1
|
Masi I, Ottavi F, Caprara V, Rio DD, Kunkl M, Spadaro F, Licursi V, Tuosto L, Bagnato A, Rosano' L. The extracellular matrix protein type I collagen and fibronectin are regulated by β-arrestin-1/endothelin axis in human ovarian fibroblasts. J Exp Clin Cancer Res 2025; 44:64. [PMID: 39985042 PMCID: PMC11844176 DOI: 10.1186/s13046-025-03327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND The invasive and metastatic spread of serous ovarian cancer (SOC) results from the cooperative interactions between cancer and stroma, which include extracellular matrix (ECM) and cellular components, including cancer-associated fibroblasts (CAFs). Soluble factors secreted by cancer and stromal cells contribute to stroma remodeling through the secretion of ECM proteins, providing a favorable environment for cancer cell dissemination. The peptide endothelin-1 (ET-1), through two G protein-coupled receptors (GPCR), endothelin receptor type A (ETAR) and B (ETBR), acts on both cancer and stromal cells, engaging the protein β-arrestin1 (β-arr1), to bolster SOC progression. However, its role in the regulation of the ECM proteins by ovarian fibroblasts is not understood. This study delves into the role of ET-1 as a regulator of type I collagen (Col1) and fibronectin (FN). METHODS We used human primary ovarian fibroblasts (HOFs) and CAFs. The expression of Col1 (COL1A1) and FN (FN1) were detected by western blotting (WB), quantitative real time-polymerase chain reaction (qRT-PCR), immunofluorescence (IF), and confocal laser scanning microscopy (CLSM) in cells and tumor tissue sections from mice xenografts, while the transcription of COL1A1 was detected by luciferase reporter gene assay. The nuclear function of β-arr1 was evaluated by silencing and rescue expression with wild-type (WT) and nuclear mutant plasmid constructs, RNA seq and differential gene expression and gene sets enrichment analyses. The prognostic role of COL1A1, FN1, EDN1 (ET-1) and ARRB1 (β-arr1) gene expression was evaluated using the Kaplan-Meier plotter database and clinical ovarian cancer tissue samples. RESULTS We demonstrated that ET-1 boosts Col1 and FN expression in HOFs, akin to ovarian CAF levels. Both receptors are implicated, evident from inhibitory effects after ETAR or ETBR antagonist treatments and notably with bosentan, a dual antagonist, in vitro and in vivo. At the molecular level, ET-1 triggers the activation of COL1A1 promoter activity and its enhanced expression via β-arr1 nuclear function. Transcriptome analysis of β-arr1-silenced HOFs confirms the nuclear role of β-arr1 in collagen and ECM remodeling-related protein transcriptional regulation. Accordingly, a high level of EDN1/ARRB1 expression in combination with either COL1A1 or FN1 is associated with the poor prognosis of SOC patients. CONCLUSIONS These findings hint at ET-1 involvement in ECM remodeling and early SOC stages by modulating the expression of Col1 and FN. Targeting ET-1 signaling with ETAR/ETBR antagonists might interfere with the ability of CAFs to produce key ECM proteins in this tumor.
Collapse
Affiliation(s)
- Ilenia Masi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Danila Del Rio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Martina Kunkl
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosano'
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
2
|
Xiao H, Ni J, Yu Q. Identification of ECE2 signaling in promoting non-small lung cancer progression through ET1/YAP1/MAGEA3 axis. Sci Rep 2025; 15:5626. [PMID: 39955423 PMCID: PMC11830017 DOI: 10.1038/s41598-025-90159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major cause of cancer-related mortality worldwide with high heterogeneity. However, the molecular basis for NSCLC development remains poorly understood. In this study, we analyzed endothelin converting enzyme 2 (ECE2) expression in NSCLC using transcriptome data from 59 normal and 515 NSCLC tissues obtained from The cancer genome atlas (TCGA) database. Additionally, we investigated the role of ECE2 in metastasis using 30 clinical NSCLC specimens. In vitro cell proliferation and migration assays were conducted using CCK8 and Transwell assays in NSCLC cells overexpressing ECE2. We employed Western blotting and immunostaining to assess activation of the endothelin-1 (ET1)/YAP1/MAGEA3 pathway. Furthermore, in vivo studies using subcutaneous xenograft mouse models with vector and ECE2-overexpressing A549 cells evaluated the anticancer effects. Our findings revealed elevated ECE2 expression in NSCLC tissues associated with poor prognosis. Moreover, overexpression of ECE2 enhanced both the proliferative and metastatic potential of NSCLC cells. Mechanistically, ECE2 promoted the production of ET1 in NSCLC cells. Subsequently, increased ET1 levels activated the YAP1/MAGEA3 pathway, thereby facilitating tumor progression. Our study uncovered the oncogenic role of ECE2 in promoting NSCLC growth through the ET1/YAP1/MAGEA3 pathway. Inhibiting ET1 signaling markedly enhanced the anticancer effectiveness of paclitaxel (PTX), providing a promising approach for managing NSCLC.
Collapse
Affiliation(s)
- Huaiqing Xiao
- Jiashan Hospital of Traditional Chinese Medicine, No.38, Gujiatai, Weitang Street, Jiashan, Jiaxing, 314199, China
| | - Jiawei Ni
- Jiashan Hospital of Traditional Chinese Medicine, No.38, Gujiatai, Weitang Street, Jiashan, Jiaxing, 314199, China
| | - Qun Yu
- Jiashan Hospital of Traditional Chinese Medicine, No.38, Gujiatai, Weitang Street, Jiashan, Jiaxing, 314199, China.
| |
Collapse
|
3
|
R HC, C GPD. Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation. J Biomol Struct Dyn 2025; 43:798-812. [PMID: 39737749 DOI: 10.1080/07391102.2023.2283793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/01/2025]
Abstract
The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn2+ ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction. To investigate the conformational changes, we performed a comparative molecular dynamic simulation (MDS) to study the effect of the P53-Wildtype (P53-WT) and the DNA contact mutations (R273H and R273C) on the DBD. Our research indicated that the DNA binding bases lose Hydrogen bonds (H bonds) when mutated to P53-R273H and P53-R273C during the simulation. We employed tools, such as PDIviz to highlight the contacts with DNA bases and backbone, major and minor grooves, and various pharmacophore forms of atoms. The contact maps for R273H and R273C were generated using the COZOID tool, which displayed changes in the frequency of the amino acids and DNA bases interaction in the DNA binding domain. These residues have diminished interactions, and the zinc-binding domain shows significant movements by Zn2+ ion binding to the phosphate group of the DNA, moving away from its binding sites. In conclusion, our research suggests that R273H and R273C each have unique stability and self-assembly properties. This understanding might assist researchers in better comprehending the function of the p53 protein and its importance in cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
4
|
Tocci P, Caprara V, Roman C, Sestito R, Rosanò L, Bagnato A. YAP signaling orchestrates the endothelin-1-guided invadopodia formation in high-grade serous ovarian cancer. Biosci Rep 2024; 44:BSR20241320. [PMID: 39495612 DOI: 10.1042/bsr20241320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024] Open
Abstract
The high-grade serous ovarian cancer (HG-SOC) is a notoriously challenging disease, characterized by a rapid peritoneal dissemination. HG-SOC cells leverage actin-rich membrane protrusions, known as invadopodia, to degrade the surrounding extracellular matrix (ECM) and invade, initiating the metastatic cascade. In HG-SOC, the endothelin-1 (ET-1)/endothelin A receptor (ETAR)-driven signaling coordinates invadopodia activity, however how this axis integrates pro-oncogenic signaling routes, as YAP-driven one, impacting on the invadopodia-mediated ECM degradation and metastatic progression, deserves a deeper investigation. Herein, we observed that downstream of the ET-1/ET-1R axis, the RhoC and Rac1 GTPases, acting as signaling intermediaries, promote the de-phosphorylation and nuclear accumulation of YAP. Conversely, the treatment with the dual ETA/ETB receptor antagonist, macitentan, inhibits the ET-1-driven YAP activity. Similarly, RhoC silencing, or cell transfection with a dominant inactive form of Rac1, restores YAP phosphorylation. Mechanistically, the ET-1R/YAP signal alliance coordinates invadopodia maturation into ECM-degrading structures, indicating how such ET-1R-guided protein network represents a route able to enhance the HG-SOC invasive potential. At functional level, we found that the interconnection between the ET-1R/RhoC and YAP signals is required for MMP-2 and MMP-9 proteolytic functions, cell invasion, and cytoskeleton architecture changes, supporting the HG-SOC metastatic strength. In HG-SOC patient-derived xenografts (PDX) macitentan, turning-off the invadopodia regulators RhoC/YAP, halts the metastatic colonization. ET-1R targeting, hindering the YAP activity, weakens the invadopodia machinery, embodying a promising therapeutic avenue to prevent peritoneal dissemination in HG-SOC.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome 00185, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
5
|
