1
|
Doublié S. Making 3' ends meet. Nat Struct Mol Biol 2025:10.1038/s41594-025-01578-6. [PMID: 40404983 DOI: 10.1038/s41594-025-01578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Affiliation(s)
- Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
2
|
Blanch JR, Woodward N, Krishnamurthy M, McVey M. A non-tethering role for the Drosophila Pol θ linker domain in promoting damage resolution. Nucleic Acids Res 2025; 53:gkaf304. [PMID: 40275613 PMCID: PMC12021795 DOI: 10.1093/nar/gkaf304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
DNA polymerase theta (Pol θ) is an error-prone translesion polymerase that becomes crucial for DNA double-strand break repair when cells are deficient in homologous recombination or non-homologous end joining. In some organisms, Pol θ also promotes tolerance of DNA interstrand crosslinks. Due to its importance in DNA damage tolerance, Pol θ is an emerging target for treatment of cancer and disease. Prior work has characterized the functions of the Pol θ helicase-like and polymerase domains, but the roles of the linker domain are largely unknown. Here, we show that the Drosophila melanogaster Pol θ linker domain promotes proper egg development and is required for repair of DNA double-strand breaks and interstrand crosslink tolerance. While a linker domain with scrambled amino acid residues is sufficient for DNA repair, replacement of the linker with part of the Homo sapiens Pol θ linker or a disordered region from the FUS RNA-binding protein does not restore function. These results demonstrate that the linker domain is not simply a random tether between the catalytic domains and suggest that intrinsic amino acid residue properties, rather than protein interaction motifs, are more critical for Pol θ linker functions in DNA repair.
Collapse
Affiliation(s)
- Justin R Blanch
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | - Nicholas Woodward
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | | | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
3
|
Ito F, Li Z, Minakhin L, Khant HA, Pomerantz RT, Chen XS. Structural basis for Polθ-helicase DNA binding and microhomology-mediated end-joining. Nat Commun 2025; 16:3725. [PMID: 40253368 PMCID: PMC12009414 DOI: 10.1038/s41467-025-58441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/24/2025] [Indexed: 04/21/2025] Open
Abstract
DNA double-strand breaks (DSBs) present a critical threat to genomic integrity, often precipitating genomic instability and oncogenesis. Repair of DSBs predominantly occurs through homologous recombination (HR) and non-homologous end joining (NHEJ). In HR-deficient cells, DNA polymerase theta (Polθ) becomes critical for DSB repair via microhomology-mediated end joining (MMEJ), also termed theta-mediated end joining (TMEJ). Thus, Polθ is synthetically lethal with BRCA1/2 and other HR factors, underscoring its potential as a therapeutic target in HR-deficient cancers. However, the molecular mechanisms governing Polθ-mediated MMEJ remain poorly understood. Here we present a series of cryo-electron microscopy structures of the Polθ helicase domain (Polθ-hel) in complex with DNA containing different 3'-ssDNA overhangs. The structures reveal the sequential conformations adopted by Polθ-hel during the critical phases of DNA binding, microhomology searching, and microhomology annealing. The stepwise conformational changes within the Polθ-hel subdomains and its functional dimeric state are pivotal for aligning the 3'-ssDNA overhangs, facilitating the microhomology search and subsequent annealing necessary for DSB repair via MMEJ. Our findings illustrate the essential molecular switches within Polθ-hel that orchestrate the MMEJ process in DSB repair, laying the groundwork for the development of targeted therapies against the Polθ-hel.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ziyuan Li
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Leonid Minakhin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Htet A Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Billing D, Sfeir A. The Role of Microhomology-Mediated End Joining (MMEJ) at Dysfunctional Telomeres. Cold Spring Harb Perspect Biol 2025; 17:a041687. [PMID: 39500624 PMCID: PMC11864110 DOI: 10.1101/cshperspect.a041687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
DNA double-strand break (DSB) repair pathways are crucial for maintaining genome stability and cell viability. However, these pathways can mistakenly recognize chromosome ends as DNA breaks, leading to adverse outcomes such as telomere fusions and malignant transformation. The shelterin complex protects telomeres from activation of DNA repair pathways by inhibiting nonhomologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). The focus of this paper is on MMEJ, an error-prone DSB repair pathway characterized by short insertions and deletions flanked by sequence homology. MMEJ is critical in mediating telomere fusions in cells lacking the shelterin complex and at critically short telomeres. Furthermore, studies suggest that MMEJ is the preferred pathway for repairing intratelomeric DSBs and facilitates escape from telomere crisis. Targeting MMEJ to prevent telomere fusions in hematologic malignancies is of potential therapeutic value.
Collapse
Affiliation(s)
- David Billing
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
5
|
Joseph S, Zhang X, Droby GN, Wu D, Bae-Jump V, Lyons S, Mordant A, Mills A, Herring L, Rushing B, Bowser JL, Vaziri C. MAPK14/p38α shapes the molecular landscape of endometrial cancer and promotes tumorigenic characteristics. Cell Rep 2025; 44:115104. [PMID: 39708320 DOI: 10.1016/j.celrep.2024.115104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/25/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The molecular underpinnings of high-grade endometrial carcinoma (HGEC) metastatic growth and survival are poorly understood. Here, we show that ascites-derived and primary tumor HGEC cell lines in 3D spheroid culture faithfully recapitulate key features of malignant peritoneal effusion and exhibit fundamentally distinct transcriptomic, proteomic, and metabolomic landscapes compared with conventional 2D monolayers. Using a genetic screening platform, we identify MAPK14 (which encodes the protein kinase p38α) as a specific requirement for HGEC in spheroid culture. MAPK14/p38α has broad roles in programming the phosphoproteome, transcriptome, and metabolome of HGEC spheroids, yet has negligible impact on monolayer cultures. MAPK14 promotes tumorigenicity in vivo and is specifically required to sustain a sub-population of spheroid cells that is enriched in cancer stemness markers. Therefore, spheroid growth of HGEC activates unique biological programs, including p38α signaling, that cannot be captured using 2D culture models and are highly relevant to malignant disease pathology.
Collapse
Affiliation(s)
- Sayali Joseph
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gaith N Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott Lyons
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Angie Mordant
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Allie Mills
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Blake Rushing
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Chiou LF, Jayaprakash D, Droby GN, Zhang X, Yang Y, Mills CA, Webb TS, Barker NK, Wu D, Herring LE, Bowser J, Vaziri C. The RING Finger E3 Ligase RNF25 Protects DNA Replication Forks Independently of its Canonical Roles in Ubiquitin Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632184. [PMID: 39829812 PMCID: PMC11741350 DOI: 10.1101/2025.01.09.632184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The DNA damage response (DDR) mechanisms that allow cells to tolerate DNA replication stress are critically important for genome stability and cell viability. Using an unbiased genetic screen we identify a role for the RING finger E3 ubiquitin ligase RNF25 in promoting DNA replication stress tolerance. In response to DNA replication stress, RNF25-deficient cells generate aberrantly high levels of single-stranded DNA (ssDNA), accumulate in S-phase and show reduced mitotic entry. Using single-molecule DNA fiber analysis, we show that RNF25 protects reversed DNA replication forks generated by the fork remodeler HLTF from nucleolytic degradation by MRE11 and CtIP. Mechanistically, RNF25 interacts with the replication fork protection factor REV7 and recruits REV7 to nascent DNA after replication stress. The role of RNF25 in protecting replication forks is fully separable from its canonical functions in ubiquitin conjugation. This work reveals the RNF25-REV7 signaling axis as an important protective mechanism in cells experiencing replication stress.
Collapse
Affiliation(s)
- Lilly F. Chiou
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deepika Jayaprakash
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Present address: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37237, USA
| | - Gaith N. Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present address: Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Present address: In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - C. Allie Mills
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas S. Webb
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Wu
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E. Herring
- UNC Metabolomics & Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead Contact
| |
Collapse
|
7
|
Szmyd R, Casolin S, French L, Manjón AG, Walter M, Cavalli L, Nelson CB, Page SG, Dhawan A, Hau E, Pickett HA, Gee HE, Cesare AJ. Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage. Nat Cell Biol 2025; 27:59-72. [PMID: 39805921 PMCID: PMC11735404 DOI: 10.1038/s41556-024-01557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/14/2024] [Indexed: 01/16/2025]
Abstract
Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division. Conversely, non-homologous end joining, microhomology-mediated end joining and single-strand annealing cooperate to enable damaged G1 cells to complete the first cell cycle with an aberrant cell division at the cost of delayed extrinsic lethality and interferon production. Targeting non-homologous end joining, microhomology-mediated end joining or single-strand annealing promotes mitotic death, while suppressing mitotic death enhances interferon production. Together the data indicate that a temporal repair hierarchy, coupled with cumulative DSB load, serves as a reliable predictor of mitotic catastrophe outcomes following genome damage. In this pathway, homologous recombination suppresses interferon production by promoting mitotic lethality.
Collapse
Affiliation(s)
- Radoslaw Szmyd
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sienna Casolin
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Lucy French
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Anna G Manjón
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Melanie Walter
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Léa Cavalli
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Scott G Page
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew Dhawan
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric Hau
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Harriet E Gee
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.
- Radiation Oncology Network, Western Sydney Local Health District, Sydney, New South Wales, Australia.
- Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia.
