1
|
Liu Z, Li T, Yan Q, Zeng H, Li L, Dong Y. The development of multicolor carbon dots and their applications in the field of anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126046. [PMID: 40088846 DOI: 10.1016/j.saa.2025.126046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
The diversity of photoluminescence emission of multicolor carbon dots (mCDs) greatly broadens their application field. Counterfeiting is a problem that has serious consequences for individuals and society. The fluorescent ink based on mCDs has been developed due to their low toxicity and good resistance to photobleaching in the field of anti-counterfeiting. In the background, the preparation strategies of mCDs were discussed in detail, including top-down method and bottom-up method. The common carbon sources for the preparation of mCDs were further summarized, such as phenylenediamine class, amino-substituted naphthalene class, dihydroxyhenzene and benzoquinone class, biomass, and other common carbon sources. Furthermore, in order to understand the structure of CDs, this paper focused on the classification and common characterization techniques of CDs. In addition, the application of mCDs as fluorescent ink in the field of anti-counterfeiting was classified by simple anti-counterfeiting and good multiple anti-counterfeiting. Finally, the paper offered insight into the future development prospects of CDs-based fluorescent ink based on the current development trends.
Collapse
Affiliation(s)
- Zixin Liu
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Tianze Li
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Qiuyan Yan
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Hong Zeng
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Lihui Li
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Yuanyuan Dong
- College of Materials Science and Engineering, Heilongjiang Institute of Technology, Harbin 150050, China.
| |
Collapse
|
2
|
Dong Y, Feng S, Huang W, Ma X. Algorithm in chemistry: molecular logic gate-based data protection. Chem Soc Rev 2025; 54:3681-3735. [PMID: 40159995 DOI: 10.1039/d4cs01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Data security is crucial for safeguarding the integrity, authenticity, and confidentiality of documents, currency, merchant labels, and other paper-based assets, which sequentially has a profound impact on personal privacy and even national security. High-security-level logic data protection paradigms are typically limited to software (digital circuits) and rarely applied to physical devices using stimuli-responsive materials (SRMs). The main reason is that most SRMs lack programmable and controllable switching behaviors. Traditional SRMs usually produce static, singular, and highly predictable signals in response to stimuli, restricting them to simple "BUFFER" or "INVERT" logic operations with a low security level. However, recent advancements in SRMs have collectively enabled dynamic, multidimensional, and less predictable output signals under external stimuli. This breakthrough paves the way for sophisticated encryption and anti-counterfeiting hardware based on SRMs with complicated logic operations and algorithms. This review focuses on SRM-based data protection, emphasizing the integration of intricate logic and algorithms in SRM-constructed hardware, rather than chemical or material structural evolutions. It also discusses current challenges and explores the future directions of the field-such as combining SRMs with artificial intelligence (AI). This review fills a gap in the existing literature and represents a pioneering step into the uncharted territory of SRM-based encryption and anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
3
|
Li C, Jiao F, Dong L, Hu J, Ma X, Lou Q, Chen X, Xu W, Zhu Y, Zhu J. Time-Division Multiplexing Physical Unclonable Functions Based on Multicolor Phosphorescent Carbon Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502522. [PMID: 40223363 DOI: 10.1002/adma.202502522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/26/2025] [Indexed: 04/15/2025]
Abstract
Phosphorescent materials offer a promising approach to information encryption due to their long luminescence lifetimes and high signal-to-noise ratios. However, fixed phosphorescent patterns are vulnerable to imitation over time, limiting their effectiveness in advanced encryption. Here, a time-division multiplexing physical unclonable function (TDM-PUF) label utilizing multicolor phosphorescent carbon dots (CDs) is proposed that leverages variations in wavelength and lifetime to construct time-resolved, multidimensional cryptographic protocols. Efficient multi-color phosphorescence in CDs is achieved by enhancing intersystem crossing, suppressing non-radiative transitions through confinement effects, and regulating emission spectra via energy transfer. The random spatial distribution and unpredictable emissions of phosphorescent CDs significantly enhance the complexity of the PUF system, thereby fortifying its defenses against mimicry attacks. Furthermore, this PUF system exhibits multiple optical responses over time, allowing correct information recognition only at specified time nodes, achieving time-resolved anti-counterfeiting. Finally, by segmenting PUF labels based on emission color and time channels, non-overlapping multicolor and multi-time segments are achieved, enabling highly secure time-division multiplexed encryption. The study provides a competitive anti-counterfeiting label and inspires the development of novel anti-counterfeiting strategies.
Collapse
Affiliation(s)
- Chao Li
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Fuhang Jiao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Junhua Hu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xuejun Ma
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xu Chen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, P. R. China
| | - Yongsheng Zhu
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Jinyang Zhu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
4
|
Han F, Chen S, Wang F, Liu M, Li J, Liu H, Yang Y, Zhang H, Liu D, He R, Cao W, Qin X, Xu F. High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412726. [PMID: 39874215 PMCID: PMC12021042 DOI: 10.1002/advs.202412726] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented. The hydrogel is designed with a hydrogen-bonded and chemically crosslinked network, achieving excellent conductivity (0.49 ± 0.05 S m-1), adhesion (36.73 ± 2.28 kPa), and self-healing capacity even at -80 °C. Furthermore, the ICHs maintain functionality for over 45 days, showcasing outstanding anti-freezing properties. This material demonstrates significant potential for non-invasive, continuous health monitoring, adhering conformally to the skin without signal crosstalk, and enabling real-time, high-fidelity signal transmission in human-machine interactions under cryogenic conditions. These ICHs offer transformative potential for the next generation of multimodal sensors, broadening application possibilities in harsh environments, including extreme weather and outer space.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Shumeng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Fei Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Mei Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jiahui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yanshen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Dong Liu
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityNo. 28, Xianning West RoadXi'anShaanxi710049P. R. China
| | - Rongyan He
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
- Guangxi Key Laboratory of Special BiomedicineSchool of MedicineGuangxi UniversityNanning530004P. R. China
| | - Wentao Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Xiaochuan Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
5
|
Shen F, Tang C, Sun X, Song Y, Cai J. Recent Advances in 3D Printing Technologies for Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412182. [PMID: 40026050 DOI: 10.1002/smll.202412182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Lithium-sulfur (Li-S) batteries have heretofore raised burgeoning interest due to their cost effectiveness and high theoretical energy densities. However, the inherent porous and fluffy structure of sulfur impedes the path to constructing high-loading electrodes (over 5 mg cm-2) for their practicability. Furthermore, especially in thick electrodes, challenges like the retarded redox kinetics, notorious polysulfide shuttling, and wanton electrode expansion seriously give rise to low sulfur utilization, poor rate performance, and unsatisfactory cycling stability. Constructing free-standing architectures has been demonstrated as an effective strategy to tackle the aforementioned issues for high-loading Li-S batteries. As an emerging technique, 3D printing (3DP) shows merits in rapidly fabricating precise microstructures with controllable loadings and rationally organized porosity. For the Li-S realm, 3DP offers optimized Li+/e- transmission path with well-dispersed electrocatalysts, which achieves efficient polysulfide regulation and guarantees favorable performance. This review covers the design principle and preparation of printable inks, and their practical applications to manufacture self-supported frameworks (such as cathodes, anodes, and separators) for Li-S batteries. Challenges and perspectives on the potential future development of 3DP Li-S batteries are also outlined.
Collapse
Affiliation(s)
- Fei Shen
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, P. R. China
| | - Congqing Tang
- College of Engineering Materials, Changshu Institute of Technology, Suzhou, 215500, P. R. China
| | - Xiaohan Sun
- College of Engineering Materials, Changshu Institute of Technology, Suzhou, 215500, P. R. China
| | - Yingze Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Jingsheng Cai
- College of Engineering Materials, Changshu Institute of Technology, Suzhou, 215500, P. R. China
| |
Collapse
|
6
|
Kang X, Jiang K, Ge S, Wei K, Zhou Y, Xu BB, Wang K, Zhang X. Frontier in Advanced Luminescent Biomass Nanocomposites for Surface Anticounterfeiting. ACS NANO 2025; 19:11547-11575. [PMID: 40099949 DOI: 10.1021/acsnano.4c17883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biomass-based luminescent nanocomposites have garnered significant attention due to their renewable, biocompatible, and environmentally sustainable characteristics for ensuring information encryption and security. Nanomaterials are central to this development, as their high surface area, tunable optical properties, and nanoscale structural advantages enable enhanced luminescent efficiency, stability, and adaptability in diverse conditions. This review delves into the principles of luminescence, focusing on the inherent bioluminescent properties of natural materials, the utilization of biomass as precursors for carbon dots (CDs) and aggregation-induced emission (AIE)-enhanced substances, and the structural and functional optimization of luminescent materials. The role of cellulose nanocrystals (CNC), lignin, and chitosan as key biomass-derived nanomaterials will be highlighted, alongside surface and interfacial engineering strategies that further improve material performance. Recent advancements in the synthesis of biomass carbon dots and their integration into luminescent anticounterfeiting systems are discussed in detail. Furthermore, the integration of advanced artificial intelligence (AI) technologies is explored, emphasizing their potential to revolutionize luminescent anticounterfeiting. Current challenges, including scalability, waste minimization, and performance optimization, are critically examined. Finally, the review outlines future research directions, including the application of AI-driven methodologies and the exploration of unconventional luminescent biomass materials, to accelerate the development of high-performance, eco-friendly anticounterfeiting solutions.
Collapse
Affiliation(s)
- Xuelian Kang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kaixin Jiang
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yihui Zhou
- Hunan Automotive Engineering Vocational University, Zhuzhou 412001, China
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Biomass Energy and Material Key Laboratory of Jiangsu Province, Nanjing 210042, China
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
7
|
Fang K, Yang B, Li H, Jia Y, Guo N, Li T, He K, Gao H, Jiang L, Wu Y. Ultra-High-Resolution Full-Color Quantum Dot Light-Emitting Diodes through Cross-Linking-Assisted Hierarchical Confined Assembly. NANO LETTERS 2025; 25:5052-5059. [PMID: 40091654 DOI: 10.1021/acs.nanolett.5c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Quantum dots (QDs) are vital for virtual reality and augmented reality displays due to their tunable optical properties. Although QD color converters enable blue light-emitting diode down-conversion to green/red, efficiency and stability issues hinder their high-end display applications. Here, we employ a cross-linking-assisted hierarchical confined assembly method to fabricate red, green, and blue QD arrays. Specifically, micropillar templates with asymmetric wettability are used to sequentially deposit green and red QD microwire arrays in mutually orthogonal directions on a blue QD film, forming RGB QD arrays. 4,4'-Bis(3-vinyl-9H-carbazol-9-yl)1,1'-biphenyl (CBP-V) is introduced into QDs to solve the problem of color crosstalk. Full-color QD pixel arrays with resolutions of 1814-2117 pixels per inch (PPI) are successfully fabricated. Upon integration into devices, adjustable emission from cool white light to warm white light is observed, with a peak external quantum efficiency (EQE) of 16.14% and a peak luminance of 226 054 cd m-2.