Szymanska M, Basavaraja R, Meidan R. A tale of two endothelins: the rise and fall of the corpus luteum. Reprod Fertil Dev 2024; 37:RD24158. [PMID: 39680472 DOI: 10.1071/rd24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelins are small 21 amino acid peptides that interact with G-protein-coupled receptors. They are highly conserved across species and play important roles in vascular biology as well as in disease development and progression. Endothelins, mainly endothelin-1 and endothelin-2, are intricately involved in ovarian function and metabolism. These two peptides differ only in two amino acids but are encoded by different genes, which suggests an independent regulation and a cell-specific mode of expression. This review aims to comprehensively discuss the distinct regulation and roles of endothelin-1 and endothelin-2 regarding corpus luteum function throughout its life span.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; and Present address: Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Caporali S, Butera A, Ruzza A, Zampieri C, Bantula' M, Scharsich S, Ückert AK, Celardo I, Kouzel IU, Leanza L, Gruber A, Montero J, D'Alessandro A, Brunner T, Leist M, Amelio I. Selective metabolic regulations by p53 mutant variants in pancreatic cancer. J Exp Clin Cancer Res 2024; 43:310. [PMID: 39587609 PMCID: PMC11590503 DOI: 10.1186/s13046-024-03232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Approximately half of all human cancers harbour mutations in the p53 gene, leading to the generation of neomorphic p53 mutant proteins. These mutants can exert gain-of-function (GOF) effects, potentially promoting tumour progression. However, the clinical significance of p53 GOF mutations, as well as the selectivity of individual variants, remains controversial and unclear. METHODS To elucidate the metabolic regulations and molecular underpinnings associated with the specific p53R270H and p53R172H mutant variants (the mouse equivalents of human p53R273H and p53R175H, respectively), we employed a comprehensive approach. This included integrating global metabolomic analysis with epigenomic and transcriptomic profiling in mouse pancreatic cancer cells. Additionally, we assessed metabolic parameters such as oxygen consumption rate and conducted analyses of proliferation and cell-cell competition to validate the biological impact of metabolic changes on pancreatic ductal adenocarcinoma (PDAC) phenotype. Our findings were further corroborated through analysis of clinical datasets from human cancer cohorts. RESULTS Our investigation revealed that the p53R270H variant, but not p53R172H, sustains mitochondrial function and energy production while also influencing cellular antioxidant capacity. Conversely, p53R172H, while not affecting mitochondrial metabolism, attenuates the activation of pro-tumorigenic metabolic pathways such as the urea cycle. Thus, the two variants selectively control different metabolic pathways in pancreatic cancer cells. Mechanistically, p53R270H induces alterations in the expression of genes associated with oxidative stress and reduction in mitochondrial respiration. In contrast, p53R172H specifically impacts the expression levels of enzymes involved in the urea metabolism. However, our analysis of cell proliferation and cell competition suggested that the expression of either p53R270H or p53R172H does not influence confer any selective advantage to this cellular model in vitro. Furthermore, assessment of mitochondrial priming indicated that the p53R270H-driven mitochondrial effect does not alter cytochrome c release or the apoptotic propensity of pancreatic cancer cells. CONCLUSIONS Our study elucidates the mutant-specific impact of p53R270H and p53R172H on metabolism of PDAC cancer cells, highlighting the need to shift from viewing p53 mutant variants as a homogeneous group of entities to a systematic assessment of each specific p53 mutant protein. Moreover, our finding underscores the importance of further exploring the significance of p53 mutant proteins using models that more accurately reflect tumor ecology.
Collapse
Affiliation(s)
- Sabrina Caporali
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alessio Butera
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alessia Ruzza
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Carlotta Zampieri
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, San Diego, CA, USA
| | - Marina Bantula'
- Department of Biomedical Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain
| | - Sandra Scharsich
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anna-Katerina Ückert
- Chair for in Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Ivana Celardo
- Chair for in Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Ian U Kouzel
- Applied Bioinformatic Group, University of Konstanz, Constance, Germany
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy
| | - Andreas Gruber
- Applied Bioinformatic Group, University of Konstanz, Constance, Germany
| | - Joan Montero
- Department of Biomedical Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | | | - Thomas Brunner
- Chair for in Biochemical Pharmacology, University of Konstanz, Constance, Germany
| | - Marcel Leist
- Chair for in Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Ivano Amelio
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
7
|
Pape J, Cheema U, Tocci P, Sestito R, Masi I, Loizidou M, Bagnato A, Rosanò L. Endothelin-1 receptor blockade impairs invasion patterns in engineered 3D high-grade serous ovarian cancer tumouroids. Clin Sci (Lond) 2024; 138:1441-1450. [PMID: 39503511 PMCID: PMC11570180 DOI: 10.1042/cs20240371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
High-grade serous ovarian cancer (HG-SOC), accounting for 70-80% of ovarian cancer deaths, is characterized by a widespread and rapid metastatic nature, influenced by diverse cell types, cell-cell interactions, and acellular components of the tumour microenvironment (TME). Within this tumour type, autocrine and paracrine activation of the endothelin-1 receptors (ET-1R), expressed in tumour cells and stromal elements, drives metastatic progression. The lack of three-dimensional models that faithfully recapitulate the unique HG-SOC TME has been the bottleneck in performing drug screening for personalized medicine. Herein, we developed HG-SOC tumouroids by engineering a dense central artificial cancer mass (ACM) containing HG-SOC cells, nested within a compressed hydrogel recapitulating the stromal compartment comprising type I collagen, laminin, fibronectin, and stromal cells (fibroblasts and endothelial cells). ET-1-stimulated HG-SOC cells in the tumouroids showed an altered migration pattern and formed cellular aggregates, mimicking micrometastases that invaded the stroma. Compared with control cells, ET-1-stimulated tumouroids showed a higher number of invasive bodies, which were reduced by treatment with the dual ET-1 receptor (ET-1R) antagonist macitentan. In addition, ET-1 increased the size of the invading aggregates compared with control cells. This study establishes an experimental 3D multicellular model eligible for mechanical research, investigating the impact of matrix stiffness and TME interactions, which will aid drug screening to guide therapeutic decisions in HG-SOC patients.
Collapse
Affiliation(s)
- Judith Pape
- UCL Division of Surgery and Interventional Science, London, U.K
| | - Umber Cheema
- UCL Division of Surgery and Interventional Science, London, U.K
| | - Piera Tocci
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | | | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| |
Collapse
|
8
|
Sun Q, Jiang N, Yao R, Song Y, Li Z, Wang W, Chen J, Guo W. An agonist of the adenosine A 2A receptor, CGS21680, promotes corneal epithelial wound healing via the YAP signalling pathway. Br J Pharmacol 2024; 181:3779-3795. [PMID: 38877785 DOI: 10.1111/bph.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The adenosine A2A receptor (A2AR) is involved in various physiological and pathological processes in the eye; however, the role of the A2AR signalling in corneal epithelial wound healing is not known. Here, the expression, therapeutic effects and signalling mechanism of A2AR in corneal epithelial wound healing were investigated using the A2AR agonist CGS21680. EXPERIMENTAL APPROACH A2AR localization and expression during wound healing in the murine cornea were determined by immunofluorescence staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The effect of CGS21680 on corneal epithelial wound healing in the lesioned corneal and cultured human corneal epithelial cells (hCECs) by modulating cellular proliferation and migration was critically evaluated. The role of Hippo-YAP signalling in mediating the CGS21680 effect on wound healing by pharmacological inhibition of YAP signalling was explored. KEY RESULTS A2AR expression was up-regulated after corneal epithelial injury. Topical administration of CGS21680 dose-dependently promoted corneal epithelial wound healing in the injured corneal epithelium by promoting cellular proliferation. Furthermore, CGS21680 accelerated the cellular proliferation and migration of hCECs in vitro. A2AR activation promoted early up-regulation and later down-regulation of YAP signalling molecules, and pharmacological inhibition of YAP signalling reverted CGS21680-mediated wound healing effect in vivo and in vitro. CONCLUSION AND IMPLICATIONS A2AR activation promotes wound healing by enhancing cellular proliferation and migration through the YAP signalling pathway. A2ARs play an important role in the maintenance of corneal epithelium integrity and may represent a novel therapeutic target for facilitating corneal epithelial wound healing.
Collapse
Affiliation(s)
- Qiuqin Sun
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Nan Jiang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rui Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Song
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zewen Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Du XJ, She G, Wu W, Deng XL. Coupling of β-adrenergic and Hippo pathway signaling: Implications for heart failure pathophysiology and metabolic therapy. Mitochondrion 2024; 78:101941. [PMID: 39122227 DOI: 10.1016/j.mito.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Activation of the sympatho-β-adrenergic receptor (βAR) system is the hallmark of heart disease with adverse consequences that facilitate the onset and progression of heart failure (HF). Use of β-blocking drugs has become the front-line therapy for HF. Last decade has witnessed progress in research demonstrating a pivotal role of Hippo pathway in cardiomyopathy and HF. Clinical studies have revealed myocardial Hippo pathway activation/YAP-TEAD1 inactivation in several types of human cardiomyopathy. Experimental activation of cardiac Hippo signaling or inhibition of YAP-TEAD1 have been shown to leads dilated cardiomyopathy with severe mitochondrial dysfunction and metabolic reprogramming. Studies have also convincingly shown that stimulation of βAR activates cardiac Hippo pathway with inactivation of the down-stream effector molecules YAP/TAZ. There is strong evidence for the adverse consequences of the βAR-Hippo signaling leading to HF. In addition to promoting cardiomyocyte death and fibrosis, recent progress is the demonstration of mitochondrial dysfunction and metabolic reprogramming mediated by βAR-Hippo pathway signaling. Activation of cardiac βAR-Hippo signaling is potent in downregulating a range of mitochondrial and metabolic genes, whereas expression of pro-inflammatory and pro-fibrotic factors are upregulated. Coupling of βAR-Hippo pathway signaling is mediated by several kinases, mechanotransduction and/or Ca2+ signaling, and can be blocked by β-antagonists. Demonstration of the converge of βAR signaling and Hippo pathway bears implications for a better understanding on the role of enhanced sympathetic nervous activity, efficacy of β-antagonists, and metabolic therapy targeting this pathway in HF. In this review we summarize the progress and discuss future research directions in this field.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia,.
