1
|
Khan M, Srivastava AK, Nizamani MM, Asif M, Kamran A, Luo L, Yang S, Chen S, Li Z, Xie X. The battle within: Discovering new insights into phytopathogen interactions and effector dynamics. Microbiol Res 2025; 298:128220. [PMID: 40398012 DOI: 10.1016/j.micres.2025.128220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/23/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Phytopathogen interactions are complicated and constantly evolving, driven by a never-ending war amongst the host's immune defenses and the pathogen's virulence strategies. This comprehensive review examines the intricate mechanisms of effector-triggered immunity (ETI) and how pathogen effectors use host cellular progressions to promote infection. This review article investigates the modification of Phytopathogen effectors and plant resistance proteins, highlighting the role of meta-population dynamics and rapid adaptation. Additionally, it highlights the influence of environmental impact and climate change on host-pathogen interactions, describing their significant impact on disease dynamics and pathogen evolution. Effector proteins are crucial in sabotaging plant immunity, with bacterial, fungal, oomycete, and nematode effectors targeting common host protein networks and phytohormone pathways. Additionally, the review discusses advanced approaches for classifying effector targets, such as bioinformatics and single-cell transcriptomics, highlighting their importance in developing effective disease management strategies. Further insights are described into how effectors control phytohormone pathways, shedding light on how pathogens exploit host signaling. This review covers structural studies and protein modeling that have advanced effector prediction and our understanding of their functions and evolution, while providing an overview of phytopathogen interactions and future directions for effector research.
Collapse
Affiliation(s)
- Mehran Khan
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | | | | | - Muhammad Asif
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Ali Kamran
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lingfeng Luo
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Songshu Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Evangelisti E, Govers F. Roadmap to Success: How Oomycete Plant Pathogens Invade Tissues and Deliver Effectors. Annu Rev Microbiol 2024; 78:493-512. [PMID: 39227351 DOI: 10.1146/annurev-micro-032421-121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Filamentous plant pathogens threaten global food security and ecosystem resilience. In recent decades, significant strides have been made in deciphering the molecular basis of plant-pathogen interactions, especially the interplay between pathogens' molecular weaponry and hosts' defense machinery. Stemming from interdisciplinary investigations into the infection cell biology of filamentous plant pathogens, recent breakthrough discoveries have provided a new impetus to the field. These advances include the biophysical characterization of a novel invasion mechanism (i.e., naifu invasion) and the unraveling of novel effector secretion routes. On the plant side, progress includes the identification of components of cellular networks involved in the uptake of intracellular effectors. This exciting body of research underscores the pivotal role of logistics management by the pathogen throughout the infection cycle, encompassing the precolonization stages up to tissue invasion. More insight into these logistics opens new avenues for developing environmentally friendly crop protection strategies in an era marked by an imperative to reduce the use of agrochemicals.
Collapse
Affiliation(s)
- Edouard Evangelisti
- Current affiliation: Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France;
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
3
|
Skiadas P, Riera Vidal S, Dommisse J, Mendel MN, Elberse J, Van den Ackerveken G, de Jonge R, Seidl MF. Pangenome graph analysis reveals extensive effector copy-number variation in spinach downy mildew. PLoS Genet 2024; 20:e1011452. [PMID: 39453979 PMCID: PMC11540230 DOI: 10.1371/journal.pgen.1011452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024] Open
Abstract
Plant pathogens adapt at speeds that challenge contemporary disease management strategies like the deployment of disease resistance genes. The strong evolutionary pressure to adapt, shapes pathogens' genomes, and comparative genomics has been instrumental in characterizing this process. With the aim to capture genomic variation at high resolution and study the processes contributing to adaptation, we here leverage an innovative, multi-genome method to construct and annotate the first pangenome graph of an oomycete plant pathogen. We expand on this approach by analysing the graph and creating synteny based single-copy orthogroups for all genes. We generated telomere-to-telomere genome assemblies of six genetically diverse isolates of the oomycete pathogen Peronospora effusa, the economically most important disease in cultivated spinach worldwide. The pangenome graph demonstrates that P. effusa genomes are highly conserved, both in chromosomal structure and gene content, and revealed the continued activity of transposable elements which are directly responsible for 80% of the observed variation between the isolates. While most genes are generally conserved, virulence related genes are highly variable between the isolates. Most of the variation is found in large gene clusters resulting from extensive copy-number expansion. Pangenome graph-based discovery can thus be effectively used to capture genomic variation at exceptional resolution, thereby providing a framework to study the biology and evolution of plant pathogens.
Collapse
Affiliation(s)
- Petros Skiadas
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | - Sofía Riera Vidal
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Joris Dommisse
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Melanie N. Mendel
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Joyce Elberse
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Ronnie de Jonge
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- AI Technology for Life, Department of Information and Computing Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Michael F. Seidl
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Zhang Z, Zhang X, Tian Y, Wang L, Cao J, Feng H, Li K, Wang Y, Dong S, Ye W, Wang Y. Complete telomere-to-telomere genomes uncover virulence evolution conferred by chromosome fusion in oomycete plant pathogens. Nat Commun 2024; 15:4624. [PMID: 38816389 PMCID: PMC11139960 DOI: 10.1038/s41467-024-49061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Variations in chromosome number are occasionally observed among oomycetes, a group that includes many plant pathogens, but the emergence of such variations and their effects on genome and virulence evolution remain ambiguous. We generated complete telomere-to-telomere genome assemblies for Phytophthora sojae, Globisporangium ultimum, Pythium oligandrum, and G. spinosum. Reconstructing the karyotype of the most recent common ancestor in Peronosporales revealed that frequent chromosome fusion and fission drove changes in chromosome number. Centromeres enriched with Copia-like transposons may contribute to chromosome fusion and fission events. Chromosome fusion facilitated the emergence of pathogenicity genes and their adaptive evolution. Effectors tended to duplicate in the sub-telomere regions of fused chromosomes, which exhibited evolutionary features distinct to the non-fused chromosomes. By integrating ancestral genomic dynamics and structural predictions, we have identified secreted Ankyrin repeat-containing proteins (ANKs) as a novel class of effectors in P. sojae. Phylogenetic analysis and experiments further revealed that ANK is a specifically expanded effector family in oomycetes. These results revealed chromosome dynamics in oomycete plant pathogens, and provided novel insights into karyotype and effector evolution.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaoyi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuan Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Liyuan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingting Cao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui Feng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
5
|
Jung T, Milenković I, Balci Y, Janoušek J, Kudláček T, Nagy Z, Baharuddin B, Bakonyi J, Broders K, Cacciola S, Chang TT, Chi N, Corcobado T, Cravador A, Đorđević B, Durán A, Ferreira M, Fu CH, Garcia L, Hieno A, Ho HH, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira L, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivuković Z, Tarigan M, Thu P, Tomić Z, Tomšovský M, Uematsu S, Webber J, Zeng HC, Zheng FC, Brasier C, Horta Jung M. Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Stud Mycol 2024; 107:251-388. [PMID: 38600961 PMCID: PMC11003442 DOI: 10.3114/sim.2024.107.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 04/12/2024] Open
Abstract
During 25 surveys of global Phytophthora diversity, conducted between 1998 and 2020, 43 new species were detected in natural ecosystems and, occasionally, in nurseries and outplantings in Europe, Southeast and East Asia and the Americas. Based on a multigene phylogeny of nine nuclear and four mitochondrial gene regions they were assigned to five of the six known subclades, 2a-c, e and f, of Phytophthora major Clade 2 and the new subclade 2g. The evolutionary history of the Clade appears to have involved the pre-Gondwanan divergence of three extant subclades, 2c, 2e and 2f, all having disjunct natural distributions on separate continents and comprising species with a soilborne and aquatic lifestyle and, in addition, a few partially aerial species in Clade 2c; and the post-Gondwanan evolution of subclades 2a and 2g in Southeast/East Asia and 2b in South America, respectively, from their common ancestor. Species in Clade 2g are soilborne whereas Clade 2b comprises both soil-inhabiting and aerial species. Clade 2a has evolved further towards an aerial lifestyle comprising only species which are predominantly or partially airborne. Based on high nuclear heterozygosity levels ca. 38 % of the taxa in Clades 2a and 2b could be some form of hybrid, and the hybridity may be favoured by an A1/A2 breeding system and an aerial life style. Circumstantial evidence suggests the now 93 described species and informally designated taxa in Clade 2 result from both allopatric non-adaptive and sympatric adaptive radiations. They represent most morphological and physiological characters, breeding systems, lifestyles and forms of host specialism found across the Phytophthora clades as a whole, demonstrating the strong biological cohesiveness of the genus. The finding of 43 previously unknown species from a single Phytophthora clade highlight a critical lack of information on the scale of the unknown pathogen threats to forests and natural ecosystems, underlining the risk of basing plant biosecurity protocols mainly on lists of named organisms. More surveys in natural ecosystems of yet unsurveyed regions in Africa, Asia, Central and South America are needed to unveil the full diversity of the clade and the factors driving diversity, speciation and adaptation in Phytophthora. Taxonomic novelties: New species: Phytophthora amamensis T. Jung, K. Kageyama, H. Masuya & S. Uematsu, Phytophthora angustata T. Jung, L. Garcia, B. Mendieta-Araica, & Y. Balci, Phytophthora balkanensis I. Milenković, Ž. Tomić, T. Jung & M. Horta Jung, Phytophthora borneensis T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora calidophila T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora catenulata T. Jung, T.-T. Chang, N.M. Chi & M. Horta Jung, Phytophthora celeris T. Jung, L. Oliveira, M. Tarigan & I. Milenković, Phytophthora curvata T. Jung, A. Hieno, H. Masuya & M. Horta Jung, Phytophthora distorta T. Jung, A. Durán, E. Sanfuentes von Stowasser & M. Horta Jung, Phytophthora excentrica T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora falcata T. Jung, K. Kageyama, S. Uematsu & M. Horta Jung, Phytophthora fansipanensis T. Jung, N.M. Chi, T. Corcobado & C.M. Brasier, Phytophthora frigidophila T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora furcata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora inclinata N.M. Chi, T. Jung, M. Horta Jung & I. Milenković, Phytophthora indonesiensis T. Jung, M. Tarigan, L. Oliveira & I. Milenković, Phytophthora japonensis T. Jung, A. Hieno, H. Masuya & J.F. Webber, Phytophthora limosa T. Corcobado, T. Majek, M. Ferreira & T. Jung, Phytophthora macroglobulosa H.-C. Zeng, H.-H. Ho, F.-C. Zheng & T. Jung, Phytophthora montana T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora multipapillata T. Jung, M. Tarigan, I. Milenković & M. Horta Jung, Phytophthora multiplex T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora nimia T. Jung, H. Masuya, A. Hieno & C.M. Brasier, Phytophthora oblonga T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora obovoidea T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora obturata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora penetrans T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora platani T. Jung, A. Pérez-Sierra, S.O. Cacciola & M. Horta Jung, Phytophthora proliferata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora pseudocapensis T. Jung, T.-T. Chang, I. Milenković & M. Horta Jung, Phytophthora pseudocitrophthora T. Jung, S.O. Cacciola, J. Bakonyi & M. Horta Jung, Phytophthora pseudofrigida T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora pseudoccultans T. Jung, T.-T. Chang, I. Milenković & M. Horta Jung, Phytophthora pyriformis T. Jung, Y. Balci, K.D. Boders & M. Horta Jung, Phytophthora sumatera T. Jung, M. Tarigan, M. Junaid & A. Durán, Phytophthora transposita T. Jung, K. Kageyama, C.M. Brasier & H. Masuya, Phytophthora vacuola T. Jung, H. Masuya, K. Kageyama & J.F. Webber, Phytophthora valdiviana T. Jung, E. Sanfuentes von Stowasser, A. Durán & M. Horta Jung, Phytophthora variepedicellata T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora vietnamensis T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora ×australasiatica T. Jung, N.M. Chi, M. Tarigan & M. Horta Jung, Phytophthora ×lusitanica T. Jung, M. Horta Jung, C. Maia & I. Milenković, Phytophthora ×taiwanensis T. Jung, T.-T. Chang, H.-S. Fu & M. Horta Jung. Citation: Jung T, Milenković I, Balci Y, Janoušek J, Kudláček T, Nagy ZÁ, Baharuddin B, Bakonyi J, Broders KD, Cacciola SO, Chang T-T, Chi NM, Corcobado T, Cravador A, Đorđević B, Durán A, Ferreira M, Fu C-H, Garcia L, Hieno A, Ho H-H, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira LSS, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivuković Z, Tarigan M, Thu PQ, Tomić Z, Tomšovský M, Uematsu S, Webber JF, Zeng H-C, Zheng F-C, Brasier CM, Horta Jung M (2024). Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Studies in Mycology 107: 251-388. doi: 10.3114/sim.2024.107.04.