Collapse
Affiliation(s)
- Ke Fang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Baoxiang Yang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
| | - Hui Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
| | - Yuyu Jia
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ning Guo
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Tianchen Li
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Ke He
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Hanfei Gao
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| |
Collapse
|
8
|
Yao K, Wang Z, Wang P, Li Y, Hu L, Cheng Y, Geng Z. Excitation-Dependent Circularly Polarized Luminescence Inversion Driven by Dichroic Competition of Achiral Dyes in Cholesteric Liquid Crystals. Angew Chem Int Ed Engl 2025; 64:e202420290. [PMID: 39611398 DOI: 10.1002/anie.202420290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 11/30/2024]
Abstract
The development of stimuli-responsive chiral cholesteric liquid crystals (CLCs) materials holds significant potential for achieving three-dimensional (3D) anti-counterfeiting and multi-level information encryption. However, constructing phototunable CLCs systems with easy fabrication and fast response remains a great challenge. Herein, we exploit an excitation-dependent CLCs (ExD-CLCs) material by establishing dynamically photoresponsive dichroic competition between two achiral dyes: a negative dichroic dye (SP-COOH) and a positive dichroic dye (Nile Red, NR) within a CLCs medium. The ExD-CLCs exhibits a negative circularly polarized luminescence (CPL) signal (glum=-0.16) at 625 nm when excited at 365 nm. Remarkably, under excitation at 430 nm, the CPL signal is inverted, and the glum value increases to +0.26. Notably, the helical superstructure and handedness of the ExD-CLCs remain unchanged during this reversal process. The CPL signal reversal is driven by the dichroic competition between the SP-COOH dimer, which displays strong negative dichroism in its open-ring isomer form and silent negative dichroism in its closed-ring isomer form, and the NR dye, which exhibits static positive dichroism. Leveraging these excitation-dependent CPL properties, the quadruplex numerical anti-counterfeiting using ExD-CLCs is achieved.
Collapse
Affiliation(s)
- Kun Yao
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007, Henan Province, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Zhentan Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, Anhui Province, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Liangyu Hu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, Anhui Province, China
| | - Yixiang Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, Anhui Province, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
9
|
Chen T, Yang Q, Fang C, Deng S, Xu B. Advanced Design for Stimuli-Reversible Chromic Wearables With Customizable Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413665. [PMID: 39690864 DOI: 10.1002/adma.202413665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Indexed: 12/19/2024]
Abstract
Smart wearable devices with dynamically reversible color displays are crucial for the next generation of smart textiles, and promising for bio-robots, adaptive camouflage, and visual health monitoring. The rapid advancement of technology brings out different categories that feature fundamentally different color-reversing mechanisms, including thermochromic, mechanochromic, electrochromic, and photochromic smart wearables. Although some reviews have showcased relevant developments from unique perspectives, reviews focusing on the advanced design of flexible chromic wearable devices within each category have not been reported. In this review, the development history and recent progress in smart chromic wearables across each category are systematically examined. The design strategies for each chromic wearable device are outlined with a focus on functional materials, synthesis processes, and advanced applications. Furthermore, integrated devices based on dual-stimuli and multi-stimuli responsive chromics with customizable functionalities are summarized. Finally, challenges and perspectives on the future development of smart chromic wearables are proposed. Such a systematic summary will serve as a valuable insight for researchers in this field.
Collapse
Affiliation(s)
- Tiandi Chen
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Qingjun Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Cuiqin Fang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Shenzhen Deng
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
10
|
You K, Lin J, Wang Z, Jiang Y, Sun J, Lin Q, Hu X, Fu H, Guo X, Zhao Y, Lin L, Liu Y, Li F. Biomimetic Fingerprint-like Unclonable Optical Anticounterfeiting System with Selectively In Situ-Synthesized Perovskite Quantum Dots Embedded in Spontaneous-Phase-Separated Polymers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5254-5267. [PMID: 39780348 DOI: 10.1021/acsami.4c20440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Anticounterfeiting technologies meet challenges in the Internet of Things era due to the rapidly growing volume of objects, their frequent connection with humans, and the accelerated advance of counterfeiting/cracking techniques. Here, we, inspired by biological fingerprints, present a simple anticounterfeiting system based on perovskite quantum dot (PQD) fingerprint physical unclonable function (FPUF) by cooperatively utilizing the spontaneous-phase separation of polymers and selective in situ synthesis PQDs as an entropy source. The FPUFs offer red, green, and blue full-color fingerprint identifiers and random three-dimensional (3D) morphology, which extends binary to multivalued encoding by tuning the perovskite and polymer components, enabling a high encoding capacity (about 108570000, far surpassing that of biometric fingerprints). The strategy is compatible with mainstream production techniques that are widely used in traditional low-cost printed anticounterfeiting labels including spray printing, stamping, writing, and laser printing, avoiding complicated fabrication. Macrographical patterns and micro/nanofingerprint patterns with multiscale-tailorable inter-ridge sizes can be fused into a single FPUF label, satisfying different levels of anticounterfeiting requirements. Furthermore, a smart fused scheme of enhanced deep learning and fingerprint characteristic comparison is leveraged, by which high-efficiency, high-accuracy authentication of our FPUFs is achieved even for the increasingly huge FPUF databases and imperfectly captured images from users.
Collapse
Affiliation(s)
- Kejia You
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Jiasong Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Zhen Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Yi Jiang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Jiayu Sun
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Qinghong Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Xin Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Hongyang Fu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Xuan Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Yi Zhao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
11
|
Wang Q, Zhang M, Chen S, Yu Q, Wang R, Guo J, Kong X. Anti-counterfeiting labels with controllable and anti-interference coding information based on core-shell Ag@SiO 2 nanomaterials for ink printing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125113. [PMID: 39270368 DOI: 10.1016/j.saa.2024.125113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The core-shell structured Ag@SiO2 nanomaterial integrated with surface-enhanced Raman scattering (SERS) spectroscopy promises a critical application in anti-counterfeiting. Security labels have been fabricated based on Ag@SiO2 embedded with Raman reporters. The Ag@SiO2 nanomaterial shows good stability and excellent anti-interference property for anti-counterfeiting. Multiple kinds of Raman probe molecules have been anchored in the Ag@SiO2 labels to provide specific and abundant encoding information. The flexible encoding security information could be controlled conveniently by adjusting probe molecules, which not only enrich the SERS information but also improve the level of anti-counterfeiting. Furthermore, the Ag@SiO2 shown excellent stability in organic solvent, and successfully used in ink for the anti-counterfeiting application.
Collapse
Affiliation(s)
- Qiang Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Meizhen Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Siru Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
12
|
Liu Y, Zhang M, Wang C, Meng X, Fang X, Zhang W, Ding T, Liu D, Lee GJ, Chen X. Template-Guided Nondeterministic Assembly of Organosilica Nanodots for Multifunctional Physical Unclonable Functions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4124-4136. [PMID: 39743832 DOI: 10.1021/acsami.4c16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting. However, compactly integrating these photonic components poses significant challenges due to the difficulty of aligning and combining their optical behaviors within a limited space. In this study, we address these challenges by employing a template-guided assembly of organosilica nanodots (OSiNDs), which allows for the simultaneous control of solid-state fluorescence, rainbow holography, and PUF patterns. By precisely tuning the dewetting process, the OSiNDs assemble into nanoisland structures that provide enhanced fluorescence brightness and thermal stability while maintaining distinct holographic properties. Our system produces a 4096-bit key with 3228 bits of entropy, a storage density of 1 Gbit/in2, and a low false positive rate of 10-6. Additionally, it includes multilevel anticounterfeiting features that reveal distinct color patterns under different illumination angles, further boosting security. Comprehensive environmental stability and durability tests, including humidity, thermal, and mechanical abrasion resistance, confirm the robustness of the system, ensuring its functionality under real-world conditions. This multifunctional PUF design establishes a standard for secure, compact optical systems, combining high-performance authentication with practical applications in anticounterfeiting.
Collapse
Affiliation(s)
- Ying Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Manman Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Chiyu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
- Laser Group, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xianrui Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiaomin Fang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Wenkai Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Tao Ding
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Dun Liu
- Laser Group, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Gil Ju Lee
- School of Electrical and Electronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Xudong Chen
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
13
|
Das P, Das T, Koley S, Kumar Baroi M, Das S, Mohanty J, Das D. Time-Encoded Information Encryption with pH Clock Guided Broad-Spectrum Emission by Dynamic Assemblies. Angew Chem Int Ed Engl 2025; 64:e202414239. [PMID: 39171779 DOI: 10.1002/anie.202414239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
With growing threats from counterfeiting-based security breaches, multi-level and specific stimuli-responsive anti-counterfeiting devices and message encryption methods have attracted immense research interest. Fluorescence-based encryption from aggregation-induced emission (AIE)-based materials solves the problems to a considerable extent. However, the development of smarter patterns with hierarchical security levels alongside dynamic display is still challenging. To screen out this complication, we bring forward a pH-switchable fluorescent assembly of an AIEgen and an aliphatic acid. We later temporally direct the molecular assembly with the aid of a chemical trigger-regulated pH clock, generating a transitory multicolor emission, including transient white light generation. The pH-dependent emissions were further implemented in constructing smart multi-input fluorescent chemical AND gates. Subsequently, we integrate the time-gated emissive system to develop an advanced multi-dimensionally secure data encryption strategy. This novel approach enhances anti-counterfeiting measures by introducing an additional layer of security based on temporal characteristics.
