaliwal
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ingrid Jurickova
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Elizabeth Angerman
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily R Miraldi
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew T Weirauch
- Division of Allergy and Immunology, CCHMC Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kohta Ikegami
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
27
|
Darwitz BP, Genito CJ, Thurlow LR. Triple threat: how diabetes results in worsened bacterial infections. Infect Immun 2024; 92:e0050923. [PMID: 38526063 PMCID: PMC11385445 DOI: 10.1128/iai.00509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Diabetes mellitus, characterized by impaired insulin signaling, is associated with increased incidence and severity of infections. Various diabetes-related complications contribute to exacerbated bacterial infections, including hyperglycemia, innate immune cell dysfunction, and infection with antibiotic-resistant bacterial strains. One defining symptom of diabetes is hyperglycemia, resulting in elevated blood and tissue glucose concentrations. Glucose is the preferred carbon source of several bacterial pathogens, and hyperglycemia escalates bacterial growth and virulence. Hyperglycemia promotes specific mechanisms of bacterial virulence known to contribute to infection chronicity, including tissue adherence and biofilm formation. Foot infections are a significant source of morbidity in individuals with diabetes and consist of biofilm-associated polymicrobial communities. Bacteria perform complex interspecies behaviors conducive to their growth and virulence within biofilms, including metabolic cross-feeding and altered phenotypes more tolerant to antibiotic therapeutics. Moreover, the metabolic dysfunction caused by diabetes compromises immune cell function, resulting in immune suppression. Impaired insulin signaling induces aberrations in phagocytic cells, which are crucial mediators for controlling and resolving bacterial infections. These aberrancies encompass altered cytokine profiles, the migratory and chemotactic mechanisms of neutrophils, and the metabolic reprogramming required for the oxidative burst and subsequent generation of bactericidal free radicals. Furthermore, the immune suppression caused by diabetes and the polymicrobial nature of the diabetic infection microenvironment may promote the emergence of novel strains of multidrug-resistant bacterial pathogens. This review focuses on the "triple threat" linked to worsened bacterial infections in individuals with diabetes: (i) altered nutritional availability in diabetic tissues, (ii) diabetes-associated immune suppression, and (iii) antibiotic treatment failure.
Collapse
Affiliation(s)
- Benjamin P. Darwitz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher J. Genito
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| | - Lance R. Thurlow
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| |
Collapse
|
28
|
Zhang H, Li S, Wang D, Liu S, Xiao T, Gu W, Yang H, Wang H, Yang M, Chen P. Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment. Biomark Res 2024; 12:96. [PMID: 39227970 PMCID: PMC11373140 DOI: 10.1186/s40364-024-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Tumor cells possess complex immune evasion mechanisms to evade immune system attacks, primarily through metabolic reprogramming, which significantly alters the tumor microenvironment (TME) to modulate immune cell functions. When a tumor is sufficiently immunogenic, it can activate cytotoxic T-cells to target and destroy it. However, tumors adapt by manipulating their metabolic pathways, particularly glucose, amino acid, and lipid metabolism, to create an immunosuppressive TME that promotes immune escape. These metabolic alterations impact the function and differentiation of non-tumor cells within the TME, such as inhibiting effector T-cell activity while expanding regulatory T-cells and myeloid-derived suppressor cells. Additionally, these changes lead to an imbalance in cytokine and chemokine secretion, further enhancing the immunosuppressive landscape. Emerging research is increasingly focusing on the regulatory roles of non-tumor cells within the TME, evaluating how their reprogrammed glucose, amino acid, and lipid metabolism influence their functional changes and ultimately aid in tumor immune evasion. Despite our incomplete understanding of the intricate metabolic interactions between tumor and non-tumor cells, the connection between these elements presents significant challenges for cancer immunotherapy. This review highlights the impact of altered glucose, amino acid, and lipid metabolism in the TME on the metabolism and function of non-tumor cells, providing new insights that could facilitate the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Haixia Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shizhen Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyang Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