Collapse
Affiliation(s)
- T. Jung
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- Phytophthora Research and Consultancy, 83131 Nussdorf, Germany
| | - I. Milenković
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- University of Belgrade, Faculty of Forestry, 11030 Belgrade, Serbia
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - J. Janoušek
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - T. Kudláček
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- University of Greifswald, Institute for Mathematics and Computer Science & Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | - Z.Á. Nagy
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - B. Baharuddin
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - J. Bakonyi
- HUN-REN Centre for Agricultural Research, Plant Protection Institute, ELKH, 1022 Budapest, Hungary
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, 61604, USA
| | - S.O. Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - T.-T. Chang
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - N.M. Chi
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 10000 Hanoi, Vietnam
| | - T. Corcobado
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - A. Cravador
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, University of Algarve, 8005-130 Faro, Portugal
| | - B. Đorđević
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - A. Durán
- Fiber Research and Development, Asia Pacific Resources International Limited (APRIL), 28300 Pangkalan Kerinci, Riau, Indonesia
| | - M. Ferreira
- Plant Diagnostic Center, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - C.-H. Fu
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - L. Garcia
- Universidad Nacional Agraria, Carretera Norte, Managua 11065, Nicaragua
| | - A. Hieno
- River Basin Research Center, Gifu University, Gifu, 501-1193, Japan
| | - H.-H. Ho
- Department of Biology, State University of New York, New Paltz, New York 12561, USA
| | - C. Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA
| | - M. Junaid
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - K. Kageyama
- River Basin Research Center, Gifu University, Gifu, 501-1193, Japan
| | - T. Kuswinanti
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - C. Maia
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
| | - T. Májek
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - H. Masuya
- Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
| | - G. Magnano di San Lio
- University Mediterranea of Reggio Calabria, Department of Agriculture, 89124 Reggio Calabria, Italy
| | | | - N. Nasri
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama, 790-8566, Japan
| | - L.S.S. Oliveira
- Research and Development, Bracell, Alagoinhas, Bahia 48030-300, Brazil
| | - A. Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - A. Pérez-Sierra
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - A. Rosmana
- Departement of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - E. Sanfuentes von Stowasser
- Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, 4030000 Concepción, Chile
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100 Sassari, Italy
| | - R. Singh
- Plant Diagnostic Center, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Z. Stanivuković
- University of Banja Luka, Faculty of Forestry, 78000 Banja Luka, Bosnia and Herzegovina
| | - M. Tarigan
- Fiber Research and Development, Asia Pacific Resources International Limited (APRIL), 28300 Pangkalan Kerinci, Riau, Indonesia
| | - P.Q. Thu
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 10000 Hanoi, Vietnam
| | - Z. Tomić
- Center for Plant Protection, Croatian Agency for Agriculture and Food, 10000 Zagreb, Croatia
| | - M. Tomšovský
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - S. Uematsu
- Laboratory of Molecular and Cellular Biology, Dept. of Bioregulation and Bio-interaction, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - J.F. Webber
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - H.-C. Zeng
- The Institute of Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - F.-C. Zheng
- College of Environment and Plant Protection, Hainan University, Baodoa Xincun, Danzhou City, Hainan 571737, China
| | - C.M. Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - M. Horta Jung
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- Phytophthora Research and Consultancy, 83131 Nussdorf, Germany
| |
Collapse
|
6
|
Fletcher K, Michelmore R. Genome-Enabled Insights into Downy Mildew Biology and Evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:165-183. [PMID: 37268005 DOI: 10.1146/annurev-phyto-021622-103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oomycetes that cause downy mildew diseases are highly specialized, obligately biotrophic phytopathogens that can have major impacts on agriculture and natural ecosystems. Deciphering the genome sequence of these organisms provides foundational tools to study and deploy control strategies against downy mildew pathogens (DMPs). The recent telomere-to-telomere genome assembly of the DMP Peronospora effusa revealed high levels of synteny with distantly related DMPs, higher than expected repeat content, and previously undescribed architectures. This provides a road map for generating similar high-quality genome assemblies for other oomycetes. This review discusses biological insights made using this and other assemblies, including ancestral chromosome architecture, modes of sexual and asexual variation, the occurrence of heterokaryosis, candidate gene identification, functional validation, and population dynamics. We also discuss future avenues of research likely to be fruitful in studies of DMPs and highlight resources necessary for advancing our understanding and ability to forecast and control disease outbreaks.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, California, USA
| | - Richard Michelmore
- The Genome Center, University of California, Davis, California, USA
- Department of Plant Sciences; Department of Molecular and Cellular Biology; Department of Medical Microbiology and Immunology, University of California, Davis, California, USA;
| |
Collapse
|
7
|
Nur M, Wood K, Michelmore R. EffectorO: Motif-Independent Prediction of Effectors in Oomycete Genomes Using Machine Learning and Lineage Specificity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:397-410. [PMID: 36853198 DOI: 10.1094/mpmi-11-22-0236-ta] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oomycete plant pathogens cause a wide variety of diseases, including late blight of potato, sudden oak death, and downy mildews of plants. These pathogens are major contributors to loss in numerous food crops. Oomycetes secrete effector proteins to manipulate their hosts to the advantage of the pathogen. Plants have evolved to recognize effectors, resulting in an evolutionary cycle of defense and counter-defense in plant-microbe interactions. This selective pressure results in highly diverse effector sequences that can be difficult to computationally identify using only sequence similarity. We developed a novel effector prediction tool, EffectorO, that uses two complementary approaches to predict effectors in oomycete pathogen genomes: i) a machine learning-based pipeline that predicts effector probability based on the biochemical properties of the N-terminal amino-acid sequence of a protein and ii) a pipeline based on lineage specificity to find proteins that are unique to one species or genus, a sign of evolutionary divergence due to adaptation to the host. We tested EffectorO on Bremia lactucae, which causes lettuce downy mildew, and Phytophthora infestans, which causes late blight of potato and tomato, and predicted many novel effector candidates while recovering the majority of known effector candidates. EffectorO will be useful for discovering novel families of oomycete effectors without relying on sequence similarity to known effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Munir Nur
- The Genome Center, University of California, Davis, CA, U.S.A
| | - Kelsey Wood
- The Genome Center, University of California, Davis, CA, U.S.A
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, CA, U.S.A
| | - Richard Michelmore
- The Genome Center, University of California, Davis, CA, U.S.A
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| |
Collapse
|
8
|
Fletcher K, Martin F, Isakeit T, Cavanaugh K, Magill C, Michelmore R. The genome of the oomycete Peronosclerospora sorghi, a cosmopolitan pathogen of maize and sorghum, is inflated with dispersed pseudogenes. G3 (BETHESDA, MD.) 2023; 13:jkac340. [PMID: 36592124 PMCID: PMC9997571 DOI: 10.1093/g3journal/jkac340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023]
Abstract
Several species in the oomycete genus Peronosclerospora cause downy mildew on maize and can result in significant yield losses in Asia. Bio-surveillance of these pathogens is a high priority to prevent epidemics on maize in the United States and consequent damage to the US economy. The unresolved taxonomy and dearth of molecular resources for Peronosclerospora spp. hinder these efforts. P. sorghi is a pathogen of sorghum and maize with a global distribution, for which limited diversity has been detected in the southern USA. We characterized the genome, transcriptome, and mitogenome of an isolate, representing the US pathotype 6. The highly homozygous genome was assembled using 10× Genomics linked reads and scaffolded using Hi-C into 13 chromosomes. The total assembled length was 303.2 Mb, larger than any other oomycete previously assembled. The mitogenome was 38 kb, similar in size to other oomycetes, although it had a unique gene order. Nearly 20,000 genes were annotated in the nuclear genome, more than described for other downy mildew causing oomycetes. The 13 chromosomes of P. sorghi were highly syntenic with the 17 chromosomes of Peronospora effusa with conserved centromeric regions and distinct chromosomal fusions. The increased assembly size and gene count of P. sorghi is due to extensive retrotransposition, resulting in putative pseudogenization. Ancestral genes had higher transcript abundance and were enriched for differential expression. This study provides foundational resources for analysis of Peronosclerospora and comparisons to other oomycete genera. Further genomic studies of global Peronosclerospora spp. will determine the suitability of the mitogenome, ancestral genes, and putative pseudogenes for marker development and taxonomic relationships.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, CA 95616, USA
| | - Frank Martin
- U.S. Department of Agriculture–Agriculture Research Service, Salinas, CA, 93905, USA
| | - Thomas Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Keri Cavanaugh
- The Genome Center, University of California, Davis, CA 95616, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Richard Michelmore
- The Genome Center, University of California, Davis, CA 95616, USA
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Phylogeography and population structure of the global, wide host-range hybrid pathogen Phytophthora × cambivora. IMA Fungus 2023; 14:4. [PMID: 36823663 PMCID: PMC9951538 DOI: 10.1186/s43008-023-00109-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Invasive, exotic plant pathogens pose a major threat to native and agricultural ecosystems. Phytophthora × cambivora is an invasive, destructive pathogen of forest and fruit trees causing severe damage worldwide to chestnuts (Castanea), apricots, peaches, plums, almonds and cherries (Prunus), apples (Malus), oaks (Quercus), and beech (Fagus). It was one of the first damaging invasive Phytophthora species to be introduced to Europe and North America, although its origin is unknown. We determined its population genetic history in Europe, North and South America, Australia and East Asia (mainly Japan) using genotyping-by-sequencing. Populations in Europe and Australia appear clonal, those in North America are highly clonal yet show some degree of sexual reproduction, and those in East Asia are partially sexual. Two clonal lineages, each of opposite mating type, and a hybrid lineage derived from these two lineages, dominated the populations in Europe and were predominantly found on fagaceous forest hosts (Castanea, Quercus, Fagus). Isolates from fruit trees (Prunus and Malus) belonged to a separate lineage found in Australia, North America, Europe and East Asia, indicating the disease on fruit trees could be caused by a distinct lineage of P. × cambivora, which may potentially be a separate sister species and has likely been moved with live plants. The highest genetic diversity was found in Japan, suggesting that East Asia is the centre of origin of the pathogen. Further surveys in unsampled, temperate regions of East Asia are needed to more precisely identify the location and range of the centre of diversity.