Collapse
Affiliation(s)
- Priyam Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Tanushree Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Suprotim Koley
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Saurav Das
- Department of Chemistry, Gurucharan College, Silchar, Cachar, Assam-788004, India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Zhang J, Creamer A, Xie K, Tang J, Salter L, Wojciechowski JP, Stevens MM. Bright and stable anti-counterfeiting devices with independent stochastic processes covering multiple length scales. Nat Commun 2025; 16:502. [PMID: 39779668 PMCID: PMC11711641 DOI: 10.1038/s41467-024-55646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Physical unclonable functions (PUFs) are considered the most promising approach to address the global issue of counterfeiting. Current PUF devices are often based on a single stochastic process, which can be broken, especially since their practical encoding capacities can be significantly lower than the theoretical value. Here we present stochastic PUF devices with features across multiple length scales, which incorporate semiconducting polymer nanoparticles (SPNs) as fluorescent taggants. The SPNs exhibit high brightness, photostability and size tunability when compared to the current state-of-the-art taggants. As a result, they are easily detectable and highly resilient to UV radiation. By embedding SPNs in photoresists, we generate PUFs consisting of nanoscale (distribution of SPNs within microspots), microscale (fractal edges on microspots), and macroscale (random microspot array) designs. With the assistance of a deep-learning model, the resulting PUFs show both near-ideal performance and accessibility for general end users, offering a strategy for next-generation security devices.
Collapse
Affiliation(s)
- Junfang Zhang
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Kai Xie
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jiaqing Tang
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Luke Salter
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering Imperial College London, London, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
- Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Niu P, Geng J, Jiang Q, Wang Y, Sang J, Wang Z, Shi L. Femtosecond Laser-Induced Recrystallized Nanotexturing for Identity Document Security With Physical Unclonable Functions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411449. [PMID: 39527669 PMCID: PMC11714173 DOI: 10.1002/advs.202411449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Counterfeit identity (ID) documents pose a serious threat to personal credit and national security. As a promising candidate, optical physical unclonable functions (PUFs) offer a robust defense mechanism against counterfeits. Despite the innovations in chemically synthesized PUFs, challenges persist, including harmful chemical treatments, low yields, and incompatibility of reaction conditions with the ID document materials. More notably, surface relief nanostructures for PUFs, such as wrinkles, are still at risk of being replicated through scanning lithography or nanoimprint. Here, a femtosecond laser-induced recrystallized silicon nanotexture is reported as latent PUF nanofingerprint for document anti-counterfeiting. With femtosecond laser irradiation, nanotextures spontaneously emerge within 100 ms of exposure. By introducing a low-absorption metal layer, surface plasmon polariton waves are excited on the silicon-metal multilayer nanofilms with long-range boosting, ensuring the uniqueness and non-replicability of the final nanotextures. Furthermore, the femtosecond laser induces a phase transition in the latent nanotexture from amorphous to polycrystalline state, rather than creating replicable relief wrinkles. The random nanotextures are easily identifiable through optical microscopy and Raman imaging, yet they remain undetectable by surface characterization methods such as scanning electron and atomic force microscopies. This property significantly hinders counterfeiting efforts, as it prevents the precise replication of these nanostructures.
Collapse
Affiliation(s)
- Panpan Niu
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311231China
| | - Jiao Geng
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311231China
- School of Optoelectronic EngineeringXidian UniversityXi'an710126China
| | - Qilin Jiang
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311231China
| | - Yangyundou Wang
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311231China
| | - Jianxin Sang
- Shanghai Guanzhong Optical Technology Co., Ltd.Shanghai201900China
| | - Zhenghong Wang
- Shanghai Guanzhong Optical Technology Co., Ltd.Shanghai201900China
| | - Liping Shi
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311231China
- School of Optoelectronic EngineeringXidian UniversityXi'an710126China
| |
Collapse
|
16
|
Wang Z, Li M, Fu Y, Wang Y, Lu Y. Robust and Versatile Biodegradable Unclonable Anti-Counterfeiting Labels with Multi-Mode Optical Encoding Using Protein-Mediated Luminescent Calcite Signatures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409170. [PMID: 39623811 DOI: 10.1002/adma.202409170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/01/2024] [Indexed: 01/24/2025]
Abstract
Physical unclonable functions (PUFs) are emerging as a cutting-edge technology for enhancing information security by providing robust security authentication and non-reproducible cryptographic keys. Incorporating renewable and biocompatible materials into PUFs ensures safety for handling, compatibility with biological systems, and reduced environmental impact. However, existing PUF platforms struggle to balance high encoding capacity, diversified encryption signatures, and versatile functionalities with sustainability and biocompatibility. Here, all-biomaterial-based unclonable anti-counterfeiting labels featuring multi-mode encoding, multi-level cryptographic keys, and multiple authentication operations are developed by imprinting biomimetic-grown calcites on versatile silk protein films. In this label, the inherent non-clonability comes from the randomized characteristics of calcites, mediated by silk protein during crystal growth. The successful embedding of photoluminescent molecules into calcite lattices, assisted by silk protein, allows the resulting platform to utilize fluorescence patterns alongside birefringence for high-capacity encoding. This design facilitates easy and rapid authentication through Hamming distance and convolutional neural networks using standard cameras and portable microscopes. Moreover, angle-dependent polarization patterns enable multi-level key generation, while multi-spectral fluorescence signals offer multi-channel keys. The developed anti-counterfeiting labels combine biodegradability, green manufacture, easy authentication, high-level complexity, low cost, robustness, patternability, and versatility, offering a practical and high-security solution to combat counterfeiting across various applications.
Collapse
Affiliation(s)
- Ziting Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Meng Li
- Laboratory for Advanced Biopolymers, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yinghao Fu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yanqing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
17
|
Wang PT, Tseng CW, Fang LD. Physics-Constrained Deep Learning for Security Ink Colorimetry with Attention-Based Spectral Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 25:128. [PMID: 39796919 PMCID: PMC11722694 DOI: 10.3390/s25010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
The proliferation of sophisticated counterfeiting poses critical challenges to global security and commerce, with annual losses exceeding $2.2 trillion. This paper presents a novel physics-constrained deep learning framework for high-precision security ink colorimetry, integrating three key innovations: a physics-informed neural architecture achieving unprecedented color prediction accuracy (CIEDE2000 (ΔE00): 0.70 ± 0.08, p < 0.001), advanced attention mechanisms improving feature extraction efficiency by 58.3%, and a Bayesian optimization framework ensuring robust parameter tuning. Validated across 1500 industrial samples under varying conditions (±2 °C, 30-80% RH), this system demonstrates substantial improvements in production efficiency with a 50% reduction in rejections, a 35% decrease in calibration time, and 96.7% color gamut coverage. These achievements establish new benchmarks for security printing applications and provide scalable solutions for next-generation anti-counterfeiting technologies, offering a promising outlook for the future.
Collapse
Affiliation(s)
- Po-Tong Wang
- Department of Electrical Engineering, Lunghwa University of Science and Technology, Taoyuan 333326, Taiwan;
| | - Chiu Wang Tseng
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Li-Der Fang
- Department of Electrical Engineering, Lunghwa University of Science and Technology, Taoyuan 333326, Taiwan;
| |
Collapse
|
18
|
Wu Z, Yu W, Luo F, Jin Y, Pan L, Deng Q, Wang Q, Yu M. Construction of Heterogeneous Aggregation-Induced Emission Microspheres with Enhanced Multi-Mode Information Encryption. Molecules 2024; 29:5852. [PMID: 39769939 PMCID: PMC11676549 DOI: 10.3390/molecules29245852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Traditional organic light-emitting materials hinder their anti-counterfeiting application in solid state due to their aggregation-caused quenching effect. A facile and straightforward method was reported to introduce AIE molecules into microspheres and manipulate different reaction parameters to prepare AIE microspheres with different morphologies. In this strategy, fluorescent microspheres with spherical, apple-shaped, and hemoglobin-like types were synthesized. Driven by the photocyclization and oxidation of tetraphenylethene, microspheres can be used as an aqueous fluorescence ink with erasable properties. The fluorescent patterns printed by microsphere ink on paper can be irreversibly erased by prolonged exposure to ultraviolet light (365 nm, 60 mw/cm2). Moreover, the multi-morphology microspheres can be further arranged for multiple-information encryption and anti-counterfeiting of barcodes and two-dimensional codes, in which double validation was carried out through fluorescence spectroscopy and laser confocal microscopy. This approach provides a new method for more reliable anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Zhiwei Wu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Weiqin Yu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Fenghao Luo
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yue Jin
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Ligou Pan
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Qianjun Deng
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Qing Wang
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, School of Food & Pharmaceutical Engineering, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing University, Zhaoqing 526061, China
| | - Mingguang Yu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
19
|
Wang L, Yu X, Zhang T, Hou Y, Lei D, Qi X, Chu Z. High-dimensional anticounterfeiting nanodiamonds authenticated with deep metric learning. Nat Commun 2024; 15:10602. [PMID: 39638812 PMCID: PMC11621400 DOI: 10.1038/s41467-024-55014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Physical unclonable function labels have emerged as a promising candidate for achieving unbreakable anticounterfeiting. Despite their significant progress, two challenges for developing practical physical unclonable function systems remain, namely 1) fairly few high-dimensional encoded labels with excellent material properties, and 2) existing authentication methods with poor noise tolerance or inapplicability to unseen labels. Herein, we employ the linear polarization modulation of randomly distributed fluorescent nanodiamonds to demonstrate, for the first time, three-dimensional encoding for diamond-based labels. Briefly, our three-dimensional encoding scheme provides digitized images with an encoding capacity of 109771 and high distinguishability under a short readout time of 7.5 s. The high photostability and inertness of fluorescent nanodiamonds endow our labels with high reproducibility and long-term stability. To address the second challenge, we employ a deep metric learning algorithm to develop an authentication methodology that computes the similarity of deep features of digitized images, exhibiting a better noise tolerance than the classical point-by-point comparison method. Meanwhile, it overcomes the key limitation of existing artificial intelligence-driven classification-based methods, i.e., inapplicability to unseen labels. Considering the high performance of both fluorescent nanodiamonds labels and deep metric learning authentication, our work provides the basis for developing practical physical unclonable function anticounterfeiting systems.