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China
| | - Wei Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China; Department of Cardiology, Shaanxi Provincial Hospital and the Third Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
10
|
Tocci P, Roman C, Sestito R, Caprara V, Sacconi A, Molineris I, Tonon G, Blandino G, Bagnato A. The endothelin-1-driven tumor-stroma feed-forward loops in high-grade serous ovarian cancer. Clin Sci (Lond) 2024; 138:851-862. [PMID: 38884602 PMCID: PMC11230866 DOI: 10.1042/cs20240346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The high-grade serous ovarian cancer (HG-SOC) tumor microenvironment (TME) is constellated by cellular elements and a network of soluble constituents that contribute to tumor progression. In the multitude of the secreted molecules, the endothelin-1 (ET-1) has emerged to be implicated in the tumor/TME interplay; however, the molecular mechanisms induced by the ET-1-driven feed-forward loops (FFL) and associated with the HG-SOC metastatic potential need to be further investigated. The tracking of the patient-derived (PD) HG-SOC cell transcriptome by RNA-seq identified the vascular endothelial growth factor (VEGF) gene and its associated signature among those mostly up-regulated by ET-1 and down-modulated by the dual ET-1R antagonist macitentan. Within the ligand-receptor pairs concurrently expressed in PD-HG-SOC cells, endothelial cells and activated fibroblasts, we discovered two intertwined FFL, the ET-1/ET-1R and VEGF/VEGF receptors, concurrently activated by ET-1 and shutting-down by macitentan, or by the anti-VEGF antibody bevacizumab. In parallel, we observed that ET-1 fine-tuned the tumoral and stromal secretome toward a pro-invasive pattern. Into the fray of the HG-SOC/TME double and triple co-cultures, the secretion of ET-1 and VEGF, that share a common co-regulation, was inhibited upon the administration of macitentan. Functionally, macitentan, mimicking the effect of bevacizumab, interfered with the HG-SOC/TME FFL-driven communication that fuels the HG-SOC invasive behavior. The identification of ET-1 and VEGF FFL as tumor and TME actionable vulnerabilities, reveals how ET-1R blockade, targeting the HG-SOC cells and the TME simultaneously, may represent an effective therapeutic option for HG-SOC patients.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Giovanni Tonon
- Center for Omics Sciences (COSR) and Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
11
|
Pal A, Gonzalez-Malerva L, Eaton S, Xu C, Zhang Y, Grief D, Sakala L, Nwekwo L, Zeng J, Christensen G, Gupta C, Streitwieser E, Singharoy A, Park JG, LaBaer J. Multidimensional quantitative phenotypic and molecular analysis reveals neomorphic behaviors of p53 missense mutants. NPJ Breast Cancer 2023; 9:78. [PMID: 37773066 PMCID: PMC10541912 DOI: 10.1038/s41523-023-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.
Collapse
Affiliation(s)
- Anasuya Pal
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Gonzalez-Malerva
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Seron Eaton
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chenxi Xu
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dustin Grief
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lydia Sakala
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lilian Nwekwo
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jia Zeng
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Grant Christensen
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chitrak Gupta
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ellen Streitwieser
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Abhishek Singharoy
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Jin G Park
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joshua LaBaer
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
12
|
Hua F, Zhu H, Yu W, Zheng Q, Zhang L, Liang W, Lin Y, Xiao F, Yi P, Xiong Y, Dong Y, Li H, Fang L, Liu H, Ying J, Wang X. β-arrestin1 regulates astrocytic reactivity via Drp1-dependent mitochondrial fission: implications in postoperative delirium. J Neuroinflammation 2023; 20:113. [PMID: 37170230 PMCID: PMC10173541 DOI: 10.1186/s12974-023-02794-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Postoperative delirium (POD) is a frequent and debilitating complication, especially amongst high risk procedures, such as orthopedic surgery. This kind of neurocognitive disorder negatively affects cognitive domains, such as memory, awareness, attention, and concentration after surgery; however, its pathophysiology remains unknown. Multiple lines of evidence supporting the occurrence of inflammatory events have come forward from studies in human patients' brain and bio-fluids (CSF and serum), as well as in animal models for POD. β-arrestins are downstream molecules of guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). As versatile proteins, they regulate numerous pathophysiological processes of inflammatory diseases by scaffolding with inflammation-linked partners. Here we report that β-arrestin1, one type of β-arrestins, decreases significantly in the reactive astrocytes of a mouse model for POD. Using β-arrestin1 knockout (KO) mice, we find aggravating effect of β-arrestin1 deficiency on the cognitive dysfunctions and inflammatory phenotype of astrocytes in POD model mice. We conduct the in vitro experiments to investigate the regulatory roles of β-arrestin1 and demonstrate that β-arrestin1 in astrocytes interacts with the dynamin-related protein 1 (Drp1) to regulate mitochondrial fusion/fission process. β-arrestin1 deletion cancels the combination of β-arrestin1 and cellular Drp1, thus promoting the translocation of Drp1 to mitochondrial membrane to provoke the mitochondrial fragments and the subsequent mitochondrial malfunctions. Using β-arrestin1-biased agonist, cognitive dysfunctions of POD mice and pathogenic activation of astrocytes in the POD-linked brain region are reduced. We, therefore, conclude that β-arrestin1 is a promising target for the understanding of POD pathology and development of POD therapeutics.
Collapse
Affiliation(s)
- Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Weidong Liang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hua Li
- Department of Anesthesiology, First People's Hospital of Yihuang County, Fuzhou, 344400, Jiangxi, People's Republic of China
| | - Lanran Fang
- Department of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, Jiangxi, People's Republic of China
| | - Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, 17# Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
13
|
Okyere AD, Song J, Patwa V, Carter RL, Enjamuri N, Lucchese AM, Ibetti J, de Lucia C, Schumacher SM, Koch WJ, Cheung JY, Benovic JL, Tilley DG. Pepducin ICL1-9-Mediated β2-Adrenergic Receptor-Dependent Cardiomyocyte Contractility Occurs in a G i Protein/ROCK/PKD-Sensitive Manner. Cardiovasc Drugs Ther 2023; 37:245-256. [PMID: 34997361 PMCID: PMC9262991 DOI: 10.1007/s10557-021-07299-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE β-Adrenergic receptors (βAR) are essential targets for the treatment of heart failure (HF); however, chronic use of βAR agonists as positive inotropes to increase contractility in a Gs protein-dependent manner is associated with increased mortality. Alternatively, we previously reported that allosteric modulation of β2AR with the pepducin intracellular loop (ICL)1-9 increased cardiomyocyte contractility in a β-arrestin (βarr)-dependent manner, and subsequently showed that ICL1-9 activates the Ras homolog family member A (RhoA). Here, we aimed to elucidate both the proximal and downstream signaling mediators involved in the promotion of cardiomyocyte contractility in response to ICL1-9. METHODS We measured adult mouse cardiomyocyte contractility in response to ICL1-9 or isoproterenol (ISO, as a positive control) alone or in the presence of inhibitors of various potential components of βarr- or RhoA-dependent signaling. We also assessed the contractile effects of ICL1-9 on cardiomyocytes lacking G protein-coupled receptor (GPCR) kinase 2 (GRK2) or 5 (GRK5). RESULTS Consistent with RhoA activation by ICL1-9, both Rho-associated protein kinase (ROCK) and protein kinase D (PKD) inhibition were able to attenuate ICL1-9-mediated contractility, as was inhibition of myosin light chain kinase (MLCK). While neither GRK2 nor GRK5 deletion impacted ICL1-9-mediated contractility, pertussis toxin attenuated the response, suggesting that ICL1-9 promotes downstream RhoA-dependent signaling in a Gi protein-dependent manner. CONCLUSION Altogether, our study highlights a novel signaling modality that may offer a new approach to the promotion, or preservation, of cardiac contractility during HF via the allosteric regulation of β2AR to promote Gi protein/βarr-dependent activation of RhoA/ROCK/PKD signaling.