29
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
30
|
Wang Y, Torres-García D, Mostert TP, Reinalda L, Van Kasteren SI. A Bioorthogonal Dual Fluorogenic Probe for the Live-Cell Monitoring of Nutrient Uptake by Mammalian Cells. Angew Chem Int Ed Engl 2024; 63:e202401733. [PMID: 38716701 DOI: 10.1002/anie.202401733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 06/21/2024]
Abstract
Cells rely heavily on the uptake of exogenous nutrients for survival, growth, and differentiation. Yet quantifying the uptake of small molecule nutrients at the single cell level is difficult. Here we present a new approach to studying the nutrient uptake in live single cells using Inverse Electron-Demand Diels Alder (IEDDA) chemistry. We have modified carboxyfluorescein-diacetate-succinimidyl esters (CFSE)-a quenched fluorophore that can covalently react with proteins and is only turned on in the cytosol of a cell following esterase activity-with a tetrazine. This tetrazine serves as a second quencher for the pendant fluorophore. Upon reaction with nutrients modified with an electron-rich or strained dienophile in an IEDDA reaction, this quenching group is destroyed, thereby enabling the probe to fluoresce. This has allowed us to monitor the uptake of a variety of dienophile-containing nutrients in live primary immune cell populations using flow cytometry and live-cell microscopy.
Collapse
Affiliation(s)
- Yixuan Wang
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Diana Torres-García
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Thijmen P Mostert
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Luuk Reinalda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander I Van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
31
|
Hajar A, Swathi NL, Ali A. Immunological Insights Into Nutritional Deficiency Disorders. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2024:61-84. [DOI: 10.4018/979-8-3693-2947-4.ch004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Essential nutrients play a vital role in influencing immune cell development. This chapter explores the crucial relationship between nutrition and the immune system, delving into the profound impact of dietary choices on overall health. Research highlights the benefits of nutrient-rich foods in supporting optimal immune function, while deficiencies in key nutrients (vitamins A, D, zinc, and iron) compromise immune responses, increasing susceptibility to infections. The bidirectional nature of the relationship is emphasized, underscoring the critical role of a balanced diet in supporting immune cell development, activation, and function. Case studies illustrate immunological vulnerabilities linked to inadequate nutritional status, stressing the importance of maintaining optimal nutrient levels for a robust immune system. In summary, an individual's nutritional status significantly influences immune response effectiveness. Addressing deficiencies through supplementation, dietary interventions, and public health initiatives is crucial for improving immune function.
Collapse
Affiliation(s)
- Azraida Hajar
- Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - N. L. Swathi
- Sri Venkateswara College of Pharmacy, Jawaharlal Nehru Technological University, India
| | - Awais Ali
- Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
32
|
Kakkat S, Suman P, Turbat- Herrera EA, Singh S, Chakroborty D, Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front Cell Dev Biol 2024; 12:1408844. [PMID: 39040042 PMCID: PMC11260727 DOI: 10.3389/fcell.2024.1408844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a multifaceted metabolic disorder characterized by excessive accumulation of adipose tissue. It is a well-established risk factor for the development and progression of breast cancer. Adipose tissue, which was once regarded solely as a passive energy storage depot, is now acknowledged as an active endocrine organ producing a plethora of bioactive molecules known as adipokines that contribute to the elevation of proinflammatory cytokines and estrogen production due to enhanced aromatase activity. In the context of breast cancer, the crosstalk between adipocytes and cancer cells within the adipose microenvironment exerts profound effects on tumor initiation, progression, and therapeutic resistance. Moreover, adipocytes can engage in direct interactions with breast cancer cells through physical contact and paracrine signaling, thereby facilitating cancer cell survival and invasion. This review endeavors to summarize the current understanding of the intricate interplay between adipocyte-associated factors and breast cancer progression. Furthermore, by discussing the different aspects of breast cancer that can be adversely affected by obesity, this review aims to shed light on potential avenues for new and novel therapeutic interventions.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Prabhat Suman
