1
|
Auguet-Lara M, Skrivergaard S, Therkildsen M, Rasmussen MK, Young JF. Development of a biomarker panel for cell characterization intended for cultivated meat. Exp Cell Res 2025; 446:114467. [PMID: 39978714 DOI: 10.1016/j.yexcr.2025.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Cultivated meat has in recent years been suggested as a sustainable alternative to produce meat at large-scale. Several aspects of cultivated meat production have demonstrated significant progress. However, there are still many questions regarding the cell culture, media composition, and the production itself to be answered and optimized. Finding good starter cell populations is a challenge to address and requires robust tools to characterize the cell populations. Detailed analysis is required to identify each type of cell within the skeletal muscle niche leads to optimized cultivated meat production at large-scale. In this study, we developed a set of biomarkers, using digital droplet PCR (ddPCR) and Immunofluorescence (IF) staining, to identify specific cell types within a heterogeneous cell population isolated from skeletal muscle tissue. We showed that combining Neural Cell Adhesion Molecule (NCAM), Calponin 1 (CNN1), and Fibronectin (FN), can be a powerful approach to predict the growth of skeletal myotubes, smooth muscle mesenchymal cells (SMMCs), and myofibroblasts, respectively. Moreover, early cell-cell interactions of fibroblastic cells were observed to be triggered through thin actin filaments containing CNN1 protein, to form, subsequently, myofibroblast networks. Besides, Myogenic Differentiation 1 (MyoD) is the key marker to detect skeletal muscle growth, whereas Myogenic Factor 5 (MyF5) can be expressed in myogenic and non-myogenic cells. MyF5 was detected at differentiation stages within the myotube nuclei, suggesting an unknown role during myotube formation.
Collapse
|
2
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Liang W, Xu F, Li L, Peng C, Sun H, Qiu J, Sun J. Epigenetic control of skeletal muscle atrophy. Cell Mol Biol Lett 2024; 29:99. [PMID: 38978023 PMCID: PMC11229277 DOI: 10.1186/s11658-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
Collapse
Affiliation(s)
- Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, China
| | - Li Li
- Nantong Center for Disease Control and Prevention, Medical School of Nantong University, Nantong, 226001, China
| | - Chunlei Peng
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, 226000, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 26001, China.
| |
Collapse
|
4
|
Yang H, Xu Y, Yuan Y, Liu X, Zhang J, Li J, Zhang R, Cao J, Cheng T, Liu C. Identification and function of the Pax gene Bmgsb in the silk gland of Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:173-184. [PMID: 38238257 DOI: 10.1111/imb.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/29/2023] [Indexed: 05/08/2024]
Abstract
Paired box (Pax) genes are highly conserved throughout evolution, and the Pax protein is an important transcription factor of embryonic development. The Pax gene Bmgsb is expressed in the silk glands of silkworm, but its biological functions remain unclear. This study aimed to investigate the expression pattern of Bmgsb in the silk gland and explore its functions using RNA interference (RNAi). Here, we identified eight Pax genes in Bombyx mori. Phylogenetic analysis showed that the B. mori Pax genes were highly homologous to the Pax genes in other insects and highly evolutionarily conserved. The tissue expression profile showed that Bmgsb was expressed in the anterior silk gland and anterior part of the middle silk gland (AMSG). RNAi of Bmgsb resulted in defective development of the AMSG, and the larvae were mostly unable to cocoon in the wandering stage. RNA-seq analysis showed that the fibroin genes fib-l, fib-h and p25, cellular heat shock response-related genes and phenol oxidase genes were considerably upregulated upon Bmgsb knockdown. Furthermore, quantitative reverse transcription-PCR results showed that the fibroin genes and ubiquitin proteolytic enzyme-related genes were significantly upregulated in the AMSG after Bmgsb knockdown. This study provides a foundation for future research on the biological functions of B. mori Pax genes. In addition, it demonstrates the important roles of Bmgsb in the transcriptional regulation of fibroin genes and silk gland development.
Collapse
Affiliation(s)
- Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yongping Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yutong Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xuebing Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jikailang Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ran Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
5
|
Geng S, Liu SB, He W, Pan X, Sun Y, Xue T, Han S, Lou J, Chang Y, Zheng J, Shi X, Li Y, Song YH. Deletion of TECRL promotes skeletal muscle repair by up-regulating EGR2. Proc Natl Acad Sci U S A 2024; 121:e2317495121. [PMID: 38753506 PMCID: PMC11126978 DOI: 10.1073/pnas.2317495121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Myogenic regeneration relies on the proliferation and differentiation of satellite cells. TECRL (trans-2,3-enoyl-CoA reductase like) is an endoplasmic reticulum protein only expressed in cardiac and skeletal muscle. However, its role in myogenesis remains unknown. We show that TECRL expression is increased in response to injury. Satellite cell-specific deletion of TECRL enhances muscle repair by increasing the expression of EGR2 through the activation of the ERK1/2 signaling pathway, which in turn promotes the expression of PAX7. We further show that TECRL deletion led to the upregulation of the histone acetyltransferase general control nonderepressible 5, which enhances the transcription of EGR2 through acetylation. Importantly, we showed that AAV9-mediated TECRL silencing improved muscle repair in mice. These findings shed light on myogenic regeneration and muscle repair.
