1
|
Schulz KM, Chavez MC, Forrester-Fronstin Z. The effects of pharmacologic estradiol on anxiety-related behavior in adolescent and adult female mice. Physiol Behav 2025; 294:114862. [PMID: 40056705 PMCID: PMC11972893 DOI: 10.1016/j.physbeh.2025.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Early pubertal onset during adolescence is consistently linked with increased risk of anxiety and depression in girls. Although estradiol tends to have anxiolytic effects on behavior in adulthood, whether estradiol's anxiolytic actions change pre- to post-adolescent development is not clear. Using a rodent model, the current study tested whether anxiety-like responses to estradiol differ before and after adolescence in female mice. Prepubertal and adult C57BL/6 mice were ovariectomized, implanted with vehicle- or estradiol-filled silastic capsules, and behavioral tested 6 days later in the open field and elevated zero maze. A pharmacologic dose of estradiol was administered in silastic capsules (0.72 μg/0.02 mL) to maximize behavioral responses at both ages. In the open field, estradiol implants decreased anxiety-like behavior in adolescent females (relative to vehicle) and had negligible effects on anxiety-related behavior in adult females. These data suggest that adolescence is associated with changes in behavioral responsiveness to estradiol. In the elevated zero maze, adolescent females displayed higher levels of anxiety-like behavior than adults, irrespective of estradiol treatment. These findings demonstrate that substantial changes in anxiety-related behavior occur during adolescence, including an assay-dependent shift in behavioral responsiveness to estradiol.
Collapse
Affiliation(s)
- Kalynn M Schulz
- Department of Psychology, University of Tennessee, Knoxville, TN, USA.
| | - Marcia C Chavez
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
| | - Zoey Forrester-Fronstin
- Department of Psychology, University of Tennessee, Knoxville, TN, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Hunsberger HC, Lee S, Jin M, Lanio M, Whye A, Cha J, Scarlata M, Matthews LC, Jayaseelan K, Denny CA. Sex-Specific Effects of Anxiety on Cognition and Activity-Dependent Neural Networks: Insights From (Female) Mice and (Wo)men. Biol Psychiatry 2025; 97:900-914. [PMID: 39349155 PMCID: PMC11949853 DOI: 10.1016/j.biopsych.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Neuropsychiatric symptoms, such as depression and anxiety, are observed in 90% of patients with Alzheimer's disease (AD), two-thirds of whom are women. Neuropsychiatric symptoms usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brainwide neuronal mechanisms. METHODS To gain mechanistic insight into how anxiety affects AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity using the ArcCreERT2 x eYFP (enhanced yellow fluorescent protein) x amyloid precursor protein/presenilin 1 (APP/PS1) (AD) mice. The Alzheimer's Disease Neuroimaging Initiative dataset was used to determine the impact of anxiety on AD progression in humans. RESULTS Female APP/PS1 mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control mice and male mice. Brainwide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in APP/PS1 mice. Sex-specific eYFP+/c-Fos+ changes were observed; female APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in dorsal CA3, whereas male APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in the dorsal dentate gyrus. In the Alzheimer's Disease Neuroimaging Initiative dataset, anxiety predicted transition to dementia. Female participants positive for anxiety and amyloid transitioned more quickly to dementia than male participants. CONCLUSIONS While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that there are sex differences in AD network dysfunction and that personalized medicine may benefit male and female patients with AD rather than a one-size-fits-all approach.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York; Mental Health Data Science, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York
| | - Michelle Jin
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Marcos Lanio
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Alicia Whye
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Jiook Cha
- Department of Biostatistics (in Psychiatry), Mailman School of Public Health, Columbia University, New York, New York; Division of Child and Adolescent Psychiatry, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Data Science Institute, Columbia University, New York, New York; Department of Psychology, Seoul National University, Seoul, South Korea
| | - Miranda Scarlata
- Department of Neuroscience, Vassar College, Poughkeepsie, New York
| | - Louise C Matthews
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York
| | | | - Christine A Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York.
| |
Collapse
|
3
|
Hokenson RE, Rodríguez-Acevedo KL, Chen Y, Short AK, Samrari SA, Devireddy B, Jensen BJ, Winter JJ, Gall CM, Soma KK, Heller EA, Baram TZ. Unexpected mechanisms of sex-specific memory vulnerabilities to acute traumatic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645300. [PMID: 40196630 PMCID: PMC11974907 DOI: 10.1101/2025.03.25.645300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
It is increasingly recognized that severe acute traumatic events (e.g., mass shooting, natural disasters) can provoke enduring memory disturbances, and these problems are more common in women. We probed the fundamental sex differences underlying memory vulnerability to acute traumatic stress (ATS), focusing on the role of the sex hormone, estrogen (17β-estradiol) and its receptor signaling in hippocampus. Surprisingly, high physiological hippocampal estrogen levels were required for ATS-induced episodic memory disruption and the concurrent sensitization and generalization of fear memories in both male and female mice. Pharmacological and transgenic approaches demonstrated signaling via estrogen receptor (ER)α in males and, in contrast, ERβ in females, as the mechanisms for these memory problems. Finally, identify distinct hippocampal chromatin states governed by sex and estrogen levels, which may confer an enduring vulnerability to post-traumatic memory disturbances in females.
Collapse
Affiliation(s)
- Rachael E Hokenson
- Department of Anatomy/ Neurobiology, University of California-Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California-Irvine, Irvine, CA, United States
| | - Kiara L Rodríguez-Acevedo
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuncai Chen
- Department of Pediatrics, University of California-Irvine, Irvine, CA, United States
| | - Annabel K Short
- Department of Pediatrics, University of California-Irvine, Irvine, CA, United States
| | - Sara A Samrari
- Department of Anatomy/ Neurobiology, University of California-Irvine, Irvine, CA, United States
| | - Brinda Devireddy
- Department of Anatomy/ Neurobiology, University of California-Irvine, Irvine, CA, United States
| | - Brittany J Jensen
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Julia J Winter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Christine M Gall
- Department of Anatomy/ Neurobiology, University of California-Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA, United States
| | - Kiran K Soma
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
- Department of Psychology, The University of British Columbia, Vancouver, Canada
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Tallie Z Baram
- Department of Anatomy/ Neurobiology, University of California-Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California-Irvine, Irvine, CA, United States
- Department of Neurology, University of California-Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Ouldibbat L, Rocks D, Sampson B, Kundakovic M. The role of ovarian hormone dynamics in metabolic phenotype and gene expression in female mice. Horm Behav 2025; 169:105693. [PMID: 39946826 DOI: 10.1016/j.yhbeh.2025.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/22/2024] [Accepted: 01/23/2025] [Indexed: 03/16/2025]
Abstract
Ovarian hormones, particularly estradiol, play an important role in the regulation of metabolic function including in food intake, thermogenesis, activity, fat distribution, and overall weight management. While it is known that weight and food intake follow cyclical patterns across the rodent estrous cycle, the majority of metabolic studies still focus on ovariectomized rodent models and estrogen replacement. Here we provide a comprehensive metabolic profiling of female mice under different ovarian hormone states, from having naturally-cycling ovarian hormone levels to complete ovarian hormone depletion and "estrous cycle-like" estrogen replacement (0.2 or 1 μg estradiol benzoate every 4 days). Every domain of metabolic function that we examined including activity levels, food intake, and body composition was affected by ovariectomy and contributed to >30 % weight gain and nearly two-fold increase in fat mass in ovarian hormone-depleted mice over the 12-week period. By combining physiological and hormone replacement paradigms, we show that cyclical estrogen levels are necessary and sufficient to maintain optimal body weight and fat mass. We show that the hypothalamic expression of genes encoding estrogen receptor alpha (Esr1) and neuropeptides involved in feeding behavior (Agrp, Pomc) changes across the cycle and with ovariectomy, and is partially "rescued" by cyclical estrogen treatment. The drastic fat mass changes following ovariectomy are accompanied by changes in adipose tissue gene expression, including a decreased responsiveness to estrogens due to Esr1 down-regulation. Our study highlights the importance of understanding the dynamic regulation of metabolic function by ovarian hormones and calls for more naturalistic and higher-resolution approaches to studying the molecular basis of ovarian hormone action.
Collapse
Affiliation(s)
- Laila Ouldibbat
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Branden Sampson
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
5
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
6
|
Kim W, Chung C. Effect of dynamic interaction of estrous cycle and stress on synaptic transmission and neuronal excitability in the lateral habenula. FASEB J 2024; 38:e70275. [PMID: 39734271 DOI: 10.1096/fj.202402296rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
The prevalence of depressive disorders in women has been reported in many countries. However, the cellular mechanisms mediating such sex differences in stress susceptibility remain largely unknown. Previously, we showed that lateral habenula (LHb) neurons are more activated in female mice than in male mice by restraint stress. Given the important role of LHb in depressive disorders, we aimed to investigate the synaptic differences between male and female LHb and to examine the possible impact of the estrous cycle on neurotransmission in LHb. We found that the passive and active properties of LHb neurons differed according to the estrous cycle. Spontaneous excitatory postsynaptic currents exhibited higher amplitudes during the diestrus stage and lower frequencies in females than in males, whereas inhibitory postsynaptic currents showed no significant differences. Acute stress-induced hyperpolarization of resting membrane potentials (RMP) was observed in both sexes, with notable changes in female silent and tonic neurons. Stress exposure eliminated estrous cycle-dependent RMP differences and introduced cycle-specific excitability changes, especially in the metestrus and diestrus stages, suggesting that the hormonal cycle may set the synaptic tone of the LHb, thus modulating stress responses in females. Our study provides invaluable groundwork for understanding the detailed interaction between the estrous cycle and stress exposure in female LHb.