Collapse
|
10
|
Tör M, Wood T, Webb A, Göl D, McDowell JM. Recent developments in plant-downy mildew interactions. Semin Cell Dev Biol 2023; 148-149:42-50. [PMID: 36670035 DOI: 10.1016/j.semcdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Downy mildews are obligate oomycete pathogens that attack a wide range of plants and can cause significant economic impacts on commercial crops and ornamental plants. Traditionally, downy mildew disease control relied on an integrated strategies, that incorporate cultural practices, deployment of resistant cultivars, crop rotation, application of contact and systemic pesticides, and biopesticides. Recent advances in genomics provided data that significantly advanced understanding of downy mildew evolution, taxonomy and classification. In addition, downy mildew genomics also revealed that these obligate oomycetes have reduced numbers of virulence factor genes in comparison to hemibiotrophic and necrotrophic oomycetes. However, downy mildews do deploy significant arrays of virulence proteins, including so-called RXLR proteins that promote virulence or are recognized as avirulence factors. Pathogenomics are being applied to downy mildew population studies to determine the genetic diversity within the downy mildew populations and manage disease by selection of appropriate varieties and management strategies. Genome editing technologies have been used to manipulate host disease susceptibility genes in different plants including grapevine and sweet basil and thereby provide new soucres of resistance genes against downy mildews. Previously, it has proved difficult to transform and manipulate downy mildews because of their obligate lifestyle. However, recent exploitation of RNA interference machinery through Host-Induced Gene Silencing (HIGS) and Spray-Induced Gene Silencing (SIGS) indicate that functional genomics in downy mildews is now possible. Altogether, these breakthrough technologies and attendant fundamental understanding will advance our ability to mitigate downy mildew diseases.
Collapse
Affiliation(s)
- Mahmut Tör
- Department of Biology, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK.
| | | | | | - Deniz Göl
- Department of Biology, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061-0329, USA
| |
Collapse
|
11
|
D'Arcangelo KN, Wallace EC, Miles TD, Quesada-Ocampo LM. Carboxylic Acid Amide but Not Quinone Outside Inhibitor Fungicide Resistance Mutations Show Clade-Specific Occurrence in Pseudoperonospora cubensis Causing Downy Mildew in Commercial and Wild Cucurbits. PHYTOPATHOLOGY 2023; 113:80-89. [PMID: 35918851 DOI: 10.1094/phyto-05-22-0166-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since its reemergence in 2004, Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew (CDM), has experienced significant changes in fungicide sensitivity. Presently, frequent fungicide applications are required to control the disease in cucumber due to the loss of host resistance. Carboxylic acid amides (CAA) and quinone outside inhibitors (QoI) are two fungicide groups used to control foliar diseases in cucurbits, including CDM. Resistance to these fungicides is associated with single nucleotide polymorphism (SNP) mutations. In this study, we used population analyses to determine the occurrence of fungicide resistance mutations to CAA and QoI fungicides in host-adapted clade 1 and clade 2 P. cubensis isolates. Our results revealed that CAA-resistant genotypes occurred more prominently in clade 2 isolates, with more sensitive genotypes observed in clade 1 isolates, while QoI resistance was widespread across isolates from both clades. We also determined that wild cucurbits can serve as reservoirs for P. cubensis isolates containing fungicide resistance alleles. Finally, we report that the G1105W substitution associated with CAA resistance was more prominent within clade 2 P. cubensis isolates while the G1105V resistance substitution and sensitivity genotypes were more prominent in clade 1 isolates. Our findings of clade-specific occurrence of fungicide resistance mutations highlight the importance of understanding the population dynamics of P. cubensis clades by crop and region to design effective fungicide programs and establish accurate baseline sensitivity to active ingredients in P. cubensis populations.
Collapse
Affiliation(s)
- K N D'Arcangelo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606-7825
| | - E C Wallace
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606-7825
| | - T D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - L M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606-7825
| |
Collapse
|
12
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Brasier C, Scanu B, Cooke D, Jung T. Phytophthora: an ancient, historic, biologically and structurally cohesive and evolutionarily successful generic concept in need of preservation. IMA Fungus 2022; 13:12. [PMID: 35761420 PMCID: PMC9235178 DOI: 10.1186/s43008-022-00097-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
The considerable economic and social impact of the oomycete genus Phytophthora is well known. In response to evidence that all downy mildews (DMs) reside phylogenetically within Phytophthora, rendering Phytophthora paraphyletic, a proposal has been made to split the genus into multiple new genera. We have reviewed the status of the genus and its relationship to the DMs. Despite a substantial increase in the number of described species and improvements in molecular phylogeny the Phytophthora clade structure has remained stable since first demonstrated in 2000. Currently some 200 species are distributed across twelve major clades in a relatively tight monophyletic cluster. In our assessment of 196 species for twenty morphological and behavioural criteria the clades show good biological cohesion. Saprotrophy, necrotrophy and hemi-biotrophy of woody and non-woody roots, stems and foliage occurs across the clades. Phylogenetically less related clades often show strong phenotypic and behavioural similarities and no one clade or group of clades shows the synapomorphies that might justify a unique generic status. We propose the clades arose from the migration and worldwide radiation ~ 140 Mya (million years ago) of an ancestral Gondwanan Phytophthora population, resulting in geographic isolation and clade divergence through drift on the diverging continents combined with adaptation to local hosts, climatic zones and habitats. The extraordinary flexibility of the genus may account for its global 'success'. The 20 genera of the obligately biotrophic, angiosperm-foliage specialised DMs evolved from Phytophthora at least twice via convergent evolution, making the DMs as a group polyphyletic and Phytophthora paraphyletic in cladistic terms. The long phylogenetic branches of the DMs indicate this occurred rather rapidly, via paraphyletic evolutionary 'jumps'. Such paraphyly is common in successful organisms. The proposal to divide Phytophthora appears more a device to address the issue of the convergent evolution of the DMs than the structure of Phytophthora per se. We consider it non-Darwinian, putting the emphasis on the emergent groups (the DMs) rather than the progenitor (Phytophthora) and ignoring the evolutionary processes that gave rise to the divergence. Further, the generic concept currently applied to the DMs is narrower than that between some closely related Phytophthora species. Considering the biological and structural cohesion of Phytophthora, its historic and social impacts and its importance in scientific communication and biosecurity protocol, we recommend that the current broad generic concept is retained by the scientific community.
Collapse
Affiliation(s)
- Clive Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK.
| | - Bruno Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
| | - David Cooke
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas Jung
- Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, Mendel University in Brno, 613 00, Brno, Czech Republic.