Collapse
Affiliation(s)
- Sha Geng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou215009, People’s Republic of China
| | - Wei He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, People’s Republic of China
| | - Yi Sun
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming650102, People’s Republic of China
| | - Ting Xue
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Shiyuan Han
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Jing Lou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Ying Chang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Jiqing Zheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Xinghong Shi
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| |
Collapse
|
6
|
Van HT, Xie G, Dong P, Liu Z, Ge K. KMT2 Family of H3K4 Methyltransferases: Enzymatic Activity-dependent and -independent Functions. J Mol Biol 2024; 436:168453. [PMID: 38266981 PMCID: PMC10957308 DOI: 10.1016/j.jmb.2024.168453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Histone-lysine N-methyltransferase 2 (KMT2) methyltransferases are critical for gene regulation, cell differentiation, animal development, and human diseases. KMT2 biological roles are often attributed to their methyltransferase activities on lysine 4 of histone H3 (H3K4). However, recent data indicate that KMT2 proteins also possess non-enzymatic functions. In this review, we discuss the current understanding of KMT2 family, with a focus on their enzymatic activity-dependent and -independent functions. Six mammalian KMT2 proteins of three subgroups, KMT2A/B (MLL1/2), KMT2C/D (MLL3/4), and KMT2F/G (SETD1A/B or SET1A/B), have shared and distinct protein domains, catalytic substrates, genomic localizations, and associated complex subunits. Recent studies have revealed the importance of KMT2C/D in enhancer regulation, differentiation, development, tumor suppression and highlighted KMT2C/D enzymatic activity-dependent and -independent roles in mouse embryonic development and cell differentiation. Catalytic dependent and independent functions for KMT2A/B and KMT2F/G in gene regulation, differentiation, and development are less understood. Finally, we provide our perspectives and lay out future research directions that may help advance the investigation on enzymatic activity-dependent and -independent biological roles and working mechanisms of KMT2 methyltransferases.
Collapse
Affiliation(s)
- Hieu T Van
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| | - Guojia Xie
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Geara P, Dilworth FJ. Epigenetic integration of signaling from the regenerative environment. Curr Top Dev Biol 2024; 158:341-374. [PMID: 38670712 DOI: 10.1016/bs.ctdb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle has an extraordinary capacity to regenerate itself after injury due to the presence of tissue-resident muscle stem cells. While these muscle stem cells are the primary contributor to the regenerated myofibers, the process occurs in a regenerative microenvironment where multiple different cell types act in a coordinated manner to clear the damaged myofibers and restore tissue homeostasis. In this regenerative environment, immune cells play a well-characterized role in initiating repair by establishing an inflammatory state that permits the removal of dead cells and necrotic muscle tissue at the injury site. More recently, it has come to be appreciated that the immune cells also play a crucial role in communicating with the stem cells within the regenerative environment to help coordinate the timing of repair events through the secretion of cytokines, chemokines, and growth factors. Evidence also suggests that stem cells can help modulate the extent of the inflammatory response by signaling to the immune cells, demonstrating a cross-talk between the different cells in the regenerative environment. Here, we review the current knowledge on the innate immune response to sterile muscle injury and provide insight into the epigenetic mechanisms used by the cells in the regenerative niche to integrate the cellular cross-talk required for efficient muscle repair.
Collapse
Affiliation(s)
- Perla Geara
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | - F Jeffrey Dilworth
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
8
|
Santarelli P, Rosti V, Vivo M, Lanzuolo C. Chromatin organization of muscle stem cell. Curr Top Dev Biol 2024; 158:375-406. [PMID: 38670713 DOI: 10.1016/bs.ctdb.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.
Collapse
Affiliation(s)
- Philina Santarelli
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Valentina Rosti
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy
| | - Maria Vivo
- Università degli studi di Salerno, Fisciano, Italy.
| | - Chiara Lanzuolo
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy.
| |
Collapse
|
9
|
Cordeiro-Spinetti E, Rothbart SB. Lysine methylation signaling in skeletal muscle biology: from myogenesis to clinical insights. Biochem J 2023; 480:1969-1986. [PMID: 38054592 DOI: 10.1042/bcj20230223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Lysine methylation signaling is well studied for its key roles in the regulation of transcription states through modifications on histone proteins. While histone lysine methylation has been extensively studied, recent discoveries of lysine methylation on thousands of non-histone proteins has broadened our appreciation for this small chemical modification in the regulation of protein function. In this review, we highlight the significance of histone and non-histone lysine methylation signaling in skeletal muscle biology, spanning development, maintenance, regeneration, and disease progression. Furthermore, we discuss potential future implications for its roles in skeletal muscle biology as well as clinical applications for the treatment of skeletal muscle-related diseases.
Collapse
Affiliation(s)
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan 49503, U.S.A
| |
Collapse
|
10
|
Romero MA, Pyle AD. 'Enhancing' skeletal muscle and stem cells in three-dimensions: genome regulation of skeletal muscle in development and disease. Curr Opin Genet Dev 2023; 83:102133. [PMID: 37951138 PMCID: PMC10872784 DOI: 10.1016/j.gde.2023.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/13/2023]
Abstract
The noncoding genome imparts important regulatory control over gene expression. In particular, gene enhancers represent a critical layer of control that integrates developmental and differentiation signals outside the cell into transcriptional outputs inside the cell. Recently, there has been an explosion in genomic techniques to probe enhancer control, function, and regulation. How enhancers are regulated and integrate signals in stem cell development and differentiation is largely an open question. In this review, we focus on the role gene enhancers play in muscle stem cell specification, differentiation, and progression. We pay specific attention toward the identification of muscle-specific enhancers, the binding of transcription factors to these enhancers, and how enhancers communicate to their target genes via three-dimensional looping.