Collapse
Affiliation(s)
- Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
7
|
Ward C, Sjulson L, Batista-Brito R. The function of Mef2c toward the development of excitatory and inhibitory cortical neurons. Front Cell Neurosci 2024; 18:1465821. [PMID: 39376213 PMCID: PMC11456456 DOI: 10.3389/fncel.2024.1465821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are caused by abnormal brain development, leading to altered brain function and affecting cognition, learning, self-control, memory, and emotion. NDDs are often demarcated as discrete entities for diagnosis, but empirical evidence indicates that NDDs share a great deal of overlap, including genetics, core symptoms, and biomarkers. Many NDDs also share a primary sensitive period for disease, specifically the last trimester of pregnancy in humans, which corresponds to the neonatal period in mice. This period is notable for cortical circuit assembly, suggesting that deficits in the establishment of brain connectivity are likely a leading cause of brain dysfunction across different NDDs. Regulators of gene programs that underlie neurodevelopment represent a point of convergence for NDDs. Here, we review how the transcription factor MEF2C, a risk factor for various NDDs, impacts cortical development. Cortical activity requires a precise balance of various types of excitatory and inhibitory neuron types. We use MEF2C loss-of-function as a study case to illustrate how brain dysfunction and altered behavior may derive from the dysfunction of specific cortical circuits at specific developmental times.
Collapse
Affiliation(s)
- Claire Ward
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
8
|
Belozertseva IV, Merkulovs DD, Kaiser H, Rozhdestvensky TS, Skryabin BV. Advancing 3Rs: The Mouse Estrus Detector (MED) as a Low-Stress, Painless, and Efficient Tool for Estrus Determination in Mice. Int J Mol Sci 2024; 25:9429. [PMID: 39273375 PMCID: PMC11395264 DOI: 10.3390/ijms25179429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Determining the estrous cycle stages in mice is essential for optimizing breeding strategies, synchronizing experimental timelines, and facilitating studies in behavior, drug testing, and genetics. It is critical for reducing the production of genetically unmodified offspring in the generation and investigation of genetically modified animal models. An accurate detection of the estrus cycle is particularly relevant in the context of the 3Rs-Replacement, Reduction, and Refinement. The estrous cycle, encompassing the reproductive phases of mice, is key to refining experimental designs and addressing ethical issues related to the use of animals in research. This study presents results from two independent laboratories on the efficacy of the Mouse Estrus Detector (MED) from ELMI Ltd. (Latvia) for the accurate determination of the estrus phase. The female mice of five strains/stocks (CD1, FVB/N, C57Bl6/J, B6D2F1, and Swiss) were used. The results showed that the MEDProTM is a low-traumatic, simple, rapid, and painless method of estrus detection that supports the principles of the 3Rs. The use of the MEDProTM for estrus detection in mice caused minimal stress, enhanced mating efficiency, facilitated an increase in the number of embryos for in vitro fertilization, and allowed the production of the desired number of foster animals.
Collapse
Affiliation(s)
- Irina V Belozertseva
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia
| | | | - Helena Kaiser
- Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), Medical Faculty, University of Münster, von-Esmarch str. 56, D-48149 Münster, Germany
| | - Timofey S Rozhdestvensky
- Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), Medical Faculty, University of Münster, von-Esmarch str. 56, D-48149 Münster, Germany
| | - Boris V Skryabin
- Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), Medical Faculty, University of Münster, von-Esmarch str. 56, D-48149 Münster, Germany
| |
Collapse
|
9
|
Cioffi L, Grassi D, Diviccaro S, Caruso D, Pinto-Benito D, Arevalo MA, Garcia-Segura LM, Melcangi RC, Giatti S. Sex chromosome complement interacts with gonadal hormones in determining regional-specific neuroactive steroid levels in plasma, hippocampus, and hypothalamus. A study using the four core genotype mouse model. J Steroid Biochem Mol Biol 2024; 241:106514. [PMID: 38554982 DOI: 10.1016/j.jsbmb.2024.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
An important aspect of the neuromodulatory and neuroprotective actions exerted by neuroactive steroids is that they are sex-specific, as determined by the sexually dimorphic levels of these molecules in plasma and the nervous tissue. Thus, the identification of the factors that generate the sex-dimorphic levels of neuroactive steroids may be crucial from a neuroprotectant perspective. The main driver for sex determination in mammals is the SRY gene and the subsequent presence of a specific gonad: testes for males and ovaries for females, thus producing hormonal compounds, primarily androgens and estrogens, respectively. Nowadays, it is well established that despite the relevance of gonads, other factors control sexual features, and, among them, sex chromosome complement is highly relevant. In this study, neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in the hypothalamus, the hippocampus, and plasma of the four core genotype mouse model, to determine the relative contribution of sex chromosome complement and gonads in determining their sex dimorphic levels. The data obtained reveal that although gonads are the main contributing factor for sex differences in neuroactive steroid levels, the levels of some neuroactive steroids, including testosterone, are also influenced in brain and plasma by tissue-specific actions of sex chromosomes. The data presented here adds a new piece to the puzzle of steroid level regulation, which may be useful in designing sex-specific neuroprotective approaches to pathological conditions affecting the nervous system.
Collapse
Affiliation(s)
- Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniel Pinto-Benito
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria-Angeles Arevalo
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Luis Miguel Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| |
Collapse
|
10
|
Nair VD, Pincas H, Smith GR, Zaslavsky E, Ge Y, Amper MAS, Vasoya M, Chikina M, Sun Y, Raja AN, Mao W, Gay NR, Esser KA, Smith KS, Zhao B, Wiel L, Singh A, Lindholm ME, Amar D, Montgomery S, Snyder MP, Walsh MJ, Sealfon SC. Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures. CELL GENOMICS 2024; 4:100421. [PMID: 38697122 PMCID: PMC11228891 DOI: 10.1016/j.xgen.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 05/04/2024]
Abstract
Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hanna Pincas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory R Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Anne S Amper
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mital Vasoya
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Weiguang Mao
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole R Gay
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Kevin S Smith
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Bingqing Zhao
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Laurens Wiel
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Aditya Singh
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Malene E Lindholm
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - David Amar
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Stephen Montgomery
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
11
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
12
|
Xu Y, Yan Z, Liu L. Sex differences in the combined influence of inflammation and nutrition status on depressive symptoms: insights from NHANES. Front Nutr 2024; 11:1406656. [PMID: 38868555 PMCID: PMC11168495 DOI: 10.3389/fnut.2024.1406656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Background Both nutrition and inflammation are associated with depression, but previous studies have focused on individual factors. Here, we assessed the association between composite indices of nutrition and inflammation and depression. Methods Adult participants selected from the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018 were chosen. The exposure variable was the Advanced Lung Cancer Inflammation Index (ALI) integrating nutrition and inflammation, categorized into low, medium, and high groups. The outcome variable was depression assessed using the Patient Health Questionnaire-9 (PHQ-9). A multivariable logistic regression model was employed to evaluate the relationship between ALI and the risk of depression. Results After extensive adjustment for covariates, in the overall population, participants with moderate and high levels of ALI had a decreased prevalence of depression compared to those with low ALI levels, with reductions of 17% (OR, 0.83; 95% CI: 0.72-0.97) and 23% (OR, 0.77; 95% CI: 0.66-0.91), respectively. Among females, participants with moderate and high ALI levels had a decreased prevalence of depression by 27% (OR, 0.73; 95% CI: 0.60-0.88) and 21% (OR, 0.79; 95% CI: 0.64-0.98), respectively, compared to those with low ALI levels, whereas no significant association was observed among males. Subgroup analyses based on females and males yielded consistent results. Conclusion In this study, we observed a negative correlation between moderate to high levels of ALI and the prevalence of depression, along with gender differences. Specifically, in females, greater attention should be given to the nutritional and inflammatory status.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Lymer S, Patel K, Lennon J, Blau J. Circadian clock neurons use activity-regulated gene expression for structural plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595887. [PMID: 38826237 PMCID: PMC11142243 DOI: 10.1101/2024.05.25.595887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Drosophila s-LNv circadian pacemaker neurons show dramatic structural plasticity, with their projections expanded at dawn and then retracted by dusk. This predictable plasticity makes s-LNvs ideal to study molecular mechanisms of plasticity. Although s-LNv plasticity is controlled by their molecular clock, changing s-LNv excitability also regulates plasticity. Here, we tested the idea that s-LNvs use activity-regulated genes to control plasticity. We found that inducing expression of either of the activity-regulated transcription factors Hr38 or Sr (orthologs of mammalian Nr4a1 and Egr1) is sufficient to rapidly expand s-LNv projections. Conversely, transiently knocking down expression of either Hr38 or sr blocks expansion of s-LNv projections at dawn. We show that Hr38 rapidly induces transcription of sif, which encodes a Rac1 GEF required for s-LNv plasticity rhythms. We conclude that the s-LNv molecular clock controls s-LNv excitability, which couples to an activity-regulated gene expression program to control s-LNv plasticity.