Collapse
Affiliation(s)
- Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Jianliang Song
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Viren Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Rhonda L Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Nitya Enjamuri
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Claudio de Lucia
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
- Instituti Clinici Scientifici Maugeri di Telese Terme, Telese Terme, Italy
| | - Sarah M Schumacher
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA.
| |
Collapse
|
14
|
Ryu JW, Shin HY, Kim HS, Han GH, Kim JW, Lee HN, Cho H, Chung JY, Kim JH. Prognostic value of β-Arrestins in combination with glucocorticoid receptor in epithelial ovarian cancer. Front Oncol 2023; 13:1104521. [PMID: 36969037 PMCID: PMC10036403 DOI: 10.3389/fonc.2023.1104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Hormones may be key factors driving cancer development, and epidemiological findings suggest that steroid hormones play a crucial role in ovarian tumorigenesis. We demonstrated that high glucocorticoid receptor (GR) expression is associated with a poor prognosis of epithelial ovarian cancer. Recent studies have shown that the GR affects β-arrestin expression, and vice versa. Hence, we assessed the clinical significance of β-arrestin expression in ovarian cancer and determined whether β-arrestin and the GR synergistically have clinical significance and value as prognostic factors. We evaluated the expression of β-arrestins 1 and 2 and the GR in 169 patients with primary epithelial ovarian cancer using immunohistochemistry. The staining intensity was graded on a scale of 0-4 and multiplied by the percentage of positive cells. We divided the samples into two categories based on the expression levels. β-arrestin 1 and GR expression showed a moderate correlation, whereas β-arrestin 2 and GR expression did not demonstrate any correlation. Patients with high β-arrestin 1 and 2 expression exhibited improved survival rates, whereas patients with low GR expression showed a better survival rate. Patients with high β-arrestin 1 and low GR levels had the best prognosis among all groups. β-arrestin is highly expressed in ovarian cancer, suggesting its potential as a diagnostic and therapeutic biomarker. The combination of β-arrestin and GR demonstrated greater predictive prognostic power than GR expression alone, implicating another possible role in prognostication.
Collapse
Affiliation(s)
- Ji-Won Ryu
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Sun Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gwan Hee Han
- Department of Obstetrics and Gynecology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hae-Nam Lee
- Department of Obstetrics and Gynecology, Catholic University of Korea Bucheon St. Mary’s Hospital, Bucheon, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Tocci P, Roman C, Sestito R, Di Castro V, Sacconi A, Molineris I, Paolini F, Carosi M, Tonon G, Blandino G, Bagnato A. Targeting tumor-stroma communication by blocking endothelin-1 receptors sensitizes high-grade serous ovarian cancer to PARP inhibition. Cell Death Dis 2023; 14:5. [PMID: 36604418 PMCID: PMC9816119 DOI: 10.1038/s41419-022-05538-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
PARP inhibitors (PARPi) have changed the treatment paradigm of high-grade serous ovarian cancer (HG-SOC). However, the impact of this class of inhibitors in HG-SOC patients with a high rate of TP53 mutations is limited, highlighting the need to develop combinatorial therapeutic strategies to improve responses to PARPi. Here, we unveil how the endothelin-1/ET-1 receptor (ET-1/ET-1R) axis, which is overexpressed in human HG-SOC and associated with poor prognosis, instructs HG-SOC/tumor microenvironment (TME) communication via key pro-malignant factors and restricts the DNA damage response induced by the PARPi olaparib. Mechanistically, the ET-1 axis promotes the p53/YAP/hypoxia inducible factor-1α (HIF-1α) transcription hub connecting HG-SOC cells, endothelial cells and activated fibroblasts, hence fueling persistent DNA damage signal escape. The ET-1R antagonist macitentan, which dismantles the ET-1R-mediated p53/YAP/HIF-1α network, interferes with HG-SOC/stroma interactions that blunt PARPi efficacy. Pharmacological ET-1R inhibition by macitentan in orthotopic HG-SOC patient-derived xenografts synergizes with olaparib to suppress metastatic progression, enhancing PARPi survival benefit. These findings reveal ET-1R as a mechanistic determinant in the regulation of HG-SOC/TME crosstalk and DNA damage response, indicating the use of macitentan in combinatorial treatments with PARPi as a promising and emerging therapy.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy.
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Francesca Paolini
- Tumor Immunology and Immunotherapy Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- Pathology Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Tonon
- Center for Omics Sciences (COSR) and Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
16
|
Clark KL, George JW, Przygrodzka E, Plewes MR, Hua G, Wang C, Davis JS. Hippo Signaling in the Ovary: Emerging Roles in Development, Fertility, and Disease. Endocr Rev 2022; 43:1074-1096. [PMID: 35596657 PMCID: PMC9695108 DOI: 10.1210/endrev/bnac013] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/09/2023]
Abstract
Emerging studies indicate that the Hippo pathway, a highly conserved pathway that regulates organ size control, plays an important role in governing ovarian physiology, fertility, and pathology. Specific to the ovary, the spatiotemporal expression of the major components of the Hippo signaling cascade are observed throughout the reproductive lifespan. Observations from multiple species begin to elucidate the functional diversity and molecular mechanisms of Hippo signaling in the ovary in addition to the identification of interactions with other signaling pathways and responses to various external stimuli. Hippo pathway components play important roles in follicle growth and activation, as well as steroidogenesis, by regulating several key biological processes through mechanisms of cell proliferation, migration, differentiation, and cell fate determination. Given the importance of these processes, dysregulation of the Hippo pathway contributes to loss of follicular homeostasis and reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency, and ovarian cancers. This review highlights what is currently known about the Hippo pathway core components in ovarian physiology, including ovarian development, follicle development, and oocyte maturation, while identifying areas for future research to better understand Hippo signaling as a multifunctional pathway in reproductive health and biology.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Jitu W George
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michele R Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cheng Wang
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - John S Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
17
|
Roszkowska KA, Piecuch A, Sady M, Gajewski Z, Flis S. Gain of Function (GOF) Mutant p53 in Cancer-Current Therapeutic Approaches. Int J Mol Sci 2022; 23:13287. [PMID: 36362074 PMCID: PMC9654280 DOI: 10.3390/ijms232113287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2023] Open
Abstract
Continuous development of personalized treatments is undoubtedly beneficial for oncogenic patients' comfort and survival rate. Mutant TP53 is associated with a worse prognosis due to the occurrence of metastases, increased chemoresistance, and tumor growth. Currently, numerous compounds capable of p53 reactivation or the destabilization of mutant p53 are being investigated. Several of them, APR-246, COTI-2, SAHA, and PEITC, were approved for clinical trials. This review focuses on these novel therapeutic opportunities, their mechanisms of action, and their significance for potential medical application.
Collapse
Affiliation(s)
- Katarzyna A. Roszkowska
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| | | | | | | | - Sylwia Flis
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| |
Collapse
|
18
|
Si M, Song Y, Wang X, Wang D, Liu X, Qu X, Song Z, Yu X. CXCL12/CXCR7/β-arrestin1 biased signal promotes epithelial-to-mesenchymal transition of colorectal cancer by repressing miRNAs through YAP1 nuclear translocation. Cell Biosci 2022; 12:171. [PMID: 36210463 PMCID: PMC9549625 DOI: 10.1186/s13578-022-00908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Chemokine CXC motif receptor 7 (CXCR7) is an atypical G protein-coupled receptor (GPCR) that signals in a biased fashion. CXCL12/CXCR7 biased signal has been reported to play crucial roles in multiple stages of colorectal cancer (CRC). However, the mechanism of CXCL12/CXCR7 biased signal in promoting CRC progression and metastasis remains obscure. RESULTS We demonstrate that CXCR7 activation promotes EMT and upregulates the expression of Vimentin and doublecortin-like kinase 1 (DCLK1) in CRC cells with concurrent repression of miR-124-3p and miR-188-5p through YAP1 nuclear translocation. Cell transfection and luciferase assay prove that these miRNAs regulate EMT by targeting Vimentin and DCLK1. More importantly, CXCL12/CXCR7/β-arrestin1-mediated biased signal induces YAP1 nuclear translocation, which functions as a transcriptional repressor by interacting with Yin Yang 1 (YY1) and recruiting YY1 to the promoters of miR-124-3p and miR-188-5p. Pharmacological inhibitor of YAP1 suppresses EMT and tumor metastasis upon CXCR7 activation in vivo in tumor xenografts of nude mice and inflammatory colonic adenocarcinoma models. Clinically, the expression of CXCR7 is positively correlated with nuclear YAP1 levels and EMT markers. CONCLUSIONS Our studies reveal a novel mechanism and clinical significance of CXCL12/CXCR7 biased signal in promoting EMT and invasion in CRC progression. These findings highlight the potential of targeting YAP1 nuclear translocation in hampering CXCL12/CXCR7 biased signal-induced metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Mahan Si
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yujia Song
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Wang
- grid.24696.3f0000 0004 0369 153XDepartment of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dong Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xianjun Qu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhiyu Song
- grid.414011.10000 0004 1808 090XDepartment of Pharmacy, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Xinfeng Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Aamna B, Kumar Dan A, Sahu R, Behera SK, Parida S. Deciphering the signaling mechanisms of β-arrestin1 and β-arrestin2 in regulation of cancer cell cycle and metastasis. J Cell Physiol 2022; 237:3717-3733. [PMID: 35908197 DOI: 10.1002/jcp.30847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
β-Arrestins are ubiquitously expressed intracellular proteins with many functions which interact directly and indirectly with a wide number of cellular partners and mediate downstream signaling. Originally, β-arrestins were identified for their contribution to GPCR desensitization to agonist-mediated activation, followed by receptor endocytosis and ubiquitylation. However, current investigations have now recognized that in addition to GPCR arresting (hence the name arrestin). β-Arrestins are adaptor proteins that control the recruitment, activation, and scaffolding of numerous cytoplasmic signaling complexes and assist in G-protein receptor signaling, thus bringing them into close proximity. They have participated in various cellular processes such as cell proliferation, migration, apoptosis, and transcription via canonical and noncanonical pathways. Despite their significant recognition in several physiological processes, these activities are also involved in the onset and progression of various cancers. This review delivers a concise overview of the role of β-arrestins with a primary emphasis on the signaling processes which underlie the mechanism of β-arrestins in the onset of cancer. Understanding these processes has important implications for understanding the therapeutic intervention and treatment of cancer in the future.