- Phytophthora Research and Consultancy, 83131, Nussdorf, Germany.
| |
Collapse
|
14
|
Fletcher K, Shin OH, Clark KJ, Feng C, Putman AI, Correll JC, Klosterman SJ, Van Deynze A, Michelmore RW. Ancestral Chromosomes for Family Peronosporaceae Inferred from a Telomere-to-Telomere Genome Assembly of Peronospora effusa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:450-463. [PMID: 35226812 DOI: 10.1094/mpmi-09-21-0227-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Downy mildew disease of spinach, caused by the oomycete Peronospora effusa, causes major losses to spinach production. In this study, the 17 chromosomes of P. effusa were assembled telomere-to-telomere, using Pacific Biosciences high-fidelity reads. Of these, 16 chromosomes are complete and gapless; chromosome 15 contains one gap bridging the nucleolus organizer region. This is the first telomere-to-telomere genome assembly for an oomycete. Putative centromeric regions were identified on all chromosomes. This new assembly enables a reevaluation of the genomic composition of Peronospora spp.; the assembly was almost double the size and contained more repeat sequences than previously reported for any Peronospora species. Genome fragments consistently underrepresented in six previously reported assemblies of P. effusa typically encoded repeats. Some genes annotated as encoding effectors were organized into multigene clusters on several chromosomes. Putative effectors were annotated on 16 of the 17 chromosomes. The intergenic distances between annotated genes were consistent with compartmentalization of the genome into gene-dense and gene-sparse regions. Genes encoding putative effectors were enriched in gene-sparse regions. The near-gapless assembly revealed apparent horizontal gene transfer from Ascomycete fungi. Gene order was highly conserved between P. effusa and the genetically oriented assembly of the oomycete Bremia lactucae; high levels of synteny were also detected with Phytophthora sojae. Extensive synteny between phylogenetically distant species suggests that many other oomycete species may have similar chromosome organization. Therefore, this assembly provides the foundation for genomic analyses of diverse oomycetes.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, CA, U.S.A
| | - Oon-Ha Shin
- Seed Biotechnology Center, Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Kelley J Clark
- United States Department of Agriculture-Agricultural Research Station, 1636 East Alisal Street, Salinas, CA, U.S.A
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, U.S.A
| | - Chunda Feng
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, U.S.A
| | - Alexander I Putman
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, U.S.A
| | - James C Correll
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, U.S.A
| | - Steven J Klosterman
- United States Department of Agriculture-Agricultural Research Station, 1636 East Alisal Street, Salinas, CA, U.S.A
| | - Allen Van Deynze
- Seed Biotechnology Center, Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Richard W Michelmore
- The Genome Center, University of California, Davis, CA, U.S.A
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| |
Collapse
|
15
|
Fletcher K, Han R, Smilde D, Michelmore R. Variance of allele balance calculated from low coverage sequencing data infers departure from a diploid state. BMC Bioinformatics 2022; 23:150. [PMID: 35468720 PMCID: PMC9040317 DOI: 10.1186/s12859-022-04685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Polyploidy and heterokaryosis are common and consequential genetic phenomena that increase the number of haplotypes in an organism and complicate whole-genome sequence analysis. Allele balance has been used to infer polyploidy and heterokaryosis in diverse organisms using read sets sequenced to greater than 50× whole-genome coverage. However, sequencing to adequate depth is costly if applied to multiple individuals or large genomes. RESULTS We developed VCFvariance.pl to utilize the variance of allele balance to infer polyploidy and/or heterokaryosis at low sequence coverage. This analysis requires as little as 10× whole-genome coverage and reduces the allele balance profile down to a single value, which can be used to determine if an individual has two or more haplotypes. This approach was validated using simulated, synthetic, and authentic read sets from the oomycete species Bremia lactucae and Phytophthora infestans, the fungal species Saccharomyces cerevisiae, and the plant species Arabidopsis arenosa. This approach was deployed to determine that nine of 21 genotyped European race-type isolates of Bremia lactucae were inconsistent with diploidy and therefore likely heterokaryotic. CONCLUSIONS Variance of allele balance is a reliable metric to detect departures from a diploid state, including polyploidy, heterokaryosis, a mixed sample, or chromosomal copy number variation. Deploying this strategy is computationally inexpensive, can reduce the cost of sequencing by up to 80%, and used to test any organism.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, USA
| | - Rongkui Han
- The Genome Center, University of California, Davis, USA
- The Plant Biology Graduate Group, University of California, Davis, CA, 95616, USA
| | - Diederik Smilde
- Naktuinbouw, Postbus 40, Sotaweg 22, 2370 AA, Roelofarendsveen, The Netherlands
| | - Richard Michelmore
- The Genome Center, University of California, Davis, USA.
- Departments of Plant Sciences, Molecular and Cellular Biology, Medical Microbiology and Immunology, University of California, Davis, USA.
| |
Collapse
|
16
|
Dolatabadian A, Fernando WGD. Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions. BIOLOGY 2022; 11:421. [PMID: 35336795 PMCID: PMC8945218 DOI: 10.3390/biology11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Phytopathologists are actively researching the molecular basis of plant-pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant-microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant-pathogen interactions and discusses how these genome compartments enhance plants' and pathogens' evolutionary processes.
Collapse
Affiliation(s)
- Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
17
|
Kiselev A, San Clemente H, Camborde L, Dumas B, Gaulin E. A Comprehensive Assessment of the Secretome Responsible for Host Adaptation of the Legume Root Pathogen Aphanomyces euteiches. J Fungi (Basel) 2022; 8:88. [PMID: 35050028 PMCID: PMC8780586 DOI: 10.3390/jof8010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The soil-borne oomycete pathogen Aphanomyces euteiches causes devastating root rot diseases in legumes such as pea and alfalfa. The different pathotypes of A. euteiches have been shown to exhibit differential quantitative virulence, but the molecular basis of host adaptation has not yet been clarified. Here, we re-sequenced a pea field reference strain of A. euteiches ATCC201684 with PacBio long-reads and took advantage of the technology to generate the mitochondrial genome. We identified that the secretome of A. euteiches is characterized by a large portfolio of secreted proteases and carbohydrate-active enzymes (CAZymes). We performed Illumina sequencing of four strains of A. euteiches with contrasted specificity to pea or alfalfa and found in different geographical areas. Comparative analysis showed that the core secretome is largely represented by CAZymes and proteases. The specific secretome is mainly composed of a large set of small, secreted proteins (SSP) without any predicted functional domain, suggesting that the legume preference of the pathogen is probably associated with unknown functions. This study forms the basis for further investigations into the mechanisms of interaction of A. euteiches with legumes.
Collapse
Affiliation(s)
| | | | | | | | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Toulouse, France; (A.K.); (H.S.C.); (L.C.); (B.D.)
| |
Collapse
|
18
|
Chepsergon J, Motaung TE, Moleleki LN. "Core" RxLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants? Virulence 2021; 12:1921-1935. [PMID: 34304703 PMCID: PMC8516161 DOI: 10.1080/21505594.2021.1948277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Phytopathogenic oomycetes are known to successfully infect their hosts due to their ability to secrete effector proteins. Of interest to many researchers are effectors with the N-terminal RxLR motif (Arginine-any amino acid-Leucine-Arginine). Owing to advances in genome sequencing, we can now comprehend the high level of diversity among oomycete effectors, and similarly, their conservation within and among species referred to here as "core" RxLR effectors (CREs). Currently, there is a considerable number of CREs that have been identified in oomycetes. Functional characterization of these CREs propose their virulence role with the potential of targeting central cellular processes that are conserved across diverse plant species. We reason that effectors that are highly conserved and recognized by the host, could be harnessed in engineering plants for durable as well as broad-spectrum resistance.
Collapse
Affiliation(s)
- Jane Chepsergon
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Thabiso E. Motaung
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
19
|
Phytophthora heterospora sp. nov., a New Pseudoconidia-Producing Sister Species of P. palmivora. J Fungi (Basel) 2021; 7:jof7100870. [PMID: 34682290 PMCID: PMC8539753 DOI: 10.3390/jof7100870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Since 1999, an unusual Phytophthora species has repeatedly been found associated with stem lesions and root and collar rot on young olive trees in Southern Italy. In all cases, this species was obtained from recently established commercial plantations or from nursery plants. Morphologically, the Phytophthora isolates were characterized by the abundant production of caducous non-papillate conidia-like sporangia (pseudoconidia) and caducous papillate sporangia with a short pedicel, resembling P. palmivora var. heterocystica. Additional isolates with similar features were obtained from nursery plants of Ziziphus spina-christi in Iran, Juniperus oxycedrus and Capparis spinosa in Italy, and mature trees in commercial farms of Durio zibethinus in Vietnam. In this study, morphology, breeding system and growth characteristics of these Phytophthora isolates with peculiar features were examined, and combined mitochondrial and nuclear multigene phylogenetic analyses were performed. The proportion between pseudoconidia and sporangia varied amongst isolates and depended on the availability of free water. Oogonia with amphigynous antheridia and aplerotic oospores were produced in dual cultures with an A2 mating type strain of P. palmivora, indicating all isolates were A1 mating type. Phylogenetically, these isolates grouped in a distinct well-supported clade sister to P. palmivora; thus, they constitute a separate taxon. The new species, described here as Phytophthora heterospora sp. nov., proved to be highly pathogenic to both olive and durian plants in stem inoculation tests.
Collapse
|
20
|
Rodenburg SYA, Seidl MF, de Ridder D, Govers F. Uncovering the Role of Metabolism in Oomycete-Host Interactions Using Genome-Scale Metabolic Models. Front Microbiol 2021; 12:748178. [PMID: 34707596 PMCID: PMC8543037 DOI: 10.3389/fmicb.2021.748178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolism is the set of biochemical reactions of an organism that enables it to assimilate nutrients from its environment and to generate building blocks for growth and proliferation. It forms a complex network that is intertwined with the many molecular and cellular processes that take place within cells. Systems biology aims to capture the complexity of cells, organisms, or communities by reconstructing models based on information gathered by high-throughput analyses (omics data) and prior knowledge. One type of model is a genome-scale metabolic model (GEM) that allows studying the distributions of metabolic fluxes, i.e., the "mass-flow" through the network of biochemical reactions. GEMs are nowadays widely applied and have been reconstructed for various microbial pathogens, either in a free-living state or in interaction with their hosts, with the aim to gain insight into mechanisms of pathogenicity. In this review, we first introduce the principles of systems biology and GEMs. We then describe how metabolic modeling can contribute to unraveling microbial pathogenesis and host-pathogen interactions, with a specific focus on oomycete plant pathogens and in particular Phytophthora infestans. Subsequently, we review achievements obtained so far and identify and discuss potential pitfalls of current models. Finally, we propose a workflow for reconstructing high-quality GEMs and elaborate on the resources needed to advance a system biology approach aimed at untangling the intimate interactions between plants and pathogens.