Collapse
Affiliation(s)
- Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Xin Yu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaojuan Qi
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Li Y, Li Y, Zhao Z, Li Y, Song F, Huang W. Multilevel Stimuli-Responsive Smart "Sandwich" Label with Physical Unclonable Functions Bionic Wrinkles and Space-Selective Fluorescence Patterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405110. [PMID: 39478659 DOI: 10.1002/smll.202405110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/29/2024] [Indexed: 12/28/2024]
Abstract
With the increasing popularity of the internet, it brings convenience to lives while also increases security risks. Physical Unclonable Functions (PUFs) can generate random, unclonable, and unique identifiers using their inherent physical characteristics, which have broad prospects in anti-counterfeiting. Herein, inspired by the irregular tree bark fissures and random skin wrinkles found in nature, a method for creating complex micro-wrinkles with unclonable random patterns is proposed by simply stretching hydrogels. The random texture information contained in the micro-wrinkles is digitized into binary codes using an adaptive threshold algorithm. Additionally, a novel "sandwich" label with a multilevel intelligent anti-counterfeiting system is proposed. The first-level involves photoluminescence encryption with adjustable luminescence within visible light range and modulated luminescence at different excitation wavelengths; the second-level includes strain-related mechanical encryption, and the third-level consists of highly random and unclonable micro-wrinkles. The certification difficulty increases as the anti-counterfeiting grade increases, thereby enhancing label security. Furthermore, space-selective doping of rare earth metal-organic framework (RE-MOF) fluorescent materials in hydrogels is achieved through the use of screen-printing technology. The concept of novel multilevel smart anti-counterfeiting PUF labels will further enhance current levels of counterfeiting prevention.
Collapse
Affiliation(s)
- Yan Li
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Li
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Zejia Zhao
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yanyan Li
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Feng Song
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, P. R. China
| | - Wei Huang
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
21
|
Hu T, Zhang S, Qi Y. Unclonable Encryption-Verification Strategy Based on Bilayer Shape Memory Photonic Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405243. [PMID: 39291889 DOI: 10.1002/smll.202405243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Indexed: 09/19/2024]
Abstract
The ability to reversibly exhibit structural color patterns has positioned photonic crystals (PCs) at the forefront of anti-counterfeiting. However, the security offered by the mere reversible display is susceptible to illicit alteration and disclosure. Herein, inspired by the electronic message captcha, bilayer photonic crystal (BPC) systems with integrated decryption and verification modules, are realized by combining inverse opal (IO) and double inverse opal (DIO) with polyacrylate polymers. When the informationized BPC is immersed in ethanol or water, the DIO layer displayed encrypted information due to the solvent-induced ordered rearrangement of polystyrene (PS) microspheres. The verification step is established based on the different structural colors of the IO layer pattern, which result from the deformation or recovery of the macroporous skeleton induced by solvent evaporation. Moreover, through the evaporation-induced random self-assembly of PS@SiO2 and SiO2 microspheres, unclonable structurally colored identifying codes are created in the IO layer, ensuring the uniqueness upon the verification. The decrypted code in the DIO layer is valid only when the IO layer displays the pattern with the predetermined structural color; otherwise, it is a pseudo-code. This structural color-based "decryption-verification" approach offers innovative anti-counterfeiting applications in nanophotonics.
Collapse
Affiliation(s)
- Tong Hu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
22
|
Huang J, Yin Y, Liu G, Bai L. Amorphous Photonic Structure Patterns with Thin Film Interference Effects for Multilevel Anticounterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25034-25041. [PMID: 39529393 DOI: 10.1021/acs.langmuir.4c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Colloidal photonic structures with the ability to control and manipulate light propagation offer long-term color stability, low optical loss, and angle-dependent color properties, while combinations of different photonic structures across multiple scales provide an extensive color range and enhanced optical functionalities, presenting significant potential for advanced anticounterfeiting applications. However, the proper design or manufacture of such complex structures is still challenging. In this study, amorphous photonic structures (APSs) with thin film interference (TFI) effects were fabricated for multilevel anticounterfeiting. The APSs inherit the isotropic resonant scattering and render partial TFI effects, resulting in unprecedented dynamic specular and diffuse color-shifting features as the viewing or incident direction shifts. Additionally, incorporating a certain concentration of fluorescent microspheres into the colloidal ink adds a third layer of fluorescent anticounterfeiting mode to the APSs. Enabled by infiltration-assisted (IFAST) colloidal assembly technologies, the sophisticated color distributions and randomly arranged fluorescent microspheres on the microscale of APSs grant unique and inherent fingerprint features. The unique and unpredictable optical and structural characteristics of APSs provide physical unclonable functions (PUFs) to prevent replication and tampering, demonstrating their potential as optical PUF security labels for anticounterfeiting applications through artificial intelligence (AI) reading and authentication.
Collapse
Affiliation(s)
- Jingran Huang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yin Yin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Bai
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
23
|
You K, Wang Z, Lin J, Guo X, Lin L, Liu Y, Li F, Huang W. On-Demand Picoliter-Level-Droplet Inkjet Printing for Micro Fabrication and Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402638. [PMID: 39149907 DOI: 10.1002/smll.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/29/2024] [Indexed: 08/17/2024]
Abstract
With the advent of Internet of Things (IoTs) and wearable devices, manufacturing requirements have shifted toward miniaturization, flexibility, environmentalization, and customization. Inkjet printing, as a non-contact picoliter-level droplet printing technology, can achieve material deposition at the microscopic level, helping to achieve high resolution and high precision patterned design. Meanwhile, inkjet printing has the advantages of simple process, high printing efficiency, mask-free digital printing, and direct pattern deposition, and is gradually emerging as a promising technology to meet such new requirements. However, there is a long way to go in constructing functional materials and emerging devices due to the uncommercialized ink materials, complicated film-forming process, and geometrically/functionally mismatched interface, limiting film quality and device applications. Herein, recent developments in working mechanisms, functional ink systems, droplet ejection and flight process, droplet drying process, as well as emerging multifunctional and intelligence applications including optics, electronics, sensors, and energy storage and conversion devices is reviewed. Finally, it is also highlight some of the critical challenges and research opportunities. The review is anticipated to provide a systematic comprehension and valuable insights for inkjet printing, thereby facilitating the advancement of their emerging applications.
Collapse
Affiliation(s)
- Kejia You
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Zhen Wang
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jiasong Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xuan Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350117, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
24
|
Lee HK, Park T, Yoo H. Device Applications Enabled by Bandgap Engineering Through Quantum Dot Tuning: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5335. [PMID: 39517603 PMCID: PMC11547182 DOI: 10.3390/ma17215335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Quantum dots (QDs) are becoming essential materials for future scientific and real-world applications, owing to their interesting and distinct optical and electrical properties compared to their bulk-state counterparts. The ability to tune the bandgap of QDs based on size and composition-a key characteristic-opens up new possibilities for enhancing the performance of various optoelectronic devices. These advances could extend to cutting-edge applications such as ultrawide-band or dual-band photodetectors (PDs), optoelectronic logic gates, neuromorphic devices, and security functions. This paper revisits the recent progress in QD-embedded optoelectronic applications, focusing on bandgap tunability. The current limitations and challenges in advancing and realizing QD-based optoelectronic devices are also discussed.
Collapse
Affiliation(s)
- Ho Kyung Lee
- Smart Materials Research Center for IoT, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea;
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea
| | - Taehyun Park
- Department of Semiconductor Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea;
| | - Hocheon Yoo
- Department of Semiconductor Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea;
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Republic of Korea
| |
Collapse
|
25
|
Kokilavani S, Selopal GS, Jin L, Kumar P, Barba D, Rosei F. Dual Aliovalent Dopants Cu, Mn Engineered Eco-Friendly QDs for Ultra-Stable Anti-Counterfeiting. Chemistry 2024; 30:e202402026. [PMID: 39106258 DOI: 10.1002/chem.202402026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
Doping in semiconductor quantum dots (QDs) using optically active dopants tailors their optical, electronic, and magnetic properties beyond what is achieved by controlling size, shape, and composition. Herein, we synergistically modulated the optical properties of eco-friendly ZnInSe2/ZnSe core/shell QDs by incorporating Cu-doping and Mn-alloying into their core and shell to investigate their use in anti-counterfeiting and information encryption. The engineered "Cu:ZnInSe2/Mn:ZnSe" core/shell QDs exhibit an intense bright orange photoluminescence (PL) emission centered at 606 nm, with better color purity than the undoped and individually doped core/shell QDs. The average PL lifetime is significantly extended to 201 ns, making it relevant for complex encryption and anti-counterfeiting. PL studies reveal that in Cu:ZnInSe2/Mn:ZnSe, the photophysical emission arises from the Cu state via radiative transition from the Mn 4T1 state. Integration of Cu:ZnInSe2/Mn:ZnSe core/shell QDs into poly(methyl methacrylate) (PMMA) serves as versatile smart concealed luminescent inks for both writing and printing patterns. The features of these printed patterns using Cu:ZnInSe2/Mn:ZnSe core/shell QDs persisted after 10 weeks of water-soaking and retained 70 % of PL emission intensity at 170 °C, demonstrating excellent thermal stability. This work provides an efficient approach to enhance both the emission and the stability of eco-friendly QDs via dopant engineering for fluorescence anti-counterfeiting applications.
Collapse
Affiliation(s)
- S Kokilavani
- Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Lei Jin
- Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Pawan Kumar
- Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - David Barba
- Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| |
Collapse
|
26
|
Ma T, Chen J, Chen Z, Wang R, Hu J, Guo W, Lv R, Wang X, Xu R, Yin Q, Lai J, Ji B, Xiang H, Li Z, Zeng H. Continuous wave laser fabrication of small pitch/size perovskite pixels realizes high-resolution color conversion micro-LED displays. NANOSCALE 2024; 16:19042-19047. [PMID: 39308360 DOI: 10.1039/d4nr02424a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
As a new generation of display technology, micro-light-emitting diodes (micro-LEDs) have been widely recognized owing to their excellent performance in brightness, contrast ratio, resolution, etc. This work proposes a continuous wave (CW) laser writing strategy to achieve perovskite quantum dots (PQDs) array with small pixel size and pitch, overcoming the processing difficulties and limitations of mass transfer. Since PQDs have highly dynamic surface ligand states and low ionic bond energy, suitable laser power can quench PQDs and form an array area. The use of low-power CW lasers in the laser direct writing process, on the one hand, greatly maintains the luminescence performance and edge flatness of each PQD array, and the pixel pitch (1.5 μm-9 μm)/size can be adjusted arbitrarily, which meets the high-resolution micro-display requirements. On the other hand, we found that after the low-power laser quenches the PQDs, its residual oxide can absorb photons, thus reducing the backlight leakage in color conversion micro-LEDs. Finally, red/green/blue three-color conversion micro-LED and laser projection displays were realized; these results provide a feasible strategy for next-generation micro-LED displays.
