1
|
Balkin AS, Cherkasov SV, Gogolev YV, Plotnikov AO. The Phase-Specific Dynamics in Gene Expression of Salmonella Typhimurium During Acanthamoeba castellanii Infection. Curr Microbiol 2025; 82:270. [PMID: 40310525 DOI: 10.1007/s00284-025-04256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Being facultative intracellular pathogens, the bacterium often is found in the environment. In natural habitats, Salmonella are able to survive and multiply inside free-living protists that support preservation and distribution of the pathogen, its virulence, and resistance to antimicrobial agents. At the same time, the expression profile of Salmonella genes in the eukaryotic cells has been shown not to be stable, but changes dramatically according to the sequential stages of infection. Previously, we had described the gene expression profile of S. enterica serovar Typhimurium 14028S at the early stage of interaction with Acanthamoeba castellanii. In this study, we have revealed the phase-specific dynamics in expression of several clusters and functional groups of S. Typhimurium 14028S genes. The early stage of invasion characterized by a maximum response to oxidative stress, and it was accompanied by activation of SPI-1 genes, which can contribute to the successful internalization into the host cell. At the second stage (8 h) increase in expression of SPI-2 and SPI-3 genes was accompanied with a maximum expression of iron uptake genes and lysozyme inhibitors. At the late stage of the infection (15 h), downregulation of carbon metabolism and oxidative stress response genes, as well as a decrease in the expression of all other genes, was revealed that may be an evidence of adaptation of Salmonella to intracellular conditions. The obtained results might be useful for further search of factors reducing persistence of pathogens like Salmonella in the environment.
Collapse
Affiliation(s)
- A S Balkin
- Institute for Cellular and Intracellular Symbiosis Ural Branch of Russian Academy of Sciences, Orenburg, Russia, 460000.
| | - S V Cherkasov
- Institute for Cellular and Intracellular Symbiosis Ural Branch of Russian Academy of Sciences, Orenburg, Russia, 460000
| | - Y V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia, 420111
| | - A O Plotnikov
- Institute for Cellular and Intracellular Symbiosis Ural Branch of Russian Academy of Sciences, Orenburg, Russia, 460000
| |
Collapse
|
2
|
Santamaria de Souza N, Cherrak Y, Andersen TB, Vetsch M, Barthel M, Kroon S, Bakkeren E, Schubert C, Christen P, Kiefer P, Vorholt JA, Nguyen BD, Hardt WD. Context-dependent change in the fitness effect of (in)organic phosphate antiporter glpT during Salmonella Typhimurium infection. Nat Commun 2025; 16:1912. [PMID: 39994176 PMCID: PMC11850910 DOI: 10.1038/s41467-025-56851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Salmonella enterica is a frequent cause of foodborne diseases, which is attributed to its adaptability. Even within a single host, expressing a gene can be beneficial in certain infection stages but neutral or even detrimental in others as previously shown for flagellins. Mutants deficient for the conserved glycerol-3-phosphate and phosphate antiporter glpT have been shown to be positively selected in nature, clinical, and laboratory settings. This suggests that different selective pressures select for the presence or absence of GlpT in a context dependent fashion, a phenomenon known as antagonistic pleiotropy. Using mutant libraries and reporters, we investigated the fitness of glpT-deficient mutants during murine orogastric infection. While glpT-deficient mutants thrive during initial growth in the gut lumen, where GlpT's capacity to import phosphate is disadvantageous, they are counter-selected by macrophages. The dichotomy showcases the need to study the spatial and temporal heterogeneity of enteric pathogens' fitness across distinct lifestyles and niches. Insights into the differential adaptation during infection may reveal opportunities for therapeutic interventions.
Collapse
Affiliation(s)
| | - Yassine Cherrak
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Thea Bill Andersen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Michel Vetsch
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Manja Barthel
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Sanne Kroon
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Erik Bakkeren
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christopher Schubert
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Philipp Christen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Julia A Vorholt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Bidong D Nguyen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Batsaikhan B, Lin PC, Shigemura K, Wu YW, Onishi R, Chang PR, Cheng HY, Fang SB. Comparison of global transcriptomes for nontyphoidal Salmonella clinical isolates from pediatric patients with and without bacteremia after their interaction with human intestinal epithelial cells in vitro. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:38-47. [PMID: 39322508 DOI: 10.1016/j.jmii.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Nontyphoidal Salmonella (NTS) outbreaks of invasive diseases are increasing. Whether the genetic diversity of invasive NTS correlates with the clinical characteristics and bacteremia development in NTS infections remains unclear. In this study, we compared the global transcriptomes between bacteremic and nonbacteremic NTS strains after their interaction with human intestinal epithelial cells in vitro. METHODS We selected clinical isolates obtained from stool and blood samples of patients with or without bacteremia and patients with high and low C-reactive protein (CRP) levels. The bacterial RNA samples were isolated after coculturing with Caco-2 cells for RNA sequencing and subsequent analyses. RESULTS CRP is an unreliable predictive maker for NTS bacteremia with a median CRP level of 1.6 mg/dL. Certain Salmonella Pathogenicity Island (SPI)-1 genes (sipC, sipA, sicA, sipD, and sipB), SPI-2 genes (ssaP, ssrA, and ssaS), and six SPI-4 genes (siiA, siiB, siiC, siiD, siiE, and siiF) remained upregulated in the bacteremic blood-derived strains but significantly downregulated in the nonbacteremic strains after their interaction with Caco-2 cells. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis identified that arginine biosynthesis, ascorbate and aldarate metabolism, and phosphotransferase system pathways were activated in bacteremic NTS strains after Caco-2 cell priming. CONCLUSION CRP levels were not correlated with bacteremia development. Significant regulation of certain SPI genes in bacteremic NTS strains after Caco-2 cell priming; bacteremia development might be influenced by the host immune response and the extent to which specific metabolism pathways in NTS strains can be prevented from invading the bloodstream.