Collapse
Affiliation(s)
- Matthew A Romero
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
| | - April D Pyle
- Department of Microbiology, Immunology and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Hou X, Cui B, Qiu A, Liu N, Zhuang S. Pharmacological inhibition of the mixed lineage leukemia 1-menin interaction aggravates acute kidney injury induced by folic acid and ischemia-reperfusion in mice. Am J Physiol Renal Physiol 2023; 325:F669-F680. [PMID: 37733875 PMCID: PMC11905865 DOI: 10.1152/ajprenal.00287.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Mixed lineage leukemia 1 (MLL1) is a methyltransferase that induces histone H3 lysine 4 trimethylation (H3K4me3) and partially exerts its untoward functional effects by interacting with multiple subunits including menin and WD repeat-containing protein 5 (WDR5). In this study, we investigated the role and mechanisms of MLL1 in murine models of acute kidney injury induced by folic acid (FA) and ischemia-reperfusion. Injury to the kidney elevated the expression of MLL1, menin, WDR5, and H3K4Me3, which was accompanied by increased serum creatinine and blood urea nitrogen, renal tubular injury, and apoptosis. Pharmacological inhibition of MLL1 activity with MI503 to disrupt the interaction between MLL1 with menin further increased serum creatinine and blood urea nitrogen levels, enhanced expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, and induced more apoptosis in the kidney following FA and ischemia-reperfusion injury. In contrast, MI503 treatment decreased the expression of vimentin and proliferating cell nuclear antigens. Similarly, treatment with MM102 to disrupt the interaction between MLL1 and WDR5 also worsened renal dysfunction, aggravated tubular cell injury, increased apoptosis, and inhibited cellular dedifferentiation and proliferation in mice following FA injection. Moreover, MI503 inhibited FA-induced phosphorylation of epidermal growth factor receptor, signal transducer and activator of transcription 3, and extracellular signal-regulated kinase-1/2 in injured kidneys. Collectively, these data suggest that MLL1 contributes to renal protection and functional recovery and promotes renal regeneration through a mechanism associated with activation of the epidermal growth factor receptor signaling pathway.NEW & NOTEWORTHY Mixed lineage leukemia 1 (MLL1) is a methyltransferase that induces histone H3 lysine 4 trimethylation and exerts its functional roles by interacting with multiple subunits. In this study, we demonstrated that inhibition of MLL1 activity by MI503 or MM102 aggravated renal injury and apoptosis and suppressed renal tubular cell dedifferentiation and proliferation, suggesting that MLL1 activation during acute kidney injury acts as an intrinsic protective mechanism to mediate renal tubular cell survival and regeneration.
Collapse
Affiliation(s)
- Xiying Hou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
12
|
Choi J, Lee H. NFIB-MLL1 complex is required for the stemness and Dlx5-dependent osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. J Biol Chem 2023; 299:105193. [PMID: 37633334 PMCID: PMC10519831 DOI: 10.1016/j.jbc.2023.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023] Open
Abstract
Despite significant progress in our understanding of the molecular mechanism of mesenchymal stem cell (MSC) differentiation, less is known about the factors maintaining the stemness and plasticity of MSCs. Here, we show that the NFIB-MLL1 complex plays key roles in osteogenic differentiation and stemness of C3H10T1/2 MSCs. We find that depletion of either NFIB or MLL1 results in a severely hampered osteogenic potential and failed activation of key osteogenic transcription factors, such as Dlx5, Runx2, and Osx, following osteogenic stimuli. In addition, the NFIB-MLL1 complex binds directly to the promoter of Dlx5, and exogenous expression of Myc-Dlx5, but not the activation of either the BMP- or the Wnt-signaling pathway, is sufficient to restore the osteogenic potential of cells depleted of NFIB or MLL1. Moreover, chromatin immunoprecipitation (ChIP) and ChIP-sequencing analysis showed that the NFIB-MLL1 complex mediates the deposition of trimethylated histone H3K4 at both Dlx5 and Cebpa, key regulator genes that function at the early stages of osteogenic and adipogenic differentiation, respectively, in uncommitted C3H10T1/2 MSCs. Surprisingly, the depletion of either NFIB or MLL1 leads to decreased trimethylated histone H3K4 and results in elevated trimethylated histone H3K9 at those developmental genes. Furthermore, gene expression profiling and ChIP-sequencing analysis revealed lineage-specific changes in chromatin landscape and gene expression in response to osteogenic stimuli. Taken together, these data provide evidence for the hitherto unknown role of the NFIB-MLL1 complex in the maintenance and lineage-specific differentiation of C3H10T1/2 MSCs and support the epigenetic regulatory mechanism underlying the stemness and plasticity of MSCs.
Collapse
Affiliation(s)
- Janghyun Choi
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, South Korea.
| | - Hansol Lee
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, South Korea.
| |
Collapse
|
13
|
Szabó L, Telek A, Fodor J, Dobrosi N, Dócs K, Hegyi Z, Gönczi M, Csernoch L, Dienes B. Reduced Expression of Septin7 Hinders Skeletal Muscle Regeneration. Int J Mol Sci 2023; 24:13536. [PMID: 37686339 PMCID: PMC10487768 DOI: 10.3390/ijms241713536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Septins are considered the fourth component of the cytoskeleton with the septin7 isoform playing a critical role in the formation of diffusion barriers in phospholipid bilayers and intra- and extracellular scaffolds. While its importance has already been confirmed in different intracellular processes, very little is known about its role in skeletal muscle. Muscle regeneration was studied in a Sept7 conditional knock-down mouse model to prove the possible role of septin7 in this process. Sterile inflammation in skeletal muscle was induced which was followed by regeneration resulting in the upregulation of septin7 expression. Partial knock-down of Sept7 resulted in an increased number of inflammatory cells and myofibers containing central nuclei. Taken together, our data suggest that partial knock-down of Sept7 hinders the kinetics of muscle regeneration, indicating its crucial role in skeletal muscle functions.