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Elba A. Turbat- Herrera
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
33
|
Iperi C, Fernández-Ochoa Á, Pers JO, Barturen G, Alarcón-Riquelme M, Quirantes-Piné R, Borrás-Linares I, Segura-Carretero A, Cornec D, Bordron A, Jamin C. Integration of multi-omics analysis reveals metabolic alterations of B lymphocytes in systemic lupus erythematosus. Clin Immunol 2024; 264:110243. [PMID: 38735509 DOI: 10.1016/j.clim.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE To link changes in the B-cell transcriptome from systemic lupus erythematosus (SLE) patients with those in their macroenvironment, including cellular and fluidic components. METHODS Analysis was performed on 363 patients and 508 controls, encompassing transcriptomics, metabolomics, and clinical data. B-cell and whole-blood transcriptomes were analysed using DESeq and GSEA. Plasma and urine metabolomics peak changes were quantified and annotated using Ceu Mass Mediator database. Common sources of variation were identified using MOFA integration analysis. RESULTS Cellular macroenvironment was enriched in cytokines, stress responses, lipidic synthesis/mobility pathways and nucleotide degradation. B cells shared these pathways, except nucleotide degradation diverted to nucleotide salvage pathway, and distinct glycosylation, LPA receptors and Schlafen proteins. CONCLUSIONS B cells showed metabolic changes shared with their macroenvironment and unique changes directly or indirectly induced by IFN-α signalling. This study underscores the importance of understanding the interplay between B cells and their macroenvironment in SLE pathology.
Collapse
Affiliation(s)
| | | | | | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Marta Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosa Quirantes-Piné
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Granada, Spain
| | | | | | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | | |
Collapse
|
34
|
Cui J, Wang Y, Li S, Le Y, Deng Y, Chen J, Peng Q, Xu R, Li J. Efficacy of mesenchymal stem cells in treating tracheoesophageal fistula via the TLR4/NF-κb pathway in beagle macrophages. Heliyon 2024; 10:e32903. [PMID: 39021940 PMCID: PMC11253233 DOI: 10.1016/j.heliyon.2024.e32903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Tracheoesophageal fistula (TEF) remains a rare but significant clinical challenge, mainly due to the absence of established, effective treatment approaches. The current focus of therapeutic strategy is mainly on fistula closure. However, this approach often misses important factors, such as accelerating fistula contraction and fostering healing processes, which significantly increases the risk of disease recurrence. Methods In order to investigate if Mesenchymal Stem Cells (MSCs) can enhance fistula repair, developed a TEF model in beagles. Dynamic changes in fistula diameter were monitored by endoscopy. Concurrently, we created a model of LPS-induced macrophage to replicate the inflammatory milieu typical in TEF. In addition, the effect of MSC supernatant on inflammation mitigation was evaluated. Furthermore, we looked at the role of TLR4/NF-κB pathway plays in the healing process. Results Our research revealed that the local administration of MSCs significantly accelerated the fistula's healing process. This was demonstrated by a decline in TEF apoptosis and decrease in the production of pro-inflammatory cytokines. Furthermore, in vivo experiments demonstrated that the MSC supernatant was effective in suppressing pro-inflammatory cytokine expression and alleviating apoptosis in LPS-induced macrophages. These therapeutic effects were mainly caused by the suppression of TLR4/NF-κB pathway. Conclusion According to this study, MSCs can significantly improve TEF recovery. They achieve this via modulating apoptosis and inflammatory responses, mainly by selectively inhibiting the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jinghua Cui
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Yuchao Wang
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
- School of Medicine South China University of Technology, Guangzhou, 510006, China
| | - Shuixiu Li
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
- The Second School of Clinical Medicine, Southern Medical University. Guangzhou, Guangdong, 51006, China
| | - Yanqing Le
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Yi Deng
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
- Medical School, Kunming University of Science and Technology, Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province Kunming, Yunnan, China. 650000
| | - Jingjing Chen