Collapse
Affiliation(s)
- Buyandelger Batsaikhan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Pei-Chun Lin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Emergency Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Katsumi Shigemura
- Department of Public Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, Kobe, Japan; Department of Urology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
| | - Reo Onishi
- Department of Public Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Pei-Ru Chang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hung-Yen Cheng
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shiuh-Bin Fang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei City, Taiwan; Research Center for Digestive Medicine, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
4
|
Park J, Jang M, Choi E, Lee SM, Bang I, Woo J, Kim S, Lee EJ, Kim D. ChIP-mini: a low-input ChIP-exo protocol for elucidating DNA-binding protein dynamics in intracellular pathogens. Nucleic Acids Res 2025; 53:gkaf009. [PMID: 39868540 PMCID: PMC11770342 DOI: 10.1093/nar/gkaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Genome-wide identification of binding profiles for DNA-binding proteins from the limited number of intracellular pathogens in infection studies is crucial for understanding virulence and cellular processes but remains challenging, as the current ChIP-exo is designed for high-input bacterial cells (>1010). Here, we developed an optimized ChIP-mini method, a low-input ChIP-exo utilizing a 5,000-fold reduced number of initial bacterial cells and an analysis pipeline, to identify genome-wide binding dynamics of DNA-binding proteins in host-infected pathogens. Applying ChIP-mini to intracellular Salmonella Typhimurium, we identified 642 and 1,837 binding sites of H-NS and RpoD, respectively, elucidating changes in their binding position and binding intensity during infection. Post-infection, we observed 21 significant reductions in H-NS binding at intergenic regions, exposing the promoter region of virulence genes, such as those in Salmonella pathogenicity islands-2, 3 and effectors. Furthermore, we revealed the crucial phenomenon that novel and significantly increased RpoD bindings were found within regions exhibiting diminished H-NS binding, thereby facilitating substantial upregulation of virulence genes. These findings markedly enhance our understanding of how H-NS and RpoD simultaneously coordinate the transcription initiation of virulence genes within macrophages. Collectively, this work demonstrates a broadly adaptable tool that will enable the elucidation of DNA-binding protein dynamics in diverse intracellular pathogens during infection.
Collapse
Affiliation(s)
- Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minchang Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunna Choi
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ina Bang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jihoon Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seonggyu Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
5
|
Soltan Dallal MM, Nasser A, Karimaei S. Characterization of Virulence Genotypes, Antimicrobial Resistance Patterns, and Biofilm Synthesis in Salmonella spp Isolated from Foodborne Outbreaks. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:4805228. [PMID: 39346023 PMCID: PMC11436275 DOI: 10.1155/2024/4805228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Salmonella is the main bacterial pathogen that causes foodborne disease, particularly in developing countries. Nontyphoidal Salmonella (NTS) include Enteritidis and Typhimurium as the most prevalent strains which are one of the significant causes of acute gastroenteritis in children. Therefore, identifying the most predominant serovars, types of common contaminated food, and paying attention to their antibiotic resistance are the main factors in the prevention and control strategy of salmonellosis. This study was undertaken to evaluate the prevalence rate of serovars, the biofilm formation, antimicrobial resistance (AMR) status, and phenotypic virulence factors of Salmonella strains isolated from diarrhea samples in some cities of Iran. A total of 40 (10.41%) Salmonella isolates were recovered from 384 diarrhea samples processed and the most common serovar was Salmonella serovar Typhimurium (82.5). Also, all isolates belonging to serovar Typhimurium showed more virulence factors compared to other serovars. The isolates showed a high resistance rate to ampicillin (95%) and nalidixic acid (87.5%), while a low resistance rate was found for chloramphenicol (2.5%). Moreover, significant variances in the capacity of biofilm formation were found between different Salmonella serotypes. The resistance of NTS to extant choice drugs is a potential public health problem. Constant monitoring of AMR pattern and virulence profile of NTS serovars is suggested for the prevention of salmonellosis in humans.
Collapse
Affiliation(s)
- Mohammad Mehdi Soltan Dallal
- Food Microbiology Research CenterTehran University of Medical Sciences, Tehran, Iran
- Department of PathobiologySchool of Public HealthTehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nasser
- Department of PathobiologySchool of Public HealthTehran University of Medical Sciences, Tehran, Iran
| | - Samira Karimaei
- Department of PathobiologySchool of Public HealthTehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Baek S, Lee EJ. PhoU: a multifaceted regulator in microbial signaling and homeostasis. Curr Opin Microbiol 2024; 77:102401. [PMID: 37988810 DOI: 10.1016/j.mib.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Inorganic phosphate (Pi) is a fundamental molecule crucial for numerous biological processes, such as ATP synthesis and phospholipid formation. To prevent cellular toxicity, Pi transport is often linked to counterion transport within the bacterium. This review discusses the multifaceted functions of the PhoU protein in bacterial regulation, focusing on its role in coordinating Pi transport with counterions, controlling polyphosphate accumulation, and regulating secondary metabolite biosynthesis and DNA repair. We also explore recent findings that challenge the conventional view of PhoU simply as a negative regulator in phosphate signaling, suggesting its broader impact on bacterial physiology and stress response. Understanding the diverse functions of PhoU provides new insight into bacterial biology and offers potential therapeutic implications.
Collapse
Affiliation(s)
- Seungwoo Baek
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eun-Jin Lee
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| |
Collapse
|
7
|
Rodrigues Alves LB, Freitas Neto OCD, Saraiva MDMS, do Monte DFM, de Lima BN, Cabrera JM, Barbosa FDO, Benevides VP, de Lima TS, Campos IC, Rubio MDS, Nascimento CDF, Arantes LCRV, Alves VV, de Almeida AM, Olsen JE, Berchieri Junior A. Salmonella Gallinarum mgtC mutant shows a delayed fowl typhoid progression in chicken. Gene 2024; 892:147827. [PMID: 37748627 DOI: 10.1016/j.gene.2023.147827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Salmonella Gallinarum (SG) provokes fowl typhoid, an infectious disease of acute clinical course that affects gallinaceous of any age and leads to high mortality rates. During the typhoid-like systemic infection of S. Typhimurium (STM) in mice, the bacterium expresses the mgtC gene, which is encoded in the Salmonella Pathogenecity Island - 3 (SPI-3). In this serovar, the function is linked to bacterial replication within macrophages, and its absence attenuates the pathogen. We hypothesized that deleting mgtC from SG genome would alter the microorganism pathogenicity in susceptible commercial poultry in a similar manner. Thus, the present study sought to elucidate the importance of mgtC on SG pathogenicity. For this, a mgtC-mutant lacking S. Gallinarum mutant was constructed (SG ΔmgtC). Its ability to replicate in medium that mimicries the mgtC-related intracellular environment of macrophages as well as in primary macrophages from chicken was evaluated. Moreover, the infection of susceptible chickens was performed to elucidate its pathogenicity and the elicited immune responses by measuring key interleukins by qRT-PCR and the population of macrophages and lymphocytes T CD4+ and CD8+ by means of immunohistochemistry. It was observed that mgtC was required for S. Gallinarum replication in acidified low-Mg2+ media and survival within macrophages. However, unlike its requirement for initial phase of STM infection in mice, lower bacterial counts were only observed at the late stage of macrophage infection without affecting the citotoxicity. Experiments showed that knocking-out the mgtC gene neither altered bacterial uptake by macrophages nor affects bacterial counts in liver and spleen and total chicken mortality. However, plotting a survival curve and analyzing the clinical-pathologic conditions, it was observed a slower progression of the disease in chickens infected by SG ΔmgtC compared to those challenged by the wild-type strain. Furthermore, the mRNA expression of IFN-γ and LITAF were similar between the infected chickens, but higher than in the uninfected group. The same was observed in macrophages and lymphocytes T CD4+ populations. On the other hand, the presence of lymphocytes T CD8+ was increased in the initial phase of the disease provoked by the wild-type strain over the mutant strain. We concluded that the role of mgtC in Fowl Typhoid in susceptible chickens differs from the role in typhoid-like infections in mammals. Thus, the deletion of mgtC gene from S. Gallinarum genome does not affect the overall pathogenicity, but slightly alters the pathogenesis.