Collapse
|
14
|
Chen HS, Wang F, Chen JG. Epigenetic mechanisms in depression: Implications for pathogenesis and treatment. Curr Opin Neurobiol 2024; 85:102854. [PMID: 38401316 DOI: 10.1016/j.conb.2024.102854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
The risk of depression is influenced by both genetic and environmental factors. It has been suggested that epigenetic mechanisms may mediate the risk of depression following exposure to adverse life events. Epigenetics encompasses stable alterations in gene expression that are controlled through transcriptional, post-transcriptional, translational, or post-translational processes, including DNA modifications, chromatin remodeling, histone modifications, RNA modifications, and non-coding RNA (ncRNA) regulation, without any changes in the DNA sequence. In this review, we explore recent research advancements in the realm of epigenetics concerning depression. Furthermore, we evaluate the potential of epigenetic changes as diagnostic and therapeutic biomarkers for depression.
Collapse
Affiliation(s)
- Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China.
| |
Collapse
|
15
|
Buck LA, Xie Q, Willis M, Side CM, Giacometti LL, Gaskill PJ, Park K, Shaheen F, Guo L, Gorantla S, Barker JM. Impaired extinction of cocaine seeking in HIV-infected mice is accompanied by peripheral and central immune dysregulation. Commun Biol 2024; 7:387. [PMID: 38553542 PMCID: PMC10980811 DOI: 10.1038/s42003-024-06079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between HIV infection and cocaine use disorder is likely bidirectional, with cocaine use directly impacting immune function while HIV infection alters addiction-related behavior. To better characterize the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilizes a humanized mouse model to investigate the outcomes of HIV-1 infection on cocaine-related behaviors in a conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection selectively impairs cocaine CPP extinction without effecting reinstatement or cocaine seeking under conflict. Behavioral alterations are accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes are observed in human cytokines, including HIV-induced reductions in human TNFα, and cocaine and HIV interactions on GM-CSF levels. Together these data provide new insights into the unique neurobehavioral outcomes of HIV infection and cocaine exposure and how they interact to effect immune responses.
Collapse
Affiliation(s)
- Lauren A Buck
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Graduate Program in Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michelle Willis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Christine M Side
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kyewon Park
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Farida Shaheen
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Guo
- Medical Center, University of Nebraska, Omaha, NE, USA
| | | | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Bellia F, Girella A, Annunzi E, Benatti B, Vismara M, Priori A, Festucci F, Fanti F, Compagnone D, Adriani W, Dell'Osso B, D'Addario C. Selective alterations of endocannabinoid system genes expression in obsessive compulsive disorder. Transl Psychiatry 2024; 14:118. [PMID: 38409080 PMCID: PMC10897168 DOI: 10.1038/s41398-024-02829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Obsessive Compulsive Disorder (OCD) is listed as one of the top 10 most disabling neuropsychiatric conditions in the world. The neurobiology of OCD has not been completely understood and efforts are needed in order to develop new treatments. Beside the classical neurotransmitter systems and signalling pathways implicated in OCD, the possible involvement of the endocannabinoid system (ECS) has emerged in pathophysiology of OCD. We report here selective downregulation of the genes coding for enzymes allowing the synthesis of the endocannabinoids. We found reduced DAGLα and NAPE-PLD in blood samples of individuals with OCD (when compared to healthy controls) as well as in the amygdala complex and prefrontal cortex of dopamine transporter (DAT) heterozygous rats, manifesting compulsive behaviours. Also mRNA levels of the genes coding for cannabinoid receptors type 1 and type 2 resulted downregulated, respectively in the rat amygdala and in human blood. Moreover, NAPE-PLD changes in gene expression resulted to be associated with an increase in DNA methylation at gene promoter, and the modulation of this gene in OCD appears to be correlated to the progression of the disease. Finally, the alterations observed in ECS genes expression appears to be correlated with the modulation in oxytocin receptor gene expression, consistently with what recently reported. Overall, we confirm here a role for ECS in OCD at both preclinical and clinical level. Many potential biomarkers are suggested among its components, in particular NAPE-PLD, that might be of help for a prompt and clear diagnosis.
Collapse
Affiliation(s)
- Fabio Bellia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Antonio Girella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Eugenia Annunzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d' Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Beatrice Benatti
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Matteo Vismara
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
| | - Alberto Priori
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
| | - Fabiana Festucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161, Rome, Italy
| | - Bernardo Dell'Osso
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy.
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy.
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institute, 10316, Stockholm, Sweden.
| |
Collapse
|
17
|
Denney KA, Wu MV, Sun SED, Moon S, Tollkuhn J. Comparative analysis of gonadal hormone receptor expression in the postnatal house mouse, meadow vole, and prairie vole brain. Horm Behav 2024; 158:105463. [PMID: 37995608 PMCID: PMC11145901 DOI: 10.1016/j.yhbeh.2023.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The socially monogamous prairie vole (Microtus ochrogaster) and promiscuous meadow vole (Microtus pennsylvanicus) are closely related, but only prairie voles display long-lasting pair bonds, biparental care, and selective aggression towards unfamiliar individuals after pair bonding. These social behaviors in mammals are largely mediated by steroid hormone signaling in the social behavior network (SBN) of the brain. Hormone receptors are reproducible markers of sex differences that can provide more information than anatomy alone and can even be at odds with anatomical dimorphisms. We reasoned that behaviors associated with social monogamy in prairie voles may emerge in part from unique expression patterns of steroid hormone receptors in this species, and that these expression patterns would be more similar across males and females in prairie than in meadow voles or the laboratory mouse. To obtain insight into steroid hormone signaling in the developing prairie vole brain, we assessed expression of estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), and androgen receptor (Ar) within the SBN, using in situ hybridization at postnatal day 14 in mice, meadow, and prairie voles. We found species-specific patterns of hormone receptor expression in the hippocampus and ventromedial hypothalamus, as well as species differences in the sex bias of these markers in the principal nucleus of the bed nucleus of the stria terminalis. These findings suggest the observed differences in gonadal hormone receptor expression may underlie species differences in the display of social behaviors.
Collapse
Affiliation(s)
- Katherine A Denney
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11790, USA
| | - Melody V Wu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Soyoun Moon
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
18
|
Achiro JM, Tao Y, Gao F, Lin CH, Watanabe M, Neumann S, Coppola G, Black DL, Martin KC. Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Front Mol Neurosci 2024; 17:1334862. [PMID: 38318533 PMCID: PMC10839115 DOI: 10.3389/fnmol.2024.1334862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.
Collapse
Affiliation(s)
- Jennifer M. Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Yang Tao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Marika Watanabe
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Sylvia Neumann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Kelsey C. Martin
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
19
|
Kundakovic M, Tickerhoof M. Epigenetic mechanisms underlying sex differences in the brain and behavior. Trends Neurosci 2024; 47:18-35. [PMID: 37968206 PMCID: PMC10841872 DOI: 10.1016/j.tins.2023.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Sex differences are found across brain regions, behaviors, and brain diseases. Sexual differentiation of the brain is initiated prenatally but it continues throughout life, as a result of the interaction of three major factors: gonadal hormones, sex chromosomes, and the environment. These factors are thought to act, in part, via epigenetic mechanisms which control chromatin and transcriptional states in brain cells. In this review, we discuss evidence that epigenetic mechanisms underlie sex-specific neurobehavioral changes during critical organizational periods, across the estrous cycle, and in response to diverse environments throughout life. We further identify future directions for the field that will provide novel mechanistic insights into brain sex differences, inform brain disease treatments and women's brain health in particular, and apply to people across genders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| | - Maria Tickerhoof
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
20
|
Dalla C, Jaric I, Pavlidi P, Hodes GE, Kokras N, Bespalov A, Kas MJ, Steckler T, Kabbaj M, Würbel H, Marrocco J, Tollkuhn J, Shansky R, Bangasser D, Becker JB, McCarthy M, Ferland-Beckham C. Practical solutions for including sex as a biological variable (SABV) in preclinical neuropsychopharmacological research. J Neurosci Methods 2024; 401:110003. [PMID: 37918446 PMCID: PMC10842858 DOI: 10.1016/j.jneumeth.2023.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Georgia E Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice (PAASP GmbH), Heidelberg, Germany
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | | | - Mohamed Kabbaj
- Department of Biomedical Sciences & Neurosciences, College of Medicine, Florida State University, USA
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jordan Marrocco
- Department of Biology, Touro University, New York, NY 10027, USA
| | | | - Rebecca Shansky
- Department of Psychology, Northeastern University, Boston, MA 02128, USA
| | - Debra Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Jill B Becker
- Department of Psychology and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore MD, USA
| | | |
Collapse
|
21
|
Rocks D, Purisic E, Gallo EF, Greally JM, Suzuki M, Kundakovic M. Egr1 is a sex-specific regulator of neuronal chromatin, synaptic plasticity, and behaviour. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572697. [PMID: 38187614 PMCID: PMC10769422 DOI: 10.1101/2023.12.20.572697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Sex differences are found in brain structure and function across species, and across brain disorders in humans1-3. The major source of brain sex differences is differential secretion of steroid hormones from the gonads across the lifespan4. Specifically, ovarian hormones oestrogens and progesterone are known to dynamically change structure and function of the adult female brain, having a major impact on psychiatric risk5-7. However, due to limited molecular studies in female rodents8, very little is still known about molecular drivers of female-specific brain and behavioural plasticity. Here we show that overexpressing Egr1, a candidate oestrous cycle-dependent transcription factor9, induces sex-specific changes in ventral hippocampal neuronal chromatin, gene expression, and synaptic plasticity, along with hippocampus-dependent behaviours. Importantly, Egr1 overexpression mimics the high-oestrogenic phase of the oestrous cycle, and affects behaviours in ovarian hormone-depleted females but not in males. We demonstrate that Egr1 opens neuronal chromatin directly across the sexes, although with limited genomic overlap. Our study not only reveals the first sex-specific chromatin regulator in the brain, but also provides functional evidence that this sex-specific gene regulation drives neuronal gene expression, synaptic plasticity, and anxiety- and depression-related behaviour. Our study exemplifies an innovative sex-based approach to studying neuronal gene regulation1 in order to understand sex-specific synaptic and behavioural plasticity and inform novel brain disease treatments.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Eric Purisic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - John M. Greally