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Qian Peng
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Rongde Xu
- Department of Interventional Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou Guangdong, China, 510080
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| |
Collapse
|
35
|
Tambralli A, Harbaugh A, NaveenKumar SK, Radyk MD, Rysenga CE, Sabb K, Hurley JM, Sule GJ, Yalavarthi S, Estes SK, Hoy CK, Smith T, Sarosh C, Madison JA, Schaefer JK, Sood SL, Zuo Y, Sawalha AH, Lyssiotis CA, Knight JS. Neutrophil glucose flux as a therapeutic target in antiphospholipid syndrome. J Clin Invest 2024; 134:e169893. [PMID: 38869951 PMCID: PMC11290966 DOI: 10.1172/jci169893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Neutrophil hyperactivity and neutrophil extracellular trap release (NETosis) appear to play important roles in the pathogenesis of the thromboinflammatory autoimmune disease known as antiphospholipid syndrome (APS). The understanding of neutrophil metabolism has advanced tremendously in the past decade, and accumulating evidence suggests that a variety of metabolic pathways guide neutrophil activities in health and disease. Our previous work characterizing the transcriptome of APS neutrophils revealed that genes related to glycolysis, glycogenolysis, and the pentose phosphate pathway (PPP) were significantly upregulated. Here, we found that neutrophils from patients with APS used glycolysis more avidly than neutrophils from people in the healthy control group, especially when the neutrophils were from patients with APS with a history of microvascular disease. In vitro, inhibiting either glycolysis or the PPP tempered phorbol myristate acetate- and APS IgG-induced NETosis, but not NETosis triggered by a calcium ionophore. In mice, inhibiting either glycolysis or the PPP reduced neutrophil reactive oxygen species production and suppressed APS IgG-induced NETosis ex vivo. When APS-associated thrombosis was evaluated in mice, inhibiting either glycolysis or the PPP markedly suppressed thrombosis and circulating NET remnants. In summary, these data identify a potential role for restraining neutrophil glucose flux in the treatment of APS.
Collapse
Affiliation(s)
- Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | | | | | | | - Kaitlyn Sabb
- Division of Rheumatology, Department of Internal Medicine
| | | | - Gautam J. Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | | | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine
| | - Tristin Smith
- Division of Rheumatology, Department of Internal Medicine
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine
| | - Jacqueline A. Madison
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Jordan K. Schaefer
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Suman L. Sood
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine
| | - Amr H. Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
36
|
Bahiraii S, Braunböck-Müller B, Heiss EH. Increased Glycolytic Activity Is Part of Impeded M1(LPS) Macrophage Polarization in the Presence of Urolithin A. PLANTA MEDICA 2024; 90:546-553. [PMID: 38843794 PMCID: PMC11156499 DOI: 10.1055/a-2240-7462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 06/10/2024]
Abstract
Urolithin A is a gut metabolite of ellagitannins and reported to confer health benefits, e.g., by increased clearance of damaged mitochondria by macroautophagy or curbed inflammation. One targeted cell type are macrophages, which are plastic and able to adopt pro- or anti-inflammatory polarization states, usually assigned as M1 and M2 macrophages, respectively. This flexibility is tightly coupled to characteristic shifts in metabolism, such as increased glycolysis in M1 macrophages, and protein expression upon appropriate stimulation. This study aimed at investigating whether the anti-inflammatory properties of U: rolithin A may be driven by metabolic alterations in cultivated murine M1(lipopolysaccharide) macrophages. Expression and extracellular flux analyses showed that urolithin A led to reduced il1β, il6, and nos2 expression and boosted glycolytic activity in M1(lipopolysaccharide) macrophages. The pro-glycolytic feature of UROLITHIN A: occurred in order to causally contribute to its anti-inflammatory potential, based on experiments in cells with impeded glycolysis. Mdivi, an inhibitor of mitochondrial fission, blunted increased glycolytic activity and reduced M1 marker expression in M1(lipopolysaccharide/UROLITHIN A: ), indicating that segregation of mitochondria was a prerequisite for both actions of UROLITHIN A: . Overall, we uncovered a so far unappreciated metabolic facet within the anti-inflammatory activity of UROLITHIN A: and call for caution about the simplified notion of increased aerobic glycolysis as an inevitably proinflammatory feature in macrophages upon exposure to natural products.