Collapse
Affiliation(s)
- Teng Ma
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jun Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ziyi Chen
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Run Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jinning Hu
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Weishu Guo
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Rongqiu Lv
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xiaoting Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Rongrong Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qianxi Yin
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jiancheng Lai
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Botao Ji
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Zhenhua Li
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
27
|
Jung U, Beak CJ, Kim K, Na JH, Lee SH. Scalable Photo-Responsive Physical Unclonable Functions via Particle Kinetics. ACS NANO 2024; 18:27642-27653. [PMID: 39344103 DOI: 10.1021/acsnano.4c09080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The increasing menace of counterfeiting and information theft underscores the urgent need for security platforms compatible with both micro- and nanoelectronics. Existing methods for anticounterfeiting labeling and cryptographic systems rely on unclonable patterns derived from the unpredictable variability of physical phenomena. However, these approaches impose limitations on the scalability of security components. Here we present a scalable platform for photoresponsive physically unclonable functions based on oxide particle kinetics in polymer solutions. The stochastic agglomeration process occurring during the formation of polymer films with dispersed oxide particles yields random patterns, with pixel sizes scalable from micro to nanoscales. We produce mechanically flexible and self-destructible optical unclonable function patterns utilizing oxide aggregates on a polymer film. Moreover, we establish a strategy for generating electrical unclonable patterns on a conducting polymer film. This involves covering the polymer film with an aggregate pattern mask, which serves as an ultraviolet-blocking layer for randomly exposing the film to ultraviolet ozone treatment. These unclonable patterns constitute robust and compact security systems, exhibiting effective resilience against machine-learning attacks (∼50% prediction error for training data sets of 1000). The developed scalable platforms for physically unclonable functions provide a hardware solution for robust cryptographic applications.
Collapse
Affiliation(s)
- Uihoon Jung
- School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea
- School of Advanced Fusion Studies, Department of Intelligent Semiconductor Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Chang-Jae Beak
- School of Advanced Fusion Studies, Department of Intelligent Semiconductor Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Kitae Kim
- Department of Convergence System Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jun-Hee Na
- Department of Convergence System Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Electrical, Electronics, and Communication Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sin-Hyung Lee
- School of Advanced Fusion Studies, Department of Intelligent Semiconductor Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
28
|
Li X, Zhang T, Liu M, Fu Y, Zhong H. Achieving Image Encryption Quantum Dot-Functionalized Encryption Camera with Designed Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405667. [PMID: 39101243 PMCID: PMC11481269 DOI: 10.1002/advs.202405667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Indexed: 08/06/2024]
Abstract
The risk of information leaks increases as images become a crucial medium for information sharing. There is a great need to further develop the versatility of image encryption technology to protect confidential and sensitive information. Herein, using high spatial redundancy (strong correlation of neighboring pixels) of the image and the in situ encryption function of a quantum dot functionalized encryption camera, in situ image encryption is achieved by designing quantum dot films (size, color, and full width at half maximum) to modify the correlation and reduce spatial redundancy of the captured image during encryption processing. The correlation coefficients of simulated encrypted image closely apporach to 0. High-quality decrypted images are achieved with a PSNR of more than 35 dB by a convolutional neural network-based algorithm that meets the resolution requirements of human visual perception. Compared with the traditional image encryption algorithms, chaotic image encryption algorithms and neural network-based encryption algorithms described previously, it provides a universal, efficient and effective in situ image encryption method.
Collapse
Affiliation(s)
- Xue Li
- School of Physics and Electronic EngineeringHebei Mizu Normal UniversityChengde067000China
- MIIT Key Laboratory for Low‐Dimensional Quantum Structure and DevicesSchool of Materials Sciences & EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Tao Zhang
- School of Computer Science and TechnologyBeijing Institute of TechnologyBeijing100081China
- School of Communication EngineeringHangzhou Dianzi UniversityHangzhou310000China
| | - Mingriu Liu
- MIIT Key Laboratory for Low‐Dimensional Quantum Structure and DevicesSchool of Materials Sciences & EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Ying Fu
- School of Computer Science and TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low‐Dimensional Quantum Structure and DevicesSchool of Materials Sciences & EngineeringBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
29
|
Li X, Qiu X, Yang X, Zhou P, Guo Q, Zhang X. Multi-Modal Melt-Processing of Birefringent Cellulosic Materials for Eco-Friendly Anti-Counterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407170. [PMID: 38978419 DOI: 10.1002/adma.202407170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Ubiquitous anti-counterfeiting materials with a rapidly rising annual consumption (over 1010 m2) can pose a serious environmental burden. Biobased cellulosic materials with birefringence offer attractive sustainable alternatives, but their scalable solvent-free processing remain challenging. Here, a dynamic chemical modification strategy is proposed for multi-modal melt-processing of birefringent cellulosic materials for eco-friendly anti-counterfeiting. Relying on the thermal-activated dynamic covalent-locking of the spatial topological structure of preferred oriented cellulose, the strategy balances the contradiction between the strong confinement of long-range ordered structures and the molecular motility required for entropically-driven reconstruction. Equipped with customizable processing forms including mold-pressing, spinning, direct-ink-writing, and blade-coating, the materials exhibit a wide color gamut, self-healing efficiency (94.5%), recyclability, and biodegradability. Moreover, the diversified flexible elements facilitate scalable fabrication and compatibility with universal processing techniques, thereby enabling versatile and programmable anti-counterfeiting. The strategy is expected to provide references for multi-modal melt-processing of cellulose and promote sustainable innovation in the anti-counterfeiting industry.
Collapse
Affiliation(s)
- Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Peng Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Quanquan Guo
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
30
|
Gandla S, Yoon J, Yang CW, Lee H, Park W, Kim S. Random laser ablated tags for anticounterfeiting purposes and towards physically unclonable functions. Nat Commun 2024; 15:7592. [PMID: 39217185 PMCID: PMC11366023 DOI: 10.1038/s41467-024-51756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Anticounterfeiting tags affixed to products offer a practical solution to combat counterfeiting. To be effective, these tags must be economical, capable of ultrafast production, mass-producible, easy to authenticate, and automatable. We present a universal laser ablation technique that rapidly generates intrinsic, randomly distributed craters (in under a second) on laser-sensitive materials using a nanosecond pulsed infrared laser. The laser and scanning line parameters are balanced to produce randomly distributed craters. The tag patterns demonstrate high randomness, which is analyzed using pattern recognition algorithms and root mean square error deviation. The optical image information of the tag is digitized with a fixed bit uniformity of 0.5 without employing any debiasing algorithm. The efficacy of tags for anticounterfeiting is presented by securing the challenge associated with each tag. Statistical NIST tests are successfully performed on responses generated from both single and multiple tags, demonstrating the true randomness of the sequence of binary digits. The single(multiple) tag(s) achieved an actual encoding capacity of approximately 10391 (10518) and a low false rate (both positive and negative) on the order of 10-58 (10-50). Our findings introduce a laser-based method for anticounterfeiting tag generation, allowing for ultrafast and straightforward product processing with minimal fabrication and tag cost.
Collapse
Affiliation(s)
- Srinivas Gandla
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Cheoncheon-dong, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Jinsik Yoon
- Institute for Wearable Convergence Electronics, Department of Electronics and Information Convergence Engineering, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Cheol-Woong Yang
- Electron Microscopy Research Laboratory, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Cheoncheon-dong, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - HyungJune Lee
- Intelligent Networked Systems Lab, Department of Computer Science and Engineering, Ewha Womans University, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Wook Park
- Institute for Wearable Convergence Electronics, Department of Electronics and Information Convergence Engineering, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Sunkook Kim
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Cheoncheon-dong, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
31
|
Singh S, Bhardwaj S, Choudhary N, Patgiri R, Teramoto Y, Maji PK. Stimuli-Responsive Chiral Cellulose Nanocrystals Based Self-Assemblies for Security Measures to Prevent Counterfeiting: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41743-41765. [PMID: 39102587 DOI: 10.1021/acsami.4c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The proliferation of misleading information and counterfeit products in conjunction with technical progress presents substantial worldwide issues. To address the issue of counterfeiting, many tactics, such as the use of luminous anticounterfeiting systems, have been investigated. Nevertheless, traditional fluorescent compounds have a restricted effectiveness. Cellulose nanocrystals (CNCs), known for their renewable nature and outstanding qualities, present an excellent opportunity to develop intelligent, optically active materials formed due to their self-assembly behavior and stimuli response. CNCs and their derivatives-based self-assemblies allow for the creation of adaptable luminous materials that may be used to prevent counterfeiting. These materials integrate the photophysical characteristics of optically active components due to their stimuli-responsive behavior, enabling their use in fibers, labels, films, hydrogels, and inks. Despite substantial attention, existing materials frequently fall short of practical criteria due to limited knowledge and poor performance comparisons. This review aims to provide information on the latest developments in anticounterfeit materials based on stimuli-responsive CNCs and derivatives. It also includes the scope of artificial intelligence (AI) in the near future. It will emphasize the potential uses of these materials and encourage future investigation in this rapidly growing area of study.
Collapse
Affiliation(s)
- Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 240071, India
| | - Shakshi Bhardwaj
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 240071, India
| | - Nitesh Choudhary
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 240071, India
| | - Rohan Patgiri
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 240071, India
| | - Yoshikuni Teramoto
- Division of Forest & Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 6068502, Japan
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 240071, India
| |
Collapse
|
32
|
Lin X, Li Q, Tang Y, Chen Z, Chen R, Sun Y, Lin W, Yi G, Li Q. Physical Unclonable Functions with Hyperspectral Imaging System for Ultrafast Storage and Authentication Enabled by Random Structural Color Domains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401983. [PMID: 38894574 PMCID: PMC11336904 DOI: 10.1002/advs.202401983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/28/2024] [Indexed: 06/21/2024]
Abstract
Physical unclonable function (PUF) is attractive in modern encryption technologies. Addressing the disadvantage of slow data storage/authentication in optical PUF is paramount for practical applications but remains an on-going challenge. Here, a highly efficient PUF strategy based on random structural color domains (SCDs) of cellulose nanocrystal (CNC) is proposed for the first time, combing with hyperspectral imaging system (HIS) for ultrafast storage and authentication. By controlling the growth and fusion behavior of the tactoids of CNC, the SCDs display an irregular and random distribution of colors, shapes, sizes, and reflectance spectra, which grant unique and inherent fingerprint-like characteristics that are non-duplicated. Based on images and spectra, these fingerprint features are used to develop two sets of PUF key generation methods, which can be respectively authenticated at the user-end and the manufacturer-front-end that achieving a high coding capacity of at least 22304. Notably, the use of HIS greatly shortens the time of key reading and generation (≈5 s for recording, 0.5-0.7 s for authentication). This new optical PUF labels can not only solve slow data storage and complicated authentication in optical PUF, but also impulse the development of CNC in industrial applications by reducing color uniformity requirement.