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
22
|
Ryherd GL, Bunce AL, Edwards HA, Baumgartner NE, Lucas EK. Sex differences in avoidance behavior and cued threat memory dynamics in mice: Interactions between estrous cycle and genetic background. Horm Behav 2023; 156:105439. [PMID: 37813043 PMCID: PMC10810684 DOI: 10.1016/j.yhbeh.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Anxiety disorders are the most prevalent mental illnesses worldwide, exhibit high heritability, and affect twice as many women as men. To evaluate potential interactions between genetic background and cycling ovarian hormones on sex differences in susceptibility to negative valence behaviors relevant to anxiety disorders, we assayed avoidance behavior and cued threat memory dynamics in gonadally-intact adult male and female mice across four common inbred mouse strains: C57Bl/6J, 129S1/SVlmJ, DBA/2J, and BALB/cJ. Independent of sex, C57Bl/6J mice exhibited low avoidance but high threat memory, 129S1/SvlmJ mice high avoidance and high threat memory, DBA/2J mice low avoidance and low threat memory, and BALB/cJ mice high avoidance but low threat memory. Within-strain comparisons revealed reduced avoidance behavior in the high hormone phase of the estrous cycle (proestrus) compared to all other estrous phases in all strains except DBA/2J, which did not exhibit cycle-dependent behavioral fluctuations. Robust and opposing sex differences in threat conditioning and extinction training were found in the C57Bl/6J and 129S1/SvlmJ lines, whereas no sex differences were observed in the DBA/2J or BALB/cJ lines. C57Bl/6J males exhibited enhanced acute threat memory, whereas 129S1/SvlmJ females exhibited enhanced sustained threat memory, compared to their sex-matched littermates. These effects were not mediated by estrous cycle stage or sex differences in active versus passive defensive behavioral responses. Our data demonstrate that core features of behavioral endophenotypes relevant to anxiety disorders, such as avoidance and threat memory, are genetically driven yet dissociable and can be influenced further by cycling ovarian hormones.
Collapse
Affiliation(s)
- Garret L Ryherd
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Averie L Bunce
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Haley A Edwards
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Nina E Baumgartner
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth K Lucas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
23
|
Rocks D, Jaric I, Bellia F, Cham H, Greally JM, Suzuki M, Kundakovic M. Early-life stress and ovarian hormones alter transcriptional regulation in the nucleus accumbens resulting in sex-specific responses to cocaine. Cell Rep 2023; 42:113187. [PMID: 37777968 PMCID: PMC10753961 DOI: 10.1016/j.celrep.2023.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
Early-life stress and ovarian hormones contribute to increased female vulnerability to cocaine addiction. Here, we reveal molecular substrates in the reward area, the nucleus accumbens, through which these female-specific factors affect immediate and conditioning responses to cocaine. We find shared involvement of X chromosome inactivation-related and estrogen signaling-related gene regulation in enhanced conditioning responses following early-life stress and during the low-estrogenic state in females. Low-estrogenic females respond to acute cocaine by opening neuronal chromatin enriched for the sites of ΔFosB, a transcription factor implicated in chronic cocaine response and addiction. Conversely, high-estrogenic females respond to cocaine by preferential chromatin closing, providing a mechanism for limiting cocaine-driven chromatin and synaptic plasticity. We find that physiological estrogen withdrawal, early-life stress, and absence of one X chromosome all nullify the protective effect of a high-estrogenic state on cocaine conditioning in females. Our findings offer a molecular framework to enable understanding of sex-specific neuronal mechanisms underlying cocaine use disorder.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Ivana Jaric
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Fabio Bellia
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Heining Cham
- Department of Psychology, Fordham University, Bronx, NY, USA
| | - John M Greally
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
24
|
Baumgartner NE, Biraud MC, Lucas EK. Sex differences in socioemotional behavior and changes in ventral hippocampal transcription across aging in C57Bl/6J mice. Neurobiol Aging 2023; 130:141-153. [PMID: 37524006 PMCID: PMC10629502 DOI: 10.1016/j.neurobiolaging.2023.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 08/02/2023]
Abstract
Socioemotional health is positively correlated with improved cognitive and physical aging. Despite known sex differences in socioemotional behaviors and the trajectory of aging, the interactive effects between sex and aging on socioemotional outcomes are poorly understood. We performed the most comprehensive assessment of sex differences in socioemotional behaviors in C57Bl/6J mice across aging to date. Compared to males, females exhibited decreased anxiety-like behavior and social preference but increased social recognition. With age, anxiety-like behavior, cued threat memory generalization, and social preference increased in both sexes. To investigate potential neural mechanisms underlying these behavioral changes, we analyzed transcriptional neuropathology markers in the ventral hippocampus and found age-related changes in genes related to activated microglia, angiogenesis, and cytokines. Sex differences emerged in the timing, direction, and magnitude of these changes, independent of reproductive senescence in aged females. Interestingly, female-specific upregulation of autophagy-related genes correlated with age-related behavioral changes selectively in females. These novel findings reveal critical sex differences in trajectories of ventral hippocampal aging that may contribute to sex- and age-related differences in socioemotional outcomes.
Collapse
Affiliation(s)
- Nina E Baumgartner
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Mandy C Biraud
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Elizabeth K Lucas
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
25
|
Barker J, Buck L, Xie Q, Willis M, Side C, Giacometti L, Gaskill P, Park K, Shaheen F, Guo L, Gorantla S. Impaired extinction of cocaine seeking in HIV-infected mice is accompanied by peripheral and central immune dysregulation. RESEARCH SQUARE 2023:rs.3.rs-3276379. [PMID: 37841842 PMCID: PMC10571607 DOI: 10.21203/rs.3.rs-3276379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between HIV infection and cocaine use disorder is likely bidirectional, with cocaine use directly impacting immune function while HIV infection alters addiction-related behavior. To better characterize the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilized a humanized mouse model to investigate the outcomes of HIV-1 infection on cocaine-related behaviors in a conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection selectively impaired cocaine CPP extinction without effecting reinstatement or cocaine seeking under conflict were observed. Behavioral alterations were accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes were observed in both mouse and human cytokines, including HIV-induced reductions in mouse IL-1α and G-CSF and human TNFα, and cocaine induced alterations in mouse GM-CSF. Together these data provide new insights into the unique neurobehavioral outcomes of HIV infection and cocaine exposure and how they interact to effect immune responses.
Collapse
|
26
|
Liu C, Gao X, Shi R, Wang Y, He X, Du H, Hu B, Jiao J, Liu C, Teng Z. Microglial transglutaminase 2 deficiency causes impaired synaptic remodelling and cognitive deficits in mice. Cell Prolif 2023; 56:e13439. [PMID: 36878712 PMCID: PMC10472527 DOI: 10.1111/cpr.13439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Microglia are the primary source of transglutaminase 2 (TGM2) in the brain; however, the roles of microglial TGM2 in neural development and disease are still not well known. The aim of this study is to elucidate the role and mechanisms of microglial TGM2 in the brain. A mouse line with a specific knockout of Tgm2 in microglia was generated. Immunohistochemistry, Western blot and qRT-PCR assays were performed to evaluate the expression levels of TGM2, PSD-95 and CD68. Confocal imaging, immunofluorescence staining and behavioural analyses were conducted to identify phenotypes of microglial TGM2 deficiency. Finally, RNA sequencing, qRT-PCR and co-culture of neurons and microglia were used to explore the potential mechanisms. Deletion of microglial Tgm2 causes impaired synaptic pruning, reduced anxiety and increased cognitive deficits in mice. At the molecular level, the phagocytic genes, such as Cq1a, C1qb and Tim4, are significantly down-regulated in TGM2-deficient microglia. This study elucidates a novel role of microglial TGM2 in regulating synaptic remodelling and cognitive function, indicating that microglia Tgm2 is essential for proper neural development.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Xing Gao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Ruo‐Xi Shi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Ying‐Ying Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Xuan‐Cheng He
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Hong‐Zhen Du
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Chang‐Mei Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhao‐Qian Teng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
27
|
Buck LA, Xie Q, Willis M, Side CM, Giacometti LL, Gaskill PJ, Park K, Shaheen F, Guo L, Gorantla S, Barker JM. Impaired extinction of cocaine seeking in HIV-infected mice is accompanied by peripheral and central immune dysregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552858. [PMID: 37645889 PMCID: PMC10462035 DOI: 10.1101/2023.08.11.552858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between progressive HIV infection and cocaine use disorder is likely bidirectional, with cocaine use having direct effects on immune function while HIV infection can alter addiction-related behavior. To better characterized the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilized a humanized mouse model to investigate the outcomes of progressive HIV infection on cocaine-related behaviors in a cocaine conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection did not impact the formation of a cocaine CPP, but did result in resistance to extinction of the CPP. No effects of HIV on yohimbine-primed reinstatement or cocaine seeking under conflict were observed. These behavioral alterations were accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes were observed in both mouse and human markers. Among other targets, this included HIV-induced reductions in mouse IL-1α and G-CSF and human TNFα and cocaine-induced alterations in human TNFα and mouse GM-CSF such that cocaine exposure increases both cytokines only in the absence of HIV infection. Together these data provide new insights into the unique neurobehavioral processes underlying HIV infection and cocaine use disorders, and further how they interact to effect immune responses.