Collapse
Affiliation(s)
- Lucas Bocchini Rodrigues Alves
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark.
| | - Oliveiro Caetano de Freitas Neto
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Mauro de Mesquita Souza Saraiva
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark
| | - Daniel Farias Marinho do Monte
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Bruna Nestlehner de Lima
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Julia Memrava Cabrera
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Fernanda de Oliveira Barbosa
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Valdinete Pereira Benevides
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark
| | - Túlio Spina de Lima
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Isabella Cardeal Campos
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Marcela da Silva Rubio
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Camila de Fatima Nascimento
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Letícia Cury Rocha Veloso Arantes
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Victória Veiga Alves
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Maria de Almeida
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark
| | - Angelo Berchieri Junior
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
8
|
Li P, Wang H, Sun W, Ding J. Impact of MgtC on the Fitness of Yersinia pseudotuberculosis. Pathogens 2023; 12:1428. [PMID: 38133312 PMCID: PMC10747817 DOI: 10.3390/pathogens12121428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Yersinia pseudotuberculosis is an extracellular foodborne pathogen and usually causes self-limiting diarrhea in healthy humans. MgtC is known as a key subversion factor that contributes to intramacrophage adaptation and intracellular survival in certain important pathogens. Whether MgtC influences the fitness of Y. pseudotuberculosis is unclear. According to in silico analysis, MgtC in Y. pseudotuberculosis might share similar functions with other bacterial pathogens, such as Salmonella. Studies indicated that MgtC was clearly required for Y. pseudotuberculosis growth in vitro and bacterial survival in macrophages under Mg2+ starvation. Transcriptome analysis by RNA-seq indicated that 127 differentially expressed genes (DEGs) (fold change > 2 and p < 0.001) were discovered between wild-type PB1+ and mgtC mutant inside macrophages. However, a lack of MgtC only moderately, albeit significantly, reduced the virulence of Y. pseudotuberculosis in mice. Overall, this study provides additional insights for the role of MgtC in Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Peng Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Hengtai Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA;
| | - Jiabo Ding
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
9
|
Petano-Duque JM, Rueda-García V, Rondón-Barragán IS. Virulence genes identification in Salmonella enterica isolates from humans, crocodiles, and poultry farms from two regions in Colombia. Vet World 2023; 16:2096-2103. [PMID: 38023281 PMCID: PMC10668553 DOI: 10.14202/vetworld.2023.2096-2103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Salmonella spp. is frequently found in the digestive tract of birds and reptiles and transmitted to humans through food. Salmonellosis is a public health problem because of pathogenicity variability in strains for virulence factors. This study aimed to identify the virulence genes in Salmonella isolates from humans, crocodiles, broiler cloacas, and broiler carcasses from two departments of Colombia. Materials and Methods This study was conducted on 31 Salmonella enterica strains from humans with gastroenteritis (seven), crocodiles (seven), broiler cloacas (six), and broiler carcasses (12) from Tolima and Santander departments of Colombia, belonging to 21 serotypes. All samples were tested for Salmonella spp. using culture method on selective and non-selective mediums. Extraction of genomic DNA was performed from fresh colonies, DNA quality was verified by spectrophotometry and confirmed by amplification of InvA gene using conventional polymerase chain reaction (PCR). bapA, fimA, icmF, IroB, marT, mgtC, nlpI, oafA, pagN, siiD, spvC, spvR, spvB, Stn, and vexA genes were amplified by PCR. Results The most prevalent gene was bapA (100%), followed by marT (96.77%), mgtC (93.55%), and fimA (83.87%). Likewise, IroB (70.97%), Stn (67.74%), spvR (61.29%), pagN (54.84%), icmF (54.8%), and SiiD (45.16%) were positive for more than 50% of the strains. Furthermore, none of the isolates tested positive for the vexA gene. Salmonella isolates presented 26 virulence profiles. Conclusion This study reported 14 virulence genes in Salmonella spp. isolates from humans with gastroenteritis, crocodiles, and broiler cloacas and carcasses. The distribution of virulence genes differed among sources. This study could help in decision-making by health and sanitary authorities.