Collapse
Affiliation(s)
- Sander Y. A. Rodenburg
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
- Theoretical Biology & Bioinformatics group, Department of Biology, Utrecht University, Wageningen, Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
21
|
Bello JC, Hausbeck MK, Sakalidis ML. Application of Target Enrichment Sequencing for Population Genetic Analyses of the Obligate Plant Pathogens Pseudoperonospora cubensis and P. humuli in Michigan. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1103-1118. [PMID: 34227836 DOI: 10.1094/mpmi-11-20-0329-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Technological advances in genome sequencing have improved our ability to catalog genomic variation and have led to an expansion of the scope and scale of genetic studies over the past decade. Yet, for agronomically important plant pathogens such as the downy mildews (Peronosporaceae), the scale of genetic studies remains limited. This is, in part, due to the difficulties associated with maintaining obligate pathogens and the logistical constraints involved in the genotyping of these species (e.g., obtaining DNA of sufficient quantity and quality). To gain an evolutionary and ecological perspective of downy mildews, adaptable methods for the genotyping of their populations are required. Here, we describe a targeted enrichment (TE) protocol to genotype isolates from two Pseudoperonospora species (P. cubensis and P. humuli), using less than 50 ng of mixed pathogen and plant DNA for library preparation. We were able to enrich 830 target genes across 128 samples and identified 2,514 high-quality single nucleotide polymorphism (SNP) variants. Using these SNPs, we detected significant genetic differentiation (analysis of molecular variance [AMOVA], P = 0.01) between P. cubensis subpopulations from Cucurbita moschata (clade I) and Cucumis sativus (clade II) in the state of Michigan. No evidence of location-based differentiation was detected within the P. cubensis (clade II) subpopulation in Michigan. However, a significant effect of location on the genetic variation of the P. humuli subpopulation was detected in the state (AMOVA, P = 0.01). Mantel tests found evidence that the genetic distance among P. humuli samples was associated with the physical distance of the hop yards from which the samples were collected (P = 0.005). The differences in the distribution of genetic variation of the Michigan P. humuli and P. cubensis subpopulations suggest differences in the dispersal of these two species. The TE protocol described here provides an additional tool for genotyping obligate biotrophic plant pathogens and the execution of new genetic studies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Julian C Bello
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Mary K Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State, University, East Lansing, MI 48824, U.S.A
- Department of Forestry, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
22
|
Abstract
Oomycetes are notorious plant pathogens. It is known that genetically distinct oomycete strains can mate to increase their genetic diversity and virulence. A new paper finally reveals the genomic locus that may govern sexual compatibility in one oomycete species.
Collapse
Affiliation(s)
- Nicolas Corradi
- Department of Biology, University of Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
23
|
Engelbrecht J, Duong TA, Prabhu SA, Seedat M, van den Berg N. Genome of the destructive oomycete Phytophthora cinnamomi provides insights into its pathogenicity and adaptive potential. BMC Genomics 2021; 22:302. [PMID: 33902447 PMCID: PMC8074420 DOI: 10.1186/s12864-021-07552-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/24/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Phytophthora cinnamomi is an oomycete pathogen of global relevance. It is considered as one of the most invasive species, which has caused irreversible damage to natural ecosystems and horticultural crops. There is currently a lack of a high-quality reference genome for this species despite several attempts that have been made towards sequencing its genome. The lack of a good quality genome sequence has been a setback for various genetic and genomic research to be done on this species. As a consequence, little is known regarding its genome characteristics and how these contribute to its pathogenicity and invasiveness. RESULTS In this work we generated a high-quality genome sequence and annotation for P. cinnamomi using a combination of Oxford Nanopore and Illumina sequencing technologies. The annotation was done using RNA-Seq data as supporting gene evidence. The final assembly consisted of 133 scaffolds, with an estimated genome size of 109.7 Mb, N50 of 1.18 Mb, and BUSCO completeness score of 97.5%. Genome partitioning analysis revealed that P. cinnamomi has a two-speed genome characteristic, similar to that of other oomycetes and fungal plant pathogens. In planta gene expression analysis revealed up-regulation of pathogenicity-related genes, suggesting their important roles during infection and host degradation. CONCLUSION This study has provided a high-quality reference genome and annotation for P. cinnamomi. This is among the best assembled genomes for any Phytophthora species assembled to date and thus resulted in improved identification and characterization of pathogenicity-related genes, some of which were undetected in previous versions of genome assemblies. Phytophthora cinnamomi harbours a large number of effector genes which are located in the gene-poor regions of the genome. This unique genomic partitioning provides P. cinnamomi with a high level of adaptability and could contribute to its success as a highly invasive species. Finally, the genome sequence, its annotation and the pathogenicity effectors identified in this study will serve as an important resource that will enable future studies to better understand and mitigate the impact of this important pathogen.
Collapse
Affiliation(s)
- Juanita Engelbrecht
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - S Ashok Prabhu
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Mohamed Seedat
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Fletcher K, Zhang L, Gil J, Han R, Cavanaugh K, Michelmore R. AFLAP: assembly-free linkage analysis pipeline using k-mers from genome sequencing data. Genome Biol 2021; 22:115. [PMID: 33883006 PMCID: PMC8061198 DOI: 10.1186/s13059-021-02326-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Our assembly-free linkage analysis pipeline (AFLAP) identifies segregating markers as k-mers in the raw reads without using a reference genome assembly for calling variants and provides genotype tables for the construction of unbiased, high-density genetic maps without a genome assembly. AFLAP is validated and contrasted to a conventional workflow using simulated data. AFLAP is applied to whole genome sequencing and genotype-by-sequencing data of F1, F2, and recombinant inbred populations of two different plant species, producing genetic maps that are concordant with genome assemblies. The AFLAP-based genetic map for Bremia lactucae enables the production of a chromosome-scale genome assembly.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, USA
| | - Lin Zhang
- The Genome Center, University of California, Davis, USA
| | - Juliana Gil
- The Genome Center, University of California, Davis, USA
| | - Rongkui Han
- The Genome Center, University of California, Davis, USA
| | | | - Richard Michelmore
- The Genome Center, University of California, Davis, USA
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, USA
| |
Collapse
|
25
|
Parra L, Simko I, Michelmore RW. Identification of Major Quantitative Trait Loci Controlling Field Resistance to Downy Mildew in Cultivated Lettuce ( Lactuca sativa). PHYTOPATHOLOGY 2021; 111:541-547. [PMID: 33141649 DOI: 10.1094/phyto-08-20-0367-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lettuce downy mildew, caused by Bremia lactucae Regel, is the most economically important foliar disease of lettuce (Lactuca sativa L.). The deployment of resistant cultivars carrying dominant resistance genes (Dm genes) plays a crucial role in integrated downy mildew disease management; however, high variability in pathogen populations leads to the defeat of plant resistance conferred by Dm genes. Some lettuce cultivars exhibit field resistance that is only manifested in adult plants. Two populations of recombinant inbred lines (RILs), originating from crosses between the field resistant cultivars Grand Rapids and Iceberg and susceptible cultivars Salinas and PI491224, were evaluated for downy mildew resistance under field conditions. In all, 160 RILs from the Iceberg × PI491224 and 88 RILs from the Grand Rapids × Salinas populations were genotyped using genotyping by sequencing, which generated 906 and 746 high-quality markers, respectively, that were used for quantitative trait locus (QTL) analysis. We found a QTL in chromosome 4 that is present in both Grand Rapids × Salinas and Iceberg × PI491224 populations that has a major effect on field resistance. We also found two additional significant QTLs in chromosomes 2 and 5 in the Iceberg × PI491224 RIL population. Marker-assisted gene pyramiding of multiple Dm genes in combination with QTLs for field resistance provide the opportunity to develop cultivars with more durable resistance to B. lactucae.
Collapse
Affiliation(s)
- Lorena Parra
- Plant Pathology Graduate Group, University of California Davis, One Shields Ave., Davis, CA 95616
- The Genome Center and Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Ivan Simko
- United States Department of Agriculture-Agricultural Research Service, U.S. Agricultural Research Station, Crop Improvement and Protection Research Unit, 1636 E. Alisal Street, Salinas, CA 93905
| | - Richard W Michelmore
- The Genome Center and Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| |
Collapse
|
26
|
Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics. PLANTS 2021; 10:plants10030435. [PMID: 33668762 PMCID: PMC7996204 DOI: 10.3390/plants10030435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Downy mildews affect important crops and cause severe losses in production worldwide. Accurate identification and monitoring of these plant pathogens, especially at early stages of the disease, is fundamental in achieving effective disease control. The rapid development of molecular methods for diagnosis has provided more specific, fast, reliable, sensitive, and portable alternatives for plant pathogen detection and quantification than traditional approaches. In this review, we provide information on the use of molecular markers, serological techniques, and nucleic acid amplification technologies for downy mildew diagnosis, highlighting the benefits and disadvantages of the technologies and target selection. We emphasize the importance of incorporating information on pathogen variability in virulence and fungicide resistance for disease management and how the development and application of diagnostic assays based on standard and promising technologies, including high-throughput sequencing and genomics, are revolutionizing the development of species-specific assays suitable for in-field diagnosis. Our review provides an overview of molecular detection technologies and a practical guide for selecting the best approaches for diagnosis.
Collapse
|
27
|
Evolutionary and genomic comparisons of hybrid uninucleate and nonhybrid Rhizoctonia fungi. Commun Biol 2021; 4:201. [PMID: 33589695 PMCID: PMC7884421 DOI: 10.1038/s42003-021-01724-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
The basidiomycetous fungal genus, Rhizoctonia, can cause severe damage to many plants and is composed of multinucleate, binucleate, and uninucleate species differing in pathogenicity. Here we generated chromosome-scale genome assemblies of the three nuclear types of Rhizoctonia isolates. The genomic comparisons revealed that the uninucleate JN strain likely arose by somatic hybridization of two binucleate isolates, and maintained a diploid nucleus. Homeolog gene pairs in the JN genome have experienced both decelerated or accelerated evolution. Homeolog expression dominance occurred between JN subgenomes, in which differentially expressed genes show potentially less evolutionary constraint than the genes without. Analysis of mating-type genes suggested that Rhizoctonia maintains the ancestral tetrapolarity of the Basidiomycota. Long terminal repeat-retrotransposons displayed a reciprocal correlation with the chromosomal GC content in the three chromosome-scale genomes. The more aggressive multinucleate XN strain had more genes encoding enzymes for host cell wall decomposition. These findings demonstrate some evolutionary changes of a recently derived hybrid and in multiple nuclear types of Rhizoctonia.