Collapse
Affiliation(s)
- László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
14
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Su Y, Cao Y, Liu C, Xu Q, Li N, Lan M, Li L, Wang K, Zhang Z, Meng Q. Inactivating IL34 promotes regenerating muscle stem cell expansion and attenuates Duchenne muscular dystrophy in mouse models. Theranostics 2023; 13:2588-2604. [PMID: 37215564 PMCID: PMC10196826 DOI: 10.7150/thno.83817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Background: The balance between the differentiation and self-renewal of satellite cells (SCs) is essential for skeletal muscle homeostasis and regeneration. Our knowledge of this regulatory process is incomplete. Methods: Using global and conditional knockout mice as in vivo models and isolated satellite cells as in vitro system, we investigated the regulatory mechanisms of IL34 in the process of skeletal muscle regeneration in vivo and in vitro. Results: Myocytes and regenerating fibers are major source of IL34. Deletion of interleukin 34 (IL34) sustains expansion by sacrificing the differentiation of SCs and leads to significant muscle regeneration defects. We further found that inactivating IL34 in SCs leads to hyperactivation of NFKB1 signaling; NFKB1 translocates to the nucleus and binds to the promoter region of Igfbp5 to synergistically disturb protein kinase B (Akt) activity. Notably, augmented Igfbp5 function in SCs led to deficient differentiation and Akt activity. Furthermore, disrupting Akt activity both in vivo and in vitro mimicked the phenotype of IL34 knockout. Finally, deleting IL34 or interfering Akt in mdx mice ameliorates dystrophic muscles. Conclusion: We comprehensively characterized regenerating myofibers-expressed IL34 plays a pivotal role in controlling myonuclear domain. The results also indicate that impairing IL34 function by promoting SC maintenance can lead to improved muscular performance in mdx mice in which the stem cell pool is compromised.
Collapse
Affiliation(s)
- Yang Su
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
- Department of Cell Biology, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing 400038, China
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Yuxin Cao
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Chang Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Qing Xu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Na Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Miaomiao Lan
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Lei Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Kun Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Zeyu Zhang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Qingyong Meng
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| |
Collapse
|
16
|
He H, Li X, Shen J, Bai S, Li C, Shi H. Bisphenol A exposure causes testicular toxicity by targeting DPY30-mediated post-translational modification of PI3K/AKT signaling in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113996. [PMID: 36030680 DOI: 10.1016/j.ecoenv.2022.113996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA), one of the chemicals with the highest volume of production worldwide, has been demonstrated to cause testicular toxicity via different pathways. However, there is little evidence concerning the mechanism of BPA exposure induced histone modification alterations, especially regarding the effect on the histone H3 lysine 4 (H3K4) epigenetic modification. Our results demonstrated a new epigenetic regulation of BPA exposure on testicular damage using both cell culture and mouse models. With BPA treatment, disordered and shrunken seminiferous tubules and poor sperm quality were observed in vivo, and mouse spermatogonial germ cell proliferation was inhibited in vitro. BPA attenuated PI3K expression inducing phospho-AKT inhibition in vivo and in vitro. DPY30 was the only downregulated subunit in BPA and MEK2206 (AKT inhibitor) treated cells, which contributed to reducing H3K4me3 recruitment at the PIK3CA transcriptional start site (TSS) in BPA treated cells. The toxicity caused by BPA exposure was relieved after the transduction of adenoviruses expressing DPY30 transgenes, which resulted in the stimulation of PI3K/AKT with H3K4me3 enriched at the PI3KCA TSS. DPY30 promoted cell glycolysis via AMPK and proliferation through AKT/P21. DPY30 was mainly located in the round and elongated spermatids for energy accumulation in mature sperm in AD-DPY30-treated mice which showed higher sperm quality. Overall, our results indicated that BPA exposure causes testicular toxicity through a DPY30-mediated H3K4me3 epigenetic modification, which serves to regulate the PI3K/AKT/P21 pathway.
Collapse
Affiliation(s)
- Huanshan He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuying Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
17
|
Vicente-García C, Hernández-Camacho JD, Carvajal JJ. Regulation of myogenic gene expression. Exp Cell Res 2022; 419:113299. [DOI: 10.1016/j.yexcr.2022.113299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/22/2022]
|
18
|
Zheng J, Lou J, Li Y, Qian P, He W, Hao Y, Xue T, Li Y, Song YH. Satellite cell-specific deletion of Cipc alleviates myopathy in mdx mice. Cell Rep 2022; 39:110939. [PMID: 35705041 DOI: 10.1016/j.celrep.2022.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
Skeletal muscle regeneration relies on satellite cells that can proliferate, differentiate, and form new myofibers upon injury. Emerging evidence suggests that misregulation of satellite cell fate and function influences the severity of Duchenne muscular dystrophy (DMD). The transcription factor Pax7 determines the myogenic identity and maintenance of the pool of satellite cells. The circadian clock regulates satellite cell proliferation and self-renewal. Here, we show that the CLOCK-interacting protein Circadian (CIPC) a negative-feedback regulator of the circadian clock, is up-regulated during myoblast differentiation. Specific deletion of Cipc in satellite cells alleviates myopathy, improves muscle function, and reduces fibrosis in mdx mice. Cipc deficiency leads to activation of the ERK1/2 and JNK1/2 signaling pathways, which activates the transcription factor SP1 to trigger the transcription of Pax7 and MyoD. Therefore, CIPC is a negative regulator of satellite cell function, and loss of Cipc in satellite cells promotes muscle regeneration.