Collapse
Affiliation(s)
- Julieth Michel Petano-Duque
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Valentina Rueda-García
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| |
Collapse
|
10
|
Xia X. Horizontal Gene Transfer and Drug Resistance Involving Mycobacterium tuberculosis. Antibiotics (Basel) 2023; 12:1367. [PMID: 37760664 PMCID: PMC10526031 DOI: 10.3390/antibiotics12091367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) acquires drug resistance at a rate comparable to that of bacterial pathogens that replicate much faster and have a higher mutation rate. One explanation for this rapid acquisition of drug resistance in Mtb is that drug resistance may evolve in other fast-replicating mycobacteria and then be transferred to Mtb through horizontal gene transfer (HGT). This paper aims to address three questions. First, does HGT occur between Mtb and other mycobacterial species? Second, what genes after HGT tend to survive in the recipient genome? Third, does HGT contribute to antibiotic resistance in Mtb? I present a conceptual framework for detecting HGT and analyze 39 ribosomal protein genes, 23S and 16S ribosomal RNA genes, as well as several genes targeted by antibiotics against Mtb, from 43 genomes representing all major groups within Mycobacterium. I also included mgtC and the insertion sequence IS6110 that were previously reported to be involved in HGT. The insertion sequence IS6110 shows clearly that the Mtb complex participates in HGT. However, the horizontal transferability of genes depends on gene function, as was previously hypothesized. HGT is not observed in functionally important genes such as ribosomal protein genes, rRNA genes, and other genes chosen as drug targets. This pattern can be explained by differential selection against functionally important and unimportant genes after HGT. Functionally unimportant genes such as IS6110 are not strongly selected against, so HGT events involving such genes are visible. For functionally important genes, a horizontally transferred diverged homologue from a different species may not work as well as the native counterpart, so the HGT event involving such genes is strongly selected against and eliminated, rendering them invisible to us. In short, while HGT involving the Mtb complex occurs, antibiotic resistance in the Mtb complex arose from mutations in those drug-targeted genes within the Mtb complex and was not gained through HGT.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada; ; Tel.: +1-613-562-5718
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
Teklemariam AD, Al-Hindi RR, Albiheyri RS, Alharbi MG, Alghamdi MA, Filimban AAR, Al Mutiri AS, Al-Alyani AM, Alseghayer MS, Almaneea AM, Albar AH, Khormi MA, Bhunia AK. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods 2023; 12:foods12091756. [PMID: 37174295 PMCID: PMC10178548 DOI: 10.3390/foods12091756] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Salmonella is one of the most common zoonotic foodborne pathogens and a worldwide public health threat. Salmonella enterica is the most pathogenic among Salmonella species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease are known as non-typhoidal Salmonella (NTS). Salmonella transmission to humans happens along the farm-to-fork continuum via contaminated animal- and plant-derived foods, including poultry, eggs, fish, pork, beef, vegetables, fruits, nuts, and flour. Several virulence factors have been recognized to play a vital role in attaching, invading, and evading the host defense system. These factors include capsule, adhesion proteins, flagella, plasmids, and type III secretion systems that are encoded on the Salmonella pathogenicity islands. The increased global prevalence of NTS serovars in recent years indicates that the control approaches centered on alleviating the food animals' contamination along the food chain have been unsuccessful. Moreover, the emergence of antibiotic-resistant Salmonella variants suggests a potential food safety crisis. This review summarizes the current state of the knowledge on the nomenclature, microbiological features, virulence factors, and the mechanism of antimicrobial resistance of Salmonella. Furthermore, it provides insights into the pathogenesis and epidemiology of Salmonella infections. The recent outbreaks of salmonellosis reported in different clinical settings and geographical regions, including Africa, the Middle East and North Africa, Latin America, Europe, and the USA in the farm-to-fork continuum, are also highlighted.
Collapse
Affiliation(s)
- Addisu D Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rashad R Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed S Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mashail A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani A R Filimban
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah S Al Mutiri
- Laboratory Department, Saudi Food and Drug Authority, Riyadh 12843, Saudi Arabia
| | - Abdullah M Al-Alyani
- Laboratory Department, Saudi Food and Drug Authority, Jeddah 22311, Saudi Arabia
| | - Mazen S Alseghayer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Abdulaziz M Almaneea
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Abdulgader H Albar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, Jeddah University, Jeddah 23218, Saudi Arabia
| | - Mohsen A Khormi
- Department of Biological Sciences, Faculty of Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Bruna RE, Kendra CG, Pontes MH. An intracellular phosphorus-starvation signal activates the PhoB/PhoR two-component system in Salmonella enterica. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533958. [PMID: 36993483 PMCID: PMC10055408 DOI: 10.1101/2023.03.23.533958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Bacteria acquire P primarily as inorganic orthophosphate (Pi, PO43-). Once internalized, Pi is rapidly assimilated into biomass during the synthesis of ATP. Because Pi is essential, but excessive ATP is toxic, the acquisition of environmental Pi is tightly regulated. In the bacterium Salmonella enterica (Salmonella), growth in Pi-limiting environments activates the membrane sensor histidine kinase PhoR, leading to the phosphorylation of its cognate transcriptional regulator PhoB and subsequent transcription of genes involved in adaptations to low Pi. Pi limitation is thought to promote PhoR kinase activity by altering the conformation of a membrane signaling complex comprised by PhoR, the multicomponent Pi transporter system PstSACB and the regulatory protein PhoU. However, the identity of the low Pi signal and how it controls PhoR activity remain unknown. Here we characterize the PhoB-dependent and independent transcriptional changes elicited by Salmonella in response to P starvation, and identify PhoB-independent genes that are required for the utilization of several organic-P sources. We use this knowledge to identify the cellular compartment where the PhoR signaling complex senses the Pi-limiting signal. We demonstrate that the PhoB and PhoR signal transduction proteins can be maintained in an inactive state even when Salmonella is grown in media lacking Pi. Our results establish that PhoR activity is controlled by an intracellular signal resulting from P insufficiency.