Collapse
Affiliation(s)
- Xiaofeng Lin
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Quhai Li
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical EngineeringSoutheast UniversityNanjing211189China
| | - Zhaohan Chen
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Ruilian Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275China
| | - Yingjuan Sun
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Wenjing Lin
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Guobin Yi
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical EngineeringSoutheast UniversityNanjing211189China
- Materials Science Graduate ProgramKent State UniversityKentOH44242USA
| |
Collapse
|
33
|
Han F, Li J, Xiao P, Yang Y, Liu H, Wei Z, He Y, Xu F. Wearable smart contact lenses: A critical comparison of three physiological signals outputs for health monitoring. Biosens Bioelectron 2024; 257:116284. [PMID: 38657379 DOI: 10.1016/j.bios.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Smart contact lenses (SCLs) have been considered as novel wearable devices for out-of-hospital and self-monitoring applications. They are capable of non-invasively and continuously monitoring physiological signals in the eyes, including vital biophysical (e.g., intraocular of pressure, temperature, and electrophysiological signal) and biochemical signals (e.g., pH, glucose, protein, nitrite, lactic acid, and ions). Recent progress mainly focuses on the rational design of wearable SCLs for physiological signal monitoring, while also facilitating the treatment of various ocular diseases. It covers contact lens materials, fabrication technologies, and integration methods. We also highlight and discuss a critical comparison of SCLs with electrical, microfluidic, and optical signal outputs in health monitoring. Their advantages and disadvantages could help researchers to make decisions when developing SCLs with desired properties for physiological signal monitoring. These unique capabilities make SCLs promising diagnostic and therapeutic tools. Despite the extensive research in SCLs, new technologies are still in their early stages of development and there are a few challenges to be addressed before these SCLs technologies can be successfully commercialized particularly in the form of rigorous clinical trials.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Juju Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Pingping Xiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yanshen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
34
|
Bruno MDL, Lio GE, Ferraro A, Nocentini S, Papuzzo G, Forestiero A, Desiderio G, De Santo MP, Wiersma DS, Caputo R, Golemme G, Riboli F, Barberi RC. Flexible Physical Unclonable Functions Based on Non-deterministically Distributed Dye-Doped Fibers and Droplets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37063-37072. [PMID: 38972004 DOI: 10.1021/acsami.4c07021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The development of new anticounterfeiting solutions is a constant challenge and involves several research fields. Much interest is currently devoted to systems that are impossible to clone, based on the physical unclonable function (PUF) paradigm. In this work, a new strategy based on electrospinning and electrospraying of dye-doped polymeric materials is presented for the manufacturing of flexible free-standing films that embed simultaneously different PUF keys. The proposed films can be used to fabricate novel anticounterfeiting labels having three encryption levels: (i) a map of fluorescent polymer droplets, with random positions on a dense yarn of polymer nanofibers, (ii) a characteristic fluorescence spectrum for each label, and (iii) the unique speckle patterns that every label produces when illuminated with coherent laser light shaped in different wavefronts. The intrinsic uniqueness introduced by the manufacturing process encodes enough complexity into the optical anticounterfeiting tag to generate thousands of cryptographic keys. The simple and cheap fabrication process as well as multilevel authentication makes such colored polymeric unclonable tags a practical solution in the secure protection of goods in our daily life.
Collapse
Affiliation(s)
- Mauro Daniel Luigi Bruno
- Physics Department, University of Calabria, Rende 87036, CS, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), Rende 87036, CS, Italy
| | - Giuseppe Emanuele Lio
- Physics Department, University of Florence, Sesto Fiorentino 50019, FI, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino 50019, FI, Italy
| | - Antonio Ferraro
- Physics Department, University of Calabria, Rende 87036, CS, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), Rende 87036, CS, Italy
| | - Sara Nocentini
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino 50019, FI, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Torino 10135, Italy
| | - Giuseppe Papuzzo
- CNR-ICAR - Institute for High Performance and Networking, Rende 87036, CS, Italy
| | - Agostino Forestiero
- CNR-ICAR - Institute for High Performance and Networking, Rende 87036, CS, Italy
| | - Giovanni Desiderio
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), Rende 87036, CS, Italy
| | - Maria Penelope De Santo
- Physics Department, University of Calabria, Rende 87036, CS, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), Rende 87036, CS, Italy
| | - Diederik Sybolt Wiersma
- Physics Department, University of Florence, Sesto Fiorentino 50019, FI, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino 50019, FI, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Torino 10135, Italy
| | - Roberto Caputo
- Physics Department, University of Calabria, Rende 87036, CS, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), Rende 87036, CS, Italy
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Giovanni Golemme
- Environmental Engineering Department, University of Calabria, Rende 87036, CS, Italy
| | - Francesco Riboli
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino 50019, FI, Italy
- CNR-INO - National Institute of Optics, Sesto Fiorentino 50019, FI, Italy
| | - Riccardo Cristoforo Barberi
- Physics Department, University of Calabria, Rende 87036, CS, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), Rende 87036, CS, Italy
| |
Collapse
|
35
|
Lee J, Jo H, Choi M, Park S, Oh J, Lee K, Bae Y, Rhee S, Roh J. Recent Progress on Quantum Dot Patterning Technologies for Commercialization of QD-LEDs: Current Status, Future Prospects, and Exploratory Approaches. SMALL METHODS 2024; 8:e2301224. [PMID: 38193264 DOI: 10.1002/smtd.202301224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Indexed: 01/10/2024]
Abstract
Colloidal quantum dots (QDs) are widely regarded as advanced emissive materials with significant potential for display applications owing to their excellent optical properties such as high color purity, near-unity photoluminescence quantum yield, and size-tunable emission color. Building upon these attractive attributes, QDs have successfully garnered attention in the display market as down-conversion luminophores and now venturing into the realm of self-emissive displays, exemplified by QD light-emitting diodes (QD-LEDs). However, despite these advancements, there remains a relatively limited body of research on QD patterning technologies, which are crucial prerequisites for the successful commercialization of QD-LEDs. Thus, in this review, an overview of the current status and prospects of QD patterning technologies to accelerate the commercialization of QD-LEDs is provided. Within this review, a comprehensive investigation of three prevailing patterning methods: optical lithography, transfer printing, and inkjet printing are conducted. Furthermore, several exploratory QD patterning techniques that offer distinct advantages are introduced. This study not only paves the way for successful commercialization but also extends the potential application of QD-LEDs into uncharted frontiers.
Collapse
Affiliation(s)
- Jaeyeop Lee
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hyeona Jo
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Minseok Choi
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Sangwook Park
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jiyoon Oh
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Kyoungeun Lee
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Yeyun Bae
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Seunghyun Rhee
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Jeongkyun Roh
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| |
Collapse
|
36
|
Man Z, Dong C, Bian J, Lu Z, Lu YQ, Zhang W. Optically Readable, Physically Unclonable Subwavelength Pixel via Multicolor Quantum Dot Printing for Anticounterfeiting. NANO LETTERS 2024; 24:7019-7024. [PMID: 38808680 DOI: 10.1021/acs.nanolett.4c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We present a secure and user-friendly ultraminiaturized anticounterfeiting labeling technique─the color-encoded physical unclonable nanotag. These nanotags consist of subwavelength spots formed by random combinations of multicolor quantum dots, which are fabricated using a cost-efficient printing method developed in this study. The nanotags support over 170,000 different colors and are inherently resistant to cloning. Moreover, their high brightness and color purity, owing to the quantum dots, ensure an ease of readability. Additionally, these nanotags can function as color-encrypted pixels, enabling the incorporation of labels (such as QR codes) into ultrasmall physically unclonable hidden tags with a resolution exceeding 100,000 DPI. The unique blend of compactness, flexibility, and security positions the color-encoded nanotag as a potent and versatile solution for next-generation anticounterfeiting applications.
Collapse
Affiliation(s)
- Zaiqin Man
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Chenyu Dong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jie Bian
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, Jiangsu 210023, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
37
|
Jiao F, Lin C, Dong L, Mao X, Wu Y, Dong F, Zhang Z, Sun J, Li S, Yang X, Liu K, Wang L, Shan C. Silicon Vacancies Diamond/Silk/PVA Hierarchical Physical Unclonable Functions for Multi-Level Encryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308337. [PMID: 38572504 PMCID: PMC11186112 DOI: 10.1002/advs.202308337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Indexed: 04/05/2024]
Abstract
Physical unclonable functions (PUFs) have emerged as a promising encryption technology, utilizing intrinsic physical identifiers that offer enhanced security and tamper resistance. Multi-level PUFs boost system complexity, thereby improving system reliability and fault tolerance. However, crosstalk-free multi-level PUFs remain a persistent challenge. In this study, a hierarchical PUF system that harnesses the spontaneous phase separation of silk fibroin /PVA blend and the random distribution of silicon-vacancy diamonds within the blend is presented. The thermodynamic instability of phase separation and inherent unpredictability of diamond dispersion gives rise to intricate random patterns at two distinct scales, enabling time-efficient hierarchical authentication for cryptographic keys. These patterns are complementary yet independent, inherently resistant to replication and damage thus affording robust security and reliability to the proposed system. Furthermore, customized authentication algorithms are constructed: visual PUFs authentication utilizes neural network combined structural similarity index measure, while spectral PUFs authentication employs Hamming distance and cross-correlation bit operation. This hierarchical PUF system attains a high recognition rate without interscale crosstalk. Additionally, the coding capacity is exponentially enhanced using M-ary encoding to reinforce multi-level encryption. Hierarchical PUFs hold significant potential for immediate application, offering unprecedented data protection and cryptographic key authentication capabilities.