Collapse
Affiliation(s)
- Jiqing Zheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Jing Lou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yanfang Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Panting Qian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Wei He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yingxue Hao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Ting Xue
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yangxin Li
- Department of Cardiovascular Surgery and Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China.
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
19
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
20
|
Bianconi V, Mozzetta C. Epigenetic control of muscle stem cells: time for a new dimension. Trends Genet 2022; 38:501-513. [DOI: 10.1016/j.tig.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
|
21
|
MLL1 is required for maintenance of intestinal stem cells. PLoS Genet 2021; 17:e1009250. [PMID: 34860830 PMCID: PMC8641872 DOI: 10.1371/journal.pgen.1009250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic mechanisms are gatekeepers for the gene expression patterns that establish and maintain cellular identity in mammalian development, stem cells and adult homeostasis. Amongst many epigenetic marks, methylation of histone 3 lysine 4 (H3K4) is one of the most widely conserved and occupies a central position in gene expression. Mixed lineage leukemia 1 (MLL1/KMT2A) is the founding mammalian H3K4 methyltransferase. It was discovered as the causative mutation in early onset leukemia and subsequently found to be required for the establishment of definitive hematopoiesis and the maintenance of adult hematopoietic stem cells. Despite wide expression, the roles of MLL1 in non-hematopoietic tissues remain largely unexplored. To bypass hematopoietic lethality, we used bone marrow transplantation and conditional mutagenesis to discover that the most overt phenotype in adult Mll1-mutant mice is intestinal failure. MLL1 is expressed in intestinal stem cells (ISCs) and transit amplifying (TA) cells but not in the villus. Loss of MLL1 is accompanied by loss of ISCs and a differentiation bias towards the secretory lineage with increased numbers and enlargement of goblet cells. Expression profiling of sorted ISCs revealed that MLL1 is required to promote expression of several definitive intestinal transcription factors including Pitx1, Pitx2, Foxa1, Gata4, Zfp503 and Onecut2, as well as the H3K27me3 binder, Bahcc1. These results were recapitulated using conditional mutagenesis in intestinal organoids. The stem cell niche in the crypt includes ISCs in close association with Paneth cells. Loss of MLL1 from ISCs promoted transcriptional changes in Paneth cells involving metabolic and stress responses. Here we add ISCs to the MLL1 repertoire and observe that all known functions of MLL1 relate to the properties of somatic stem cells, thereby highlighting the suggestion that MLL1 is a master somatic stem cell regulator.
Collapse
|
22
|
Esteves de Lima J, Relaix F. Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. CELL REGENERATION 2021; 10:31. [PMID: 34595600 PMCID: PMC8484369 DOI: 10.1186/s13619-021-00093-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
In vertebrates, the skeletal muscles of the body and their associated stem cells originate from muscle progenitor cells, during development. The specification of the muscles of the trunk, head and limbs, relies on the activity of distinct genetic hierarchies. The major regulators of trunk and limb muscle specification are the paired-homeobox transcription factors PAX3 and PAX7. Distinct gene regulatory networks drive the formation of the different muscles of the head. Despite the redeployment of diverse upstream regulators of muscle progenitor differentiation, the commitment towards the myogenic fate requires the expression of the early myogenic regulatory factors MYF5, MRF4, MYOD and the late differentiation marker MYOG. The expression of these genes is activated by muscle progenitors throughout development, in several waves of myogenic differentiation, constituting the embryonic, fetal and postnatal phases of muscle growth. In order to achieve myogenic cell commitment while maintaining an undifferentiated pool of muscle progenitors, several signaling pathways regulate the switch between proliferation and differentiation of myoblasts. The identification of the gene regulatory networks operating during myogenesis is crucial for the development of in vitro protocols to differentiate pluripotent stem cells into myoblasts required for regenerative medicine.
Collapse
Affiliation(s)
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010, Creteil, France.
| |
Collapse
|
23
|
Lai X, Bi Z, Yang X, Hu R, Wang L, Jin M, Li L, Bu B. Upregulation of circ-FBL promotes myogenic proliferation in myasthenia gravis by regulation of miR-133/PAX7. Cell Biol Int 2021; 45:2287-2293. [PMID: 34363272 PMCID: PMC9290729 DOI: 10.1002/cbin.11676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022]
Abstract
Myasthenia gravis (MG) is a disease involving neuromuscular transmission that causes fatigue of skeletal muscles and fluctuating weakness. It has been shown that impairment of myogenic differentiation and myofiber maturation may be the underlying cause of MG. In this study, we detected the abnormal expression of circular RNA (circRNA) using next‐generation sequencing in patients with MG. We then investigated the regulatory mechanism and the relationship among circRNA, microRNA, and messenger RNA using quantitative reverse‐transcription polymerase chain reaction, bioinformatics analysis, and luciferase report analysis. The expression of inflammatory cytokines and regulatory T lymphocytes was shown to be increased. Circ‐FBL was significantly increased in MG patients. Bioinformatics and luciferase report analyses confirmed that miR‐133 and PAX7 were the downstream targets of circ‐FBL. Overexpression of circ‐FBL promoted myoblast proliferation by regulation of miR‐133/PAX7. Taken together, our study showed that upregulation of circ‐FBL promoted myogenic proliferation in patients with MG by regulating miR‐133/PAX7.