Collapse
Affiliation(s)
- Sheyda Bahiraii
- Department of Pharmaceutical Sciences/Pharmacognosy, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | | | - Elke H. Heiss
- Department of Pharmaceutical Sciences/Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
38
|
Zou X, Lu Y, Tan Y. Effect of serum metabolites on the risk of iridocyclitis: a bidirectional Mendelian randomization study. Sci Rep 2024; 14:10535. [PMID: 38719907 PMCID: PMC11078962 DOI: 10.1038/s41598-024-61441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Previous research has linked serum metabolite levels to iridocyclitis, yet their causal relationship remains unexplored. This study investigated this potential causality by analyzing pooled data from 7824 iridocyclitis patients in a Genome-Wide Association Study (GWAS) using Mendelian randomization (MR) and linkage disequilibrium score regression (LDSC). Employing rigorous quality control and comprehensive statistical methods, including sensitivity analyses, we examined the influence of 486 serum metabolites on iridocyclitis. Our MR analysis identified 23 metabolites with significant causal effects on iridocyclitis, comprising 17 known and 6 unidentified metabolites. Further refinement using Cochran's Q test and MR-PRESSO indicated 16 metabolites significantly associated with iridocyclitis risk. LDSC highlighted the heritability of certain metabolites, underscoring genetic influences on their levels. Notably, tryptophan, proline, theobromine, and 7-methylxanthine emerged as risk factors, while 3,4-dihydroxybutyrate appeared protective. These findings enhance our understanding of the metabolic interactions in iridocyclitis, offering insights for diagnosis, unraveling pathophysiological mechanisms, and informing potential avenues for prevention and personalized treatment.
Collapse
Affiliation(s)
- Xuyan Zou
- Changsha Aier Eye Hospital, Changsha, Hunan Provine, 410015, China
| | - Yijie Lu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, Guangdong Provine, 518000, China
| | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan Provine, 410013, China.
| |
Collapse
|
39
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
40
|
Prange CJ, Sayed NYB, Feng B, Goepfert C, Trujillo DO, Hu X, Tang L. A redox-responsive prodrug for tumor-targeted glutamine restriction. J Control Release 2024; 368:251-264. [PMID: 38403173 DOI: 10.1016/j.jconrel.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Modulating the metabolism of cancer cells, immune cells, or both is a promising strategy to potentiate cancer immunotherapy in the nutrient-competitive tumor microenvironment. Glutamine has emerged as an ideal target as cancer cells highly rely on glutamine for replenishing the tricarboxylic acid cycle in the process of aerobic glycolysis. However, non-specific glutamine restriction may induce adverse effects in unconcerned tissues and therefore glutamine inhibitors have achieved limited success in the clinic so far. Here we report the synthesis and evaluation of a redox-responsive prodrug of 6-Diazo-5-oxo-L-norleucine (redox-DON) for tumor-targeted glutamine inhibition. When applied to treat mice bearing subcutaneous CT26 mouse colon carcinoma, redox-DON exhibited equivalent antitumor efficacy but a greatly improved safety profile, particularly, in spleen and gastrointestinal tract, as compared to the state-of-the-art DON prodrug, JHU083. Furthermore, redox-DON synergized with checkpoint blockade antibodies leading to durable cures in tumor-bearing mice. Our results suggest that redox-DON is a safe and effective therapeutic for tumor-targeted glutamine inhibition showing promise for enhanced metabolic modulatory immunotherapy. The approach of reversible chemical modification may be generalized to other metabolic modulatory drugs that suffer from overt toxicity.