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.
| |
Collapse
|
8
|
Lam S, Thomas JC, Jackson SP. Genome-aware annotation of CRISPR guides validates targets in variant cell lines and enhances discovery in screens. Genome Med 2024; 16:139. [PMID: 39593080 PMCID: PMC11590575 DOI: 10.1186/s13073-024-01414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND CRISPR-Cas9 technology has revolutionised genetic screens and can inform on gene essentiality and chemo-genetic interactions. It is easily deployed and widely supported with many pooled CRISPR libraries available commercially. However, discrepancies between the reference genomes used in the design of those CRISPR libraries and the cell line under investigation can lead to loss of signal or introduction of bias. The problem is particularly acute when dealing with variant cell lines such as cancer cell lines. RESULTS Here, we present an algorithm, EXOme-guided Re-annotation of nuCleotIde SEquences (Exorcise), which uses sequence search to detect and correct mis-annotations in CRISPR libraries. Exorcise verifies the presence of CRISPR targets in the target genome and applies corrections to CRISPR libraries using existing exome annotations. We applied Exorcise to re-annotate guides in pooled CRISPR libraries available on Addgene and found that libraries designed on a more permissive reference sequence had more mis-annotations. In simulated CRISPR screens, we modelled common mis-annotations and found that they adversely affect discovery of hits in the intermediate range. We then confirmed this by applying Exorcise on datasets from Dependency Map (DepMap) and the DNA Damage Response CRISPR Screen Viewer (DDRcs), where we found improved discovery power upon Exorcise while retaining the strongest hits. CONCLUSIONS Pooled CRISPR libraries map guide sequences to genes and these mappings might not be ready to use due to permissive library design or investigating a variant cell line. By re-annotating CRISPR guides, Exorcise focuses CRISPR experiments towards the genome of the cell line under investigation. Exorcise can be applied at the library design stage or the analysis stage and allows post hoc re-analysis of completed screens. It is available under a Creative Commons Zero v1.0 Universal licence at https://github.com/SimonLammmm/exorcise .
Collapse
Affiliation(s)
- Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - John C Thomas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
9
|
Bazan Russo TD, Mujacic C, Di Giovanni E, Vitale MC, Ferrante Bannera C, Randazzo U, Contino S, Bono M, Gristina V, Galvano A, Perez A, Badalamenti G, Russo A, Bazan V, Incorvaia L. Polθ: emerging synthetic lethal partner in homologous recombination-deficient tumors. Cancer Gene Ther 2024; 31:1619-1631. [PMID: 39122831 PMCID: PMC11567890 DOI: 10.1038/s41417-024-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The most remarkable finding in synthetic lethality (SL) is the hypersensitivity to PARP inhibitors (PARPis) of the tumors harboring defects in genes involved in homologous repair (HR) such as BRCA1/2. Despite initial responsiveness to PARPi, the penetrance of the synthetic lethal interactions between BRCA1/2 genes and PARPi is incomplete. Thus, a significant proportion of HR-defective tumors experience intrinsic or acquired resistance, representing a key challenge of clinical research. An expanded concept of SL is opening new ways and includes novel forms of genetic interactions, investigating not only traditional SL of pairs genes but also SL between biological pathways that regulate the same essential survival cell function. In this context, recent research showed that HR and theta-mediated end-joining (TMEJ) pathways exhibit SL. DNA polymerase theta (Polθ) is encoded by the POLQ gene and is a key component of the TMEJ, an essential backup pathway, intrinsically mutagenic, to repair resected double-strand breaks (DSBs) when the non-homologous end joining (NHEJ) and HR are impaired. Polθ is broadly expressed in normal tissues, overexpressed in several cancers, and typically associated with poor outcomes and shorter relapse-free survival. Notably, HR-deficient tumor cells present the characteristic mutational signatures of the error-prone TMEJ pathway. According to this observation, the loss of HR proteins, such as BRCA1 or BRCA2, contributes to increasing the TMEJ-specific genomic profile, suggesting synthetic lethal interactions between loss of the POLQ and HR genes, and resulting in the emerging interest for Polθ as a potential therapeutic target in BRCA1/2-associated tumors.This review summarizes the converging roles of the POLQ and HR genes in DNA DSB repair, the early-stage clinical trials using Polθ inhibitor to treat HR-defective tumors and to overcome BRCA-reversion mutations responsible for therapeutic resistance, and the novel pleiotropic effects of Polθ, paving the way for the development of unexplored synthetic lethality strategies.
Collapse
Affiliation(s)
- Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Ugo Randazzo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
10
|
Frye CC, Tennant L, Yeager A, Azimzadeh P, Bhardwaj P, Xu Y, Liu J, Othoum G, Maher CA, Chernock R, Goedegebuure SP, Gillanders W, Olson JA, Brown TC. Overexpression of human DNA polymerase theta is a biomarker of aggressive and DNA repair-deficient papillary thyroid cancers. Surgery 2024; 176:1380-1387. [PMID: 38897886 DOI: 10.1016/j.surg.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND DNA polymerase theta (POLQ) is an enzyme that repairs double-strand DNA breaks. POLQ is overexpressed in several cancer types, and increased expression is associated with a poor prognosis. Ablating POLQ function in vitro increases drug sensitivity to agents that cause double-strand DNA breaks, including chemotherapies and ionizing radiation. POLQ's role in thyroid cancer remains poorly understood. METHODS Expression of POLQ and other genes of interest were analyzed in 513 papillary thyroid cancers (505 primary tumors and 8 metastatic lesions) and 59 normal thyroid samples available in the Cancer Genome Atlas. The Cancer Genome Atlas RNA and DNA sequencing data were queried with the Xena platform. The Recombination Proficiency Score was calculated to assess DNA repair efficiency. Other signaling events associated with thyroid tumorigenesis and clinical outcomes were analyzed. Univariate and multivariate analyses were performed. Treatment with the POLQ inhibitors ART558 and Novobiocin tested the effect of POLQ inhibition on in vitro thyroid cancer growth. RESULTS POLQ expression was increased in papillary thyroid cancers compared to normal thyroid tissue (P < .05). POLQ expression levels were inversely correlated with Recombination Proficiency Score levels (P < .05). POLQ expression was highest in tall cell papillary thyroid cancers and in metastases. Higher POLQ expression was also associated with dedifferentiation, BRAF signaling, and shorter progression-free intervals (P < .05). Treatment with POLQ inhibitors decreased in vitro thyroid cancer growth (P < .05). CONCLUSION These findings suggest that increased POLQ expression could serve as a valuable clinical marker and a potential therapeutic target in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- C Corbin Frye
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO.
| | - Lena Tennant
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Ashley Yeager
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Pedram Azimzadeh
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Priya Bhardwaj
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Yifei Xu
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Jingxia Liu
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Ghofran Othoum
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Christopher A Maher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Rebecca Chernock
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO
| | - S Peter Goedegebuure
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - William Gillanders
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - John A Olson
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| | - Taylor C Brown
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
11
|
Federica G, Michela C, Giovanna D. Targeting the DNA damage response in cancer. MedComm (Beijing) 2024; 5:e788. [PMID: 39492835 PMCID: PMC11527828 DOI: 10.1002/mco2.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
DNA damage response (DDR) pathway is the coordinated cellular network dealing with the identification, signaling, and repair of DNA damage. It tightly regulates cell cycle progression and promotes DNA repair to minimize DNA damage to daughter cells. Key proteins involved in DDR are frequently mutated/inactivated in human cancers and promote genomic instability, a recognized hallmark of cancer. Besides being an intrinsic property of tumors, DDR also represents a unique therapeutic opportunity. Indeed, inhibition of DDR is expected to delay repair, causing persistent unrepaired breaks, to interfere with cell cycle progression, and to sensitize cancer cells to several DNA-damaging agents, such as radiotherapy and chemotherapy. In addition, DDR defects in cancer cells have been shown to render these cells more dependent on the remaining pathways, which could be targeted very specifically (synthetic lethal approach). Research over the past two decades has led to the synthesis and testing of hundreds of small inhibitors against key DDR proteins, some of which have shown antitumor activity in human cancers. In parallel, the search for synthetic lethality interaction is broadening the use of DDR inhibitors. In this review, we discuss the state-of-art of ataxia-telangiectasia mutated, ataxia-telangiectasia-and-Rad3-related protein, checkpoint kinase 1, Wee1 and Polθ inhibitors, highlighting the results obtained in the ongoing clinical trials both in monotherapy and in combination with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Guffanti Federica
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Chiappa Michela
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Damia Giovanna
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
12
|
Wu W, Fan Z, Fu H, Ma X, Wang D, Liu H, Zhang C, Zheng H, Yang Y, Wu H, Miao X, An R, Gong Y, Tang TS, Guo C. VGLL3 modulates chemosensitivity through promoting DNA double-strand break repair. SCIENCE ADVANCES 2024; 10:eadr2643. [PMID: 39383226 PMCID: PMC11463272 DOI: 10.1126/sciadv.adr2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Transcription cofactor vestigial-like 3 (VGLL3), as a master regulator of female-biased autoimmunity, also functions in tumor development, while the underlying mechanisms remain largely elusive. Here, we report that VGLL3 plays an important role in DNA damage response (DDR). VGLL3 can be recruited to damage sites in a PARylation-dependent manner. VGLL3 depletion impairs the accumulation of RNF8 and RAD51 at sites of DNA damage, leading to reduced homologous recombination efficiency and increased cellular sensitivity to chemotherapeutic drugs. Mechanistically, VGLL3 can prevent CtIP from KLHL15-mediated ubiquitination and degradation through competitive binding with KLHL15 and, meanwhile, stabilize MDC1 by limiting TRIP12-MDC1 but promoting USP7-MDC1 associations for optimal RNF8 signaling initiation. Consistently, VGLL3 depletion delays tumor development and sensitizes the xenografts to etoposide treatment. Overall, our results reveal an unexpected role of VGLL3 in DDR, which is distinct from its transcriptional cofactor function and not conserved among VGLL family members.