Collapse
|
28
|
Reinhardt D, Roux C, Corradi N, Di Pietro A. Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. TRENDS IN PLANT SCIENCE 2021; 26:111-123. [PMID: 33011084 DOI: 10.1016/j.tplants.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live as obligate root symbionts on almost all land plants. They have long been regarded as ancient asexuals that have propagated clonally for millions of years. However, genomic studies in Rhizophagus irregularis and other AMF revealed many features indicative of sex. Surprisingly, comparative genomics of conspecific isolates of R. irregularis revealed an unexpected interstrain diversity, suggesting that AMF carry a high number of lineage-specific (LS) genes. Intriguingly, cryptic sex and LS genomic regions have previously been reported in a number of fungal pathogens of plants and humans. Here, we discuss these genomic similarities and highlight their potential relevance for AMF adaptation to the environment and for symbiotic functioning.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan 31326, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
29
|
Vogel G, Gore MA, Smart CD. Genome-Wide Association Study in New York Phytophthora capsici Isolates Reveals Loci Involved in Mating Type and Mefenoxam Sensitivity. PHYTOPATHOLOGY 2021; 111:204-216. [PMID: 32539639 DOI: 10.1094/phyto-04-20-0112-fi] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phytophthora capsici is a soilborne oomycete plant pathogen that causes severe vegetable crop losses in New York (NY) state and worldwide. This pathogen is difficult to manage, in part due to its production of long-lasting sexual spores and its tendency to quickly evolve fungicide resistance. We single nucleotide polymorphism (SNP) genotyped 252 P. capsici isolates, predominantly from NY, in order to conduct a genome-wide association study for mating type and mefenoxam sensitivity. The population structure and extent of chromosomal copy number variation in this collection of isolates were also characterized. Population structure analyses showed isolates largely clustered by the field site where they were collected, with values of FST between pairs of fields ranging from 0.10 to 0.31. Thirty-three isolates were putative aneuploids, demonstrating evidence for having up to four linkage groups present in more than two copies, and an additional two isolates appeared to be genome-wide triploids. Mating type was mapped to a region on scaffold 4, consistent with previous findings, and mefenoxam sensitivity was associated with several SNP markers at a novel locus on scaffold 62. We identified several candidate genes for mefenoxam sensitivity, including a homolog of yeast ribosome synthesis factor Rrp5, but failed to locate near the scaffold 62 locus any subunits of RNA polymerase I, the hypothesized target site of phenylamide fungicides in oomycetes. This work expands our knowledge of the population biology of P. capsici and provides a foundation for functional validation of candidate genes associated with epidemiologically important phenotypes.
Collapse
Affiliation(s)
- Gregory Vogel
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
30
|
Wood KJ, Nur M, Gil J, Fletcher K, Lakeman K, Gann D, Gothberg A, Khuu T, Kopetzky J, Naqvi S, Pandya A, Zhang C, Maisonneuve B, Pel M, Michelmore R. Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. PLoS Pathog 2020; 16:e1009012. [PMID: 33104763 PMCID: PMC7644090 DOI: 10.1371/journal.ppat.1009012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/05/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogens that infect plants and animals use a diverse arsenal of effector proteins to suppress the host immune system and promote infection. Identification of effectors in pathogen genomes is foundational to understanding mechanisms of pathogenesis, for monitoring field pathogen populations, and for breeding disease resistance. We identified candidate effectors from the lettuce downy mildew pathogen Bremia lactucae by searching the predicted proteome for the WY domain, a structural fold found in effectors that has been implicated in immune suppression as well as effector recognition by host resistance proteins. We predicted 55 WY domain containing proteins in the genome of B. lactucae and found substantial variation in both sequence and domain architecture. These candidate effectors exhibit several characteristics of pathogen effectors, including an N-terminal signal peptide, lineage specificity, and expression during infection. Unexpectedly, only a minority of B. lactucae WY effectors contain the canonical N-terminal RXLR motif, which is a conserved feature in the majority of cytoplasmic effectors reported in Phytophthora spp. Functional analysis of 21 effectors containing WY domains revealed 11 that elicited cell death on wild accessions and domesticated lettuce lines containing resistance genes, indicative of recognition of these effectors by the host immune system. Only two of the 11 recognized effectors contained the canonical RXLR motif, suggesting that there has been an evolutionary divergence in sequence motifs between genera; this has major consequences for robust effector prediction in oomycete pathogens.
Collapse
Affiliation(s)
- Kelsey J. Wood
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Munir Nur
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Juliana Gil
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Plant Pathology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Kyle Fletcher
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | | | - Dasan Gann
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Ayumi Gothberg
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Tina Khuu
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Jennifer Kopetzky
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Sanye Naqvi
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Archana Pandya
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Chi Zhang
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | | | | | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
31
|
Penouilh-Suzette C, Fourré S, Besnard G, Godiard L, Pecrix Y. A simple method for high molecular-weight genomic DNA extraction suitable for long-read sequencing from spores of an obligate biotroph oomycete. J Microbiol Methods 2020; 178:106054. [PMID: 32926900 DOI: 10.1016/j.mimet.2020.106054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/09/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Long-read sequencing technologies are having a major impact on our approaches to studying non-model organisms and microbial communities. By significantly reducing the cost and facilitating the genome assembly pipelines, any laboratory can now develop its own genomics program regardless of the complexity of the genome studied. The most crucial current challenge is to develop efficient protocols for extracting genomic DNA (gDNA) with high quality and integrity adapted to the organism of interest. This can be particularly complex for obligate pathogens that must maintain intimate interactions inside infected host tissues. Here we propose a simple and cost-effective method for high molecular weight gDNA extraction from spores of Plasmopara halstedii, an obligate biotroph oomycete pathogen responsible for downy mildew in sunflower. We optimized the yield, the quality and the integrity of the extracted gDNA by fine-tuning three critical parameters, the grinding, the lysis temperature and the lysis duration. We obtained gDNA with a fragment size distribution reaching a peak ranging from 79 to 145 kb. More than half of the extracted gDNA consisted of DNA fragments larger than 42 kb, with 23% of fragments larger than 100 kb. We then demonstrated the relevance of this protocol for long-read sequencing using PacBio RSII technology. With this protocol, we were able to obtain a mean read length of 9.3 kb, a max read length of 71 kb and an N50 of 13.3 kb. The development of such DNA extraction protocols is an essential prerequisite for fully exploiting technologies requiring high molecular weight gDNA (e.g. long-read sequencing or optical mapping). These technological advances will help generate data to answer questions such as the role of newly duplicated gene clusters, repeated regions, genomic structural variations or to define number of chromosomes that still remains undefined in many species of pathogenic fungi and oomycetes.
Collapse
Affiliation(s)
- Charlotte Penouilh-Suzette
- LIPM (Laboratoire des Interactions Plantes Microorganismes), INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France.
| | - Sandra Fourré
- GeT-PlaGe, INRAE Auzeville, US 1426, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France.
| | - Guillaume Besnard
- CNRS, Université Paul Sabatier, IRD, UMR 5174 EDB (Laboratoire Évolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France.
| | - Laurence Godiard
- LIPM (Laboratoire des Interactions Plantes Microorganismes), INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France.
| | - Yann Pecrix
- LIPM (Laboratoire des Interactions Plantes Microorganismes), INRAE, CNRS, Université de Toulouse, 24 Chemin de Borde-Rouge, BP 52627, F-31326 Castanet-Tolosan, France; CIRAD, UMR 53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Pole de Protection des Plantes, 7 chemin de l'IRAT, F-97410 Saint Pierre, Réunion, France.
| |
Collapse
|
32
|
Dussert Y, Legrand L, Mazet ID, Couture C, Piron MC, Serre RF, Bouchez O, Mestre P, Toffolatti SL, Giraud T, Delmotte F. Identification of the First Oomycete Mating-type Locus Sequence in the Grapevine Downy Mildew Pathogen, Plasmopara viticola. Curr Biol 2020; 30:3897-3907.e4. [PMID: 32795448 DOI: 10.1016/j.cub.2020.07.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023]
Abstract
Mating types are self-incompatibility systems that promote outcrossing in plants, fungi, and oomycetes. Mating-type genes have been widely studied in plants and fungi but have yet to be identified in oomycetes, eukaryotic organisms closely related to brown algae that cause many destructive animal and plant diseases. We identified the mating-type locus of Plasmopara viticola, the oomycete responsible for grapevine downy mildew, one of the most damaging grapevine diseases worldwide. Using a genome-wide association approach, we identified a 570-kb repeat-rich non-recombining region controlling mating types, with two highly divergent alleles. We showed that one mating type was homozygous, whereas the other was heterozygous at this locus. The mating-type locus encompassed 40 genes, including one encoding a putative hormone receptor. Functional studies will, however, be required to validate the function of these genes and find the actual determinants of mating type. Our findings have fundamental implications for our understanding of the evolution of mating types, as they reveal a unique determinism involving an asymmetry of heterozygosity, as in sex chromosomes and unlike other mating-type systems. This identification of the mating-type locus in such an economically important crop pathogen also has applied implications, as outcrossing facilitates rapid evolution and resistance to harsh environmental conditions.
Collapse
Affiliation(s)
- Yann Dussert
- SAVE, INRAE, Bordeaux Sciences Agro, Université de Bordeaux, F-33140 Villenave d'Ornon, France.
| | - Ludovic Legrand
- LIPM, INRAE, Université de Toulouse, CNRS, Castanet-Tolosan, France
| | - Isabelle D Mazet
- SAVE, INRAE, Bordeaux Sciences Agro, Université de Bordeaux, F-33140 Villenave d'Ornon, France
| | - Carole Couture
- SAVE, INRAE, Bordeaux Sciences Agro, Université de Bordeaux, F-33140 Villenave d'Ornon, France
| | | | | | - Olivier Bouchez
- INRAE, US 1426 GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Pere Mestre
- SVQV, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Universite Paris-Saclay, 91400 Orsay, France
| | - François Delmotte
- SAVE, INRAE, Bordeaux Sciences Agro, Université de Bordeaux, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
33
|
Purayannur S, Cano LM, Bowman MJ, Childs KL, Gent DH, Quesada-Ocampo LM. The Effector Repertoire of the Hop Downy Mildew Pathogen Pseudoperonospora humuli. Front Genet 2020; 11:910. [PMID: 32849854 PMCID: PMC7432248 DOI: 10.3389/fgene.2020.00910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023] Open
Abstract
Pseudoperonospora humuli is an obligate biotrophic oomycete that causes downy mildew (DM), one of the most destructive diseases of cultivated hop that can lead to 100% crop loss in susceptible cultivars. We used the published genome of P. humuli to predict the secretome and effectorome and analyze the transcriptome variation among diverse isolates and during infection of hop leaves. Mining the predicted coding genes of the sequenced isolate OR502AA of P. humuli revealed a secretome of 1,250 genes. We identified 296 RXLR and RXLR-like effector-encoding genes in the secretome. Among the predicted RXLRs, there were several WY-motif-containing effectors that lacked canonical RXLR domains. Transcriptome analysis of sporangia from 12 different isolates collected from various hop cultivars revealed 754 secreted proteins and 201 RXLR effectors that showed transcript evidence across all isolates with reads per kilobase million (RPKM) values > 0. RNA-seq analysis of OR502AA-infected hop leaf samples at different time points after infection revealed highly expressed effectors that may play a relevant role in pathogenicity. Quantitative RT-PCR analysis confirmed the differential expression of selected effectors. We identified a set of P. humuli core effectors that showed transcript evidence in all tested isolates and elevated expression during infection. These effectors are ideal candidates for functional analysis and effector-assisted breeding to develop DM resistant hop cultivars.