Collapse
Affiliation(s)
- Céline Jasmin Prange
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Nadia Yasmina Ben Sayed
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Bing Feng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Institute of Materials Science & Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Christine Goepfert
- Histology Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; COMPATH, Institute of Veterinary Pathology, University of Berne, Berne CH-3012, Switzerland
| | - Daniel Ortiz Trujillo
- Mass Spectrometry Platform, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Xile Hu
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Institute of Materials Science & Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
41
|
Strefeler A, Blanco-Fernandez J, Jourdain AA. Nucleosides are overlooked fuels in central carbon metabolism. Trends Endocrinol Metab 2024; 35:290-299. [PMID: 38423899 DOI: 10.1016/j.tem.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
From our daily nutrition and synthesis within cells, nucleosides enter the bloodstream and circulate throughout the body and tissues. Nucleosides and nucleotides are classically viewed as precursors of nucleic acids, but recently they have emerged as a novel energy source for central carbon metabolism. Through catabolism by nucleoside phosphorylases, the ribose sugar group is released and can provide substrates for lower steps in glycolysis. In environments with limited glucose, such as at sites of infection or in the tumor microenvironment (TME), cells can use, and may even require, this alternative energy source. Here, we discuss the implications of these new findings in health and disease and speculate on the potential new roles of nucleosides and nucleic acids in energy metabolism.
Collapse
Affiliation(s)
- Abigail Strefeler
- Department of Immunobiology, University of Lausanne, Ch. des Boveresses 155, CP51, 1066 Epalinges, Switzerland
| | - Joan Blanco-Fernandez
- Department of Immunobiology, University of Lausanne, Ch. des Boveresses 155, CP51, 1066 Epalinges, Switzerland
| | - Alexis A Jourdain
- Department of Immunobiology, University of Lausanne, Ch. des Boveresses 155, CP51, 1066 Epalinges, Switzerland.
| |
Collapse
|
42
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau D, Shapiro V, Springer W, Sun J, Boothby MR, Zeng H. Rag-GTPase-TFEB/TFE3 axis controls B cell mitochondrial fitness and humoral immunity independent of mTORC1. RESEARCH SQUARE 2024:rs.3.rs-3957355. [PMID: 38585731 PMCID: PMC10996787 DOI: 10.21203/rs.3.rs-3957355/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 axis as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|
43
|
Iborra-Pernichi M, Ruiz García J, Velasco de la Esperanza M, Estrada BS, Bovolenta ER, Cifuentes C, Prieto Carro C, González Martínez T, García-Consuegra J, Rey-Stolle MF, Rupérez FJ, Guerra Rodriguez M, Argüello RJ, Cogliati S, Martín-Belmonte F, Martínez-Martín N. Defective mitochondria remodelling in B cells leads to an aged immune response. Nat Commun 2024; 15:2569. [PMID: 38519473 PMCID: PMC10960012 DOI: 10.1038/s41467-024-46763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
The B cell response in the germinal centre (GC) reaction requires a unique bioenergetic supply. Although mitochondria are remodelled upon antigen-mediated B cell receptor stimulation, mitochondrial function in B cells is still poorly understood. To gain a better understanding of the role of mitochondria in B cell function, here we generate mice with B cell-specific deficiency in Tfam, a transcription factor necessary for mitochondrial biogenesis. Tfam conditional knock-out (KO) mice display a blockage of the GC reaction and a bias of B cell differentiation towards memory B cells and aged-related B cells, hallmarks of an aged immune response. Unexpectedly, blocked GC reaction in Tfam KO mice is not caused by defects in the bioenergetic supply but is associated with a defect in the remodelling of the lysosomal compartment in B cells. Our results may thus describe a mitochondrial function for lysosome regulation and the downstream antigen presentation in B cells during the GC reaction, the dysruption of which is manifested as an aged immune response.