Collapse
Affiliation(s)
- Wei Wu
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenzhen Fan
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Fu
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolu Ma
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Dongzhou Wang
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Liu
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chuanchao Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zheng
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yeran Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Honglin Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiuxiu Miao
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyuan An
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Gong
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Shan Tang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Caixia Guo
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
del Puerto-Nevado L, Fernández-Aceñero MJ, Cebrián A, Fatych Y, Díez-Valladares LI, Pérez-Aguirre E, de la Serna S, García-Botella A, Martínez-Useros J, García-Foncillas J, Mateos-Gómez PA. POLQ immunostaining behaves as a prognostic factor for pancreatic carcinoma. Front Oncol 2024; 14:1433179. [PMID: 39435280 PMCID: PMC11491332 DOI: 10.3389/fonc.2024.1433179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND DNA polymerase theta (POLQ) is a translesion synthesis polymerase essential for the repair of double strand breaks by the error-prone TMEJ (Theta Mediated End Joining) pathway. Although POLQ participates in maintaining genome stability, several studies have shown that its overexpression correlates with cancer progression and poor prognosis. Due to the fact that its role as a biomarker in pancreatic cancer remains unexplored, we aimed to study the usefulness of POLQ H-score as a prognostic factor in a pancreatic cancer patient cohort. METHODS We evaluated POLQ gene expression using a web-based tool to deliver gene expression profiling and interactive analyses based on TCGA and GTEx (GEPIA) and we examined the POLQ immunostaining in 152 biliopancreatic cancer surgical specimens using tissue microarrays. Association with survival was evaluated by Kaplan Meier curves and uni-multivariate Cox regression. RESULTS GEPIA analysis showed statistical differences according to POLQ mRNA levels in Disease Free Survival (DFS) (log rank 0.023, HR 2.8, p=0.029) and Overall Survival (OS) (log rank 0.011, HR 3.1, p=0.016). For immunohistochemistry (IHC) evaluation, POLQ H-score was calculated, and showed statistical differences for OS in Kaplan Meier curves (log rank 0.001) and uni-multivariate analysis (HR 2.27; 95% CI 1.24-4.15, p=0.008). CONCLUSIONS Our results indicate that POLQ is an independent prognostic factor in pancreatic cancer when analyzed by immunostaining, which is in agreement with the results shown by the POLQ gene expression analysis (GEPIA).
Collapse
Affiliation(s)
- Laura del Puerto-Nevado
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Arancha Cebrián
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Yuliia Fatych
- Biochemistry and Molecular Biology Unit, Systems Biology Department, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | | | - Elia Pérez-Aguirre
- Hepatobiliary Unit, Surgery Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Sofía de la Serna
- Hepatobiliary Unit, Surgery Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Alejandra García-Botella
- Biochemistry and Molecular Biology Unit, Systems Biology Department, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
- Hepatobiliary Unit, Surgery Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Martínez-Useros
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jesús García-Foncillas
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pedro A. Mateos-Gómez
- Biochemistry and Molecular Biology Unit, Systems Biology Department, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| |
Collapse
|
14
|
Sfeir A, Tijsterman M, McVey M. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection. Annu Rev Cell Dev Biol 2024; 40:195-218. [PMID: 38857538 DOI: 10.1146/annurev-cellbio-111822-014426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
Collapse
Affiliation(s)
- Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center; Institute of Biology Leiden, Leiden University, Leiden, The Netherlands;
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, USA;
| |
Collapse
|
15
|
Ramirez-Otero MA, Costanzo V. "Bridging the DNA divide": Understanding the interplay between replication- gaps and homologous recombination proteins RAD51 and BRCA1/2. DNA Repair (Amst) 2024; 141:103738. [PMID: 39084178 DOI: 10.1016/j.dnarep.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
A key but often neglected component of genomic instability is the emergence of single-stranded DNA (ssDNA) gaps during DNA replication in the absence of functional homologous recombination (HR) proteins, such as RAD51 and BRCA1/2. Research in prokaryotes has shed light on the dual role of RAD51's bacterial ortholog, RecA, in HR and the protection of replication forks, emphasizing its essential role in preventing the formation of ssDNA gaps, which is vital for cellular viability. This phenomenon was corroborated in eukaryotic cells deficient in HR, where the formation of ssDNA gaps within newly synthesized DNA and their subsequent processing by the MRE11 nuclease were observed. Without functional HR proteins, cells employ alternative ssDNA gap-filling mechanisms to ensure survival, though this compensatory response can compromise genomic stability. A notable example is the involvement of the translesion synthesis (TLS) polymerase POLζ, along with the repair protein POLθ, in the suppression of replicative ssDNA gaps. Persistent ssDNA gaps may result in replication fork collapse, chromosomal anomalies, and cell death, which contribute to cancer progression and resistance to therapy. Elucidating the processes that avert ssDNA gaps and safeguard replication forks is critical for enhancing cancer treatment approaches by exploiting the vulnerabilities of cancer cells in these pathways.
Collapse
Affiliation(s)
| | - Vincenzo Costanzo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
16
|
Blanch JR, Krishnamurthy M, McVey M. A non-tethering role for the Drosophila Pol θ linker domain in promoting damage resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609911. [PMID: 39253446 PMCID: PMC11383001 DOI: 10.1101/2024.08.27.609911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA polymerase theta ( Pol θ ) is an error-prone translesion polymerase that becomes crucial for DNA double-strand break repair when cells are deficient in homologous recombination or non-homologous end joining. In some organisms, Pol θ also promotes tolerance of DNA interstrand crosslinks. Due to its importance in DNA damage tolerance, Pol θ is an emerging target for treatment of cancer and disease. Prior work has characterized the functions of the Pol θ helicase-like and polymerase domains, but the roles of the linker domain are largely unknown. Here, we show that the Drosophila melanogaster Pol θ linker domain promotes egg development and is required for tolerance of DNA double-strand breaks and interstrand crosslinks. While a linker domain with scrambled amino acid residues is sufficient for DNA repair, replacement of the linker with part of the Homo sapiens Pol θ linker or a disordered region from the FUS RNA-binding protein does not restore function. These results demonstrate that the linker domain is not simply a random tether between the helicase-like and polymerase domains. Furthermore, they suggest that intrinsic amino acid residue properties, rather than protein interaction motifs, are more critical for Pol θ linker functions in DNA repair.
Collapse
Affiliation(s)
- Justin R Blanch
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
| | - Manan Krishnamurthy
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
- Icahn School of Medicine at Mount Sinai, New York City, New York, 10029, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
| |
Collapse
|
17
|
Ito F, Li Z, Minakhin L, Chandramouly G, Tyagi M, Betsch R, Krais JJ, Taberi B, Vekariya U, Calbert M, Skorski T, Johnson N, Chen XS, Pomerantz RT. Structural basis for a Polθ helicase small-molecule inhibitor revealed by cryo-EM. Nat Commun 2024; 15:7003. [PMID: 39143110 PMCID: PMC11324745 DOI: 10.1038/s41467-024-51351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
DNA polymerase theta (Polθ) is a DNA helicase-polymerase protein that facilitates DNA repair and is synthetic lethal with homology-directed repair (HDR) factors. Thus, Polθ is a promising precision oncology drug-target in HDR-deficient cancers. Here, we characterize the binding and mechanism of action of a Polθ helicase (Polθ-hel) small-molecule inhibitor (AB25583) using cryo-EM. AB25583 exhibits 6 nM IC50 against Polθ-hel, selectively kills BRCA1/2-deficient cells, and acts synergistically with olaparib in cancer cells harboring pathogenic BRCA1/2 mutations. Cryo-EM uncovers predominantly dimeric Polθ-hel:AB25583 complex structures at 3.0-3.2 Å. The structures reveal a binding-pocket deep inside the helicase central-channel, which underscores the high specificity and potency of AB25583. The cryo-EM structures in conjunction with biochemical data indicate that AB25583 inhibits the ATPase activity of Polθ-hel helicase via an allosteric mechanism. These detailed structural data and insights about AB25583 inhibition pave the way for accelerating drug development targeting Polθ-hel in HDR-deficient cancers.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, CA, 90089, USA
| | - Ziyuan Li
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, CA, 90089, USA
| | - Leonid Minakhin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Robert Betsch
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - John J Krais
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Bernadette Taberi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Marissa Calbert
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, CA, 90089, USA.
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
18
|
Wang J, Sadeghi CA, Le LV, Le Bouteiller M, Frock RL. ATM and 53BP1 regulate alternative end joining-mediated V(D)J recombination. SCIENCE ADVANCES 2024; 10:eadn4682. [PMID: 39083600 PMCID: PMC11290492 DOI: 10.1126/sciadv.adn4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
G0-G1 phase alternative end joining (A-EJ) is a recently defined mutagenic pathway characterized by resected deletion and translocation joints that are predominantly direct and are distinguished from A-EJ in cycling cells that rely much more on microhomology-mediated end joining (MMEJ). Using chemical and genetic approaches, we systematically evaluate potential A-EJ factors and DNA damage response (DDR) genes to support this mechanism by mapping the repair fates of RAG1/2-initiated double-strand breaks in the context of Igκ locus V-J recombination and chromosome translocation. Our findings highlight a polymerase theta-independent Parp1-XRCC1/LigIII axis as central A-EJ components, supported by 53BP1 in the context of an Ataxia-telangiectasia mutated (ATM)-activated DDR. Mechanistically, we demonstrate varied changes in short-range resection, MMEJ, and translocation, imposed by compromising specific DDR activities, which include polymerase alpha, Ataxia-telangiectasia and Rad3-related (ATR), DNA2, and Mre11. This study advances our understanding of DNA damage repair within the 53BP1 regulatory domain and the RAG1/2 postcleavage complex.