Collapse
Affiliation(s)
- Savithri Purayannur
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Liliana M. Cano
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States
| | - Megan J. Bowman
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Ball Horticultural Company, West Chicago, IL, United States
| | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - David H. Gent
- United States Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, Oregon State University, Corvallis, OR, United States
| | - Lina M. Quesada-Ocampo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
34
|
de Vries S, de Vries J. A Global Survey of Carbohydrate Esterase Families 1 and 10 in Oomycetes. Front Genet 2020; 11:756. [PMID: 32849784 PMCID: PMC7427535 DOI: 10.3389/fgene.2020.00756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate-active enzymes (CAZymes) are a cornerstone in the phytopathogenicity of filamentous microbes. CAZymes are required for every step of a successful infection cycle-from penetration, to nutrient acquisition (during colonization), to exit and dispersal. Yet, CAZymes are not a unique feature of filamentous pathogens. They are found across eukaryotic genomes and including, for example, saprotrophic relatives of major pathogens. Comparative genomics and functional analyses revealed that CAZyme content is shaped by a multitude of factors, including utilized substrate, lifestyle, and host preference. Yet, family size alone says little about usage. Indeed, in a previous study, we found that genes putatively coding for the CAZyme families of carbohydrate esterase (CE)1 and CE10, while not specifically enriched in number, were suggested to have lifestyle-specific gene expression patterns. Here, we used comparative genomics and a clustering approach to understand how the repertoire of the CE1- and CE10-encoding gene families is shaped across oomycete evolution. These data are combined with comparative transcriptomic analyses across homologous clusters within the gene families. We find that CE1 and CE10 have been reduced in number in biotrophic oomycetes independent of the phylogenetic relationship of the biotrophs to each other. The reduction in CE1 is different from that observed for CE10: While in CE10 specific clusters of homologous sequences show convergent reduction, CE1 reduction is caused by species-specific losses. Comparative transcriptomics revealed that some clusters of CE1 or CE10 sequences have a higher expression than others, independent of the species composition within them. Further, we find that CE1- and CE10-encoding genes are mainly induced in plant pathogens and that some homologous genes show lifestyle-specific gene expression levels during infection, with hemibiotrophs showing the highest expression levels.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göettingen, Göettingen, Germany
- Göettingen Center for Molecular Biosciences (GZMB), University of Göettingen, Göettingen, Germany
- Campus Institute Data Science, University of Göettingen, Göettingen, Germany
| |
Collapse
|
35
|
Pelgrom AJE, Meisrimler CN, Elberse J, Koorman T, Boxem M, Van den Ackerveken G. Host interactors of effector proteins of the lettuce downy mildew Bremia lactucae obtained by yeast two-hybrid screening. PLoS One 2020; 15:e0226540. [PMID: 32396563 PMCID: PMC7217486 DOI: 10.1371/journal.pone.0226540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022] Open
Abstract
Plant pathogenic bacteria, fungi and oomycetes secrete effector proteins to manipulate host cell processes to establish a successful infection. Over the last decade the genomes and transcriptomes of many agriculturally important plant pathogens have been sequenced and vast candidate effector repertoires were identified using bioinformatic analyses. Elucidating the contribution of individual effectors to pathogenicity is the next major hurdle. To advance our understanding of the molecular mechanisms underlying lettuce susceptibility to the downy mildew Bremia lactucae, we mapped physical interactions between B. lactucae effectors and lettuce candidate target proteins. Using a lettuce cDNA library-based yeast-two-hybrid system, 61 protein-protein interactions were identified, involving 21 B. lactucae effectors and 46 unique lettuce proteins. The top ten interactors based on the number of independent colonies identified in the Y2H and two interactors that belong to gene families involved in plant immunity, were further characterized. We determined the subcellular localization of the fluorescently tagged lettuce proteins and their interacting effectors. Importantly, relocalization of effectors or their interactors to the nucleus was observed for four protein-pairs upon their co-expression, supporting their interaction in planta.
Collapse
Affiliation(s)
- Alexandra J. E. Pelgrom
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Joyce Elberse
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Thijs Koorman
- Developmental Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Developmental Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
36
|
Klein J, Neilen M, van Verk M, Dutilh BE, Van den Ackerveken G. Genome reconstruction of the non-culturable spinach downy mildew Peronospora effusa by metagenome filtering. PLoS One 2020; 15:e0225808. [PMID: 32396560 PMCID: PMC7217449 DOI: 10.1371/journal.pone.0225808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/24/2020] [Indexed: 01/27/2023] Open
Abstract
Peronospora effusa (previously known as P. farinosa f. sp. spinaciae, and here referred to as Pfs) is an obligate biotrophic oomycete that causes downy mildew on spinach (Spinacia oleracea). To combat this destructive many disease resistant cultivars have been bred and used. However, new Pfs races rapidly break the employed resistance genes. To get insight into the gene repertoire of Pfs and identify infection-related genes, the genome of the first reference race, Pfs1, was sequenced, assembled, and annotated. Due to the obligate biotrophic nature of this pathogen, material for DNA isolation can only be collected from infected spinach leaves that, however, also contain many other microorganisms. The obtained sequences can, therefore, be considered a metagenome. To filter and obtain Pfs sequences we utilized the CAT tool to taxonomically annotate ORFs residing on long sequences of a genome pre-assembly. This study is the first to show that CAT filtering performs well on eukaryotic contigs. Based on the taxonomy, determined on multiple ORFs, contaminating long sequences and corresponding reads were removed from the metagenome. Filtered reads were re-assembled to provide a clean and improved Pfs genome sequence of 32.4 Mbp consisting of 8,635 scaffolds. Transcript sequencing of a range of infection time points aided the prediction of a total of 13,277 gene models, including 99 RxLR(-like) effector, and 14 putative Crinkler genes. Comparative analysis identified common features in the predicted secretomes of different obligate biotrophic oomycetes, regardless of their phylogenetic distance. Their secretomes are generally smaller, compared to hemi-biotrophic and necrotrophic oomycete species. We observe a reduction in proteins involved in cell wall degradation, in Nep1-like proteins (NLPs), proteins with PAN/apple domains, and host translocated effectors. The genome of Pfs1 will be instrumental in studying downy mildew virulence and for understanding the molecular adaptations by which new isolates break spinach resistance.
Collapse
Affiliation(s)
- Joël Klein
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Manon Neilen
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Marcel van Verk
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- Crop Data Science, KeyGene, Wageningen, The Netherlands
| | - Bas E. Dutilh
- Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Guido Van den Ackerveken
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
37
|
Thines M, Sharma R, Rodenburg SYA, Gogleva A, Judelson HS, Xia X, van den Hoogen J, Kitner M, Klein J, Neilen M, de Ridder D, Seidl MF, van den Ackerveken G, Govers F, Schornack S, Studholme DJ. The Genome of Peronospora belbahrii Reveals High Heterozygosity, a Low Number of Canonical Effectors, and TC-Rich Promoters. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:742-753. [PMID: 32237964 DOI: 10.1094/mpmi-07-19-0211-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Along with Plasmopara destructor, Peronosopora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.
Collapse
Affiliation(s)
- Marco Thines
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
- Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany
| | - Rahul Sharma
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
- Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany
| | - Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Anna Gogleva
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521 U.S.A
| | - Xiaojuan Xia
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Johan van den Hoogen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Miloslav Kitner
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Joël Klein
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Manon Neilen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Guido van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K
| | - David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| |
Collapse
|
38
|
Schwessinger B, Chen YJ, Tien R, Vogt JK, Sperschneider J, Nagar R, McMullan M, Sicheritz-Ponten T, Sørensen CK, Hovmøller MS, Rathjen JP, Justesen AF. Distinct Life Histories Impact Dikaryotic Genome Evolution in the Rust Fungus Puccinia striiformis Causing Stripe Rust in Wheat. Genome Biol Evol 2020; 12:597-617. [PMID: 32271913 DOI: 10.1101/859728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 05/27/2023] Open
Abstract
Stripe rust of wheat, caused by the obligate biotrophic fungus Puccinia striiformis f.sp. tritici, is a major threat to wheat production worldwide with an estimated yearly loss of US $1 billion. The recent advances in long-read sequencing technologies and tailored-assembly algorithms enabled us to disentangle the two haploid genomes of Pst. This provides us with haplotype-specific information at a whole-genome level. Exploiting this novel information, we perform whole-genome comparative genomics of two P. striiformis f.sp. tritici isolates with contrasting life histories. We compare one isolate of the old European lineage (PstS0), which has been asexual for over 50 years, and a Warrior isolate (PstS7 lineage) from a novel incursion into Europe in 2011 from a sexual population in the Himalayan region. This comparison provides evidence that long-term asexual evolution leads to genome expansion, accumulation of transposable elements, and increased heterozygosity at the single nucleotide, structural, and allele levels. At the whole-genome level, candidate effectors are not compartmentalized and do not exhibit reduced levels of synteny. Yet we were able to identify two subsets of candidate effector populations. About 70% of candidate effectors are invariant between the two isolates, whereas 30% are hypervariable. The latter might be involved in host adaptation on wheat and explain the different phenotypes of the two isolates. Overall, this detailed comparative analysis of two haplotype-aware assemblies of P. striiformis f.sp. tritici is the first step in understanding the evolution of dikaryotic rust fungi at a whole-genome level.