Collapse
Affiliation(s)
- Roberto E. Bruna
- Department of Pathology and Laboratory Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
| | - Christopher G. Kendra
- Department of Pathology and Laboratory Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
| | - Mauricio H. Pontes
- Department of Pathology and Laboratory Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
- Department of Microbiology and Immunology, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
| |
Collapse
|
13
|
Pavon RDN, Mendoza PDG, Flores CAR, Calayag AMB, Rivera WL. Genotypic virulence profiles and associations in Salmonella isolated from meat samples in wet markets and abattoirs of Metro Manila, Philippines. BMC Microbiol 2022; 22:292. [PMID: 36474155 PMCID: PMC9724337 DOI: 10.1186/s12866-022-02697-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Salmonella are pathogenic foodborne bacteria with complex pathogenicity from numerous virulence genes housed in Salmonella pathogenicity islands (SPIs), plasmids, and other gene cassettes. However, Salmonella virulence gene distributions and mechanisms remain unestablished. In the Philippines, studies mainly report Salmonella incidences and antimicrobial resistance, but little to none on virulence profiles, their associations to animal sources, collection sites and Salmonella serogroups. Hence, a total of 799 Salmonella isolates, previously obtained from pig, cow, and chicken meat samples in wet markets and abattoirs (wet markets: 124 chicken, 151 cow, and 352 pig meat isolates; abattoirs: 172 pig tonsil and jejunum isolates) in Metro Manila, Philippines, were revived and confirmed as Salmonella through invA gene polymerase chain reaction (PCR). Isolates were then screened for eight virulence genes, namely avrA, hilA, sseC, mgtC, spi4R, pipB, spvC and spvR, by optimized multiplex PCR and significant pair associations between virulence genes were determined through Fisher's exact test. Gene frequency patterns were also determined. Salmonella serogroups in addition to animal sources and location types were also used to predict virulence genes prevalence using binary logistic regression. RESULTS High frequencies (64 to 98%) of SPI virulence genes were detected among 799 Salmonella isolates namely mgtC, pipB, avrA, hilA, spi4R and sseC, from most to least. However, only one isolate was positive for plasmid-borne virulence genes, spvC and spvR. Diversity in virulence genes across Salmonella serogroups for 587 Salmonella isolates (O:3 = 250, O:4 = 133, O:6,7 = 99, O:8 = 93, O:9 = 12) was also demonstrated through statistical predictions, particularly for avrA, hilA, sseC, and mgtC. mgtC, the most frequent virulence gene, was predicted by serogroup O:9, while sseC, the least frequent, was predicted by serogroup O:4 and chicken animal source. The highest virulence gene pattern involved SPIs 1-5 genes which suggests the wide distribution and high pathogenic potential of Salmonella. Statistical analyses showed five virulence gene pair associations, namely avrA and hilA, avrA and spi4R, hilA and spi4R, sseC and spi4R, and mgtC and pipB. The animal sources predicted the presence of virulence genes, sseC and pipB, whereas location type for hilA and spi4R, suggesting that these factors may contribute to the type and pathogenicity of Salmonella present. CONCLUSION The high prevalence of virulence genes among Salmonella in the study suggests the high pathogenic potential of Salmonella from abattoirs and wet markets of Metro Manila, Philippines which poses food safety and public health concerns and threatens the Philippine food animal industry. Statistical associations between virulence genes and prediction analyses across Salmonella serogroups and external factors such as animal source and location type and presence of virulence genes suggest the diversity of Salmonella virulence and illustrate determining factors to Salmonella pathogenicity. This study recommends relevant agencies in the Philippines to improve standards in food animal industries and increase efforts in monitoring of foodborne pathogens.
Collapse
Affiliation(s)
- Rance Derrick N. Pavon
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Paolo D. G. Mendoza
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Camille Andrea R. Flores
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Alyzza Marie B. Calayag
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Windell L. Rivera
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| |
Collapse
|
14
|
Abstract
Duck infectious serositis, also known as Riemerella anatipestifer disease, infects domestic ducks, geese, and turkeys and wild birds. However, the regulatory mechanism of its pathogenicity remains unclear. The PhoPR two-component system (TCS) was first reported in Gram-negative bacteria in our previous research and was demonstrated to be involved in virulence and gene expression. Here, DNA affinity purification sequencing (DAP-seq) was applied to further explore the regulation of PhoPR in relation to pathogenicity in R. anatipestifer. A conserved motif was identified upstream of 583 candidate target genes which were directly regulated by PhoP. To further confirm the genes which are regulated by PhoR and PhoP, single-gene-deletion strains were constructed. The results of transcriptome analysis using next-generation RNA sequencing showed 136 differentially expressed genes (DEGs) between the ΔphoP strain and the wild type (WT) and 183 DEGs between the ΔphoR strain and the WT. The candidate target genes of PhoP were further identified by combining transcriptome analysis and DAP-seq, which revealed that the main direct regulons of PhoP are located on the membrane and PhoP is involved in regulating aerotolerance. Using the in vivo duck model, the pathogenicity of ΔphoP and ΔphoR mutants was found to be significantly lower than that of the WT. Together, our findings provide insight into the direct regulation of PhoP and suggest that phoPR is essential for the pathogenicity of R. anatipestifer. The gene deletion strains are expected to be candidate live vaccine strains of R. anatipestifer which can be used as ideal genetic engineering vector strains for the expression of foreign antigens. IMPORTANCE Riemerella anatipestifer is a significant pathogen with high mortality in the poultry industry that causes acute septicemia and infectious polyserositis in ducks, chickens, geese, and other avian species. Previously, we characterized the two-component system encoded by phoPR and found that R. anatipestifer almost completely lost its pathogenicity for ducklings when phoPR was deleted. However, the mechanism of PhoPR regulation of virulence in R. anatipestifer had not been deeply explored. In this study, we utilized DAP-seq to explore the DNA-binding sites of PhoP as a response regulator in the global genome. Furthermore, phoP and phoR were deleted separately, and transcriptomics analysis of the corresponding gene deletion strains was performed. We identified a series of directly regulated genes of the PhoPR two-component system. The duckling model showed that both PhoP and PhoR are essential virulence-related factors in R. anatipestifer.
Collapse
|
15
|
Pat- and Pta-mediated protein acetylation is required for horizontally-acquired virulence gene expression in Salmonella Typhimurium. J Microbiol 2022; 60:823-831. [DOI: 10.1007/s12275-022-2095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
16
|
Abstract
Bacteria utilize two-component regulatory systems to sense and respond to their surroundings. Unlike other two-component systems that directly sense through a sensory domain in the histidine kinase (HK), the PhoB/PhoR two-component system requires additional proteins, including the PstSCAB phosphate transporter and the PhoU protein, to sense phosphate levels. Although PhoU is involved in phosphate signaling by connecting the PstSCAB transporter and PhoR histidine kinase, the mechanism by which PhoU controls expression of pho regulon genes has not yet been clearly understood. Here, we identified PhoU residues required for interacting with PhoR histidine kinase from the intracellular pathogen Salmonella enterica serovar Typhimurium. The PhoU Ala147 residue interacts with the PhoR PAS domain and is involved in repressing pho expression in high phosphate. Unexpectedly, the PhoU Arg184 residue interacts with the PhoR histidine kinase domain and is required for activating pho expression in low Mg2+ by increasing PhoR autophosphorylation, revealing its new function. The substitution of the Arg184 to Gly codon decreased Salmonella virulence both in macrophages and in mice, suggesting that PhoU’s role in promoting PhoR autophosphorylation is required during Salmonella infection.