Collapse
Affiliation(s)
- Marta Iborra-Pernichi
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Jonathan Ruiz García
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Velasco de la Esperanza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Belén S Estrada
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Elena R Bovolenta
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Claudia Cifuentes
- Program of Interactions with the Environment, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Prieto Carro
- Program of Interactions with the Environment, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Tamara González Martínez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - José García-Consuegra
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Javier Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Milagros Guerra Rodriguez
- Electron Microscopy Facility, Centro de Biología Molecular "Severo Ochoa, " Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sara Cogliati
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Nuria Martínez-Martín
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Intestinal Morphogenesis and Homeostasis Group, Area 3-Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
44
|
Noble J, Macek Jilkova Z, Aspord C, Malvezzi P, Fribourg M, Riella LV, Cravedi P. Harnessing Immune Cell Metabolism to Modulate Alloresponse in Transplantation. Transpl Int 2024; 37:12330. [PMID: 38567143 PMCID: PMC10985621 DOI: 10.3389/ti.2024.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Immune cell metabolism plays a pivotal role in shaping and modulating immune responses. The metabolic state of immune cells influences their development, activation, differentiation, and overall function, impacting both innate and adaptive immunity. While glycolysis is crucial for activation and effector function of CD8 T cells, regulatory T cells mainly use oxidative phosphorylation and fatty acid oxidation, highlighting how different metabolic programs shape immune cells. Modification of cell metabolism may provide new therapeutic approaches to prevent rejection and avoid immunosuppressive toxicities. In particular, the distinct metabolic patterns of effector and suppressive cell subsets offer promising opportunities to target metabolic pathways that influence immune responses and graft outcomes. Herein, we review the main metabolic pathways used by immune cells, the techniques available to assay immune metabolism, and evidence supporting the possibility of shifting the immune response towards a tolerogenic profile by modifying energetic metabolism.
Collapse
Affiliation(s)
- Johan Noble
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
| | - Zuzana Macek Jilkova
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
- Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Grenoble, Grenoble, France
| | - Caroline Aspord
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
- Établissement Français du Sang Auvergne-Rhône-Alpes, R&D-Laboratory, Grenoble, France
| | - Paolo Malvezzi
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
| | - Miguel Fribourg
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai New York, New York, NY, United States
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai New York, New York, NY, United States
| |
Collapse
|
45
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau D, Shapiro V, Springer W, Sun J, Boothby MR, Zeng H. The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582122. [PMID: 38463988 PMCID: PMC10925109 DOI: 10.1101/2024.02.26.582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 pathway as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|
46
|
Wang B, Pei J, Xu S, Liu J, Yu J. A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. J Exp Clin Cancer Res 2024; 43:74. [PMID: 38459595 PMCID: PMC10921613 DOI: 10.1186/s13046-024-02994-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Glutamine metabolism plays a pivotal role in cancer progression, immune cell function, and the modulation of the tumor microenvironment. Dysregulated glutamine metabolism has been implicated in cancer development and immune responses, supported by mounting evidence. Cancer cells heavily rely on glutamine as a critical nutrient for survival and proliferation, while immune cells require glutamine for activation and proliferation during immune reactions. This metabolic competition creates a dynamic tug-of-war between cancer and immune cells. Targeting glutamine transporters and downstream enzymes involved in glutamine metabolism holds significant promise in enhancing anti-tumor immunity. A comprehensive understanding of the intricate molecular mechanisms underlying this interplay is crucial for developing innovative therapeutic approaches that improve anti-tumor immunity and patient outcomes. In this review, we provide a comprehensive overview of recent advances in unraveling the tug-of-war of glutamine metabolism between cancer and immune cells and explore potential applications of basic science discoveries in the clinical setting. Further investigations into the regulation of glutamine metabolism in cancer and immune cells are expected to yield valuable insights, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
47
|
Kopecky BJ, Lavine KJ. Cardiac macrophage metabolism in health and disease. Trends Endocrinol Metab 2024; 35:249-262. [PMID: 37993313 PMCID: PMC10949041 DOI: 10.1016/j.tem.2023.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Cardiac macrophages are essential mediators of cardiac development, tissue homeostasis, and response to injury. Cell-intrinsic shifts in metabolism and availability of metabolites regulate macrophage function. The human and mouse heart contain a heterogeneous compilation of cardiac macrophages that are derived from at least two distinct lineages. In this review, we detail the unique functional roles and metabolic profiles of tissue-resident and monocyte-derived cardiac macrophages during embryonic development and adult tissue homeostasis and in response to pathologic and physiologic stressors. We discuss the metabolic preferences of each macrophage lineage and how metabolism influences monocyte fate specification. Finally, we highlight the contribution of cardiac macrophages and derived metabolites on cell-cell communication, metabolic health, and disease pathogenesis.