Collapse
Affiliation(s)
- Bari Aamna
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, India
| | - Aritra Kumar Dan
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Santosh Kumar Behera
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sagarika Parida
- Department of Botany, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
20
|
Structural basis and molecular mechanism of biased GPBAR signaling in regulating NSCLC cell growth via YAP activity. Proc Natl Acad Sci U S A 2022; 119:e2117054119. [PMID: 35858343 PMCID: PMC9303995 DOI: 10.1073/pnas.2117054119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for β-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-β-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.
Collapse
|
21
|
YAP and TAZ: Monocorial and bicorial transcriptional co-activators in human cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188756. [PMID: 35777600 DOI: 10.1016/j.bbcan.2022.188756] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
The transcriptional regulators YAP and TAZ are involved in numerous physiological processes including organ development, growth, immunity and tissue regeneration. YAP and TAZ dysregulation also contribute to tumorigenesis, thereby making them attractive cancer therapeutic targets. Arbitrarily, YAP and TAZ are often considered as a single protein, and are referred to as YAP/TAZ in most studies. However, increasing experimental evidences documented that YAP and TAZ perform both overlapping and distinct functions in several physiological and pathological processes. In addition to regulating distinct processes, YAP and TAZ are also regulated by distinct upstream cues. The aim of the review is to describe the distinct roles of YAP and TAZ focusing particularly on cancer. Therapeutic strategies targeting either YAP and TAZ proteins or only one of them should be carefully evaluated. Selective targeting of YAP or TAZ may in fact impair different pathways and determine diverse clinical outputs.
Collapse
|
22
|
Kim M, Kim JM, Cho EJ, Sung CO, Kim J, Jang SJ. β-Arrestin 2 suppresses the activation of YAP by promoting LATS kinase activity. Genes Dis 2022; 10:348-351. [DOI: 10.1016/j.gendis.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
|
23
|
Purayil HT, Daaka Y. βArrestin1 regulates glucocorticoid receptor mitogenic signaling in castration-resistant prostate cancer. Prostate 2022; 82:816-825. [PMID: 35226379 DOI: 10.1002/pros.24324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prostate cancer (PC) is the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in males. The disease is initially treated with methods that inhibit androgen receptor (AR) signal transduction. Laboratory-based and clinical studies have identified alternative pathways that cause the failure of AR signal inhibition and consequent development of castration-resistant prostate cancer (CRPC). Glucocorticoid receptor (GR) signaling is activated in certain PC patients and promotes the emergence of CRPC, although by as yet incompletely understood mechanisms. We have previously demonstrated that ubiquitous βarrestin1 (βArr1) expression levels are linked to PC progression. Here, we consider the possibility that βArr1 interacts with and activates GR in model CRPC cells. METHODS Bioinformatic analysis of tumor xenograft and human PC datasets was used to correlate the expression of βArr1 and GR. Western blot, immunohistochemistry and immunofluorescence microscopy, and subcellular fractionation were used to determine protein expression level and localization. Immunoprecipitation was applied to detect protein-protein interactions. RNA expression levels were determined using quantitative reverse transcription-polymerase chain reaction. Prostate sphere analysis was used to assess the rate of growth and invasion. The xenograft tumor implantation method was used to determine the tumor growth rate, local invasion, and metastasis. RESULTS Elevated expression of βArr1 positively correlated with increased GR expression and function in CRPC xenograft and in human PC patients. βArr1 is expressed in the cell cytosol and nucleus, and it formed a complex with GR in the nucleus and not cytosol. Depletion of βArr1 in AR-null CRPC cells inhibited GR function and CRPC growth and invasion in both in vitro and in vivo settings. CONCLUSIONS βArr1 binds GR that initiates mitogenic signaling cascades involved in the progression of PC to CRPC. The targeting of the βArr1-GR axis may provide a new opportunity to better manage the CRPC disease.
Collapse
Affiliation(s)
- Hamsa Thayele Purayil
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Sestito R, Tocci P, Roman C, Di Castro V, Bagnato A. Functional interaction between endothelin-1 and ZEB1/YAP signaling regulates cellular plasticity and metastasis in high-grade serous ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:157. [PMID: 35477522 PMCID: PMC9047299 DOI: 10.1186/s13046-022-02317-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Background Epithelial-to-mesenchymal transition (EMT) encompasses a highly dynamic and complex key process which leads to metastatic progression. In high-grade serous ovarian carcinoma (HG-SOC), endothelin-1 (ET-1)/endothelin A receptor (ETAR) signaling promotes EMT driving tumor progression. However, the complex nature of intertwined regulatory circuits activated by ET-1 to trigger the metastatic process is not fully elucidated. Methods The capacity of ET-1 pathway to guide a critical transcriptional network that is instrumental for metastatic growth was identified in patient-derived HG-SOC cells and cell lines through immunoblotting, q-RT-PCR, co-immunoprecipitation, in situ proximity ligation, luciferase reporter, chromatin immunoprecipitation assays and publicly available databases. Functional assays in HG-SOC cells and HG-SOC xenografts served to test the inhibitory effects of ET-1 receptors (ET-1R) antagonist in vitro and in vivo. Results We demonstrated that ET-1/ETAR axis promoted the direct physical ZEB1/YAP interaction by inducing their nuclear accumulation in HG-SOC cells. Moreover, ET-1 directed their engagement in a functional transcriptional complex with the potent oncogenic AP-1 factor JUN. This led to the aberrant activation of common target genes, including EDN1 (ET-1) gene, thereby creating a feed-forward loop that sustained a persistent ET-1/ZEB1 signaling activity. Notably, ET-1-induced Integrin-linked kinase (ILK) signaling mediated the activation of YAP/ZEB1 circuit driving cellular plasticity, invasion and EMT. Of therapeutic interest, treatment of HG-SOC cells with the FDA approved ET-1R antagonist macitentan, targeting YAP and ZEB1-driven signaling, suppressed metastasis in vivo in mice. High gene expression of ETAR/ILK/YAP/AP-1/ZEB1 was a strong predictor of poor clinical outcome in serous ovarian cancer patients, indicating the translational relevance of this signature expression. Conclusions This study provides novel mechanistic insights of the ET-1R-driven mediators that support the ability of HG-SOC to acquire metastatic traits which include the cooperation of YAP and ZEB1 regulatory circuit paving the way for innovative treatment of metastatic ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02317-1.
Collapse
Affiliation(s)
- Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
25
|
Therapeutic strategies to overcome cisplatin resistance in ovarian cancer. Eur J Med Chem 2022; 232:114205. [DOI: 10.1016/j.ejmech.2022.114205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
|
26
|
Del Rio D, Masi I, Caprara V, Spadaro F, Ottavi F, Strippoli R, Sandoval P, López-Cabrera M, Sainz de la Cuesta R, Bagnato A, Rosanò L. Ovarian Cancer-Driven Mesothelial-to-Mesenchymal Transition is Triggered by the Endothelin-1/β-arr1 Axis. Front Cell Dev Biol 2021; 9:764375. [PMID: 34926453 PMCID: PMC8672058 DOI: 10.3389/fcell.2021.764375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Transcoelomic spread of serous ovarian cancer (SOC) results from the cooperative interactions between cancer and host components. Tumor-derived factors might allow the conversion of mesothelial cells (MCs) into tumor-associated MCs, providing a favorable environment for SOC cell dissemination. However, factors and molecular mechanisms involved in this process are largely unexplored. Here we investigated the tumor-related endothelin-1 (ET-1) as an inducer of changes in MCs supporting SOC progression. Here, we report a significant production of ET-1 from MCs associated with the expression of its cognate receptors, ETA and ETB, along with the protein β-arrestin1. ET-1 triggers MC proliferation via β-arrestin1-dependent MAPK and NF-kB pathways and increases the release of cancer-related factors. The ETA/ETB receptor activation supports the genetic reprogramming of mesothelial-to-mesenchymal transition (MMT), with upregulation of mesenchymal markers, as fibronectin, α-SMA, N-cadherin and vimentin, NF-kB-dependent Snail transcriptional activity and downregulation of E-cadherin and ZO-1, allowing to enhanced MC migration and invasion, and SOC transmesothelial migration. These effects are impaired by either blockade of ETAR and ETBR or by β-arrestin1 silencing. Notably, in peritoneal metastases both ETAR and ETBR are co-expressed with MMT markers compared to normal control peritoneum. Collectively, our report shows that the ET-1 axis may contribute to the early stage of SOC progression by modulating MC pro-metastatic behaviour via MMT.