Collapse
Affiliation(s)
- Jinglong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheyenne A. Sadeghi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Long V. Le
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marie Le Bouteiller
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
19
|
Willman GH, Xu H, Zeigler TM, McIntosh MT, Bhaduri-McIntosh S. Polymerase theta is a synthetic lethal target for killing Epstein-Barr virus lymphomas. J Virol 2024; 98:e0057224. [PMID: 38860782 PMCID: PMC11265443 DOI: 10.1128/jvi.00572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Treatment options for Epstein-Barr virus (EBV)-cancers are limited, underscoring the need for new therapeutic approaches. We have previously shown that EBV-transformed cells and cancers lack homologous recombination (HR) repair, a prominent error-free pathway that repairs double-stranded DNA breaks; instead, EBV-transformed cells demonstrate genome-wide scars of the error-prone microhomology-mediated end joining (MMEJ) repair pathway. This suggests that EBV-cancers are vulnerable to synthetic lethal therapeutic approaches that target MMEJ repair. Indeed, we have previously found that targeting PARP, an enzyme that contributes to MMEJ, results in the death of EBV-lymphoma cells. With the emergence of clinical resistance to PARP inhibitors and the recent discovery of inhibitors of Polymerase theta (POLθ), the polymerase essential for MMEJ, we investigated the role of POLθ in EBV-lymphoma cells. We report that EBV-transformed cell lines, EBV-lymphoma cell lines, and EBV-lymphomas in AIDS patients demonstrate greater abundance of POLθ, driven by the EBV protein EBNA1, compared to EBV-uninfected primary lymphocytes and EBV-negative lymphomas from AIDS patients (a group that also abundantly expresses POLθ). We also find POLθ enriched at cellular DNA replication forks and exposure to the POLθ inhibitor Novobiocin impedes replication fork progress, impairs MMEJ-mediated repair of DNA double-stranded breaks, and kills EBV-lymphoma cells. Notably, cell killing is not due to Novobiocin-induced activation of the lytic/replicative phase of EBV. These findings support a role for POLθ not just in DNA repair but also DNA replication and as a therapeutic target in EBV-lymphomas and potentially other EBV-cancers as EBNA1 is expressed in all EBV-cancers.IMPORTANCEEpstein-Barr virus (EBV) contributes to ~2% of the global cancer burden. With a recent estimate of >200,000 deaths a year, identifying molecular vulnerabilities will be key to the management of these frequently aggressive and treatment-resistant cancers. Building on our earlier work demonstrating reliance of EBV-cancers on microhomology-mediated end-joining repair, we now report that EBV lymphomas and transformed B cell lines abundantly express the MMEJ enzyme POLθ that likely protects cellular replication forks and repairs replication-related cellular DNA breaks. Importantly also, we show that a newly identified POLθ inhibitor kills EBV-cancer cells, revealing a novel strategy to block DNA replication and repair of these aggressive cancers.
Collapse
Affiliation(s)
- Griffin H. Willman
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Huanzhou Xu
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Travis M. Zeigler
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Michael T. McIntosh
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Vekariya U, Minakhin L, Chandramouly G, Tyagi M, Kent T, Sullivan-Reed K, Atkins J, Ralph D, Nieborowska-Skorska M, Kukuyan AM, Tang HY, Pomerantz RT, Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat Commun 2024; 15:5822. [PMID: 38987289 PMCID: PMC11236980 DOI: 10.1038/s41467-024-50158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leonid Minakhin
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Douglas Ralph
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Joseph S, Zhang X, Droby G, Wu D, Bae-Jump V, Lyons S, Mordant A, Mills A, Herring L, Rushing B, Bowser J, Vaziri C. MAPK14 /p38α Shapes the Molecular Landscape of Endometrial Cancer and promotes Tumorigenic Characteristics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600674. [PMID: 38979238 PMCID: PMC11230443 DOI: 10.1101/2024.06.25.600674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The molecular underpinnings of H igh G rade E ndometrial C arcinoma (HGEC) metastatic growth and survival are poorly understood. Here we show that ascites-derived and primary tumor HGEC cell lines in 3D spheroid culture faithfully recapitulate key features of malignant peritoneal effusion and exhibit fundamentally distinct transcriptomic, proteomic and metabolomic landscapes when compared with conventional 2D monolayers. Using genetic screening platform we identify MAPK14 (which encodes the protein kinase p38α) as a specific requirement for HGEC in spheroid culture. MAPK14 /p38α has broad roles in programing the phosphoproteome, transcriptome and metabolome of HGEC spheroids, yet has negligible impact on monolayer cultures. MAPK14 promotes tumorigenicity in vivo and is specifically required to sustain a sub-population of spheroid cells that is enriched in cancer stemness markers. Therefore, spheroid growth of HGEC activates unique biological programs, including p38α signaling, that cannot be captured using 2D culture models and are highly relevant to malignant disease pathology.
Collapse
|
22
|
Laverty DJ, Gupta SK, Bradshaw GA, Hunter AS, Carlson BL, Calmo NM, Chen J, Tian S, Sarkaria JN, Nagel ZD. ATM inhibition exploits checkpoint defects and ATM-dependent double strand break repair in TP53-mutant glioblastoma. Nat Commun 2024; 15:5294. [PMID: 38906885 PMCID: PMC11192742 DOI: 10.1038/s41467-024-49316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
Determining the balance between DNA double strand break repair (DSBR) pathways is essential for understanding treatment response in cancer. We report a method for simultaneously measuring non-homologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). Using this method, we show that patient-derived glioblastoma (GBM) samples with acquired temozolomide (TMZ) resistance display elevated HR and MMEJ activity, suggesting that these pathways contribute to treatment resistance. We screen clinically relevant small molecules for DSBR inhibition with the aim of identifying improved GBM combination therapy regimens. We identify the ATM kinase inhibitor, AZD1390, as a potent dual HR/MMEJ inhibitor that suppresses radiation-induced phosphorylation of DSBR proteins, blocks DSB end resection, and enhances the cytotoxic effects of TMZ in treatment-naïve and treatment-resistant GBMs with TP53 mutation. We further show that a combination of G2/M checkpoint deficiency and reliance upon ATM-dependent DSBR renders TP53 mutant GBMs hypersensitive to TMZ/AZD1390 and radiation/AZD1390 combinations. This report identifies ATM-dependent HR and MMEJ as targetable resistance mechanisms in TP53-mutant GBM and establishes an approach for simultaneously measuring multiple DSBR pathways in treatment selection and oncology research.
Collapse
Affiliation(s)
- Daniel J Laverty
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | | | | | | | | | - Jiajia Chen
- Mayo Clinic, Rochester, MN, 55905, USA
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | - Zachary D Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Ito F, Li Z, Minakhin L, Khant HA, Pomerantz RT, Chen XS. Structural Basis for Polθ-Helicase DNA Binding and Microhomology-Mediated End-Joining. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597860. [PMID: 38895274 PMCID: PMC11185775 DOI: 10.1101/2024.06.07.597860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
DNA double-strand breaks (DSBs) present a critical threat to genomic integrity, often precipitating genomic instability and oncogenesis. Repair of DSBs predominantly occurs through homologous recombination (HR) and non-homologous end joining (NHEJ). In HR-deficient cells, DNA polymerase theta (Polθ) becomes critical for DSB repair via microhomology-mediated end joining (MMEJ), also termed theta-mediated end joining (TMEJ). Thus, Polθ is synthetically lethal with BRCA1/2 and other HR factors, underscoring its potential as a therapeutic target in HR-deficient cancers. However, the molecular mechanisms governing Polθ-mediated MMEJ remain poorly understood. Here we present a series of cryo-electron microscopy structures of the Polθ helicase domain (Polθ-hel) in complex with DNA containing 3'-overhang. The structures reveal the sequential conformations adopted by Polθ-hel during the critical phases of DNA binding, microhomology searching, and microhomology annealing. The stepwise conformational changes within the Polθ-hel subdomains and its functional dimeric state are pivotal for aligning the 3'-overhangs, facilitating the microhomology search and subsequent annealing necessary for DSB repair via MMEJ. Our findings illustrate the essential molecular switches within Polθ-hel that orchestrate the MMEJ process in DSB repair, laying the groundwork for the development of targeted therapies against the Polθ-hel.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, 90089, USA
- Department of Microbiology, Immunology and Molecular Genetics
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Ziyuan Li
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| | - Leonid Minakhin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Htet A. Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
24
|
Li S, Han T. Frequent loss of FAM126A expression in colorectal cancer results in selective FAM126B dependency. iScience 2024; 27:109646. [PMID: 38638566 PMCID: PMC11025007 DOI: 10.1016/j.isci.2024.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/01/2023] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Most advanced colorectal cancer (CRC) patients cannot benefit from targeted therapy due to lack of actionable targets. By mining data from the DepMap, we identified FAM126B as a specific vulnerability in CRC cell lines exhibiting low FAM126A expression. Employing a combination of genetic perturbation and inducible protein degradation techniques, we demonstrate that FAM126A and FAM126B function in a redundant manner to facilitate the recruitment of PI4KIIIα to the plasma membrane for PI4P synthesis. Examination of data from TCGA and GTEx revealed that over 7% of CRC tumor samples exhibited loss of FAM126A expression, contrasting with uniform FAM126A expression in normal tissues. In both CRC cell lines and tumor samples, promoter hypermethylation correlated with the loss of FAM126A expression, which could be reversed by DNA methylation inhibitors. In conclusion, our study reveals that loss of FAM126A expression results in FAM126B dependency, thus proposing FAM126B as a therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Shuang Li
- PTN Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ting Han
- PTN Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
25
|
Thomas C, Avalos-Irving L, Victorino J, Green S, Andrews M, Rodrigues N, Ebirim S, Mudd A, Towle-Weicksel JB. Melanoma-Derived DNA Polymerase Theta Variants Exhibit Altered DNA Polymerase Activity. Biochemistry 2024; 63:1107-1117. [PMID: 38671548 PMCID: PMC11080051 DOI: 10.1021/acs.biochem.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
DNA polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through an alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error-prone yet critical for cell survival. We have identified several POLQ gene variants from human melanoma tumors that experience altered DNA polymerase activity, including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Variants are 30-fold less efficient at incorporating a nucleotide during repair and up to 70-fold less accurate at selecting the correct nucleotide opposite a templating base. This suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. Moreover, the variants were identified in established tumors, suggesting that cancer cells may use mutated polymerases to promote metastasis and drug resistance.