Collapse
Affiliation(s)
- Fuhang Jiao
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Chaonan Lin
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Xin Mao
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Yi Wu
- MOE Key Laboratory of Fundamental Physical Quantities MeasurementHubei Key Laboratory of Gravitation and Quantum PhysicsPGMFSchool of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Fuying Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Zhenfeng Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Junlu Sun
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Shunfang Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Xun Yang
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Kaikai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Lijun Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Chong‐Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| |
Collapse
|
38
|
Wang Z, Wang H, Wang P, Shao Y. Robust Optical Physical Unclonable Function Based on Total Internal Reflection for Portable Authentication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27926-27935. [PMID: 38743936 DOI: 10.1021/acsami.4c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Physical unclonable functions (PUFs) utilize uncontrollable manufacturing randomness to yield cryptographic primitives. Currently, the fabrication of the most generally employed optical PUFs mainly depends on fluorescent, Raman, or plasmonic materials, which suffer inherent robustness issues. Herein, we construct an optical PUF with high environmental stability via total internal reflection (TIR-PUF) perturbed by randomly distributed polymer microspheres. The response image is transformed into encoded keys via an iterative binning procedure. The concentration of the polymer solution is optimized to debias the bit nonuniformity and maximize encoding capacity. The constructed TIR-PUF shows significantly high encoding capacity (2370) and markedly low total authentication error probability (1.614 × 10-23). The intra-Hamming distance is as low as 0.068, indicating the excellent readout reliability of TIR-PUF. The environmental stability of TIR-PUF has demonstrated promising results under a range of challenging conditions such as ultrasonic washing, high temperature, ultraviolet irradiation, and severe chemical environments. Moreover, the challenge-response pairs of our TIR-PUFs are demonstrated on an authentication system with low-power dissipation, lightweight components, and wireless imaging capture, rendering the possibility of portable authentication for practical applications.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Hu Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Pengxiang Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Yuchuan Shao
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
39
|
Im H, Yoon J, So B, Choi J, Park DH, Kim S, Park W. Four-Dimensional Physical Unclonable Functions and Cryptographic Applications Based on Time-Varying Chaotic Phosphorescent Patterns. ACS NANO 2024; 18:11703-11716. [PMID: 38651359 DOI: 10.1021/acsnano.3c12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Physical unclonable functions (PUFs) have attracted interest in demonstrating authentication and cryptographic processes for Internet of Things (IoT) devices. We demonstrated four-dimensional PUFs (4D PUFs) to realize time-varying chaotic phosphorescent randomness on MoS2 atomic seeds. By forming hybrid states involving more than one emitter with distinct lifetimes in 4D PUFs, irregular lifetime distribution throughout patterns functions as a time-varying disorder that is impossible to replicate. Moreover, we established a bit extraction process incorporating multiple 64 bit-stream challenges and experimentally obtained physical features of 4D PUFs, producing countless random 896 bit-stream responses. Furthermore, the weak and strong PUF models were conceptualized and demonstrated based on 4D PUFs, exhibiting superior cryptological performances, including randomness, uniqueness, degree of freedom, and independent bit ratio. Finally, the data encryption and decryption in pictures were performed by a single 4D PUF. Therefore, 4D PUFs could enhance the counterfeiting deterrent of existing optical PUFs and be used as an anticounterfeiting security strategy for advanced authentication and cryptographic processes of IoT devices.
Collapse
Affiliation(s)
- Healin Im
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-Si, Gyeonggi-do 16419, Republic of Korea
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States of America
| | - Jinsik Yoon
- Institute for Wearable Convergence Electronics, Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Byungjun So
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-Si, Gyeonggi-do 16419, Republic of Korea
| | - Jinho Choi
- Department of Chemical Engineering, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong Hyuk Park
- Department of Chemical Engineering, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-Si, Gyeonggi-do 16419, Republic of Korea
| | - Wook Park
- Institute for Wearable Convergence Electronics, Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
40
|
Gao Y, Ge K, Zhang Z, Li Z, Hu S, Ji H, Li M, Feng H. Fine Optimization of Colloidal Photonic Crystal Structural Color for Physically Unclonable Multiplex Encryption and Anti-Counterfeiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305876. [PMID: 38576190 PMCID: PMC11132029 DOI: 10.1002/advs.202305876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/28/2024] [Indexed: 04/06/2024]
Abstract
Robust anti-counterfeiting techniques aim for easy identification while remaining difficult to forge, especially for high-value items such as currency and passports. However, many existing anti-counterfeiting techniques rely on deterministic processes, resulting in loopholes for duplication and counterfeiting. Therefore, achieving high-level encryption and easy authentication through conventional anti-counterfeiting techniques has remained a significant challenge. To address this, this work proposes a solution that combined fluorescence and structural colors, creating a physically unclonable multiplex encryption system (PUMES). In this study, the physicochemical properties of colloidal photonic inks are systematically adjusted to construct a comprehensive printing phase diagram, revealing the printable region. Furthermore, the brightness and color saturation of inkjet-printed colloidal photonic crystal structural colors are optimized by controlling the substrate's hydrophobicity, printed droplet volume, and the addition of noble metals. Finally, fluorescence is incorporated to build PUMES, including macroscopic fluorescence and structural color patterns, as well as microscopic physically unclonable fluorescence patterns. The PUMES with intrinsic randomness and high encoding capacity are authenticated by a deep learning algorithm, which proved to be reliable and efficient under various observation conditions. This approach can provide easy identification and formidable resistance against counterfeiting, making it highly promising for the next-generation anti-counterfeiting of currency and passports.
Collapse
Affiliation(s)
- Yifan Gao
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Kongyu Ge
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Zhen Zhang
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Zhan Li
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Shaowei Hu
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Hongjun Ji
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Mingyu Li
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| |
Collapse
|
41
|
Wang K, Shi J, Lai W, He Q, Xu J, Ni Z, Liu X, Pi X, Yang D. All-silicon multidimensionally-encoded optical physical unclonable functions for integrated circuit anti-counterfeiting. Nat Commun 2024; 15:3203. [PMID: 38615044 PMCID: PMC11016093 DOI: 10.1038/s41467-024-47479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Integrated circuit anti-counterfeiting based on optical physical unclonable functions (PUFs) plays a crucial role in guaranteeing secure identification and authentication for Internet of Things (IoT) devices. While considerable efforts have been devoted to exploring optical PUFs, two critical challenges remain: incompatibility with the complementary metal-oxide-semiconductor (CMOS) technology and limited information entropy. Here, we demonstrate all-silicon multidimensionally-encoded optical PUFs fabricated by integrating silicon (Si) metasurface and erbium-doped Si quantum dots (Er-Si QDs) with a CMOS-compatible procedure. Five in-situ optical responses have been manifested within a single pixel, rendering an ultrahigh information entropy of 2.32 bits/pixel. The position-dependent optical responses originate from the position-dependent radiation field and Purcell effect. Our evaluation highlights their potential in IoT security through advanced metrics like bit uniformity, similarity, intra- and inter-Hamming distance, false-acceptance and rejection rates, and encoding capacity. We finally demonstrate the implementation of efficient lightweight mutual authentication protocols for IoT applications by using the all-Si multidimensionally-encoded optical PUFs.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jianwei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Wenxuan Lai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qiang He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jun Xu
- School of Electronic Science and Engineering & National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, China
- School of Microelectronics, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zhenyi Ni
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Xiaodong Pi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
- Institute of Advanced Semiconductors, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, Zhejiang, 311215, China.
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
- Institute of Advanced Semiconductors, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, Zhejiang, 311215, China.
| |
Collapse
|
42
|
Wang Z, Wang H, Li F, Gao X, Shao Y. Physical Unclonable Functions Based on Photothermal Effect of Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17954-17964. [PMID: 38562008 DOI: 10.1021/acsami.3c18270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Physical unclonable functions (PUFs) based on uncontrollable fabrication randomness are promising candidates for anticounterfeiting applications. Currently, the most popular optical PUFs are generally constructed from the scattering, fluorescent, or Raman phenomenon of nanomaterials. To further improve the security level of optical PUFs, advanced functions transparent to the above optical phenomenon have always been perused by researchers. Herein, we propose a new type of PUF based on the photothermal effect of gold nanoparticles, which shows negligible scattering, fluorescent, or Raman responses. The gold nanoparticles are randomly dispersed onto the surface of fused silica, which can enhance the photothermal effect and facilitate high contrast responses. By tuning the areal density of the gold nanoparticles, the optimized encoding capacity (2319) and the total authentication error probability (3.6428 × 10-24) are achieved from our PUF due to excellent bit uniformity (0.519) and inter Hamming distances (0.503). Moreover, the intra-Hamming distance (0.044) indicates the desired reliability. This advanced PUF with invisible features and high contrast responses provides a promising opportunity to implement authentication and identification with high security.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Hu Wang
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Fenghua Li
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Xinyu Gao
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Yuchuan Shao
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
43
|
Liu Y, Gao X, Zhao B, Deng J. Circularly polarized luminescence in quantum dot-based materials. NANOSCALE 2024; 16:6853-6875. [PMID: 38504609 DOI: 10.1039/d4nr00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Quantum dots (QDs) have emerged as fantastic luminescent nanomaterials with significant potential due to their unique photoluminescence properties. With the rapid development of circularly polarized luminescence (CPL) materials, many researchers have associated QDs with the CPL property, resulting in numerous novel CPL-active QD-containing materials in recent years. The present work reviews the latest advances in CPL-active QD-based materials, which are classified based on the types of QDs, including perovskite QDs, carbon dots, and colloidal semiconductor QDs. The applications of CPL-active QD-based materials in biological, optoelectronic, and anti-counterfeiting fields are also discussed. Additionally, the current challenges and future perspectives in this field are summarized. This review article is expected to stimulate more unprecedented achievements based on CPL-active QD-based materials, thus further promoting their future practical applications.