Collapse
Affiliation(s)
- Benjamin Schwessinger
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Yan-Jun Chen
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Richard Tien
- School of Dentistry, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Josef Korbinian Vogt
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Ramawatar Nagar
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Mark McMullan
- Earlham Institute, Norwich Research Park, United Kingdom
| | - Thomas Sicheritz-Ponten
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Chris K Sørensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | | | - John P Rathjen
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Annemarie Fejer Justesen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
39
|
Schwessinger B, Chen YJ, Tien R, Vogt JK, Sperschneider J, Nagar R, McMullan M, Sicheritz-Ponten T, Sørensen CK, Hovmøller MS, Rathjen JP, Justesen AF. Distinct Life Histories Impact Dikaryotic Genome Evolution in the Rust Fungus Puccinia striiformis Causing Stripe Rust in Wheat. Genome Biol Evol 2020; 12:597-617. [PMID: 32271913 PMCID: PMC7250506 DOI: 10.1093/gbe/evaa071] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Stripe rust of wheat, caused by the obligate biotrophic fungus Puccinia striiformis f.sp. tritici, is a major threat to wheat production worldwide with an estimated yearly loss of US $1 billion. The recent advances in long-read sequencing technologies and tailored-assembly algorithms enabled us to disentangle the two haploid genomes of Pst. This provides us with haplotype-specific information at a whole-genome level. Exploiting this novel information, we perform whole-genome comparative genomics of two P. striiformis f.sp. tritici isolates with contrasting life histories. We compare one isolate of the old European lineage (PstS0), which has been asexual for over 50 years, and a Warrior isolate (PstS7 lineage) from a novel incursion into Europe in 2011 from a sexual population in the Himalayan region. This comparison provides evidence that long-term asexual evolution leads to genome expansion, accumulation of transposable elements, and increased heterozygosity at the single nucleotide, structural, and allele levels. At the whole-genome level, candidate effectors are not compartmentalized and do not exhibit reduced levels of synteny. Yet we were able to identify two subsets of candidate effector populations. About 70% of candidate effectors are invariant between the two isolates, whereas 30% are hypervariable. The latter might be involved in host adaptation on wheat and explain the different phenotypes of the two isolates. Overall, this detailed comparative analysis of two haplotype-aware assemblies of P. striiformis f.sp. tritici is the first step in understanding the evolution of dikaryotic rust fungi at a whole-genome level.
Collapse
Affiliation(s)
- Benjamin Schwessinger
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Yan-Jun Chen
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Richard Tien
- School of Dentistry, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Josef Korbinian Vogt
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Ramawatar Nagar
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Mark McMullan
- Earlham Institute, Norwich Research Park, United Kingdom
| | - Thomas Sicheritz-Ponten
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Chris K Sørensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | | | - John P Rathjen
- Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Annemarie Fejer Justesen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
40
|
McGowan J, O’Hanlon R, Owens RA, Fitzpatrick DA. Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: Phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. Microorganisms 2020; 8:E653. [PMID: 32365808 PMCID: PMC7285336 DOI: 10.3390/microorganisms8050653] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
The Phytophthora genus includes some of the most devastating plant pathogens. Here we report draft genome sequences for three ubiquitous Phytophthora species-Phytophthora chlamydospora, Phytophthora gonapodyides, and Phytophthora pseudosyringae. Phytophthora pseudosyringae is an important forest pathogen that is abundant in Europe and North America. Phytophthora chlamydospora and Ph. gonapodyides are globally widespread species often associated with aquatic habitats. They are both regarded as opportunistic plant pathogens. The three sequenced genomes range in size from 45 Mb to 61 Mb. Similar to other oomycete species, tandem gene duplication appears to have played an important role in the expansion of effector arsenals. Comparative analysis of carbohydrate-active enzymes (CAZymes) across 44 oomycete genomes indicates that oomycete lifestyles may be linked to CAZyme repertoires. The mitochondrial genome sequence of each species was also determined, and their gene content and genome structure were compared. Using mass spectrometry, we characterised the extracellular proteome of each species and identified large numbers of proteins putatively involved in pathogenicity and osmotrophy. The mycelial proteome of each species was also characterised using mass spectrometry. In total, the expression of approximately 3000 genes per species was validated at the protein level. These genome resources will be valuable for future studies to understand the behaviour of these three widespread Phytophthora species.
Collapse
Affiliation(s)
- Jamie McGowan
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | | | - Rebecca A. Owens
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | - David A. Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| |
Collapse
|
41
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
42
|
Fang Y, Coelho MA, Shu H, Schotanus K, Thimmappa BC, Yadav V, Chen H, Malc EP, Wang J, Mieczkowski PA, Kronmiller B, Tyler BM, Sanyal K, Dong S, Nowrousian M, Heitman J. Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genet 2020; 16:e1008646. [PMID: 32150559 PMCID: PMC7082073 DOI: 10.1371/journal.pgen.1008646] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/19/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Centromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromere DNA sequences are diverse and often repetitive, making them challenging to assemble and identify. Here, we describe centromeres in an oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus at different life stages and during nuclear division. We report an improved genome assembly of the P. sojae reference strain, which enabled identification of 15 enriched CENP-A binding regions as putative centromeres. By focusing on a subset of these regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the histone modification H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3. Strikingly, we discovered a Copia-like transposon (CoLT) that is highly enriched in the CENP-A chromatin. Similar clustered elements are also found in oomycete relatives of P. sojae, and may be applied as a criterion for prediction of oomycete centromeres. This work reveals a divergence of centromere features in oomycetes as compared to other organisms in the Stramenopila-Alveolata-Rhizaria (SAR) supergroup including diatoms and Plasmodium falciparum that have relatively short and simple regional centromeres. Identification of P. sojae centromeres in turn also advances the genome assembly. Oomycetes are fungal-like microorganisms that belong to the stramenopiles within the Stramenopila-Alveolata-Rhizaria (SAR) supergroup. The Phytophthora oomycetes are infamous as plant killers, threatening crop production worldwide. Because of the highly repetitive nature of their genomes, assembly of oomycete genomes presents challenges that impede identification of centromeres, which are chromosomal sites mediating faithful chromosome segregation. We report long-read sequencing-based genome assembly of the Phytophthora sojae reference strain, which facilitated the discovery of centromeres. P. sojae harbors large regional centromeres fully embedded in heterochromatin, and enriched for a Copia-like transposon that is also found in discrete clusters in other oomycetes. This study provides insight into the oomycete genome organization, broadens our knowledge of centromere structure, function and evolution in eukaryotes, and may help elucidate the high frequency of aneuploidy during oomycete reproduction.
Collapse
Affiliation(s)
- Yufeng Fang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Haidong Shu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Klaas Schotanus
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bhagya C. Thimmappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Han Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ewa P. Malc
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy Wang
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Piotr A. Mieczkowski
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brent Kronmiller
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Minou Nowrousian
- Lehrstuhl fuer Molekulare und Zellulaere Botanik, Ruhr-Universitaet Bochum, Bochum, Germany
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
43
|
Frantzeskakis L, Di Pietro A, Rep M, Schirawski J, Wu CH, Panstruga R. Rapid evolution in plant-microbe interactions - a molecular genomics perspective. THE NEW PHYTOLOGIST 2020; 225:1134-1142. [PMID: 31134629 DOI: 10.1111/nph.15966] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Rapid (co-)evolution at multiple timescales is a hallmark of plant-microbe interactions. The mechanistic basis for the rapid evolution largely rests on the features of the genomes of the interacting partners involved. Here, we review recent insights into genomic characteristics and mechanisms that enable rapid evolution of both plants and phytopathogens. These comprise fresh insights in allelic series of matching pairs of resistance and avirulence genes, the generation of novel pathogen effectors, the recently recognised small RNA warfare, and genomic aspects of secondary metabolite biosynthesis. In addition, we discuss the putative contributions of permissive host environments, transcriptional plasticity and the role of ploidy on the interactions. We conclude that the means underlying the rapid evolution of plant-microbe interactions are multifaceted and depend on the particular nature of each interaction.
Collapse
Affiliation(s)
| | - Antonio Di Pietro
- Departamento de Genética and Campus de Excelencia Agroalimentario (ceiA3), Universidad de Córdoba, 14071, Córdoba, Spain
| | - Martijn Rep
- Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Jan Schirawski
- Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| |
Collapse
|
44
|
Meisrimler C, Pelgrom AJE, Oud B, Out S, Van den Ackerveken G. Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1098-1115. [PMID: 31077456 PMCID: PMC9545932 DOI: 10.1111/tpj.14383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 05/22/2023]
Abstract
To cause disease in lettuce, the biotrophic oomycete Bremia lactucae secretes potential RxLR effector proteins. Here we report the discovery of an effector-target hub consisting of four B. lactucae effectors and one lettuce protein target by a yeast-two-hybrid (Y2H) screening. Interaction of the lettuce tail-anchored NAC transcription factor, LsNAC069, with B. lactucae effectors does not require the N-terminal NAC domain but depends on the C-terminal region including the transmembrane domain. Furthermore, in Y2H experiments, B. lactucae effectors interact with Arabidopsis and potato tail-anchored NACs, suggesting that they are conserved effector targets. Transient expression of RxLR effector proteins BLR05 and BLR09 and their target LsNAC069 in planta revealed a predominant localization to the endoplasmic reticulum. Phytophthora capsici culture filtrate and polyethylene glycol treatment induced relocalization to the nucleus of a stabilized LsNAC069 protein, lacking the NAC-domain (LsNAC069ΔNAC ). Relocalization was significantly reduced in the presence of the Ser/Cys-protease inhibitor TPCK indicating proteolytic cleavage of LsNAC069 allows for relocalization. Co-expression of effectors with LsNAC069ΔNAC reduced its nuclear accumulation. Surprisingly, LsNAC069 silenced lettuce lines had decreased LsNAC069 transcript levels but did not show significantly altered susceptibility to B. lactucae. In contrast, LsNAC069 silencing increased resistance to Pseudomonas cichorii bacteria and reduced wilting effects under moderate drought stress, indicating a broad role of LsNAC069 in abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Claudia‐Nicole Meisrimler
- Plant–Microbe InteractionsDepartment of BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
- University of CanterburyIlamPrivate Bag 4800Christchurch8041New Zealand
| | - Alexandra J. E. Pelgrom
- Plant–Microbe InteractionsDepartment of BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Bart Oud
- Enza ZadenHaling 1‐EEnkhuizen1602 DBthe Netherlands
| | - Suzan Out
- Enza ZadenHaling 1‐EEnkhuizen1602 DBthe Netherlands
| | - Guido Van den Ackerveken
- Plant–Microbe InteractionsDepartment of BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| |
Collapse
|