Collapse
Affiliation(s)
- Corey Thomas
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Lisbeth Avalos-Irving
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Jorge Victorino
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Sydney Green
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Morgan Andrews
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Naisha Rodrigues
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Sarah Ebirim
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Ayden Mudd
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Jamie B. Towle-Weicksel
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| |
Collapse
|
26
|
Fijen C, Drogalis Beckham L, Terino D, Li Y, Ramsden DA, Wood RD, Doublié S, Rothenberg E. Sequential requirements for distinct Polθ domains during theta-mediated end joining. Mol Cell 2024; 84:1460-1474.e6. [PMID: 38640894 PMCID: PMC11031631 DOI: 10.1016/j.molcel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/21/2024]
Abstract
DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Lea Drogalis Beckham
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Dante Terino
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuzhen Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
27
|
Fried W, Tyagi M, Minakhin L, Chandramouly G, Tredinnick T, Ramanjulu M, Auerbacher W, Calbert M, Rusanov T, Hoang T, Borisonnik N, Betsch R, Krais JJ, Wang Y, Vekariya UM, Gordon J, Morton G, Kent T, Skorski T, Johnson N, Childers W, Chen XS, Pomerantz RT. Discovery of a small-molecule inhibitor that traps Polθ on DNA and synergizes with PARP inhibitors. Nat Commun 2024; 15:2862. [PMID: 38580648 PMCID: PMC10997755 DOI: 10.1038/s41467-024-46593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024] Open
Abstract
The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.
Collapse
Affiliation(s)
- William Fried
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Mrityunjay Tyagi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Leonid Minakhin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Taylor Tredinnick
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mercy Ramanjulu
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - William Auerbacher
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Marissa Calbert
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
| | - Timur Rusanov
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | | | - Robert Betsch
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - John J Krais
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yifan Wang
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Umeshkumar M Vekariya
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
- Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - John Gordon
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
| | - George Morton
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Tatiana Kent
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
- Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Wayne Childers
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA.
| |
Collapse
|
28
|
Messer CL, Fox DT. Broken chromosomes heading into mitosis: More than one way to patch a flat tire. J Cell Biol 2024; 223:e202401085. [PMID: 38477879 PMCID: PMC10937182 DOI: 10.1083/jcb.202401085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
A cell dealing with a broken chromosome in mitosis is like a driver dealing with a flat tire on the highway: damage repair must occur under non-ideal circumstances. Mitotic chromosome breaks encounter problems related to structures called micronuclei. These aberrant nuclei are linked to cell death, mutagenesis, and cancer. In the last few years, a flurry of studies illuminated two mechanisms that prevent mitotic problems related to micronuclei. One mechanism prevents micronuclei from forming during mitosis and involves DNA Polymerase Theta, a DNA repair regulator that patches up broken mitotic chromosomes. A second mechanism is activated after micronuclei form and then rupture, and involves CIP2A and TOPBP1 proteins, which patch micronuclear fragments to promote their subsequent mitotic segregation. Here, we review recent progress in this field of mitotic DNA damage and discuss why multiple mechanisms exist. Future studies in this exciting area will reveal new DNA break responses and inform therapeutic strategies.
Collapse
Affiliation(s)
- C. Luke Messer
- Department of Biology, St. Bonaventure University, St. Bonaventure, NY, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Donald T. Fox
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
29
|
Stroik S, Luthman AJ, Ramsden DA. Templated insertions-DNA repair gets acrobatic. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:82-89. [PMID: 37438951 PMCID: PMC10962320 DOI: 10.1002/em.22564] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Deletions associated with the repair of DNA double-strand breaks is a source of genetic alternation and a recognized source of disease-causing mutagenesis. Theta-mediated end joining is a DNA repair mechanism, which guarantees deletions by its employment of microhomology (MH) alignment to facilitate end joining. A lesser-characterized templated insertion ability of this pathway, on the other hand, is associated with both deletion and insertion. This mechanism is characterized by at least one round of polymerase θ-mediated synthesis, which does not result in successful repair, followed by a subsequent round of polymerase engagement and synthesis that does lead to repair. Here we focus on the mechanisms by which polymerase θ introduces these insertions-direct, inverse, and a new class which we have termed strand switching. We observe this new class of templated insertions at multiple loci and across multiple species, often at a comparable frequency to those previously characterized. Templated insertion mutations are often enriched in cancer genomes and repeat expansion disorders. This repair mechanism thus contributes to disease-associated mutagenesis, and may plausibly even promote disease. Characterization of the types of polymerase θ-dependent insertions can provide new insight into these diseases and clinical promise for treatment.
Collapse
Affiliation(s)
- Susanna Stroik
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam J. Luthman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
| | - Dale A. Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Kannan S, Gillespie SW, Picking WL, Picking WD, Lorson CL, Singh K. Inhibitors against DNA Polymerase I Family of Enzymes: Novel Targets and Opportunities. BIOLOGY 2024; 13:204. [PMID: 38666816 PMCID: PMC11048162 DOI: 10.3390/biology13040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
DNA polymerases replicate cellular genomes and/or participate in the maintenance of genome integrity. DNA polymerases sharing high sequence homology with E. coli DNA polymerase I (pol I) have been grouped in Family A. Pol I participates in Okazaki fragment maturation and in bacterial genome repair. Since its discovery in 1956, pol I has been extensively studied, primarily to gain deeper insights into the mechanism of DNA replication. As research on DNA polymerases advances, many novel functions of this group of polymerases are being uncovered. For example, human DNA polymerase θ (a Family A DNA pol) has been shown to synthesize DNA using RNA as a template, a function typically attributed to retroviral reverse transcriptase. Increased interest in drug discovery against pol θ has emerged due to its roles in cancer. Likewise, Pol I family enzymes also appear attractive as drug-development targets against microbial infections. Development of antimalarial compounds targeting apicoplast apPOL, an ortholog of Pol I, further extends the targeting of this family of enzymes. Here, we summarize reported drug-development efforts against Family A polymerases and future perspective regarding these enzymes as antibiotic targets. Recently developed techniques, such as artificial intelligence, can be used to facilitate the development of new drugs.
Collapse
Affiliation(s)
- Saathvik Kannan
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
| | - Samuel W. Gillespie
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
| | - Wendy L. Picking
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - William D. Picking
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Christian L. Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
31
|
Liu G, Jin K, Liu Z, Su X, Xu Z, Li B, Xu J, Chang Y, Wang Y, Zhu Y, Xu L, Xu J, Wang Z, Liu H, Zhang W. POLQ identifies a better response subset to immunotherapy in muscle-invasive bladder cancer with high PD-L1. Cancer Med 2024; 13:e6962. [PMID: 38457207 PMCID: PMC10922026 DOI: 10.1002/cam4.6962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Though programmed cell death-ligand 1 (PD-L1) has been used in predicting the efficacy of immune checkpoint blockade (ICB), it is insufficient as a single biomarker. As a key effector of an intrinsically mutagenic microhomology-mediated end joining (MMEJ) pathway, DNA polymerase theta (POLQ) was overexpressed in various malignancies, whose expression might have an influence on genomic stability, therefore altering the sensitivity to chemotherapy and immunotherapy. METHODS A total of 1304 patients with muscle-invasive bladder cancer (MIBC) from six independent cohorts were included in this study. The Zhongshan Hospital (ZSHS) cohort (n = 134), The Cancer Genome Atlas (TCGA) cohort (n = 391), and the Neo-cohort (n = 148) were included for the investigation of chemotherapeutic response. The IMvigor210 cohort (n = 234) and the UNC-108 cohort (n = 89) were used for the assessment of immunotherapeutic response. In addition, the relationship between POLQ and the immune microenvironment was assessed, and GSE32894 (n = 308) was used only for the evaluation of the immune microenvironment. RESULTS We identified POLQhigh PD-L1high patients could benefit more from immunotherapy and platinum-based chemotherapy. Further analysis revealed that high POLQ expression was linked to chromosome instability and higher tumor mutational burden (TMB), which might elicit the production of neoantigens. Further, high POLQ expression was associated with an active tumor immune microenvironment with abundant infiltration of immune effector cells and molecules. CONCLUSIONS The study demonstrated that high POLQ expression was correlated with chromosome instability and antitumor immune microenvironment in MIBC, and the combination of POLQ and PD-L1 could be used as a superior companion biomarker for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ge Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Kaifeng Jin
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhaopei Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Ziyue Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Bingyu Li
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yuan Chang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yu Zhu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Le Xu
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Zewei Wang
- Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Hailong Liu
- Department of Urology, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
32
|
Crawford J, Chikina M, Greene CS. Optimizer's dilemma: optimization strongly influences model selection in transcriptomic prediction. BIOINFORMATICS ADVANCES 2024; 4:vbae004. [PMID: 38282973 PMCID: PMC10822580 DOI: 10.1093/bioadv/vbae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/09/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
Motivation Most models can be fit to data using various optimization approaches. While model choice is frequently reported in machine-learning-based research, optimizers are not often noted. We applied two different implementations of LASSO logistic regression implemented in Python's scikit-learn package, using two different optimization approaches (coordinate descent, implemented in the liblinear library, and stochastic gradient descent, or SGD), to predict mutation status and gene essentiality from gene expression across a variety of pan-cancer driver genes. For varying levels of regularization, we compared performance and model sparsity between optimizers. Results After model selection and tuning, we found that liblinear and SGD tended to perform comparably. liblinear models required more extensive tuning of regularization strength, performing best for high model sparsities (more nonzero coefficients), but did not require selection of a learning rate parameter. SGD models required tuning of the learning rate to perform well, but generally performed more robustly across different model sparsities as regularization strength decreased. Given these tradeoffs, we believe that the choice of optimizers should be clearly reported as a part of the model selection and validation process, to allow readers and reviewers to better understand the context in which results have been generated. Availability and implementation The code used to carry out the analyses in this study is available at https://github.com/greenelab/pancancer-evaluation/tree/master/01_stratified_classification. Performance/regularization strength curves for all genes in the Vogelstein et al. (2013) dataset are available at https://doi.org/10.6084/m9.figshare.22728644.