Collapse
|
17
|
Jung B, Park S, Kim E, Yoon H, Hahn TW. Salmonella Typhimurium lacking phoBR as a live vaccine candidate against poultry infection. Vet Microbiol 2022; 266:109342. [PMID: 35063827 DOI: 10.1016/j.vetmic.2022.109342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Salmonella enterica serovar Typhimurium, with a broad-host range, is a predominant cause of non-typhoidal Salmonella infection in humans, and the infectious source is highly associated with food animals, especially poultry. Considering the horizontal transmission of S. Typhimurium from farm animals to humans, vaccination has been strongly recommended in industrial animals. In an effort to eradicate S. Typhimurium in poultry farms, a live candidate vaccine strain lacking the phoBR genes, which encode the PhoB/PhoR two-component regulatory system responsible for cellular phosphate signaling, was evaluated in mice and chickens. Lack of the phoBR genes promoted overgrowth of intracellular Salmonella. However, notably, in BALB/c mouse models, the ΔphoBR mutant showed attenuated virulence and instead, provided protection against infection with virulent Salmonella, thereby clearing out Salmonella in the spleen and liver. Accordingly, immunization with the ΔphoBR mutant increased immunoglobulin (Ig)G and IgM antibody responses and also tended to increase the IgG2a/IgG1 ratio, which is indicative of T helper (Th)1-mediated cellular immunity. In chicken challenge models, immunization with the ΔphoBR mutant significantly boosted the production of IgG and IgM antibodies after the second vaccination. The vaccinated chickens ceased fecal shedding of challenged Salmonella earlier than the non-vaccinated ones and showed no Salmonella in their caecum and ileum. These results demonstrate the potential of the S. Typhimurium ΔphoBR mutant as a vaccine in chickens.
Collapse
Affiliation(s)
- Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
18
|
Yadavalli SS, Yuan J. Bacterial Small Membrane Proteins: the Swiss Army Knife of Regulators at the Lipid Bilayer. J Bacteriol 2022; 204:e0034421. [PMID: 34516282 PMCID: PMC8765417 DOI: 10.1128/jb.00344-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small membrane proteins represent a subset of recently discovered small proteins (≤100 amino acids), which are a ubiquitous class of emerging regulators underlying bacterial adaptation to environmental stressors. Until relatively recently, small open reading frames encoding these proteins were not designated genes in genome annotations. Therefore, our understanding of small protein biology was primarily limited to a few candidates associated with previously characterized larger partner proteins. Following the first systematic analyses of small proteins in Escherichia coli over a decade ago, numerous small proteins across different bacteria have been uncovered. An estimated one-third of these newly discovered proteins in E. coli are localized to the cell membrane, where they may interact with distinct groups of membrane proteins, such as signal receptors, transporters, and enzymes, and affect their activities. Recently, there has been considerable progress in functionally characterizing small membrane protein regulators aided by innovative tools adapted specifically to study small proteins. Our review covers prototypical proteins that modulate a broad range of cellular processes, such as transport, signal transduction, stress response, respiration, cell division, sporulation, and membrane stability. Thus, small membrane proteins represent a versatile group of physiology regulators at the membrane and the whole cell. Additionally, small membrane proteins have the potential for clinical applications, where some of the proteins may act as antibacterial agents themselves while others serve as alternative drug targets for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Srujana S. Yadavalli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, USA
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
19
|
Abstract
Mg2+ is the most abundant divalent cation in living cells. It is essential for charge neutralization, macromolecule stabilization, and the assembly and activity of ribosomes and as a cofactor for enzymatic reactions. When experiencing low cytoplasmic Mg2+, bacteria adopt two main strategies: They increase the abundance and activity of Mg2+ importers and decrease the abundance of Mg2+-chelating ATP and rRNA. These changes reduce regulated proteolysis by ATP-dependent proteases and protein synthesis in a systemic fashion. In many bacterial species, the transcriptional regulator PhoP controls expression of proteins mediating these changes. The 5' leader region of some mRNAs responds to low cytoplasmic Mg2+ or to disruptions in translation of open reading frames in the leader regions by furthering expression of the associated coding regions, which specify proteins mediating survival when the cytoplasmic Mg2+ concentration is low. Microbial species often utilize similar adaptation strategies to cope with low cytoplasmic Mg2+ despite relying on different genes to do so.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| | - Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA;
| |
Collapse
|
20
|
Arunima A, Suar M. Glucose Starvation, Magnesium Ion Starvation, and Bile Stress Assays. Bio Protoc 2021; 11:e4157. [PMID: 34692907 DOI: 10.21769/bioprotoc.4157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/02/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a leading causative pathogen for food-borne gastroenteritis. During its course of infection, it confronts myriads of physiological barriers inside the host, such as nutrient deprivation, low micronutrient availability, and toxicity from bile salts, to promote bacterial survival and infection inside the host. The ability of the pathogen to overcome these stressful conditions determines the degree of virulence in the host. Therefore, assessment of the survival of a pathogen during different stress conditions, like glucose starvation, magnesium starvation, and bile stress, are important parameters to assess the virulence of the pathogen. Here, we describe protocols for estimating the survival of the pathogen during the above-mentioned stress conditions. We culture S. Enteritidis in an appropriate growth medium to a required O.D.600 and treat it with glucose starvation (M9 minimal culture medium containing 0.03% glucose), magnesium starvation (M9 minimal culture medium containing 20 µM MgSO4), and bile stress (bacterial cells treated with 15% bile salts in Luria Bertani (LB) culture medium) conditions. The number of surviving bacteria is obtained after the treatment by calculating the colony-forming units (CFU) of the surviving pathogen obtained on LB agar plates at relevant time intervals. The experiments are performed in biological replicates, and statistical analysis is performed to validate the experimental findings. The methodology of these stress response assays is simple and can be adapted to study the pathogenesis and stress response in other relevant and culturable enteric pathogens.