Collapse
|
28
|
Lewitus VJ, Blackwell KT. Estradiol Receptors Inhibit Long-Term Potentiation in the Dorsomedial Striatum. eNeuro 2023; 10:ENEURO.0071-23.2023. [PMID: 37487741 PMCID: PMC10405883 DOI: 10.1523/eneuro.0071-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
Estradiol, a female sex hormone and the predominant form of estrogen, has diverse effects throughout the brain including in learning and memory. Estradiol modulates several types of learning that depend on the dorsomedial striatum (DMS), a subregion of the basal ganglia involved in goal-directed learning, cued action-selection, and motor skills. A cellular basis of learning is synaptic plasticity, and the presence of extranuclear estradiol receptors ERα, ERβ, and G-protein-coupled estrogen receptor (GPER) throughout the DMS suggests that estradiol may influence rapid cellular actions including those involved in plasticity. To test whether estradiol affects synaptic plasticity in the DMS, corticostriatal long-term potentiation (LTP) was induced using theta-burst stimulation (TBS) in ex vivo brain slices from intact male and female C57BL/6 mice. Extracellular field recordings showed that female mice in the diestrous stage of the estrous cycle exhibited LTP similar to male mice, while female mice in estrus did not exhibit LTP. Furthermore, antagonists of ERα or GPER rescued LTP in estrous females and agonists of ERα or GPER reduced LTP in diestrous females. In males, activating ERα but not GPER reduced LTP. These results uncover an inhibitory action of estradiol receptors on cellular learning in the DMS and suggest a cellular mechanism underlying the impairment in certain types of DMS-based learning observed in the presence of high estradiol. Because of the dorsal striatum's role in substance use disorders, these findings may provide a mechanism underlying an estradiol-mediated progression from goal-directed to habitual drug use.
Collapse
Affiliation(s)
| | - Kim T Blackwell
- Interdisciplinary Neuroscience PhD Program
- Department of Bioengineering, George Mason University, Fairfax, VA 22030
| |
Collapse
|
29
|
Singh PP, Benayoun BA. Considerations for reproducible omics in aging research. NATURE AGING 2023; 3:921-930. [PMID: 37386258 PMCID: PMC10527412 DOI: 10.1038/s43587-023-00448-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Technical advancements over the past two decades have enabled the measurement of the panoply of molecules of cells and tissues including transcriptomes, epigenomes, metabolomes and proteomes at unprecedented resolution. Unbiased profiling of these molecular landscapes in the context of aging can reveal important details about mechanisms underlying age-related functional decline and age-related diseases. However, the high-throughput nature of these experiments creates unique analytical and design demands for robustness and reproducibility. In addition, 'omic' experiments are generally onerous, making it crucial to effectively design them to eliminate as many spurious sources of variation as possible as well as account for any biological or technical parameter that may influence such measures. In this Perspective, we provide general guidelines on best practices in the design and analysis of omic experiments in aging research from experimental design to data analysis and considerations for long-term reproducibility and validation of such studies.
Collapse
Affiliation(s)
- Param Priya Singh
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA.
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA, USA.
- Epigenetics and Gene Regulation, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
- USC Stem Cell Initiative, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Pepino L, Malapert P, Saurin AJ, Moqrich A, Reynders A. Formalin-evoked pain triggers sex-specific behavior and spinal immune response. Sci Rep 2023; 13:9515. [PMID: 37308519 DOI: 10.1038/s41598-023-36245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Mounting evidence shows sex-related differences in the experience of pain with women suffering more from chronic pain than men. Yet, our understanding of the biological basis underlying those differences remains incomplete. Using an adapted model of formalin-induced chemical/inflammatory pain, we report here that in contrast to male mice, females distinctly display two types of nocifensive responses to formalin, distinguishable by the duration of the interphase. Females in proestrus and in metestrus exhibited respectively a short-lasting and a long-lasting interphase, underscoring the influence of the estrus cycle on the duration of the interphase, rather than the transcriptional content of the dorsal horn of the spinal cord (DHSC). Additionally, deep RNA-sequencing of DHSC showed that formalin-evoked pain was accompanied by a male-preponderant enrichment in genes associated with the immune modulation of pain, revealing an unanticipated contribution of neutrophils. Taking advantage of the male-enriched transcript encoding the neutrophil associated protein Lipocalin 2 (Lcn2) and using flow cytometry, we confirmed that formalin triggered the recruitment of LCN2-expressing neutrophils in the pia mater of spinal meninges, preferentially in males. Our data consolidate the contribution of female estrus cycle to pain perception and provide evidence supporting a sex-specific immune regulation of formalin-evoked pain.
Collapse
Affiliation(s)
- Lucie Pepino
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France
| | - Pascale Malapert
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France
| | - Andrew J Saurin
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France
| | - Aziz Moqrich
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France.
| | - Ana Reynders
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France.
| |
Collapse
|
31
|
Deanhardt B, Duan Q, Du C, Soeder C, Morlote A, Garg D, Saha A, Jones CD, Volkan PC. Social experience and pheromone receptor activity reprogram gene expression in sensory neurons. G3 (BETHESDA, MD.) 2023; 13:jkad072. [PMID: 36972331 PMCID: PMC10234412 DOI: 10.1093/g3journal/jkad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/11/2023] [Indexed: 06/29/2024]
Abstract
Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.
Collapse
Affiliation(s)
- Bryson Deanhardt
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chengcheng Du
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Charles Soeder
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alec Morlote
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Deeya Garg
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Aishani Saha
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
32
|
Winter JJ, Rodríguez-Acevedo KL, Dittrich M, Heller EA. Early life adversity: Epigenetic regulation underlying drug addiction susceptibility. Mol Cell Neurosci 2023; 125:103825. [PMID: 36842544 PMCID: PMC10247461 DOI: 10.1016/j.mcn.2023.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Drug addiction is a leading cause of disability worldwide, with more than 70,000 Americans dying from drug overdose in 2019 alone. While only a small percentage of chronic drug users escalate to drug addiction, little is understood on the precise mechanisms of this susceptibility. Early life adversity is causally relevant to adult psychiatric disease and may contribute to the risk of addiction. Here we review recent pre-clinical evidence showing that early life exposure to stress and/or drugs regulates changes in behavior, gene expression, and the epigenome that persist into adulthood. We summarize the major findings and gaps in the preclinical literature, highlighting studies that demonstrate the often profound differences between female and male subjects.
Collapse
Affiliation(s)
| | | | - Mia Dittrich
- University of Pennsylvania, Philadelphia, PA 19106, USA
| | | |
Collapse
|
33
|
Miller CK, Meitzen J. No detectable changes in anxiety-related and locomotor behaviors in adult ovariectomized female rats exposed to estradiol, the ERβ agonist DPN or the ERα agonist PPT. Horm Behav 2023; 152:105363. [PMID: 37087765 PMCID: PMC10247449 DOI: 10.1016/j.yhbeh.2023.105363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Abstract
The sex steroid hormone 17β-estradiol (estradiol) and its Estrogen Receptors (ERs) have been linked to modulation of anxiety-related and locomotor behaviors in female rodents. Research suggests that estradiol mitigates anxiety-related behaviors through activating Estrogen Receptor (ER)β and increases locomotor behaviors through ERα. The influence of ERs on these behaviors cannot always be detected. Here we discuss two experiments in which we tested the hypothesis that anxiety-related behaviors would decrease after ERβ activation and locomotor behaviors would increase after ERα activation, and also assessed the persistence of these behavioral effects by varying the timing of behavioral testing. Two cohorts of adult female ovariectomized rats were exposed to estradiol, the ERβ agonist DPN, the ERα agonist PPT, or oil for four consecutive days. Body mass was assessed throughout as a positive control. In both cohorts, open field behaviors were assessed on the first day of exposure. In one cohort (Experiment 1), open field, light/dark box, and elevated plus maze behaviors were assessed on the final day of injections. In the second cohort (Experiment 2), these behaviors were assessed 24 h after the final exposure. As expected, significant differences in body mass were detected in response to estradiol and PPT exposure, validating the estradiol and ER manipulation. No significant differences were observed in anxiety-related or locomotor behaviors across treatment groups, indicating that the efficacy of these agonists as therapeutic agents may be limited. We review these results in the context of previous literature, emphasizing relevant variables that may obscure ER-related actions on behavior.