Collapse
Affiliation(s)
- Jake Crawford
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Casey S Greene
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Center for Health AI, University of Colorado School of Medicine, Aurora, CO 80045, United States
| |
Collapse
|
33
|
Cho MG, Kumar RJ, Lin CC, Boyer JA, Shahir JA, Fagan-Solis K, Simpson DA, Fan C, Foster CE, Goddard AM, Lerner LM, Ellington SW, Wang Q, Wang Y, Ho AY, Liu P, Perou CM, Zhang Q, McGinty RK, Purvis JE, Gupta GP. MRE11 liberates cGAS from nucleosome sequestration during tumorigenesis. Nature 2024; 625:585-592. [PMID: 38200309 PMCID: PMC10794148 DOI: 10.1038/s41586-023-06889-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Oncogene-induced replication stress generates endogenous DNA damage that activates cGAS-STING-mediated signalling and tumour suppression1-3. However, the precise mechanism of cGAS activation by endogenous DNA damage remains enigmatic, particularly given that high-affinity histone acidic patch (AP) binding constitutively inhibits cGAS by sterically hindering its activation by double-stranded DNA (dsDNA)4-10. Here we report that the DNA double-strand break sensor MRE11 suppresses mammary tumorigenesis through a pivotal role in regulating cGAS activation. We demonstrate that binding of the MRE11-RAD50-NBN complex to nucleosome fragments is necessary to displace cGAS from acidic-patch-mediated sequestration, which enables its mobilization and activation by dsDNA. MRE11 is therefore essential for cGAS activation in response to oncogenic stress, cytosolic dsDNA and ionizing radiation. Furthermore, MRE11-dependent cGAS activation promotes ZBP1-RIPK3-MLKL-mediated necroptosis, which is essential to suppress oncogenic proliferation and breast tumorigenesis. Notably, downregulation of ZBP1 in human triple-negative breast cancer is associated with increased genome instability, immune suppression and poor patient prognosis. These findings establish MRE11 as a crucial mediator that links DNA damage and cGAS activation, resulting in tumour suppression through ZBP1-dependent necroptosis.
Collapse
Affiliation(s)
- Min-Guk Cho
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rashmi J Kumar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC MD-PhD Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Chien-Chu Lin
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua A Boyer
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jamshaid A Shahir
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katerina Fagan-Solis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dennis A Simpson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine E Foster
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna M Goddard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lynn M Lerner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Simon W Ellington
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qinhong Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alice Y Ho
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert K McGinty
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy E Purvis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC MD-PhD Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
Ronson GE, Starowicz K, Anthony EJ, Piberger AL, Clarke LC, Garvin AJ, Beggs AD, Whalley CM, Edmonds MJ, Beesley JFJ, Morris JR. Mechanisms of synthetic lethality between BRCA1/2 and 53BP1 deficiencies and DNA polymerase theta targeting. Nat Commun 2023; 14:7834. [PMID: 38030626 PMCID: PMC10687250 DOI: 10.1038/s41467-023-43677-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
A synthetic lethal relationship exists between disruption of polymerase theta (Polθ), and loss of either 53BP1 or homologous recombination (HR) proteins, including BRCA1; however, the mechanistic basis of these observations are unclear. Here we reveal two distinct mechanisms of Polθ synthetic lethality, identifying dual influences of 1) whether Polθ is lost or inhibited, and 2) the underlying susceptible genotype. Firstly, we find that the sensitivity of BRCA1/2- and 53BP1-deficient cells to Polθ loss, and 53BP1-deficient cells to Polθ inhibition (ART558) requires RAD52, and appropriate reduction of RAD52 can ameliorate these phenotypes. We show that in the absence of Polθ, RAD52 accumulations suppress ssDNA gap-filling in G2/M and encourage MRE11 nuclease accumulation. In contrast, the survival of BRCA1-deficient cells treated with Polθ inhibitor are not restored by RAD52 suppression, and ssDNA gap-filling is prevented by the chemically inhibited polymerase itself. These data define an additional role for Polθ, reveal the mechanism underlying synthetic lethality between 53BP1, BRCA1/2 and Polθ loss, and indicate genotype-dependent Polθ inhibitor mechanisms.
Collapse
Affiliation(s)
- George E Ronson
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katarzyna Starowicz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Adthera Bio, Lyndon House, 62 Hagley Road, Birmingham, B16 8PE, UK
| | - Elizabeth J Anthony
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Liza Piberger
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lucy C Clarke
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Mindelsohn Way, Birmingham, B15 2TG, UK
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University of Leeds, Leeds, UK
| | - Andrew D Beggs
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Genomics Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Celina M Whalley
- Genomics Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matthew J Edmonds
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Certara Insight, Danebrook Court, Oxford Office Village, Kidlington, Oxfordshire, OX5 1LQ, UK
| | - James F J Beesley
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
35
|
Krais JJ, Glass DJ, Chudoba I, Wang Y, Feng W, Simpson D, Patel P, Liu Z, Neumann-Domer R, Betsch RG, Bernhardy AJ, Bradbury AM, Conger J, Yueh WT, Nacson J, Pomerantz RT, Gupta GP, Testa JR, Johnson N. Genetic separation of Brca1 functions reveal mutation-dependent Polθ vulnerabilities. Nat Commun 2023; 14:7714. [PMID: 38001070 PMCID: PMC10673838 DOI: 10.1038/s41467-023-43446-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Homologous recombination (HR)-deficiency induces a dependency on DNA polymerase theta (Polθ/Polq)-mediated end joining, and Polθ inhibitors (Polθi) are in development for cancer therapy. BRCA1 and BRCA2 deficient cells are thought to be synthetic lethal with Polθ, but whether distinct HR gene mutations give rise to equivalent Polθ-dependence, and the events that drive lethality, are unclear. In this study, we utilized mouse models with separate Brca1 functional defects to mechanistically define Brca1-Polθ synthetic lethality. Surprisingly, homozygous Brca1 mutant, Polq-/- cells were viable, but grew slowly and had chromosomal instability. Brca1 mutant cells proficient in DNA end resection were significantly more dependent on Polθ for viability; here, treatment with Polθi elevated RPA foci, which persisted through mitosis. In an isogenic system, BRCA1 null cells were defective, but PALB2 and BRCA2 mutant cells exhibited active resection, and consequently stronger sensitivity to Polθi. Thus, DNA end resection is a critical determinant of Polθi sensitivity in HR-deficient cells, and should be considered when selecting patients for clinical studies.
Collapse
Affiliation(s)
- John J Krais
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - David J Glass
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilse Chudoba
- MetaSystems Probes, GmbH, Industriestr, 68804, Altlussheim, Germany
| | - Yifan Wang
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Wanjuan Feng
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Dennis Simpson
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Pooja Patel
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Zemin Liu
- Cytogenetics Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ryan Neumann-Domer
- Cytogenetics Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Robert G Betsch
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Andrea J Bernhardy
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Alice M Bradbury
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Jason Conger
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Wei-Ting Yueh
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Joseph Nacson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gaorav P Gupta
- Cancer Control and Prevention Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cytogenetics Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Cancer Control and Prevention Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
36
|
Thomas C, Avalos-Irving L, Victorino J, Green S, Andrews M, Rodrigues N, Ebirim S, Mudd A, Towle-Weicksel JB. Melanoma-derived DNA polymerase theta variants exhibit altered DNA polymerase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566933. [PMID: 38014040 PMCID: PMC10680777 DOI: 10.1101/2023.11.14.566933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
DNA Polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through the alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error prone, yet critical for cell survival. We have identified several mutations in the POLQ gene from human melanoma tumors. Through biochemical analysis, we have demonstrated that all three cancer-associated variants experienced altered DNA polymerase activity including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Moreover, the variants are 30 fold less efficient at incorporating a nucleotide during repair and up to 70 fold less accurate at selecting the correct nucleotide opposite a templating base. Taken together, this suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. While this may be beneficial to normal cell survival, the variants were identified in established tumors suggesting that cancer cells may use this promiscuous polymerase to its advantage to promote metastasis and drug resistance.
Collapse
|
37
|
Vassel FM, Laverty DJ, Bian K, Piett CG, Hemann MT, Walker GC, Nagel ZD. REV7 Monomer Is Unable to Participate in Double Strand Break Repair and Translesion Synthesis but Suppresses Mitotic Errors. Int J Mol Sci 2023; 24:15799. [PMID: 37958783 PMCID: PMC10649693 DOI: 10.3390/ijms242115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Rev7 is a regulatory protein with roles in translesion synthesis (TLS), double strand break (DSB) repair, replication fork protection, and cell cycle regulation. Rev7 forms a homodimer in vitro using its HORMA (Hop, Rev7, Mad2) domain; however, the functional importance of Rev7 dimerization has been incompletely understood. We analyzed the functional properties of cells expressing either wild-type mouse Rev7 or Rev7K44A/R124A/A135D, a mutant that cannot dimerize. The expression of wild-type Rev7, but not the mutant, rescued the sensitivity of Rev7-/- cells to X-rays and several alkylating agents and reversed the olaparib resistance phenotype of Rev7-/- cells. Using a novel fluorescent host-cell reactivation assay, we found that Rev7K44A/R124A/A135D is unable to promote gap-filling TLS opposite an abasic site analog. The Rev7 dimerization interface is also required for shieldin function, as both Rev7-/- cells and Rev7-/- cells expressing Rev7K44A/R124A/A135D exhibit decreased proficiency in rejoining some types of double strand breaks, as well as increased homologous recombination. Interestingly, Rev7K44A/R124A/A135D retains some function in cell cycle regulation, as it maintains an interaction with Ras-related nuclear protein (Ran) and partially rescues the formation of micronuclei. The mutant Rev7 also rescues the G2/M accumulation observed in Rev7-/- cells but does not affect progression through mitosis following nocodazole release. We conclude that while Rev7 dimerization is required for its roles in TLS, DSB repair, and regulation of the anaphase promoting complex, dimerization is at least partially dispensable for promoting mitotic spindle assembly through its interaction with Ran.