Collapse
Affiliation(s)
- Aryashree Arunima
- School of Biotechnology, Kalinga Institute of Industrial Technology-(KIIT) University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology-(KIIT) University, Bhubaneswar, India
| |
Collapse
|
21
|
Abstract
Phosphorus (P) is essential for life. As the fifth-most-abundant element in living cells, P is required for the synthesis of an array of biological molecules including (d)NTPs, nucleic acids, and membranes. Organisms typically acquire environmental P as inorganic phosphate (Pi). While essential for growth and viability, excess intracellular Pi is toxic for both bacteria and eukaryotes. Using the bacterium Salmonella enterica serovar Typhimurium as a model, we establish that Pi cytotoxicity is manifested following its assimilation into adenosine triphosphate (ATP), which acts as a chelating agent for Mg2+ and other cations. Our findings identify physiological processes disrupted by excessive Pi and how bacteria tune P assimilation to cytoplasmic Mg2+ levels. Phosphorus (P) is an essential component of core biological molecules. In bacteria, P is acquired mainly as inorganic orthophosphate (Pi) and assimilated into adenosine triphosphate (ATP) in the cytoplasm. Although P is essential, excess cytosolic Pi hinders growth. We now report that bacteria limit Pi uptake to avoid disruption of Mg2+-dependent processes that result, in part, from Mg2+ chelation by ATP. We establish that the MgtC protein inhibits uptake of the ATP precursor Pi when Salmonella enterica serovar Typhimurium experiences cytoplasmic Mg2+ starvation. This response prevents ATP accumulation and overproduction of ribosomal RNA that together ultimately hinder bacterial growth and result in loss of viability. Even when cytoplasmic Mg2+ is not limiting, excessive Pi uptake increases ATP synthesis, depletes free cytoplasmic Mg2+, inhibits protein synthesis, and hinders growth. Our results provide a framework to understand the molecular basis for Pi toxicity. Furthermore, they suggest a regulatory logic that governs P assimilation based on its intimate connection to cytoplasmic Mg2+ homeostasis.
Collapse
|
22
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Röder J, Felgner P, Hensel M. Single-cell analyses reveal phosphate availability as critical factor for nutrition of Salmonella enterica within mammalian host cells. Cell Microbiol 2021; 23:e13374. [PMID: 34160116 DOI: 10.1111/cmi.13374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 01/23/2023]
Abstract
Salmonella enterica serovar Typhimurium (STM) is an invasive, facultative intracellular pathogen and acquisition of nutrients from host cells is essential for survival and proliferation of intracellular STM. The nutritional environment of intracellular STM is only partially understood. We deploy bacteria harbouring reporter plasmids to interrogate the environmental cues acting on intracellular STM, and flow cytometry allows analyses on level of single STM. Phosphorus is a macro-element for cellular life, and in STM inorganic phosphate (Pi ), homeostasis is mediated by the two-component regulatory system PhoBR, resulting in expression of the high affinity phosphate transporter pstSCAB-phoU. Using fluorescent protein reporters, we investigated Pi availability for intracellular STM at single-cell level over time. We observed that Pi concentration in the Salmonella-containing vacuole (SCV) is limiting and activates the promoter of pstSCAB-phoU encoding a high affinity phosphate uptake system. Correlation between reporter activation by STM in defined media and in host cells indicates Pi concentration less 10 μM within the SCV. STM proliferating within the SCV experience increasing Pi limitations. Activity of the Salmonella pathogenicity island 2 (SPI2)-encoded type III secretion system (T3SS) is crucial for efficient intracellular proliferation, and SPI2-T3SS-mediated endosomal remodelling also reliefs Pi limitation. STM that are released from SCV to enter the cytosol of epithelial cells did not indicate Pi limitations. Addition of Pi to culture media of infected cells partially relieved Pi limitations in the SCV, as did inhibition of intracellular proliferation. We conclude that availability of Pi is critical for intracellular lifestyle of STM, and Pi acquisition is maintained by multiple mechanisms. Our work demonstrates the use of bacterial pathogens as sensitive single-cell reporters for their environment in host cell or host organisms. TAKE AWAY: Salmonella strains were engineered to report their intracellular niche and the availability of inorganic phosphate (Pi ) on level of single intracellular bacteria Within the Salmonella-containing vacuole (SCV), Pi is limited and limitation increases with bacterial proliferation Salmonella located in host cell cytosol are not limited in Pi availability Remodelling of the host cell endosomal system mediated by T3SS-2 reliefs Pi limitation in the SCV.
Collapse
Affiliation(s)
- Jennifer Röder
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Pascal Felgner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.,CellNanOs-Center of Cellular Nanoanalytics, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
24
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Shropshire H, Jones RA, Aguilo-Ferretjans MM, Scanlan DJ, Chen Y. Proteomics insights into the Burkholderia cenocepacia phosphorus stress response. Environ Microbiol 2021; 23:5069-5086. [PMID: 33684254 DOI: 10.1111/1462-2920.15451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
The Burkholderia cepacia complex is a group of Burkholderia species that are opportunistic pathogens causing high mortality rates in patients with cystic fibrosis. An environmental stress often encountered by these soil-dwelling and pathogenic bacteria is phosphorus limitation, an essential element for cellular processes. Here, we describe cellular and extracellular proteins differentially regulated between phosphate-deplete (0 mM, no added phosphate) and phosphate-replete (1 mM) growth conditions using a comparative proteomics (LC-MS/MS) approach. We observed a total of 128 and 65 unique proteins were downregulated and upregulated respectively, in the B. cenocepacia proteome. Of those downregulated proteins, many have functions in amino acid transport/metabolism. We have identified 24 upregulated proteins that are directly/indirectly involved in inorganic phosphate or organic phosphorus acquisition. Also, proteins involved in virulence and antimicrobial resistance were differentially regulated, suggesting B. cenocepacia experiences a dramatic shift in metabolism under these stress conditions. Overall, this study provides a baseline for further research into the biology of Burkholderia in response to phosphorus stress.