Collapse
Affiliation(s)
- Danila Del Rio
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Pilar Sandoval
- Centro de Biología Molecular "Severo Ochoa" (CBM), Spanish Council for Scientific Research (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular "Severo Ochoa" (CBM), Spanish Council for Scientific Research (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy.,Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
27
|
Yang Y, Paivinen P, Xie C, Krup AL, Makela TP, Mostov KE, Reiter JF. Ciliary Hedgehog signaling patterns the digestive system to generate mechanical forces driving elongation. Nat Commun 2021; 12:7186. [PMID: 34893605 PMCID: PMC8664829 DOI: 10.1038/s41467-021-27319-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
How tubular organs elongate is poorly understood. We found that attenuated ciliary Hedgehog signaling in the gut wall impaired patterning of the circumferential smooth muscle and inhibited proliferation and elongation of developing intestine and esophagus. Similarly, ablation of gut-wall smooth muscle cells reduced lengthening. Disruption of ciliary Hedgehog signaling or removal of smooth muscle reduced residual stress within the gut wall and decreased activity of the mechanotransductive effector YAP. Removing YAP in the mesenchyme also reduced proliferation and elongation, but without affecting smooth muscle formation, suggesting that YAP interprets the smooth muscle-generated force to promote longitudinal growth. Additionally, we developed an intestinal culture system that recapitulates the requirements for cilia and mechanical forces in elongation. Pharmacologically activating YAP in this system restored elongation of cilia-deficient intestines. Thus, our results reveal that ciliary Hedgehog signaling patterns the circumferential smooth muscle to generate radial mechanical forces that activate YAP and elongate the gut.
Collapse
Affiliation(s)
- Ying Yang
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Pekka Paivinen
- iCAN Digital Precision Cancer Medicine Flagship, Research Programs Unit, Faculty of Medicine and HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Chang Xie
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Alexis Leigh Krup
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Tomi P Makela
- iCAN Digital Precision Cancer Medicine Flagship, Research Programs Unit, Faculty of Medicine and HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Keith E Mostov
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
28
|
USP21 regulates Hippo signaling to promote radioresistance by deubiquitinating FOXM1 in cervical cancer. Hum Cell 2021; 35:333-347. [PMID: 34825342 DOI: 10.1007/s13577-021-00650-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
The ectopic expression of ubiquitin-specific peptidase 21 (USP21) is common in different types of cancer. However, its relationship with radio-sensitivity in cervical cancer (CC) remains unclear. In this study, we aimed to uncover the effect of USP21 on CC radio-resistance and its underlying mechanism. Our results showed that the expression of USP21 was markedly increased in CC tissues of radio-resistant patients and CC cells treated with radiation. Besides, knockdown of USP21 restrained the survival fractions, and facilitated apoptosis of CC cells in the absence or presence of radiation. Additionally, USP21 in combination with FOXM1 regulated the stability and ubiquitination of FOXM1. However, FOXM1 reversed the effects of USP21 knockdown on the radio-resistance of CC cells. Furthermore, FOXM1 knockdown activated the Hippo pathway by inhibiting the nuclear translocation of Yes-associated protein 1 (YAP1), and FOXM1 knockdown attenuated the radio-resistance of CC cells via inhibiting the Hippo-YAP1 pathway. USP21 activated the Hippo pathway by mediating FOXM1. Knockdown of USP21 enhanced the radio-sensitivity of CC cells in vivo. In summary, USP21 contributed to the radio-resistance of CC cells via FOXM1/Hippo signaling, and may serve as a promising target for radio-sensitizers in the radiotherapy of CC.
Collapse
|
29
|
Bioinformatic analysis of key pathways and genes shared between endometriosis and ovarian cancer. Arch Gynecol Obstet 2021; 305:1329-1342. [DOI: 10.1007/s00404-021-06285-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
|
30
|
Sun Y, Li W, Li X, Zheng H, Qiu Y, Yang H. Oncogenic role of karyopherin α2 (KPNA2) in human tumors: A pan-cancer analysis. Comput Biol Med 2021; 139:104955. [PMID: 34735944 DOI: 10.1016/j.compbiomed.2021.104955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND KPNA2, a nuclear export protein that plays an important role in tumorigenesis, is an emerging hotspot target in oncology. Despite increasing supporting evidence of its importance, no pan-cancer analysis, across multiple databases, is available for in-depth data mining of the gene. METHODS Tumor data from both The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were explored to investigate the potential oncogenic roles of KPNA2. Diverse analytical methods were used to gain a full-scale understanding of KPNA2: gene expression, survival situations, genetic mutations, DNA methylation, sites of protein phosphorylation, immunocyte infiltration, and correlative cellular pathways. RESULTS KPNA2 is highly expressed in many cancers, and different correlations exist between KPNA2 expression and prognosis of cancer patients. cBioPortal reported that a nonsense mutation of R285* was considered to be the primary tumorigenic genetic alteration to KPNA2 and was found in cases of LUSC, STAD, and CESC. Enhanced phosphorylation of S62 was found in several cancers and the level of infiltration of cancer-associated fibroblasts was found to be linearly correlated with KPNA2 expression levels in ACC, BRCA, MESO, TGCT, THCA, and THYM. Correlations between KPNA2 DNA methylation and the pathogenesis of various tumors in TCGA were further identified. KEGG and GO enrichment analysis identified cell cycle, microtubule binding, and tubulin binding functions for KPNA2. CONCLUSION This is the first pan-cancer analysis focusing on KPNA2. It provides a comprehensive understanding about the role of KPNA2 in tumorigenesis and highlights the potential targeted role of KPNA2 for cancer study.
Collapse
Affiliation(s)
- Yiming Sun
- Department of General Surgery, The Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Wenjing Li
- Department of the Stem Cell and Regenerative Medicine, The Affiliated Southwest Hospital of Army Medical University, China
| | - Xiaolong Li
- Department of General Surgery, The Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Hong Zheng
- Amy Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, The Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China.
| | - Hua Yang
- Department of General Surgery, The Affiliated Xinqiao Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
31
|
Wu Q, Chen S, Zhu H, Xu N, Yang Q, Yao W, Gao X. Biased agonists with less glucagon-like peptide-1 receptor-mediated endocytosis prolong hypoglycaemic effects. Eur J Pharmacol 2021; 907:174203. [PMID: 34048741 DOI: 10.1016/j.ejphar.2021.174203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
Receptor endocytic trafficking entails targeting receptors and ligands to endocytic sites, followed by internalization and sorting to recycling or degradative compartments. Thus, membrane receptor-mediated signalling pathways not only contribute to the efficacy of the drugs but also play a crucial role in the metabolic elimination of peptide drugs. Glucagon-like peptide-1 (GLP-1) receptor is the crucial target for type 2 diabetes mellitus. We mainly focused on the characteristics, early evaluation of GLP-1 receptor endocytosis and effects of optimization for endocytosis on druggability. The GLP-1 receptor endocytosis characteristics of agonists were analysed by a multifunction microplate reader, flow cytometer and confocal microscope. The intracellular cyclic adenosine monophosphate (cAMP) activation of agonists was analysed based on a reporter gene assay, and intracellular β-arrestin recruitment detection was detected based on a Tango assay. We established quantitative evaluation methods of endocytosis based on fluorescently labelled agonist and receptor trafficking and used them to screen agonists with less endocytosis. Sprague-Dawley rats were used for pharmacokinetic analyses, and the hypoglycaemic activity was evaluated by intraperitoneal glucose tolerance tests (IPGTT). Our results showed that GLP-1 receptor-mediated endocytosis, as a manner of elimination, was clathrin-dependent. More importantly, we found that agonists biased towards the G protein pathway were less endocytosed by GLP-1 receptor. We screened an analogue of Exendin-4 M4, which was biased toward the G protein pathway with less endocytosis by the GLP-1 receptor. M4, which shows prolonged hypoglycaemic activities and a long half-life, can be used as a lead compound for type 2 diabetes mellitus treatment.
Collapse
Affiliation(s)
- Qiang Wu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Hanchen Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Na Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qianhua Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
32
|
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:265-305. [PMID: 34367381 PMCID: PMC8334338 DOI: 10.1007/s13167-021-00248-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communicable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as a predictor of ageing and related pathologies,a sensor of lifestyle quality and progression of suboptimal health conditions to diseases for their targeted preventionand as a potent target for cost-effective treatments tailored to the person.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
33
|
Mutated p53 in HGSC-From a Common Mutation to a Target for Therapy. Cancers (Basel) 2021; 13:cancers13143465. [PMID: 34298679 PMCID: PMC8304959 DOI: 10.3390/cancers13143465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Ovarian high-grade serous cancer (HGSC), the most common and the deadliest subtype of epithelial ovarian cancer, is characterized by frequent mutations in the TP53 tumor suppressor gene, encoding for the p53 protein in nearly 100% of cases. This makes p53 the focus of many studies trying to understand its role in HGSC. The aim of our review paper is to provide updates on the latest findings related to the role of mutant p53 in HGSC. This includes the clinical outcomes of TP53 mutations in HGSC, upstream regulators and downstream effectors of p53, its function in the earliest stages of HGSC development and in the interplay between the tumor cells and their microenvironment. We summarize with the likelihood of p53 mutants to serve as biomarkers for early diagnosis and as targets for therapy in HGSC. Abstract Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.