Collapse
Affiliation(s)
- Faye M. Vassel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Daniel J. Laverty
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Ke Bian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Cortt G. Piett
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Michael T. Hemann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Zachary D. Nagel
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
38
|
Mladenov E, Mladenova V, Stuschke M, Iliakis G. New Facets of DNA Double Strand Break Repair: Radiation Dose as Key Determinant of HR versus c-NHEJ Engagement. Int J Mol Sci 2023; 24:14956. [PMID: 37834403 PMCID: PMC10573367 DOI: 10.3390/ijms241914956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Radiation therapy is an essential component of present-day cancer management, utilizing ionizing radiation (IR) of different modalities to mitigate cancer progression. IR functions by generating ionizations in cells that induce a plethora of DNA lesions. The most detrimental among them are the DNA double strand breaks (DSBs). In the course of evolution, cells of higher eukaryotes have evolved four major DSB repair pathways: classical non-homologous end joining (c-NHEJ), homologous recombination (HR), alternative end-joining (alt-EJ), and single strand annealing (SSA). These mechanistically distinct repair pathways have different cell cycle- and homology-dependencies but, surprisingly, they operate with widely different fidelity and kinetics and therefore contribute unequally to cell survival and genome maintenance. It is therefore reasonable to anticipate tight regulation and coordination in the engagement of these DSB repair pathway to achieve the maximum possible genomic stability. Here, we provide a state-of-the-art review of the accumulated knowledge on the molecular mechanisms underpinning these repair pathways, with emphasis on c-NHEJ and HR. We discuss factors and processes that have recently come to the fore. We outline mechanisms steering DSB repair pathway choice throughout the cell cycle, and highlight the critical role of DNA end resection in this process. Most importantly, however, we point out the strong preference for HR at low DSB loads, and thus low IR doses, for cells irradiated in the G2-phase of the cell cycle. We further explore the molecular underpinnings of transitions from high fidelity to low fidelity error-prone repair pathways and analyze the coordination and consequences of this transition on cell viability and genomic stability. Finally, we elaborate on how these advances may help in the development of improved cancer treatment protocols in radiation therapy.
Collapse
Affiliation(s)
- Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
39
|
Ayala-Zambrano C, Yuste M, Frias S, Garcia-de-Teresa B, Mendoza L, Azpeitia E, Rodríguez A, Torres L. A Boolean network model of the double-strand break repair pathway choice. J Theor Biol 2023; 573:111608. [PMID: 37595867 DOI: 10.1016/j.jtbi.2023.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Double strand break (DSB) repair is critical to maintaining the integrity of the genome. DSB repair deficiency underlies multiple pathologies, including cancer, chromosome instability syndromes, and, potentially, neurodevelopmental defects. DSB repair is mainly handled by two pathways: highly accurate homologous recombination (HR), which requires a sister chromatid for template-based repair, limited to S/G2 phases of the cell cycle, and canonical non-homologous end joining (c-NHEJ), available throughout the cell cycle in which minimum homology is sufficient for highly efficient yet error-prone repair. Some circumstances, such as cancer, require alternative highly mutagenic DSB repair pathways like microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA), which are triggered to attend to DNA damage. These non-canonical repair alternatives are emerging as prominent drivers of resistance in drug-based tumor therapies. Multiple DSB repair options require tight inter-pathway regulation to prevent unscheduled activities. In addition to this complexity, epigenetic modifications of the histones surrounding the DSB region are emerging as critical regulators of the DSB repair pathway choice. Modeling approaches to understanding DSBs repair pathway choice are advantageous to perform simulations and generate predictions on previously uncharacterized aspects of DSBs response. In this work, we present a Boolean network model of the DSB repair pathway choice that incorporates the knowledge, into a dynamic system, of the inter-pathways regulation involved in DSB repair, i.e., HR, c-NHEJ, SSA, and MMEJ. Our model recapitulates the well-characterized HR activity observed in wild-type cells in response to DSBs. It also recovers clinically relevant behaviors of BRCA1/FANCS mutants, and their corresponding drug resistance mechanisms ascribed to DNA repair gain-of-function pathogenic variants. Since epigenetic modifiers are dynamic and possible druggable targets, we incorporated them into our model to better characterize their involvement in DSB repair. Our model predicted that loss of the TIP60 complex and its corresponding histone acetylation activity leads to activation of SSA in response to DSBs. Our experimental validation showed that TIP60 effectively prevents activation of RAD52, a key SSA executor, and confirms the suitable use of Boolean network modeling for understanding DNA DSB repair.
Collapse
Affiliation(s)
- Cecilia Ayala-Zambrano
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mariana Yuste
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico
| | | | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico
| | - Eugenio Azpeitia
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico; Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Leda Torres
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| |
Collapse
|
40
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
41
|
Awwad SW, Serrano-Benitez A, Thomas JC, Gupta V, Jackson SP. Revolutionizing DNA repair research and cancer therapy with CRISPR-Cas screens. Nat Rev Mol Cell Biol 2023; 24:477-494. [PMID: 36781955 DOI: 10.1038/s41580-022-00571-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/15/2023]
Abstract
All organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions. In this Review, we discuss the mechanistic basis of CRISPR-Cas genetic screening approaches and describe how they have contributed to our understanding of DNA repair and DDR pathways. We discuss how DNA repair pathways are regulated, and identify and characterize crosstalk between them. We also highlight the impacts of CRISPR-based studies in identifying novel strategies for cancer therapy, and in understanding, overcoming and even exploiting cancer-drug resistance, for example in the contexts of PARP inhibition, homologous recombination deficiencies and/or replication stress. Lastly, we present the DDR CRISPR screen (DDRcs) portal , in which we have collected and reanalysed data from CRISPR screen studies and provide a tool for systematically exploring them.
Collapse
Affiliation(s)
- Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - John C Thomas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Abstract
Deficiencies in homologous recombination (HR) repair lead to an accumulation of DNA damage and can predispose individuals to cancer. Polymerase theta (Pol θ, encoded by POLQ) is overexpressed by HR-deficient cancers and promotes cancer cell survival by mediating error-prone double-stranded break (DSB) repair and facilitating resistance against poly-ADP ribose polymerase inhibitor treatment. In this issue of the JCI, Oh, Wang, et al. report on the impact of Pol θ inhibition on activation of antitumor immunity. The authors used pancreatic ductal adenocarcinoma (PDAC) cell and mouse models characterized by HR-associated gene alterations and POLQ overexpression. POLQ knockdown showed synthetic lethality in combination with gene mutations involving DNA repair, including BRCA1, BRCA2, and ATM. Notably, Pol θ deficiency or inhibition suppressed tumor growth, increased the accumulation of unrepaired DNA damage, and enhanced T cell infiltration via the cGAS/STING pathway. These findings suggest a broader scope for Pol θ inhibition in HR-deficient cancers.
Collapse
Affiliation(s)
- Chelsea M. Smith
- Lineberger Comprehensive Cancer Center
- Department of Pathology and Laboratory Medicine, and
| | - Gaorav P. Gupta
- Lineberger Comprehensive Cancer Center
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Li F, Mladenov E, Sun Y, Soni A, Stuschke M, Timmermann B, Iliakis G. Low CDK Activity and Enhanced Degradation by APC/C CDH1 Abolishes CtIP Activity and Alt-EJ in Quiescent Cells. Cells 2023; 12:1530. [PMID: 37296650 PMCID: PMC10252496 DOI: 10.3390/cells12111530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Alt-EJ is an error-prone DNA double-strand break (DSBs) repair pathway coming to the fore when first-line repair pathways, c-NHEJ and HR, are defective or fail. It is thought to benefit from DNA end-resection-a process whereby 3' single-stranded DNA-tails are generated-initiated by the CtIP/MRE11-RAD50-NBS1 (MRN) complex and extended by EXO1 or the BLM/DNA2 complex. The connection between alt-EJ and resection remains incompletely characterized. Alt-EJ depends on the cell cycle phase, is at maximum in G2-phase, substantially reduced in G1-phase and almost undetectable in quiescent, G0-phase cells. The mechanism underpinning this regulation remains uncharacterized. Here, we compare alt-EJ in G1- and G0-phase cells exposed to ionizing radiation (IR) and identify CtIP-dependent resection as the key regulator. Low levels of CtIP in G1-phase cells allow modest resection and alt-EJ, as compared to G2-phase cells. Strikingly, CtIP is undetectable in G0-phase cells owing to APC/C-mediated degradation. The suppression of CtIP degradation with bortezomib or CDH1-depletion rescues CtIP and alt-EJ in G0-phase cells. CtIP activation in G0-phase cells also requires CDK-dependent phosphorylation by any available CDK but is restricted to CDK4/6 at the early stages of the normal cell cycle. We suggest that suppression of mutagenic alt-EJ in G0-phase is a mechanism by which cells of higher eukaryotes maintain genomic stability in a large fraction of non-cycling cells in their organisms.
Collapse
Affiliation(s)
- Fanghua Li
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (F.L.); (E.M.); (Y.S.); (A.S.)
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), 45147 Essen, Germany;
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (F.L.); (E.M.); (Y.S.); (A.S.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Yanjie Sun
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (F.L.); (E.M.); (Y.S.); (A.S.)