Collapse
Affiliation(s)
- Christiana K Miller
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America.
| |
Collapse
|
34
|
Bera BS, Thompson TV, Sosa E, Nomaru H, Reynolds D, Dubin RA, Maqbool SB, Zheng D, Morrow BE, Greally JM, Suzuki M. An optimized approach for multiplexing single-nuclear ATAC-seq using oligonucleotide-conjugated antibodies. Epigenetics Chromatin 2023; 16:14. [PMID: 37118773 PMCID: PMC10142415 DOI: 10.1186/s13072-023-00486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Single-cell technologies to analyze transcription and chromatin structure have been widely used in many research areas to reveal the functions and molecular properties of cells at single-cell resolution. Sample multiplexing techniques are valuable when performing single-cell analysis, reducing technical variation and permitting cost efficiencies. Several commercially available methods have been used in many scRNA-seq studies. On the other hand, while several methods have been published, multiplexing techniques for single nuclear assay for transposase-accessible chromatin (snATAC)-seq assays remain under development. We developed a simple nucleus hashing method using oligonucleotide-conjugated antibodies recognizing nuclear pore complex proteins, NuHash, to perform snATAC-seq library preparations by multiplexing. RESULTS We performed multiplexing snATAC-seq analyses on a mixture of human and mouse cell samples (two samples, 2-plex, and four samples, 4-plex) using NuHash. The analyses on nuclei with at least 10,000 read counts showed that the demultiplexing accuracy of NuHash was high, and only ten out of 9144 nuclei (2-plex) and 150 of 12,208 nuclei (4-plex) had discordant classifications between NuHash demultiplexing and discrimination using reference genome alignments. The differential open chromatin region (OCR) analysis between female and male samples revealed that male-specific OCRs were enriched in chromosome Y (four out of nine). We also found that five female-specific OCRs (20 OCRs) were on chromosome X. A comparative analysis between snATAC-seq and deeply sequenced bulk ATAC-seq on the same samples revealed that the bulk ATAC-seq signal intensity was positively correlated with the number of cell clusters detected in snATAC-seq. Moreover, when we categorized snATAC-seq peaks based on the number of cell clusters in which the peak was present, we observed different distributions over different genomic features between the groups. This result suggests that the peak intensities of bulk ATAC-seq can be used to identify different types of functional loci. CONCLUSIONS Our multiplexing method using oligo-conjugated anti-nuclear pore complex proteins, NuHash, permits high-accuracy demultiplexing of samples. The NuHash protocol is straightforward, works on frozen samples, and requires no modifications for snATAC-seq library preparation.
Collapse
Affiliation(s)
- Betelehem Solomon Bera
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Taylor V Thompson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric Sosa
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hiroko Nomaru
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Thinkcyte Inc., Tokyo, Japan
| | - David Reynolds
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert A Dubin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shahina B Maqbool
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
35
|
Ocañas SR, Ansere VA, Kellogg CM, Isola JVV, Chucair-Elliott AJ, Freeman WM. Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Res Bull 2023; 195:157-171. [PMID: 36804773 PMCID: PMC10810555 DOI: 10.1016/j.brainresbull.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Biological sex contributes to phenotypic sex effects through genetic (sex chromosomal) and hormonal (gonadal) mechanisms. There are profound sex differences in the prevalence and progression of age-related brain diseases, including neurodegenerative diseases. Inflammation of neural tissue is one of the most consistent age-related phenotypes seen with healthy aging and disease. The pro-inflammatory environment of the aging brain has primarily been attributed to microglial reactivity and adoption of heterogeneous reactive states dependent upon intrinsic (i.e., sex) and extrinsic (i.e., age, disease state) factors. Here, we review sex effects in microglia across the lifespan, explore potential genetic and hormonal molecular mechanisms of microglial sex effects, and discuss currently available models and methods to study sex effects in the aging brain. Despite recent attention to this area, significant further research is needed to mechanistically understand the regulation of microglial sex effects across the lifespan, which may open new avenues for sex informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Collyn M Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose V V Isola
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
36
|
Rocks D, Kundakovic M. Hippocampus-based behavioral, structural, and molecular dynamics across the estrous cycle. J Neuroendocrinol 2023; 35:e13216. [PMID: 36580348 PMCID: PMC10050126 DOI: 10.1111/jne.13216] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The activity of neurons in the rodent hippocampus contributes to diverse behaviors, with the activity of ventral hippocampal neurons affecting behaviors related to anxiety and emotion regulation, and the activity of dorsal hippocampal neurons affecting performance in learning- and memory-related tasks. Hippocampal cells also express receptors for ovarian hormones, estrogen and progesterone, and are therefore affected by physiological fluctuations of those hormones that occur over the rodent estrous cycle. In this review, we discuss the effects of cycling ovarian hormones on hippocampal physiology. Starting with behavior, we explore the role of the estrous cycle in regulating hippocampus-dependent behaviors. We go on to detail the cellular mechanisms through which cycling estrogen and progesterone, through changes in the structural and functional properties of hippocampal neurons, may be eliciting these changes in behavior. Then, providing a basis for these cellular changes, we outline the epigenetic, chromatin regulatory mechanisms through which ovarian hormones, by binding to their receptors, can affect the regulation of behavior- and synaptic plasticity-related genes in hippocampal neurons. We also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the estrous cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. Finally, we discuss directions for future studies and the translational value of the rodent estrous cycle for understanding the effects of the human menstrual cycle on hippocampal physiology and brain disease risk.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University; Bronx, NY, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University; Bronx, NY, USA
| |
Collapse
|
37
|
Wattacheril JJ, Raj S, Knowles DA, Greally JM. Using epigenomics to understand cellular responses to environmental influences in diseases. PLoS Genet 2023; 19:e1010567. [PMID: 36656803 PMCID: PMC9851565 DOI: 10.1371/journal.pgen.1010567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It is a generally accepted model that environmental influences can exert their effects, at least in part, by changing the molecular regulators of transcription that are described as epigenetic. As there is biochemical evidence that some epigenetic regulators of transcription can maintain their states long term and through cell division, an epigenetic model encompasses the idea of maintenance of the effect of an exposure long after it is no longer present. The evidence supporting this model is mostly from the observation of alterations of molecular regulators of transcription following exposures. With the understanding that the interpretation of these associations is more complex than originally recognised, this model may be oversimplistic; therefore, adopting novel perspectives and experimental approaches when examining how environmental exposures are linked to phenotypes may prove worthwhile. In this review, we have chosen to use the example of nonalcoholic fatty liver disease (NAFLD), a common, complex human disease with strong environmental and genetic influences. We describe how epigenomic approaches combined with emerging functional genetic and single-cell genomic techniques are poised to generate new insights into the pathogenesis of environmentally influenced human disease phenotypes exemplified by NAFLD.
Collapse
Affiliation(s)
- Julia J. Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York, United States of America
| | - Srilakshmi Raj
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Knowles
- New York Genome Center, New York, New York, United States of America
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - John M. Greally
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
38
|
Murphy MD, Heller EA. Convergent actions of stress and stimulants via epigenetic regulation of neural circuitry. Trends Neurosci 2022; 45:955-967. [PMID: 36280459 PMCID: PMC9671852 DOI: 10.1016/j.tins.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
The dorsal striatum integrates prior and current information to guide appropriate decision-making. Chronic stress and stimulant exposure interferes with decision-making, and can confer similar cognitive and behavioral inflexibilities. This review examines the literature on acute and chronic regulation of the epigenome by stress and stimulants. Recent evidence suggests that exposures to stress and stimulants share similarities in the manners in which they regulate the dorsal striatum epigenome through DNA methylation, transposable element activity, and histone post-translational modifications. These findings suggest that chronic stress and stimulant exposure leads to the accumulation of epigenetic modifications that impair immediate and future neuron function and activity. Such epigenetic mechanisms represent potential therapeutic targets for ameliorating convergent symptoms of stress and addiction.
Collapse
Affiliation(s)
- Michael D Murphy
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Giacometti LL, Buck LA, Barker JM. Estrous cycle and hormone regulation of stress-induced reinstatement of reward seeking in female mice. ADDICTION NEUROSCIENCE 2022; 4:100035. [PMID: 36540408 PMCID: PMC9762733 DOI: 10.1016/j.addicn.2022.100035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Women are more vulnerable to stress-induced craving, which may be associated with increased vulnerability to relapse. Susceptibility to stress-induced craving also appears to be modulated by the menstrual cycle and is negatively correlated with circulating progesterone levels in women. However, the factors that contribute to relapse vulnerability are poorly characterized in female animals. In this study, we assessed whether chronic ethanol exposure, estrous cycle, or exogenous progesterone administration modulated vulnerability to stress-induced reinstatement. To model ethanol dependence, adult female C57Bl/6J mice underwent chronic intermittent ethanol (CIE) exposure via vapor inhalation. Seventy-two hours after the final ethanol exposure, food-restricted mice began training in a conditioned place preference paradigm (CPP) for a food reward, followed by extinction training. Mice were then subjected to forced swim stress and assessed for reinstatement of their preference for the reward-paired chamber. CIE did not affect stress-induced reinstatement. However, stress-induced reinstatement was attenuated during the diestrus phase, when endogenous levels of progesterone peak in female mice. Further, administration of exogenous progesterone mimicked the attenuated reinstatement observed in diestrus. These findings indicate that circulating hormone levels modulate susceptibility to relapse-like behaviors and implicate progesterone as a potential target for treating stress-induced relapse in women.