Collapse
Affiliation(s)
- Xiaoyin Lai
- Department of NeurologyGongli HospitalShanghaiChina
| | - Zhuajin Bi
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuelian Yang
- Department of NeurologyGongli HospitalShanghaiChina
| | - Rongguo Hu
- Department of NeurologyGongli HospitalShanghaiChina
| | - Lu Wang
- Department of NeurologyGongli HospitalShanghaiChina
| | - Mingming Jin
- Department of NeurologyGongli HospitalShanghaiChina
| | - Longxuan Li
- Department of NeurologyGongli HospitalShanghaiChina
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
24
|
Esteves de Lima J, Bou Akar R, Machado L, Li Y, Drayton-Libotte B, Dilworth FJ, Relaix F. HIRA stabilizes skeletal muscle lineage identity. Nat Commun 2021; 12:3450. [PMID: 34103504 PMCID: PMC8187366 DOI: 10.1038/s41467-021-23775-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
The epigenetic mechanisms coordinating the maintenance of adult cellular lineages and the inhibition of alternative cell fates remain poorly understood. Here we show that targeted ablation of the histone chaperone HIRA in myogenic cells leads to extensive transcriptional modifications, consistent with a role in maintaining skeletal muscle cellular identity. We demonstrate that conditional ablation of HIRA in muscle stem cells of adult mice compromises their capacity to regenerate and self-renew, leading to tissue repair failure. Chromatin analysis of Hira-deficient cells show a significant reduction of histone variant H3.3 deposition and H3K27ac modification at regulatory regions of muscle genes. Additionally, we find that genes from alternative lineages are ectopically expressed in Hira-mutant cells via MLL1/MLL2-mediated increase of H3K4me3 mark at silent promoter regions. Therefore, we conclude that HIRA sustains the chromatin landscape governing muscle cell lineage identity via incorporation of H3.3 at muscle gene regulatory regions, while preventing the expression of alternative lineage genes. The epigenetic mechanisms coordinating the maintenance of adult cellular lineages remain poorly understood. Here the authors demonstrate that HIRA, a H3.3 histone chaperone, establishes the chromatin landscape required for skeletal muscle cell identity.
Collapse
Affiliation(s)
| | - Reem Bou Akar
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010, Creteil, France
| | - Léo Machado
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010, Creteil, France
| | - Yuefeng Li
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - F Jeffrey Dilworth
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010, Creteil, France.
| |
Collapse
|
25
|
Ali AMEA, Ahmed AS, El-Yasergy DF, Abousarie MA, Elsayed RM, Mohammed YE, Mohammed RA. Therapeutic potential of mesenchymal stem cells for peripheral artery disease in a rat model of hindlimb ischemia. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:805-814. [PMID: 34630958 PMCID: PMC8487602 DOI: 10.22038/ijbms.2021.55861.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Mesenchymal stem cells are viewed as the first choice in regenerative medicine. This study aimed to elucidate the influence of BM-MSCs transplantation on angiogenesis in a rat model of unilateral peripheral vascular disease. MATERIALS AND METHODS Twenty-one rats were arbitrarily allocated into three groups (7/group). Group I: control sham-operated rats, Group II: control ischemic group: Rats were subjected to unilateral surgical ligation of the femoral artery, and Group III: ischemia group: Rats were induced as in group II, 24 hr after ligation, they were intramuscularly injected with BM-MSCs. After scarification, gastrocnemius muscle gene expression of stromal cell-derived factor-1 (SDF-1), CXC chemokine receptor 4 (CXCR4), vascular endothelial growth factor receptor 2 (VEGFR2), von Willebrand factor (vWF), and hypoxia-inducible factor-1α (HIF-1α) were analyzed by quantitative real-time PCR. Muscle regeneration and angiogenesis evaluation was assessed through H&E staining of the tissue. Furthermore, Pax3 and Pax7 nuclear expression was immunohistochemically assessed. RESULTS Rats treated with BM-MSCs showed significantly raised gene expression levels of SDF-1, CXCR4, VEGFR2, and vWF compared with control and ischemia groups. H&E staining of the gastrocnemius showed prominent new vessel formation. Granulation tissue within muscles of the ischemic treated group by BM-MSCs showed cells demonstrating nuclear expression of Pax3 and Pax7. CONCLUSION BM-MSCs transplantation has an ameliorating effect on muscle ischemia through promoting angiogenesis, detected by normal muscle architecture restoration and new blood vessel formations observed by H&E, confirmed by increased gene expression levels of SDF-1, CXCR4, VEGFR2, and vWF, decreased HIF-1α gene expression, and increased myogenic Pax7 gene expression.