Collapse
Affiliation(s)
- Benjamin J Kopecky
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
48
|
Wang Y, Lou P, Xie Y, Liu S, Li L, Wang C, Du D, Chen Y, Lu Y, Cheng J, Liu J. Nutrient availability regulates the secretion and function of immune cell-derived extracellular vesicles through metabolic rewiring. SCIENCE ADVANCES 2024; 10:eadj1290. [PMID: 38354238 PMCID: PMC10866539 DOI: 10.1126/sciadv.adj1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Extracellular vesicle (EV)-based immunotherapeutics have emerged as promising strategy for treating diseases, and thus, a better understanding of the factors that regulate EV secretion and function can provide insights into developing advanced therapies. Here, we report that nutrient availability, even changes in individual nutrient components, may affect EV biogenesis and composition of immune cells [e.g., macrophages (Mφs)]. As a proof of concept, EVs from M1-Mφ under glutamine-depleted conditions (EVGLN-) had higher yields, functional compositions, and immunostimulatory potential than EVs from conventional GLN-present medium (EVGLN+). Mechanistically, the systemic metabolic rewiring (e.g., altered energy and redox metabolism) induced by GLN depletion resulted in up-regulated pathways related to EV biogenesis/cargo sorting (e.g., ESCRT) and immunostimulatory molecule production (e.g., NF-κB and STAT) in Mφs. This study highlights the importance of nutrient status in EV secretion and function, and optimizing metabolic states and/or integrating them with other engineering methods may advance the development of EV therapeutics.
Collapse
Affiliation(s)
- Yizhuo Wang
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Peng Lou
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yijing Xie
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lan Li
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Department of General Surgery and NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
ZHANG YANG, QIN NANNAN, WANG XIJUN, LIANG RUI, LIU QUAN, GENG RUOYI, JIANG TIANXIAO, LIU YUNFEI, LI JINWEI. Glycogen metabolism-mediated intercellular communication in the tumor microenvironment influences liver cancer prognosis. Oncol Res 2024; 32:563-576. [PMID: 38361757 PMCID: PMC10865732 DOI: 10.32604/or.2023.029697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2023] [Indexed: 02/17/2024] Open
Abstract
Glycogen metabolism plays a key role in the development of hepatocellular carcinoma (HCC), but the function of glycogen metabolism genes in the tumor microenvironment (TME) is still to be elucidated. Single-cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells, and 65 glycogen metabolism genes were analyzed by a nonnegative matrix factorization (NMF). The prognosis and immune response of new glycogen TME cell clusters were predicted by using HCC and immunotherapy cohorts from public databases. HCC single-cell analysis was divided into fibroblasts, NT T cells, macrophages, endothelial cells, and B cells, which were separately divided into new cell clusters by glycogen metabolism gene annotation. Pseudo-temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell clusters. Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell-related subtypes and different glycogen subtype cell clusters. SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism. In addition, TME cell clusters of glycogen metabolism were found to be enriched in expression in CAF subtypes, CD8 depleted, M1, and M2 types. Bulk-seq analysis showed the prognostic significance of glycogen metabolism-mediated TME cell clusters in HCC, while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade (ICB), especially for CAFs, T cells, and macrophages. In summary, our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell clusters.
Collapse
Affiliation(s)
- YANG ZHANG
- Graduate School, Kunming Medical University, Kunming, 650000, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650000, China
| | - NANNAN QIN
- Department of Gynecology Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - XIJUN WANG
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - RUI LIANG
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - QUAN LIU
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - RUOYI GENG
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - TIANXIAO JIANG
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - YUNFEI LIU
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - JINWEI LI
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610000, China
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| |
Collapse
|
50
|
Yang J, Shay C, Saba NF, Teng Y. Cancer metabolism and carcinogenesis. Exp Hematol Oncol 2024; 13:10. [PMID: 38287402 PMCID: PMC10826200 DOI: 10.1186/s40164-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|