Collapse
|
40
|
Rocks D, Cham H, Kundakovic M. Why the estrous cycle matters for neuroscience. Biol Sex Differ 2022; 13:62. [PMID: 36307876 PMCID: PMC9615204 DOI: 10.1186/s13293-022-00466-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2022] Open
Abstract
Background Ovarian hormone fluctuations over the rodent estrous cycle and the human menstrual cycle are known to significantly impact brain physiology and disease risk, yet this variable is largely ignored in preclinical neuroscience research, clinical studies, and psychiatric practice. Methods To assess the importance of the estrous cycle information for the analysis of sex differences in neuroscience research, we re-analyzed our previously published data with or without the estrous cycle information, giving a side-by-side comparison of the analyses of behavior, brain structure, gene expression, and 3D genome organization in female and male mice. We also examined and compared the variance of female and male groups across all neurobehavioral measures. Results We show that accounting for the estrous cycle significantly increases the resolution of the neuroscience studies and allows for: (a) identification of masked sex differences; (b) mechanistic insight(s) into the identified sex differences, across different neurobehavioral outcomes, from behavior to molecular phenotypes. We confirm previous findings that female data from either mixed- or staged-female groups are, on average, not more variable than that of males. However, we show that female variability is not, at all, predictive of whether the estrous cycle plays an important role in regulating the outcome of interest. Conclusions We argue that “bringing back” the estrous cycle variable to the main stage is important in order to enhance the resolution and quality of the data, to advance the health of women and other menstruators, and to make research more gender-inclusive. We strongly encourage the neuroscience community to incorporate the estrous cycle information in their study design and data analysis, whenever possible, and we debunk some myths that tend to de-emphasize the importance and discourage the inclusion of this critically important biological variable. HighlightsOvarian hormone fluctuation impacts brain physiology and is a major psychiatric risk factor, yet this variable has been overlooked in neuroscience research and psychiatric practice. From rodent behavior to gene regulation, accounting for the estrous cycle increases the resolution of the neuroscience data, allowing identification and mechanistic insight(s) into sex differences. Female variability does not equal (and is not predictive of) the estrous cycle effect and should not be used as a proxy for the effects of ovarian hormones on the outcome of interest.
Neuroscience researchers are advised to incorporate the estrous cycle information in their studies to foster more equitable, female- and gender-inclusive research. Studies of the ovarian cycle are especially important for improving women’s mental health.
Collapse
|
41
|
Jaric I, Voelkl B, Clerc M, Schmid MW, Novak J, Rosso M, Rufener R, von Kortzfleisch VT, Richter SH, Buettner M, Bleich A, Amrein I, Wolfer DP, Touma C, Sunagawa S, Würbel H. The rearing environment persistently modulates mouse phenotypes from the molecular to the behavioural level. PLoS Biol 2022; 20:e3001837. [PMID: 36269766 PMCID: PMC9629646 DOI: 10.1371/journal.pbio.3001837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/02/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may respond differently to experimental treatments depending on their rearing environment. However, the extent of such phenotypic plasticity and its implications for the replicability of research findings have remained unknown. Here, we examined the extent to which common environmental differences between animal facilities modulate the phenotype of genetically homogeneous (inbred) mice. We conducted a comprehensive multicentre study, whereby inbred C57BL/6J mice from a single breeding cohort were allocated to and reared in 5 different animal facilities throughout early life and adolescence, before being transported to a single test laboratory. We found persistent effects of the rearing facility on the composition and heterogeneity of the gut microbial community. These effects were paralleled by persistent differences in body weight and in the behavioural phenotype of the mice. Furthermore, we show that environmental variation among animal facilities is strong enough to influence epigenetic patterns in neurons at the level of chromatin organisation. We detected changes in chromatin organisation in the regulatory regions of genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity, and regulation of behaviour. Our findings demonstrate that common environmental differences between animal facilities may produce facility-specific phenotypes, from the molecular to the behavioural level. Furthermore, they highlight an important limitation of inferences from single-laboratory studies and thus argue that study designs should take environmental background into account to increase the robustness and replicability of findings. The phenotype of an organism results not only from its genotype but also the influence of its environment throughout development. This study shows that common environmental differences between animal facilities can induce substantial variation in the phenotype of mice, thereby highlighting an important limitation of inferences from single-laboratory studies in animal research.
Collapse
Affiliation(s)
- Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail: (IJ); (HW)
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Clerc
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | | | - Janja Novak
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marianna Rosso
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | | | - S. Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Manuela Buettner
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Irmgard Amrein
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - David P. Wolfer
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Chadi Touma
- Department of Behavioural Biology, Osnabrück University, Osnabrück, Germany
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail: (IJ); (HW)
| |
Collapse
|
42
|
Tronson NC, Schuh KM. Hormonal contraceptives, stress, and the brain: The critical need for animal models. Front Neuroendocrinol 2022; 67:101035. [PMID: 36075276 DOI: 10.1016/j.yfrne.2022.101035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 01/10/2023]
Abstract
Hormonal contraceptives are among the most important health and economic developments in the 20thCentury, providing unprecedented reproductive control and a range of health benefits including decreased premenstrual symptoms and protections against various cancers. Hormonal contraceptives modulate neural function and stress responsivity. These changes are usually innocuous or even beneficial, including their effects onmood. However, in approximately 4-10% of users, or up to 30 million people at any given time, hormonal contraceptives trigger depression or anxiety symptoms. How hormonal contraceptives contribute to these responses and who is at risk for adverse outcomes remain unknown. In this paper, we discussstudies of hormonal contraceptive use in humans and describe the ways in which laboratory animal models of contraceptive hormone exposure will be an essential tool for expanding findings to understand the precise mechanisms by which hormonal contraceptives influence the brain, stress responses, and depression risk.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Kristen M Schuh
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Fischer DK, Krick KS, Han C, Woolf MT, Heller EA. Cocaine regulation of Nr4a1 chromatin bivalency and mRNA in male and female mice. Sci Rep 2022; 12:15735. [PMID: 36130958 PMCID: PMC9492678 DOI: 10.1038/s41598-022-19908-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Cocaine epigenetically regulates gene expression via changes in histone post-translational modifications (HPTMs). We previously found that the immediate early gene Nr4a1 is epigenetically activated by cocaine in mouse brain reward regions. However, few studies have examined multiple HPTMs at a single gene. Bivalent gene promoters are simultaneously enriched in both activating (H3K4me3 (K4)) and repressive (H3K27me3 (K27)) HPTMs. As such, bivalent genes are lowly expressed but poised for activity-dependent gene regulation. In this study, we identified K4&K27 bivalency at Nr4a1 following investigator-administered cocaine in male and female mice. We applied sequential chromatin immunoprecipitation and qPCR to define Nr4a1 bivalency and expression in striatum (STR), prefrontal cortex (PFC), and hippocampus (HPC). We used Pearson's correlation to quantify relationships within each brain region across treatment conditions for each sex. In female STR, cocaine increased Nr4a1 mRNA while maintaining Nr4a1 K4&K27 bivalency. In male STR, cocaine enriched repressive H3K27me3 and K4&K27 bivalency at Nr4a1 and maintained Nr4a1 mRNA. Furthermore, cocaine epigenetically regulated a putative NR4A1 target, Cartpt, in male PFC. This study defined the epigenetic regulation of Nr4a1 in reward brain regions in male and female mice following cocaine, and, thus, shed light on the biological relevance of sex to cocaine use disorder.