Collapse
Affiliation(s)
- Yanze Liu
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaobin Gao
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Biao Zhao
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jianping Deng
- Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
44
|
Xu Q, Zhang T, Liu M, Wang M, Cao K, Chen R. CsBr-Triggered Reversible Phase Transition of Perovskite Nanocrystals for Advanced Information Encryption and Decryption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17051-17061. [PMID: 38511856 DOI: 10.1021/acsami.4c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Luminescent perovskite nanocrystals (NCs), possessing the advantages of low cost, easy detection, and excellent luminescence, are becoming more and more significant in the fields of information encryption and decryption. Most hydrochromic perovskite NCs for information encryption have moderate reversibility and are easily passively decrypted by water in the moist air, limiting their practical applications. Herein, a lyochromic material is synthesized based on reversible phase transition between luminescent CsPbBr3-HBr (pretreating CsPbBr3 with HBr) and nonluminescent Cs4PbBr6, exhibiting excellent reversibility in 50 cycles triggered by CsBr solution. HBr treatment boosts the ion migration of NCs via diminishing surface ligands and passivating Br vacancy, assisting CsBr concentration acting as a crucial factor in dynamic ion exchange equilibrium between the trigger solution and CsPbBr3-HBr. By utilizing CsPbBr3-HBr as a safety ink, the CsBr-triggered photoluminescence switch has been demonstrated to be reproducible, stable, and reliable for information encryption and decryption.
Collapse
Affiliation(s)
- Qing Xu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianwei Zhang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengjia Liu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Wang
- State Key Laboratory of Material Processing and Die & Mould Technology and School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kun Cao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong Chen
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
45
|
Esidir A, Pekdemir S, Kalay M, Onses MS. Ultradurable Embedded Physically Unclonable Functions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16532-16543. [PMID: 38511845 PMCID: PMC10995905 DOI: 10.1021/acsami.4c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Physically unclonable functions (PUFs) have attracted growing interest for anticounterfeiting and authentication applications. The practical applications require durable PUFs made of robust materials. This study reports a practical strategy to generate extremely robust PUFs by embedding random features onto a substrate. The chaotic and low-cost electrohydrodynamic deposition process generates random polymeric features over a negative-tone photoresist film. These polymer features function as a conformal photomask, which protects the underlying photoresist from UV light, thereby enabling the generation of randomly positioned holes. Dry plasma etching of the substrate and removal of the photoresist result in the transfer of random features to the underlying silicon substrate. The matching of binary keys and features via different algorithms facilitates authentication of features. The embedded PUFs exhibit extreme levels of thermal (∼1000 °C) and mechanical stability that exceed the state of the art. The strength of this strategy emerges from the PUF generation directly on the substrate of interest, with stability that approaches the intrinsic properties of the underlying material. Benefiting from the materials and processes widely used in the semiconductor industry, this strategy shows strong promise for anticounterfeiting and device security applications.
Collapse
Affiliation(s)
- Abidin Esidir
- ERNAM
- Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
- Graduate
School of Natural and Applied Science, Materials Science and Engineering
Program, Erciyes University, Kayseri 38039, Turkey
| | - Sami Pekdemir
- ERNAM
- Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department
of Aeronautical Engineering, Faculty of Aeronautics and Astronautics, Erciyes University, Kayseri 38039, Turkey
| | - Mustafa Kalay
- ERNAM
- Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department
of Electricity and Energy, Kayseri University, Kayseri 38039, Turkey
| | - Mustafa Serdar Onses
- ERNAM
- Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
| |
Collapse
|
46
|
Maritano V, Barge P, Biglia A, Comba L, Ricauda Aimonino D, Tortia C, Gay P. Anticounterfeiting and Fraud Mitigation Solutions for High-value Food Products. J Food Prot 2024; 87:100251. [PMID: 38403269 DOI: 10.1016/j.jfp.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Globalization and the increasing complexity of supply chains have allowed food fraud to expand to a great extent. Some of the most serious effects of these deceitful activities are damage to a brand's reputation and trust, economic losses, and public health risks. The usual victims of food fraud are dairy, meat, fish, and seafood products, as well as fats/oils and alcoholic drinks. The purpose of this review paper is to present an updated analysis of the currently available anticounterfeit technologies and their application to the four most fraud-affected food supply chains. An assessment that was conducted to determine when the adoption of a combination of technologies could enhance food safety and brand protection is also provided. The obtained results indicate that electronic and data-driven technologies (RFID devices and digital traceability systems) are still in their infancy in the food sectors that are subjected the most to fraudulent activities. Research is necessary to develop innovative digital and physical technologies to "outsmart" such fraudsters and to prevent their illicit actions in the food sector.
Collapse
Affiliation(s)
- V Maritano
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - P Barge
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - A Biglia
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - L Comba
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - D Ricauda Aimonino
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - C Tortia
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - P Gay
- Department of Agricultural, Forest and Food Sciences (DiSAFA) - Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
47
|
Yang K, Weng X, Feng J, Yu Y, Xu B, Lin Q, Zhang Q, Zhuang J, Hou W, Yan X, Hu H, Li F. High-Resolution Quantum Dot Light-Emitting Diodes by Electrohydrodynamic Printing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9544-9550. [PMID: 38346935 DOI: 10.1021/acsami.3c18371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Quantum dot light-emitting diodes (QLEDs) have attracted increasing attention due to their excellent electroluminescent properties and compatibility with inkjet printing processes, which show great potential in applications of pixelated displays. However, the relatively low resolution of the inkjet printing technology limits its further development. In this paper, high-resolution QLEDs were successfully fabricated by electrohydrodynamic (EHD) printing. A pixelated quantum dot (QD) emission layer was formed by printing an insulating Teflon mesh on a spin-coated QD layer. The patterned QLEDs show a high resolution of 2540 pixels per inch (PPI), with a maximum external quantum efficiency (EQE) of 20.29% and brightness of 35816 cd/m2. To further demonstrate its potential in full-color display, the fabrication process for the QD layer was changed from spin-coating to EHD printing. The as-printed Teflon effectively blocked direct contact between the hole transport layer and the electron transport layer, thus preventing leakage currents. As a result, the device showed a resolution of 1692 PPI with a maximum EQE of 15.40%. To the best of our knowledge, these results represent the highest resolution and efficiency of pixelated QLEDs using inkjet printing or EHD printing, which demonstrates its huge potential in the application of high-resolution full-color displays.
Collapse
Affiliation(s)
- Kaiyu Yang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Xukeng Weng
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jiahuan Feng
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Yongshen Yu
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Baolin Xu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qiuxiang Lin
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qingkai Zhang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jiaqing Zhuang
- National Center of Technology Innovation for Display, Guangzhou 510525, People's Republic of China
| | - Wenjun Hou
- TCL Research, Shenzhen 518057, People's Republic of China
| | - Xiaolin Yan
- TCL Research, Shenzhen 518057, People's Republic of China
| | - Hailong Hu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Fushan Li
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| |
Collapse
|
48
|
Zhang J, Tan R, Liu Y, Albino M, Zhang W, Stevens MM, Loeffler FF. Printed smart devices for anti-counterfeiting allowing precise identification with household equipment. Nat Commun 2024; 15:1040. [PMID: 38310090 PMCID: PMC10838302 DOI: 10.1038/s41467-024-45428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Counterfeiting has become a serious global problem, causing worldwide losses and disrupting the normal order of society. Physical unclonable functions are promising hardware-based cryptographic primitives, especially those generated by chemical processes showing a massive challenge-response pair space. However, current chemical-based physical unclonable function devices typically require complex fabrication processes or sophisticated characterization methods with only binary (bit) keys, limiting their practical applications and security properties. Here, we report a flexible laser printing method to synthesize unclonable electronics with high randomness, uniqueness, and repeatability. Hexadecimal resistive keys and binary optical keys can be obtained by the challenge with an ohmmeter and an optical microscope. These readout methods not only make the identification process available to general end users without professional expertise, but also guarantee device complexity and data capacity. An adopted open-source deep learning model guarantees precise identification with high reliability. The electrodes and connection wires are directly printed during laser writing, which allows electronics with different structures to be realized through free design. Meanwhile, the electronics exhibit excellent mechanical and thermal stability. The high physical unclonable function performance and the widely accessible readout methods, together with the flexibility and stability, make this synthesis strategy extremely attractive for practical applications.
Collapse
Affiliation(s)
- Junfang Zhang
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Rong Tan
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Soochow University, College of Chemistry, Chemical Engineering and Material Science, Suzhou, 215123, China
| | - Yuxin Liu
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Arnimallee 22, 14195, Berlin, Germany
| | - Matteo Albino
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Weinan Zhang
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
49
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
50
|
Wang L, Shi S, Yin L, Zhai Y, Xuan T, Liu B, Xie RJ. Water-Soluble Quantum Dots for Inkjet Printing Color Conversion Films with Simultaneous High Efficiency and Stability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5050-5057. [PMID: 38228493 DOI: 10.1021/acsami.3c13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Water-soluble quantum dots (QDs) are necessary to prepare patterned pixels or films for high-resolution displays with less environmental burden but are very limited by the trade-off between photoluminescence and stability of QDs. In this work, we proposed synthesizing water-soluble QDs with simultaneous excellent luminescence properties and high stability by coating the amphiphilic poly(maleic anhydride-alt-1-octadecene)-ethanol amine (PMAO-EA) polymer on the surface of silane-treated QDs. These coated QDs show a photoluminescence quantum yield (PLQY) as high as 94%, and they have good photoluminescence stability against light irradiation and thermal attacks, owing to the suppression of the nonradiative recombination by the polymer layer and the isolation of oxygen and water by the silica layer. The water-soluble QDs, mixed with ethylene glycol, enable inkjet printing of QD color conversion films (QD-CCFs) with an average diameter of 68 μm for each pixel and a high PLQY of 91%. The QD-CCFs are demonstrated to fabricate red-emitting mini-LEDs by combining with blue mini-LED chips, which have an external quantum efficiency as high as 25.86% and a luminance of 2.44 × 107 cd/m2. We believe that the proposed strategy is applicable to other water-soluble QDs and paves an avenue for inkjet printing environmentally friendly QD-CCFs for mini/micro-LED displays.
Collapse
Affiliation(s)
- Le Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shuchen Shi
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, China
| | - Lu Yin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yue Zhai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tongtong Xuan
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, No. 19, Gaoxin South Fourth Road, Nanshan District, Shenzhen 518000, China
| | - Bo Liu
- Nanjing University of Information Science & Technology, Institute of Optics and Electronics, Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing 210044, China
| | - Rong-Jun Xie
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, No. 19, Gaoxin South Fourth Road, Nanshan District, Shenzhen 518000, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| |
Collapse
|