Collapse
Affiliation(s)
- Holly Shropshire
- BBSRC Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, CV4 7AL, UK.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Rebekah A Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
26
|
Parise D, Teixeira Dornelles Parise M, Pinto Gomide AC, Figueira Aburjaile F, Bentes Kato R, Salgado-Albarrán M, Tauch A, Ariston de Carvalho Azevedo V, Baumbach J. The Transcriptional Regulatory Network of Corynebacterium pseudotuberculosis. Microorganisms 2021; 9:microorganisms9020415. [PMID: 33671149 PMCID: PMC7923171 DOI: 10.3390/microorganisms9020415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, facultative intracellular, pathogenic bacterium that infects several different hosts, yielding serious economic losses in livestock farming. It causes several diseases including oedematous skin disease (OSD) in buffaloes, ulcerative lymphangitis (UL) in horses, and caseous lymphadenitis (CLA) in sheep, goats and humans. Despite its economic and medical-veterinary importance, our understanding concerning this organism’s transcriptional regulatory mechanisms is still limited. Here, we review the state of the art knowledge on transcriptional regulatory mechanisms of this pathogenic species, covering regulatory interactions mediated by two-component systems, transcription factors and sigma factors. Key transcriptional regulatory players involved in virulence and pathogenicity of C. pseudotuberculosis, such as the PhoPR system and DtxR, are in the focus of this review, as these regulators are promising targets for future vaccine design and drug development. We conclude that more experimental studies are needed to further understand the regulatory repertoire of this important zoonotic pathogen, and that regulators are promising targets for future vaccine design and drug development.
Collapse
Affiliation(s)
- Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
- Correspondence: or
| | - Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Marisol Salgado-Albarrán
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05348, Mexico
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
27
|
Role of OB-Fold Protein YdeI in Stress Response and Virulence of Salmonella enterica Serovar Enteritidis. J Bacteriol 2020; 203:JB.00237-20. [PMID: 33106344 DOI: 10.1128/jb.00237-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023] Open
Abstract
An essential feature of the pathogenesis of the Salmonella enterica serovar Enteritidis wild type (WT) is its ability to survive under diverse microenvironmental stress conditions, such as encountering antimicrobial peptides (AMPs) or glucose and micronutrient starvation. These stress factors trigger virulence genes carried on Salmonella pathogenicity islands (SPIs) and determine the efficiency of enteric infection. Although the oligosaccharide/oligonucleotide binding-fold (OB-fold) family of proteins has been identified as an important stress response and virulence determinant, functional information on members of this family is currently limited. In this study, we decipher the role of YdeI, which belongs to OB-fold family of proteins, in stress response and virulence of S Enteritidis. When ydeI was deleted, the ΔydeI mutant showed reduced survival during exposure to AMPs or glucose and Mg2+ starvation stress compared to the WT. Green fluorescent protein (GFP) reporter and quantitative real-time PCR (qRT-PCR) assays showed ydeI was transcriptionally regulated by PhoP, which is a major regulator of stress and virulence. Furthermore, the ΔydeI mutant displayed ∼89% reduced invasion into HCT116 cells, ∼15-fold-reduced intramacrophage survival, and downregulation of several SPI-1 and SPI-2 genes encoding the type 3 secretion system apparatus and effector proteins. The mutant showed attenuated virulence compared to the WT, confirmed by its reduced bacterial counts in feces, mesenteric lymph node (mLN), spleen, and liver of C57BL/6 mice. qRT-PCR analyses of the ΔydeI mutant displayed differential expression of 45 PhoP-regulated genes, which were majorly involved in metabolism, transport, membrane remodeling, and drug resistance under different stress conditions. YdeI is, therefore, an important protein that modulates S Enteritidis virulence and adaptation to stress during infection.IMPORTANCE S Enteritidis during its life cycle encounters diverse stress factors inside the host. These intracellular conditions allow activation of specialized secretion systems to cause infection. We report a conserved membrane protein, YdeI, and elucidate its role in protection against various intracellular stress conditions. A key aspect of the study of a pathogen's stress response mechanism is its clinical relevance during host-pathogen interaction. Bacterial adaptation to stress plays a vital role in evolution of a pathogen's resistance to therapeutic agents. Therefore, investigation of the role of YdeI is vital for understanding the molecular basis of regulation of Salmonella pathogenesis. In conclusion, our findings may contribute to finding potential targets to develop new intervention strategies for treatment and prevention of enteric diseases.
Collapse
|
28
|
Gupta A, Bansal M, Wagle B, Sun X, Rath N, Donoghue A, Upadhyay A. Sodium Butyrate Reduces Salmonella Enteritidis Infection of Chicken Enterocytes and Expression of Inflammatory Host Genes in vitro. Front Microbiol 2020; 11:553670. [PMID: 33042060 PMCID: PMC7524895 DOI: 10.3389/fmicb.2020.553670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella Enteritidis (SE) is a facultative intracellular pathogen that colonizes the chicken gut leading to contamination of carcasses during processing. A reduction in intestinal colonization by SE could result in reduced carcass contamination thereby reducing the risk of illnesses in humans. Short chain fatty acids such as butyrate are microbial metabolites produced in the gut that exert various beneficial effects. However, its effect on SE colonization is not well known. The present study investigated the effect of sub-inhibitory concentrations (SICs) of sodium butyrate on the adhesion and invasion of SE in primary chicken enterocytes and chicken macrophages. In addition, the effect of sodium butyrate on the expression of SE virulence genes and selected inflammatory genes in chicken macrophages challenged with SE were investigated. Based on the growth curve analysis, the two SICs of sodium butyrate that did not reduce SE growth were 22 and 45 mM, respectively. The SICs of sodium butyrate did not affect the viability and proliferation of chicken enterocytes and macrophage cells. The SICs of sodium butyrate reduced SE adhesion by ∼1.7 and 1.8 Log CFU/mL, respectively. The SE invasion was reduced by ∼2 and 2.93 Log CFU/mL, respectively in chicken enterocytes (P < 0.05). Sodium butyrate did not significantly affect the adhesion of SE to chicken macrophages. However, 45 mM sodium butyrate reduced invasion by ∼1.7 Log CFU/mL as compared to control (P < 0.05). Exposure to sodium butyrate did not change the expression of SE genes associated with motility (flgG, prot6E), invasion (invH), type 3 secretion system (sipB, pipB), survival in macrophages (spvB, mgtC), cell wall and membrane integrity (tatA), efflux pump regulator (mrr1) and global virulence regulation (lrp) (P > 0.05). However, a few genes contributing to type-3 secretion system (ssaV, sipA), adherence (sopB), macrophage survival (sodC) and oxidative stress (rpoS) were upregulated by at least twofold. The expression of inflammatory genes (Il1β, Il8, and Mmp9) that are triggered by SE for host colonization was significantly downregulated (at least 25-fold) by sodium butyrate as compared to SE (P < 0.05). The results suggest that sodium butyrate has an anti-inflammatory potential to reduce SE colonization in chickens.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mohit Bansal
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Basanta Wagle
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xiaolun Sun
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Narayan Rath
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|