Collapse
Affiliation(s)
- Delaney K Fischer
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keegan S Krick
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chloe Han
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Morgan T Woolf
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Ocañas SR, Ansere VA, Tooley KB, Hadad N, Chucair-Elliott AJ, Stanford DR, Rice S, Wronowski B, Pham KD, Hoffman JM, Austad SN, Stout MB, Freeman WM. Differential Regulation of Mouse Hippocampal Gene Expression Sex Differences by Chromosomal Content and Gonadal Sex. Mol Neurobiol 2022; 59:4669-4702. [PMID: 35589920 PMCID: PMC9119800 DOI: 10.1007/s12035-022-02860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/25/2022] [Indexed: 01/23/2023]
Abstract
Common neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, display profound sex differences in prevalence and clinical presentation. However, sex differences in the brain with health and disease are often overlooked in experimental models. Sex effects originate, directly or indirectly, from hormonal or sex chromosomal mechanisms. To delineate the contributions of genetic sex (XX v. XY) versus gonadal sex (ovaries v. testes) to the epigenomic regulation of hippocampal sex differences, we used the Four Core Genotypes (FCG) mouse model which uncouples chromosomal and gonadal sex. Transcriptomic and epigenomic analyses of ~ 12-month-old FCG mouse hippocampus, revealed genomic context-specific regulatory effects of genotypic and gonadal sex on X- and autosome-encoded gene expression and DNA modification patterns. X-chromosomal epigenomic patterns, classically associated with X-inactivation, were established almost entirely by genotypic sex, independent of gonadal sex. Differences in X-chromosome methylation were primarily localized to gene regulatory regions including promoters, CpG islands, CTCF binding sites, and active/poised chromatin, with an inverse relationship between methylation and gene expression. Autosomal gene expression demonstrated regulation by both genotypic and gonadal sex, particularly in immune processes. These data demonstrate an important regulatory role of sex chromosomes, independent of gonadal sex, on sex-biased hippocampal transcriptomic and epigenomic profiles. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosomes regulate autosomes, and differentiate organizational from activational hormonal effects.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Shannon Rice
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Benjamin Wronowski
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Jessica M Hoffman
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven N Austad
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael B Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
45
|
Caradonna SG, Paul MR, Marrocco J. Evidence for an allostatic epigenetic memory on chromatin footprints after double-hit acute stress. Neurobiol Stress 2022; 20:100475. [PMID: 36032404 PMCID: PMC9400173 DOI: 10.1016/j.ynstr.2022.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Stress induces allostatic responses, whose limits depend on genetic background and the nature of the challenges. Allostatic load reflects the cumulation of these reponses over the course of life. Acute stress is usually associated with adaptive responses, although, depending on the intensity of the stress and individual differences , some may experience maladaptive coping that persists through life and may influence subsequent responses to stressful events, as is the case of post-traumatic stress disorder. We investigated the behavioral traits and epigenetic signatures in a double-hit mouse model of acute stress in which heterotypic stressors (acute swim stress and acute restraint stress) were applied within a 7-day interval period. The ventral hippocampus was isolated to study the footprints of chromatin accessibility driven by exposure to double-hit stress. Using ATAC sequencing to determine regions of open chromatin, we showed that depending on the number of acute stressors, several gene sets related to development, immune function, cell starvation, translation, the cytoskeleton, and DNA modification were reprogrammed in both males and females. Chromatin accessibility for transcription factor binding sites showed that stress altered the accessibility for androgen, glucocorticoid, and mineralocorticoid receptor binding sites (AREs/GREs) at the genome-wide level, with double-hit stressed mice displaying a profile unique from either single hit of acute stress. The investigation of AREs/GREs adjacent to gene coding regions revealed several stress-related genes, including Fkbp5, Zbtb16, and Ddc, whose chromatin accessibility was affected by prior exposure to stress. These data demonstrate that acute stress is not truly acute because it induces allostatic signatures that persist in the epigenome and may manifest when a second challenge hits later in life.
Collapse
Affiliation(s)
| | - Matthew R. Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Jordan Marrocco
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
- Department of Biology, Touro University, New York, NY, USA
- Corresponding author. Department of Biology, Touro University, New York, NY, USA.
| |
Collapse
|
46
|
Chiang VSC, DeRosa H, Park JH, Hunter RG. The Role of Transposable Elements in Sexual Development. Front Behav Neurosci 2022; 16:923732. [PMID: 35874645 PMCID: PMC9301316 DOI: 10.3389/fnbeh.2022.923732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Up to 50% of most mammalian genomes are made up of transposable elements (TEs) that have the potential to mobilize around the genome. Despite this prevalence, research on TEs is only beginning to gain traction within the field of neuroscience. While TEs have long been regarded as "junk" or parasitic DNA, it has become evident that they are adaptive DNA and RNA regulatory elements. In addition to their vital role in normal development, TEs can also interact with steroid receptors, which are key elements to sexual development. In this review, we provide an overview of the involvement of TEs in processes related to sexual development- from TE activity in the germline to TE accumulation in sex chromosomes. Moreover, we highlight sex differences in TE activity and their regulation of genes related to sexual development. Finally, we speculate on the epigenetic mechanisms that may govern TEs' role in sexual development. In this context, we emphasize the need to further the understanding of sexual development through the lens of TEs including in a variety of organs at different developmental stages, their molecular networks, and evolution.
Collapse
Affiliation(s)
| | | | | | - Richard G. Hunter
- College of Liberal Arts, Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
47
|
Kundakovic M, Rocks D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Front Neuroendocrinol 2022; 66:101010. [PMID: 35716803 PMCID: PMC9715398 DOI: 10.1016/j.yfrne.2022.101010] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Women are at twice the risk for anxiety and depression disorders as men are, although the underlying biological factors and mechanisms are largely unknown. In this review, we address this sex disparity at both the etiological and mechanistic level. We dissect the role of fluctuating sex hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. We provide parallel evidence in humans and rodents that brain structure and function vary with naturally-cycling ovarian hormones. This female-unique brain plasticity and associated vulnerability are primarily driven by estrogen level changes. For the first time, we provide a sex hormone-driven molecular mechanism, namely chromatin organizational changes, that regulates neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. Finally, we map out future directions including experimental and clinical studies that will facilitate novel sex- and gender-informed approaches to treat depression and anxiety disorders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
48
|
Sex-specific multi-level 3D genome dynamics in the mouse brain. Nat Commun 2022; 13:3438. [PMID: 35705546 PMCID: PMC9200740 DOI: 10.1038/s41467-022-30961-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/24/2022] [Indexed: 01/08/2023] Open
Abstract
The female mammalian brain exhibits sex hormone-driven plasticity during the reproductive period. Recent evidence implicates chromatin dynamics in gene regulation underlying this plasticity. However, whether ovarian hormones impact higher-order chromatin organization in post-mitotic neurons in vivo is unknown. Here, we mapped the 3D genome of ventral hippocampal neurons across the oestrous cycle and by sex in mice. In females, we find cycle-driven dynamism in 3D chromatin organization, including in oestrogen response elements-enriched X chromosome compartments, autosomal CTCF loops, and enhancer-promoter interactions. With rising oestrogen levels, the female 3D genome becomes more similar to the male 3D genome. Cyclical enhancer-promoter interactions are partially associated with gene expression and enriched for brain disorder-relevant genes and pathways. Our study reveals unique 3D genome dynamics in the female brain relevant to female-specific gene regulation, neuroplasticity, and disease risk. Here the authors provide evidence that 3D chromatin structure in the mouse brain differs between males and females and undergoes dynamic remodelling during the female ovarian cycle. They show female-specific 3D genome dynamics affects neuronal gene expression and brain disorder-relevant genes, and could play a role in reproductive hormone-induced brain plasticity and female-specific risk for brain disorders.
Collapse
|
49
|
Parel ST, Peña CJ. Genome-wide Signatures of Early-Life Stress: Influence of Sex. Biol Psychiatry 2022; 91:36-42. [PMID: 33602500 PMCID: PMC8791071 DOI: 10.1016/j.biopsych.2020.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/03/2023]
Abstract
Both history of early-life stress (ELS) and female sex are associated with increased risk for depression. The complexity of how ELS interacts with brain development and sex to impart risk for multifaceted neuropsychiatric disorders is also unlikely to be understood by examining changes in single genes. Here, we review an emerging literature on genome-wide transcriptional and epigenetic signatures of ELS and the potential moderating influence of sex. We discuss evidence both that there are latent sex differences revealed by ELS and that ELS itself produces latent transcriptomic changes revealed by adult stress. In instances where there are broad similarities in global signatures of ELS among females and males, genes that contribute to these patterns are largely distinct based on sex. As this area of investigation grows, an effort should be made to better understand the sex-specific impact of ELS within the human brain, specific contributions of chromosomal versus hormonal sex, how ELS alters the time course of normal transcriptional development, and the cell-type specificity of transcriptomic and epigenomic changes in the brain. A better understanding of how ELS interacts with sex to alter transcriptomic and epigenomic signatures in the brain will inform individualized therapeutic strategies to prevent or ameliorate depression and other psychiatric disorders in this vulnerable population.
Collapse
Affiliation(s)
- Sero Toriano Parel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | | |
Collapse
|
50
|
Sheppard PAS, Puri TA, Galea LAM. Sex Differences and Estradiol Effects in MAPK and Akt Cell Signaling across Subregions of the Hippocampus. Neuroendocrinology 2022; 112:621-635. [PMID: 34407537 DOI: 10.1159/000519072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Rapid effects of estrogens within the hippocampus of rodents are dependent upon cell-signaling cascades, and activation of these cascades by estrogens varies by sex. Whether these pathways are rapidly activated within the dentate gyrus (DG) and CA1 by estrogens across sex and the anatomical longitudinal axis has been overlooked. METHODS Gonadally intact female and male rats were given either vehicle or physiological systemic low (1.1 µg/kg) or high (37.3 µg/kg) doses of 17β-estradiol 30 min prior to tissue collection. To control for the effects of circulating estrogens, an additional group of female rats was ovariectomized (OVX) and administered 17β-estradiol. Brains were extracted, and tissue punches of the CA1 and DG were taken along the longitudinal hippocampal axis (dorsal and ventral) and analyzed for key mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) cascade phosphoproteins. RESULTS Intact females had higher Akt pathway phosphoproteins (pAkt, pGSK-3β, and pp70S6K) than males in the DG (dorsal and ventral) and lower pERK1/2 in the dorsal DG. Most effects of 17β-estradiol on cell signaling occurred in OVX animals. In OVX animals, 17β-estradiol increased cell signaling of MAPK and Akt phosphoproteins (pERK1/2, pJNK, pAkt, and pGSK-3β) in the CA1 and pERK1/2 and pJNK DG. DISCUSSION/CONCLUSIONS Systemic 17β-estradiol treatment rapidly alters phosphoprotein levels in the hippocampus, dependent on reproductive status, and intact females have greater expression of Akt phosphoproteins than that in intact males in the DG. These findings shed light on underlying mechanisms of sex differences in hippocampal function and response to interventions that affect MAPK or Akt signaling.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tanvi A Puri
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|