Collapse
Affiliation(s)
- Amani M. El Amin Ali
- Department of Medical Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Amira S. Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Dina F. El-Yasergy
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Ramadan M. Elsayed
- Department of Medical Anatomy, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Yasmin E. Mohammed
- Department of Medical Anatomy, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Rahab A. Mohammed
- Department of Medical Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
26
|
Acetylation of PAX7 controls muscle stem cell self-renewal and differentiation potential in mice. Nat Commun 2021; 12:3253. [PMID: 34059674 PMCID: PMC8167170 DOI: 10.1038/s41467-021-23577-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 05/06/2021] [Indexed: 11/15/2022] Open
Abstract
Muscle stem cell function has been suggested to be regulated by Acetyl-CoA and NAD+ availability, but the mechanisms remain unclear. Here we report the identification of two acetylation sites on PAX7 that positively regulate its transcriptional activity. Lack of PAX7 acetylation reduces DNA binding, specifically to the homeobox motif. The acetyltransferase MYST1 stimulated by Acetyl-CoA, and the deacetylase SIRT2 stimulated by NAD +, are identified as direct regulators of PAX7 acetylation and asymmetric division in muscle stem cells. Abolishing PAX7 acetylation in mice using CRISPR/Cas9 mutagenesis leads to an expansion of the satellite stem cell pool, reduced numbers of asymmetric stem cell divisions, and increased numbers of oxidative IIA myofibers. Gene expression analysis confirms that lack of PAX7 acetylation preferentially affects the expression of target genes regulated by homeodomain binding motifs. Therefore, PAX7 acetylation status regulates muscle stem cell function and differentiation potential to facilitate metabolic adaptation of muscle tissue. The acetyltransferase MYST1 stimulated by acetyl-CoA, and the deacetylase SIRT2 stimulated by NAD+, regulate PAX7 acetylation in muscle stem cells, which in turn, regulates stem cell self-renewal and regeneration following injury in mouse skeletal muscle.
Collapse
|
27
|
METTL3-Mediated m 6A Methylation Regulates Muscle Stem Cells and Muscle Regeneration by Notch Signaling Pathway. Stem Cells Int 2021; 2021:9955691. [PMID: 34093712 PMCID: PMC8140833 DOI: 10.1155/2021/9955691] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
The Pax7+ muscle stem cells (MuSCs) are essential for skeletal muscle homeostasis and muscle regeneration upon injury, while the molecular mechanisms underlying muscle stem cell fate determination and muscle regeneration are still not fully understood. N6-methyladenosine (m6A) RNA modification is catalyzed by METTL3 and plays important functions in posttranscriptional gene expression regulation and various biological processes. Here, we generated muscle stem cell-specific METTL3 conditional knockout mouse model and revealed that METTL3 knockout in muscle stem cells significantly inhibits the proliferation of muscle stem cells and blocks the muscle regeneration after injury. Moreover, knockin of METTL3 in muscle stem cells promotes the muscle stem cell proliferation and muscle regeneration in vivo. Mechanistically, METTL3-m6A-YTHDF1 axis regulates the mRNA translation of Notch signaling pathway. Our data demonstrated the important in vivo physiological function of METTL3-mediated m6A modification in muscle stem cells and muscle regeneration, providing molecular basis for the therapy of stem cell-related muscle diseases.
Collapse
|
28
|
Vieira WF, Kenzo-Kagawa B, Alvares LE, Cogo JC, Baranauskas V, da Cruz-Höfling MA. Exploring the ability of low-level laser irradiation to reduce myonecrosis and increase Myogenin transcription after Bothrops jararacussu envenomation. Photochem Photobiol Sci 2021; 20:571-583. [PMID: 33895984 DOI: 10.1007/s43630-021-00041-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Envenoming caused by snakebites is a very important neglected tropical disease worldwide. The myotoxic phospholipases present in the bothropic venom disrupt the sarcolemma and compromise the mechanisms of energy production, leading to myonecrosis. Photobiomodulation therapy (PBMT) has been used as an effective tool to treat diverse cases of injuries, such as snake venom-induced myonecrosis. Based on that, the aim of this study was to analyze the effects of PBMT through low-level laser irradiation (904 nm) on the muscle regeneration after the myonecrosis induced by Bothrops jararacussu snake venom (Bjssu) injection, focusing on myogenic regulatory factors expression, such as Pax7, MyoD, and Myogenin (MyoG). Male Swiss mice (Mus musculus), 6-8-week-old, weighing 22 ± 3 g were used. Single sub-lethal Bjssu dose or saline was injected into the right mice gastrocnemius muscle. At 3, 24, 48, and 72 h after injections, mice were submitted to PBMT treatment. When finished the periods of 48 and 72 h, mice were euthanized and the right gastrocnemius were collected for analyses. We observed extensive inflammatory infiltrate in all the groups submitted to Bjssu injections. PBMT was able to reduce the myonecrotic area at 48 and 72 h after envenomation. There was a significant increase of MyoG mRNA expression at 72 h after venom injection. The data suggest that beyond the protective effect promoted by PBMT against Bjssu-induced myonecrosis, the low-level laser irradiation was able to stimulate the satellite cells, thus enhancing the muscle repair by improving myogenic differentiation.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-970, Brazil.,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Semiconductors, Instruments and Photonics, Faculty of Electrical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Bruno Kenzo-Kagawa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Carlos Cogo
- Faculty of Biomedical Engineering, Brazil University, Itaquera - São Paulo, SP, Brazil
| | - Vitor Baranauskas
- Department of Semiconductors, Instruments and Photonics, Faculty of Electrical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-970, Brazil. .,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
29
|
Schätzl T, Kaiser L, Deigner HP. Facioscapulohumeral muscular dystrophy: genetics, gene activation and downstream signalling with regard to recent therapeutic approaches: an update. Orphanet J Rare Dis 2021; 16:129. [PMID: 33712050 PMCID: PMC7953708 DOI: 10.1186/s13023-021-01760-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Whilst a disease-modifying treatment for Facioscapulohumeral muscular dystrophy (FSHD) does not exist currently, recent advances in complex molecular pathophysiology studies of FSHD have led to possible therapeutic approaches for its targeted treatment. Although the underlying genetics of FSHD have been researched extensively, there remains an incomplete understanding of the pathophysiology of FSHD in relation to the molecules leading to DUX4 gene activation and the downstream gene targets of DUX4 that cause its toxic effects. In the context of the local proximity of chromosome 4q to the nuclear envelope, a contraction of the D4Z4 macrosatellite induces lower methylation levels, enabling the ectopic expression of DUX4. This disrupts numerous signalling pathways that mostly result in cell death, detrimentally affecting skeletal muscle in affected individuals. In this regard different options are currently explored either to suppress the transcription of DUX4 gene, inhibiting DUX4 protein from its toxic effects, or to alleviate the symptoms triggered by its numerous targets.