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), 45147 Essen, Germany;
| | - Aashish Soni
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (F.L.); (E.M.); (Y.S.); (A.S.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), 45147 Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (F.L.); (E.M.); (Y.S.); (A.S.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
44
|
Oh G, Wang A, Wang L, Li J, Werba G, Weissinger D, Zhao E, Dhara S, Hernandez RE, Ackermann A, Porcella S, Kalfakakou D, Dolgalev I, Kawaler E, Golan T, Welling TH, Sfeir A, Simeone DM. POLQ inhibition elicits an immune response in homologous recombination-deficient pancreatic adenocarcinoma via cGAS/STING signaling. J Clin Invest 2023; 133:e165934. [PMID: 36976649 PMCID: PMC10232002 DOI: 10.1172/jci165934] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that harbors mutations in homologous recombination-repair (HR-repair) proteins in 20%-25% of cases. Defects in HR impart a specific vulnerability to poly ADP ribose polymerase inhibitors and platinum-containing chemotherapy in tumor cells. However, not all patients who receive these therapies respond, and many who initially respond ultimately develop resistance. Inactivation of the HR pathway is associated with the overexpression of polymerase theta (Polθ, or POLQ). This key enzyme regulates the microhomology-mediated end-joining (MMEJ) pathway of double-strand break (DSB) repair. Using human and murine HR-deficient PDAC models, we found that POLQ knockdown is synthetically lethal in combination with mutations in HR genes such as BRCA1 and BRCA2 and the DNA damage repair gene ATM. Further, POLQ knockdown enhances cytosolic micronuclei formation and activates signaling of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), leading to enhanced infiltration of activated CD8+ T cells in BRCA2-deficient PDAC tumors in vivo. Overall, POLQ, a key mediator in the MMEJ pathway, is critical for DSB repair in BRCA2-deficient PDAC. Its inhibition represents a synthetic lethal approach to blocking tumor growth while concurrently activating the cGAS-STING signaling pathway to enhance tumor immune infiltration, highlighting what we believe to be a new role for POLQ in the tumor immune environment.
Collapse
Affiliation(s)
| | | | - Lidong Wang
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jiufeng Li
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Gregor Werba
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Daniel Weissinger
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Ende Zhao
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Surajit Dhara
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | - Amanda Ackermann
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Sarina Porcella
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Igor Dolgalev
- Department of Pathology, NYU Langone Health, New York, New York, USA
| | - Emily Kawaler
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | | | - Agnel Sfeir
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Diane M. Simeone
- Department of Surgery and
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Pathology, NYU Langone Health, New York, New York, USA
| |
Collapse
|
45
|
Vekariya U, Toma M, Nieborowska-Skorska M, Le BV, Caron MC, Kukuyan AM, Sullivan-Reed K, Podszywalow-Bartnicka P, Chitrala KN, Atkins J, Drzewiecka M, Feng W, Chan J, Chatla S, Golovine K, Jelinek J, Sliwinski T, Ghosh J, Matlawska-Wasowska K, Chandramouly G, Nejati R, Wasik M, Sykes SM, Piwocka K, Hadzijusufovic E, Valent P, Pomerantz RT, Morton G, Childers W, Zhao H, Paietta EM, Levine RL, Tallman MS, Fernandez HF, Litzow MR, Gupta GP, Masson JY, Skorski T. DNA polymerase θ protects leukemia cells from metabolically induced DNA damage. Blood 2023; 141:2372-2389. [PMID: 36580665 PMCID: PMC10273171 DOI: 10.1182/blood.2022018428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Monika Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Bac Viet Le
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Marie-Christine Caron
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Kumaraswamy N. Chitrala
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Malgorzata Drzewiecka
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joe Chan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Konstantin Golovine
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Mariusz Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Stephen M. Sykes
- Division of Hematology/Oncology, Department of Pediatrics, Washington University at St. Louis, St. Louis, MO
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals & Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - George Morton
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Wayne Childers
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Elisabeth M. Paietta
- Department of Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
| | - Ross L. Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hugo F. Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL
| | - Mark R. Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Gaorav P. Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jean-Yves Masson
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
46
|
Pismataro MC, Astolfi A, Barreca ML, Pacetti M, Schenone S, Bandiera T, Carbone A, Massari S. Small Molecules Targeting DNA Polymerase Theta (POLθ) as Promising Synthetic Lethal Agents for Precision Cancer Therapy. J Med Chem 2023; 66:6498-6522. [PMID: 37134182 DOI: 10.1021/acs.jmedchem.2c02101] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Synthetic lethality (SL) is an innovative strategy in targeted anticancer therapy that exploits tumor genetic vulnerabilities. This topic has come to the forefront in recent years, as witnessed by the increased number of publications since 2007. The first proof of concept for the effectiveness of SL was provided by the approval of poly(ADP-ribose)polymerase inhibitors, which exploit a SL interaction in BRCA-deficient cells, although their use is limited by resistance. Searching for additional SL interactions involving BRCA mutations, the DNA polymerase theta (POLθ) emerged as an exciting target. This review summarizes, for the first time, the POLθ polymerase and helicase inhibitors reported to date. Compounds are described focusing on chemical structure and biological activity. With the aim to enable further drug discovery efforts in interrogating POLθ as a target, we propose a plausible pharmacophore model for POLθ-pol inhibitors and provide a structural analysis of the known POLθ ligand binding sites.
Collapse
Affiliation(s)
- Maria Chiara Pismataro
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Martina Pacetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
47
|
Rodriguez-Berriguete G, Ranzani M, Prevo R, Puliyadi R, Machado N, Bolland HR, Millar V, Ebner D, Boursier M, Cerutti A, Cicconi A, Galbiati A, Grande D, Grinkevich V, Majithiya JB, Piscitello D, Rajendra E, Stockley ML, Boulton SJ, Hammond EM, Heald RA, Smith GC, Robinson HM, Higgins GS. Small-Molecule Polθ Inhibitors Provide Safe and Effective Tumor Radiosensitization in Preclinical Models. Clin Cancer Res 2023; 29:1631-1642. [PMID: 36689546 PMCID: PMC10102842 DOI: 10.1158/1078-0432.ccr-22-2977] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/19/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
| | - Marco Ranzani
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Remko Prevo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Rathi Puliyadi
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicole Machado
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Hannah R. Bolland
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Val Millar
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marie Boursier
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Aurora Cerutti
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Diego Grande
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Vera Grinkevich
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Eeson Rajendra
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Simon J. Boulton
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Ester M. Hammond
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Robert A. Heald
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Geoff S. Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Gillespie MS, Ward CM, Davies CC. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel) 2023; 15:1897. [PMID: 36980782 PMCID: PMC10047301 DOI: 10.3390/cancers15061897] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
First-line cancer treatments successfully eradicate the differentiated tumour mass but are comparatively ineffective against cancer stem cells (CSCs), a self-renewing subpopulation thought to be responsible for tumour initiation, metastasis, heterogeneity, and recurrence. CSCs are thus presented as the principal target for elimination during cancer treatment. However, CSCs are challenging to drug target because of numerous intrinsic and extrinsic mechanisms of drug resistance. One such mechanism that remains relatively understudied is the DNA damage response (DDR). CSCs are presumed to possess properties that enable enhanced DNA repair efficiency relative to their highly proliferative bulk progeny, facilitating improved repair of double-strand breaks induced by radiotherapy and most chemotherapeutics. This can occur through multiple mechanisms, including increased expression and splicing fidelity of DNA repair genes, robust activation of cell cycle checkpoints, and elevated homologous recombination-mediated DNA repair. Herein, we summarise the current knowledge concerning improved genome integrity in non-transformed stem cells and CSCs, discuss therapeutic opportunities within the DDR for re-sensitising CSCs to genotoxic stressors, and consider the challenges posed regarding unbiased identification of novel DDR-directed strategies in CSCs. A better understanding of the DDR mediating chemo/radioresistance mechanisms in CSCs could lead to novel therapeutic approaches, thereby enhancing treatment efficacy in cancer patients.
Collapse
Affiliation(s)
- Matthew S. Gillespie
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
- School of Cancer Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ciara M. Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| |
Collapse
|
49
|
The Landscape and Therapeutic Targeting of BRCA1, BRCA2 and Other DNA Damage Response Genes in Pancreatic Cancer. Curr Issues Mol Biol 2023; 45:2105-2120. [PMID: 36975505 PMCID: PMC10047276 DOI: 10.3390/cimb45030135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Genes participating in the cellular response to damaged DNA have an important function to protect genetic information from alterations due to extrinsic and intrinsic cellular insults. In cancer cells, alterations in these genes are a source of genetic instability, which is advantageous for cancer progression by providing background for adaptation to adverse environments and attack by the immune system. Mutations in BRCA1 and BRCA2 genes have been known for decades to predispose to familial breast and ovarian cancers, and, more recently, prostate and pancreatic cancers have been added to the constellation of cancers that show increased prevalence in these families. Cancers associated with these genetic syndromes are currently treated with PARP inhibitors based on the exquisite sensitivity of cells lacking BRCA1 or BRCA2 function to inhibition of the PARP enzyme. In contrast, the sensitivity of pancreatic cancers with somatic BRCA1 and BRCA2 mutations and with mutations in other homologous recombination (HR) repair genes to PARP inhibitors is less established and the subject of ongoing investigations. This paper reviews the prevalence of pancreatic cancers with HR gene defects and treatment of pancreatic cancer patients with defects in HR with PARP inhibitors and other drugs in development that target these molecular defects.
Collapse
|
50
|
Multifaceted Nature of DNA Polymerase θ. Int J Mol Sci 2023; 24:ijms24043619. [PMID: 36835031 PMCID: PMC9962433 DOI: 10.3390/ijms24043619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
DNA polymerase θ belongs to the A family of DNA polymerases and plays a key role in DNA repair and damage tolerance, including double-strand break repair and DNA translesion synthesis. Pol θ is often overexpressed in cancer cells and promotes their resistance to chemotherapeutic agents. In this review, we discuss unique biochemical properties and structural features of Pol θ, its multiple roles in protection of genome stability and the potential of Pol θ as a target for cancer treatment.
Collapse
|