Collapse
|
34
|
Purayil HT, Zhang Y, Black JB, Gharaibeh R, Daaka Y. Nuclear βArrestin1 regulates androgen receptor function in castration resistant prostate cancer. Oncogene 2021; 40:2610-2620. [PMID: 33692468 DOI: 10.1038/s41388-021-01730-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 01/31/2023]
Abstract
Progression of prostate cancer (PC) to terminal castration-resistant PC (CRPC) involves a diverse set of intermediates, and androgen receptor (AR) is the key mediator of PC initiation and progression to CRPC. Hence, identification of factors involved in the regulation of AR expression and function is a necessary first-step to improve disease outcome. In this study, we identified ubiquitous βArrestin 1 (βArr1) as a regulator of AR function in CRPC. Unbiased gene expression analysis of public datasets revealed increased levels of ARRB1 (the gene encoding βArr1) in CRPC when compared to normal tissue. Further, βArr1 expression correlated with enhanced AR transcriptional function in these datasets. The βArr1 partitions to both nucleus and cytosol and mechanistic studies showed that nuclear, and not cytosolic, βArr1 formed a complex with AR and AR-coregulator βCatenin and that the heterotrimeric protein complex was recruited to androgen-response elements of AR-regulated genes. Functionally, we demonstrate that depletion of βArr1 attenuates PC cell and tumor growth and metastasis, and rescued expression of nuclear, but not cytosolic, βArr1 restores the PC colony growth and invasion of Matrigel in vitro and tumor growth and metastasis in mice. The targeting of βArr1-regulated AR transcriptional function may be used in the development of new drugs to treat lethal CRPC.
Collapse
Affiliation(s)
- Hamsa Thayele Purayil
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yushan Zhang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA.,Stephen Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Joseph B Black
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Raad Gharaibeh
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Masi I, Caprara V, Spadaro F, Chellini L, Sestito R, Zancla A, Rainer A, Bagnato A, Rosanò L. Endothelin-1 drives invadopodia and interaction with mesothelial cells through ILK. Cell Rep 2021; 34:108800. [PMID: 33657382 DOI: 10.1016/j.celrep.2021.108800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/02/2021] [Accepted: 02/05/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer cells use actin-based membrane protrusions, invadopodia, to degrade stroma and invade. In serous ovarian cancer (SOC), the endothelin A receptor (ETAR) drives invadopodia by a not fully explored coordinated function of β-arrestin1 (β-arr1). Here, we report that β-arr1 links the integrin-linked kinase (ILK)/βPIX complex to activate Rac3 GTPase, acting as a central node in the adhesion-based extracellular matrix (ECM) sensing and degradation. Downstream, Rac3 phosphorylates PAK1 and cofilin and promotes invadopodium-dependent ECM proteolysis and invasion. Furthermore, ETAR/ILK/Rac3 signaling supports the communication between cancer and mesothelial cells, favoring SOC cell adhesion and transmigration. In vivo, ambrisentan, an ETAR antagonist, inhibits the adhesion and spreading of tumor cells to intraperitoneal organs, and invadopodium marker expression. As prognostic factors, high EDNRA/ILK expression correlates with poor SOC clinical outcome. These findings provide a framework for the ET-1R/β-arr1 pathway as an integrator of ILK/Rac3-dependent adhesive and proteolytic signaling to invadopodia, favoring cancer/stroma interactions and metastatic behavior.
Collapse
Affiliation(s)
- Ilenia Masi
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Lidia Chellini
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Rosanna Sestito
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Andrea Zancla
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome 00128, Italy; Department of Engineering, Università degli Studi Roma Tre, via Vito Volterra 62, Rome 00146, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome 00128, Italy; Institute of Nanotechnology (NANOTEC), National Research Council (CNR), c/o Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy; Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome 00185, Italy.
| |
Collapse
|
36
|
Liu T, Ma Y, Yin Q, Zhou H, Fang Y. Association of β-arrestin1 and p53-Mdm2 signaling in the development of missed abortion. J Obstet Gynaecol Res 2021; 47:1675-1685. [PMID: 33611816 DOI: 10.1111/jog.14643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Missed abortion is a peculiar form of spontaneous abortion before 20 weeks' gestation. The definite etiology and pathogenesis are not fully understood. Recent studies have demonstrated that p53/Mdm2-mediated ubiquitination of the IGF-1R may be closely related to G-protein-coupled receptor kinases (GRK)/β-arrestin1 system. Our previous studies have confirmed that the elevated expression of p53 and Mdm2 may be responsible for apoptosis during missed abortion. However, there was no information surrounding β-arrestin1 in missed abortion. METHODS The mRNA levels of β-arrestin1 in villous samples of 30 missed abortion patients and 31 healthy controls were determined by real-time quantitative polymerase chain reaction (PCR). Immunohistochemistry was used to explore the expression and location of β-arrestin1, p53, Mdm2, VEGF and HIF-lα in trophoblasts. Transwell assays were performed to examine the influences of β-arrestin1 expression on cell invasion. Furthermore, we tested the effect of β-arrestin1 on the expression of p53, Mdm2, ERK, AKT and NF-κB. RESULTS The expression of β-arrestin1 in the villous samples of missed abortion group was dramatically lower than control group by quantitative real-time-PCR and immunohistochemistry. Furthermore, the patients with missed abortion showed significantly higher levels of p53, Mdm2, HIF-lα and lower level of VEGF than healthy controls by immunohistochemistry. Functional studies showed that suppression of β-arrestin1 in HTR-8 cells inhibited cell invasion. The protein expressions of ERK and AKT in HTR-8 cells were significantly downregulated by reducing the expression of β-arrestin1, while the expressions of p53, Mdm2, NF-κB were enhanced. Overexpression of β-arrestin1 exhibited the adverse effect. CONCLUSION Our data indicated that β-arrestin1 play an important role in maintaining the maternal-fetal tolerance, the decreased expression of β-arrestin1 in the villous samples may be related with the development of missed abortion.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuyan Ma
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qihui Yin
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huanyu Zhou
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Fang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
37
|
Alvarado-Ortiz E, de la Cruz-López KG, Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E, García-Carrancá A. Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front Cell Dev Biol 2021; 8:607670. [PMID: 33644030 PMCID: PMC7905058 DOI: 10.3389/fcell.2020.607670] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023] Open
Abstract
Frequent p53 mutations (mutp53) not only abolish tumor suppressor capacities but confer various gain-of-function (GOF) activities that impacts molecules and pathways now regarded as central for tumor development and progression. Although the complete impact of GOF is still far from being fully understood, the effects on proliferation, migration, metabolic reprogramming, and immune evasion, among others, certainly constitute major driving forces for human tumors harboring them. In this review we discuss major molecular mechanisms driven by mutp53 GOF. We present novel mechanistic insights on their effects over key functional molecules and processes involved in cancer. We analyze new mechanistic insights impacting processes such as immune system evasion, metabolic reprogramming, and stemness. In particular, the increased lipogenic activity through the mevalonate pathway (MVA) and the alteration of metabolic homeostasis due to interactions between mutp53 and AMP-activated protein kinase (AMPK) and Sterol regulatory element-binding protein 1 (SREBP1) that impact anabolic pathways and favor metabolic reprograming. We address, in detail, the impact of mutp53 over metabolic reprogramming and the Warburg effect observed in cancer cells as a consequence, not only of loss-of-function of p53, but rather as an effect of GOF that is crucial for the imbalance between glycolysis and oxidative phosphorylation. Additionally, transcriptional activation of new targets, resulting from interaction of mutp53 with NF-kB, HIF-1α, or SREBP1, are presented and discussed. Finally, we discuss perspectives for targeting molecules and pathways involved in chemo-resistance of tumor cells resulting from mutp53 GOF. We discuss and stress the fact that the status of p53 currently constitutes one of the most relevant criteria to understand the role of autophagy as a survival mechanism in cancer, and propose new therapeutic approaches that could promote the reduction of GOF effects exercised by mutp53 in cancer.
Collapse
Affiliation(s)
- Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jared Becerril-Rico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sánchez
- Programa de Posgrado en Ciencias Bioquímicas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Laboratorio de Virus and Cáncer, Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
38
|
YAP and endothelin-1 signaling: an emerging alliance in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:27. [PMID: 33422090 PMCID: PMC7797087 DOI: 10.1186/s13046-021-01827-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022]
Abstract
The rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1 (β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have discovered that ET-1R/β-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions, hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/β-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells and concurrently sensitizes to high-efficacy combined therapeutics.