Collapse
Affiliation(s)
- Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104, Freiburg i. Br., Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, 18057, Rostock, Germany.
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
30
|
Benavente-Diaz M, Comai G, Di Girolamo D, Langa F, Tajbakhsh S. Dynamics of myogenic differentiation using a novel Myogenin knock-in reporter mouse. Skelet Muscle 2021; 11:5. [PMID: 33602287 PMCID: PMC7890983 DOI: 10.1186/s13395-021-00260-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Myogenin is a transcription factor that is expressed during terminal myoblast differentiation in embryonic development and adult muscle regeneration. Investigation of this cell state transition has been hampered by the lack of a sensitive reporter to dynamically track cells during differentiation. Results Here, we report a knock-in mouse line expressing the tdTOMATO fluorescent protein from the endogenous Myogenin locus. Expression of tdTOMATO in MyogntdTom mice recapitulated endogenous Myogenin expression during embryonic muscle formation and adult regeneration and enabled the isolation of the MYOGENIN+ cell population. We also show that tdTOMATO fluorescence allows tracking of differentiating myoblasts in vitro and by intravital imaging in vivo. Lastly, we monitored by live imaging the cell division dynamics of differentiating myoblasts in vitro and showed that a fraction of the MYOGENIN+ population can undergo one round of cell division, albeit at a much lower frequency than MYOGENIN− myoblasts. Conclusions We expect that this reporter mouse will be a valuable resource for researchers investigating skeletal muscle biology in developmental and adult contexts. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00260-x.
Collapse
Affiliation(s)
- Maria Benavente-Diaz
- Stem Cells & Development Unit, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,UMR CNRS 3738, Institut Pasteur, Paris, France.,Sorbonne Universités, Complexité du Vivant, F-75005, Paris, France
| | - Glenda Comai
- Stem Cells & Development Unit, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Daniela Di Girolamo
- Stem Cells & Development Unit, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,UMR CNRS 3738, Institut Pasteur, Paris, France
| | - Francina Langa
- Mouse Genetics Engineering Center, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development Unit, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France. .,UMR CNRS 3738, Institut Pasteur, Paris, France.
| |
Collapse
|
31
|
Yu D, Cai Z, Li D, Zhang Y, He M, Yang Y, Liu D, Xie W, Li Y, Xiao W. Myogenic Differentiation of Stem Cells for Skeletal Muscle Regeneration. Stem Cells Int 2021; 2021:8884283. [PMID: 33628275 PMCID: PMC7884123 DOI: 10.1155/2021/8884283] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells have become a hot research topic in the field of regenerative medicine due to their self-renewal and differentiation capabilities. Skeletal muscle tissue is one of the most important tissues in the human body, and it is difficult to recover when severely damaged. However, conventional treatment methods can cause great pain to patients. Stem cell-based tissue engineering can repair skeletal muscle to the greatest extent with little damage. Therefore, the application of stem cells to skeletal muscle regeneration is very promising. In this review, we discuss scaffolds and stem cells for skeletal muscle regeneration and put forward our ideas for future development.
Collapse
Affiliation(s)
- Dengjie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Zijun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yuntao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
32
|
Massenet J, Gardner E, Chazaud B, Dilworth FJ. Epigenetic regulation of satellite cell fate during skeletal muscle regeneration. Skelet Muscle 2021; 11:4. [PMID: 33431060 PMCID: PMC7798257 DOI: 10.1186/s13395-020-00259-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
In response to muscle injury, muscle stem cells integrate environmental cues in the damaged tissue to mediate regeneration. These environmental cues are tightly regulated to ensure expansion of muscle stem cell population to repair the damaged myofibers while allowing repopulation of the stem cell niche. These changes in muscle stem cell fate result from changes in gene expression that occur in response to cell signaling from the muscle environment. Integration of signals from the muscle environment leads to changes in gene expression through epigenetic mechanisms. Such mechanisms, including post-translational modification of chromatin and nucleosome repositioning, act to make specific gene loci more, or less, accessible to the transcriptional machinery. In youth, the muscle environment is ideally structured to allow for coordinated signaling that mediates efficient regeneration. Both age and disease alter the muscle environment such that the signaling pathways that shape the healthy muscle stem cell epigenome are altered. Altered epigenome reduces the efficiency of cell fate transitions required for muscle repair and contributes to muscle pathology. However, the reversible nature of epigenetic changes holds out potential for restoring cell fate potential to improve muscle repair in myopathies. In this review, we will describe the current knowledge of the mechanisms allowing muscle stem cell fate transitions during regeneration and how it is altered in muscle disease. In addition, we provide some examples of how epigenetics could be harnessed therapeutically to improve regeneration in various muscle pathologies.
Collapse
Affiliation(s)
- Jimmy Massenet
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 8 Rockefeller Ave, 69008, Lyon, France
| | - Edward Gardner
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 8 Rockefeller Ave, 69008, Lyon, France
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada. .,LIFE Research Institute, University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|