Collapse
|
39
|
Targeting endothelin 1 receptor-miR-200b/c-ZEB1 circuitry blunts metastatic progression in ovarian cancer. Commun Biol 2020; 3:677. [PMID: 33188287 PMCID: PMC7666224 DOI: 10.1038/s42003-020-01404-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Identification of regulatory mechanisms underlying the poor prognosis of ovarian cancer is necessary for diagnostic and therapeutic implications. Here we show that endothelin A receptor (ETAR) and ZEB1 expression is upregulated in mesenchymal ovarian cancer and correlates with poor prognosis. Notably, the expression of ETAR and ZEB1 negatively correlates with miR-200b/c. These miRNAs, besides targeting ZEB1, impair ETAR expression through the 3’UTR binding. ZEB1, in turn, restores ETAR levels by transcriptionally repressing miR-200b/c. Activation of ETAR drives the expression of ZEB1 integrating the miR-200/ZEB1 double negative feedback loop. The ETAR-miR-200b/c-ZEB1 circuit promotes epithelial-mesenchymal transition, cell plasticity, invasiveness and metastasis. Of therapeutic interest, ETAR blockade with macitentan, a dual ETAR and ETBR antagonist, increases miR-200b/c and reduces ZEB1 expression with the concomitant inhibition of metastatic dissemination. Collectively, these findings highlight the reciprocal network that integrates ETAR and ZEB1 axes with the miR-200b/c regulatory circuit to favour metastatic progression in ovarian cancer. Rosanna Sestito et al. report a miR-200b/c-mediated regulatory circuit that drives ovarian cancer metastasis via the endothelin A receptor (ETAR). They show that blockade of ETAR increases miR-200b/c expression and subsequently reduces ZEB1 expression, thereby inhibiting further metastatic progression.
Collapse
|
40
|
Endothelin-1 axis fosters YAP-induced chemotherapy escape in ovarian cancer. Cancer Lett 2020; 492:84-95. [PMID: 32860850 DOI: 10.1016/j.canlet.2020.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022]
Abstract
The majority of ovarian cancer (OC) patients recur with a platinum-resistant disease. OC cells activate adaptive resistance mechanisms that are only partially described. Here we show that OC cells can adapt to chemotherapy through a positive-feedback loop that favors chemoresistance. In platinum-resistant OC cells we document that the endothelin-1 (ET-1)/endothelin A receptor axis intercepts the YAP pathway. This cross-talk occurs through the LATS/RhoA/actin-dependent pathway and contributes to prevent the chemotherapy-induced apoptosis. Mechanistically, β-arrestin1 (β-arr1) and YAP form a complex shaping TEAD-dependent transcriptional activity on the promoters of YAP target genes, including EDN1, which fuels a feed-forward signaling circuit that sustains a platinum-tolerant state. The FDA approved dual ET-1 receptor antagonist macitentan in co-therapy with cisplatin sensitizes resistant cells to the platinum-based therapy, reducing their metastatic potential. Furthermore, high ETAR/YAP gene expression signature is associated with a poor platinum-response in OC patients. Collectively, our findings identify in the networking between ET-1 and YAP pathways an escape strategy from chemotherapy. ET-1 receptor blockade interferes with such adaptive network and enhances platinum-induced apoptosis, representing a promising therapeutic opportunity to restore drug sensitivity in OC patients.
Collapse
|
41
|
Folcuti C, Horescu C, Barcan E, Alexandru O, Tuta C, Vatu BI, Artene SA, Dricu A. β-arrestin 1 transfection induced cell death in high grade glioma in vitro. J Immunoassay Immunochem 2020; 41:1021-1032. [PMID: 32807003 DOI: 10.1080/15321819.2020.1808990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The best known functions of β-arrestins (β-arr) are to regulate G protein-coupled receptors (GPCR) signaling through receptor desensitization and internalization. Many reports also suggest that β-arrs play important role in immune regulation and inflammatory responses, under physiological and pathological conditions. Recent studies have shown that β-arr 1 silencing halts proliferation and increases temozolomide (TMZ) response in glioblastoma (GBM) cells. The focus of this paper is to analyze the role of β-arr 1 overexpression in the 18 high grade glioma (HGG) cell line in terms of viability and their response to TMZ treatment. For this reason, the cell line was transfected with β-arr 1 and the effect was analyzed after 24 h, 48 h and 72 h in terms of proliferation and treatment response. We observed that β-arr 1 overexpression induced a time and dose dependant inhibition in the HGG cells. Unexpectedly, β-arr transfection resulted in a very mild increase in TMZ toxicity after 24 h, becoming non-statistically significant at 72 h. In conclusion, we showed that β-arr 1 overexpression inhibits cell proliferation in the 18 cell line but only has a very modest effect on treatment response with the alkylating agent TMZ.
Collapse
Affiliation(s)
- Catalin Folcuti
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Cristina Horescu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Edmond Barcan
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Cristian Tuta
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Bogdan-Ionel Vatu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Stefan-Alexandru Artene
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| |
Collapse
|
42
|
Ye J, Zhong L, Xiong L, Li J, Yu L, Dan W, Yuan Z, Yao J, Zhong P, Liu J, Liu D, Liu B. Nuclear import of NLS- RARα is mediated by importin α/β. Cell Signal 2020; 69:109567. [PMID: 32036017 DOI: 10.1016/j.cellsig.2020.109567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
The promyelocytic leukemia-retinoic acid receptor α (PML/RARα) is hypothesized to play a vital role in the pathogenesis of acute promyelocytic leukemia (APL). A previous study has demonstrated that PML/RARα is cleaved by neutrophil elastase (NE) in early myeloid cells, which leads to an increase in the nuclear localization signal (NLS) in RARα and in the incidence of APL. In this study, we explored the effects of NLS-RARα on acute myeloid leukemia (AML) cells and studied the mechanism of its localization. LV-NLS-RARα recombinant lentivirus and negative control LV-NC lentivirus were transfected into HL-60 cells and U937 cells while mutant NLS-RARα were transfected into U937 cells, and all groups were treated with 1α, 25-dihydroxyvitamin D3(1,25D3). The results showed that NLS-RARα was located mainly in the nucleus while mutant NLS-RARα was located in the cytoplasm. Overexpression of NLS-RARα downregulated the expression of CD11b, CD11c, CD14, and three forms of CEBPβ compared to the overexpression of NC and mutant NLS-RARα. It was speculated that the abnormal localization of NLS-RARα was mediated via importin-α/β in the pathogenesis of APL. By producing point mutations in the two NLSs in NLS-RARα, we showed that the nuclear import of NLS-RARα was mainly dependent on the NLS of the RARα portion. Subsequently, we found that importin-α1 (KPNA2)/importin-β1 (KPNB1) participates in the nuclear transport of NLS-RARα. Taken together, abnormal localization of NLS-RARα blocks the differentiation of APL cells, and nuclear localization of NLS-RARα depends on NLS of the RARα portion and is mediated via binding with importin-α/β.
Collapse
Affiliation(s)
- Jiao Ye
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ling Xiong
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Jian Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lihua Yu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Zhen Yuan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Juanjuan Yao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Pengqiang Zhong
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Junmei Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Dongdong Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
43
|
Soydemir S, Comella O, Abdelmottaleb D, Pritchett J. Does Mechanocrine Signaling by Liver Sinusoidal Endothelial Cells Offer New Opportunities for the Development of Anti-fibrotics? Front Med (Lausanne) 2020; 6:312. [PMID: 31998732 PMCID: PMC6962108 DOI: 10.3389/fmed.2019.00312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Sumeyye Soydemir
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Olivia Comella
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Dina Abdelmottaleb
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - James Pritchett
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
44
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
45
|
Tocci P, Rosanò L, Bagnato A. Targeting Endothelin-1 Receptor/β-Arrestin-1 Axis in Ovarian Cancer: From Basic Research to a Therapeutic Approach. Front Endocrinol (Lausanne) 2019; 10:609. [PMID: 31551935 PMCID: PMC6737583 DOI: 10.3389/fendo.2019.00609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Recent studies imply a key role of endothelin-1 receptor (ET-1R), belonging to the largest family of G protein-coupled receptors (GPCR), in the regulation of a plethora of processes involved in tumorigenesis and metastatic progression. β-arrestin-1 (β-arr1) system has been recognized as a critical hub controlling GPCR signaling network, directing the GPCR's biological outcomes. In ovarian cancer, ET-1R/β-arr1 axis enables cancer cells to engage several integrated signaling, and represents an actionable target for developing novel therapeutic approaches. Preclinical research studies demonstrate that ET-1R blockade by the approved dual ETAR/ETBR antagonist macitentan counteracts β-arr1-mediated signaling network, and hampers the dialogue among cancer cells and the tumor microenvironment, interfering with metastatic progression and drug response. In light of major developments in the ET-1R signaling paradigm, this review article discusses the emerging evidence of the dual ET-1R antagonist treatment in cancer, and outlines our challenge in preclinical studies warranting the repurposing of ET-1R antagonists for the design of more effective clinical trials based on combinatorial therapies to overcome, or prevent, the onset of drug resistance.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Anna Bagnato
| |
Collapse
|