1
|
Zha T, Zhang Z, Pan L, Peng L, Du Y, Wu P, Chen J, Xing W. Evaluating the Potential of Quantitative Susceptibility Mapping for Detecting Iron Deposition of Renal Fibrosis in a Rabbit Model. J Magn Reson Imaging 2025; 61:2558-2569. [PMID: 39874142 DOI: 10.1002/jmri.29722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND As ferroptosis is a key factor in renal fibrosis (RF), iron deposition monitoring may help evaluating RF. The capability of quantitative susceptibility mapping (QSM) for detecting iron deposition in RF remains uncertain. PURPOSE To investigate the potential of QSM to detect iron deposition in RF. STUDY TYPE Animal model. ANIMAL MODEL Eighty New Zealand rabbits were randomly divided into control (N = 10) and RF (N = 70) groups, consisting of baseline, 7, 14, 21, and 28 days (N = 12 in each), and longitudinal (N = 10) subgroups. RF was induced via unilateral renal arteria stenosis. FIELD STRENGTH/SEQUENCE 3 T, QSM with gradient echo, arterial spin labeling with gradient spin echo. ASSESSMENT Bilateral kidney QSM values (χ) in the cortex (χCO) and outer medulla (χOM) were evaluated with histopathology. STATISTICAL TESTS Analysis of variance, Kruskal-Wallis, Spearman's correlation, and the area under the receiver operating characteristic curve (AUC). P < 0.05 was significant. RESULTS In fibrotic kidneys, χCO decreased at 7 days ([-6.69 ± 0.98] × 10-2 ppm) and increased during 14-28 days ([-1.85 ± 2.11], [0.14 ± 0.58], and [1.99 ± 0.60] × 10-2 ppm, respectively), while the χOM had the opposite trend. Both significantly correlated with histopathology (|r| = 0.674-0.849). AUC of QSM for distinguishing RF degrees was 0.692-0.993. In contralateral kidneys, the χCO initially decreased ([-6.67 ± 0.84] × 10-2 ppm) then recovered to baseline ([-4.81 ± 0.89] × 10-2 ppm), while the χOM at 7-28 days ([2.58 ± 1.40], [2.25 ± 1.83], [2.49 ± 2.11], [2.43 ± 1.32] × 10-2 ppm, respectively) were significantly higher than baseline ([0.54 ± 0.18] × 10-2 ppm). DATA CONCLUSION Different iron deposition patterns were observed in RF with QSM values, suggesting the potential of QSM for iron deposition monitoring in RF. PLAIN LANGUAGE SUMMARY Renal fibrosis (RF) is a common outcome in most kidney diseases, leading to scarring and loss of kidney function. Increasing evidence suggests that abnormal iron metabolism plays an important role in RF. This study used a technique called quantitative susceptibility mapping (QSM) to measure kidney iron levels in rabbits with RF. Specifically, rabbits with advanced RF exhibited higher kidney iron concentrations, and moderate to strong correlations between QSM values and histopathology demonstrated that QSM could accurately detect changes in iron levels and assess RF severity. Overall, QSM shows promise as a tool for monitoring iron deposition in RF progression. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Tingting Zha
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Province Artificial Intelligence for Medical Images Engineering Research Center, Changzhou, Jiangsu, China
| | - Zhiping Zhang
- Department of Radiology, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Liang Pan
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Province Artificial Intelligence for Medical Images Engineering Research Center, Changzhou, Jiangsu, China
| | - Lei Peng
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yanan Du
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Province Artificial Intelligence for Medical Images Engineering Research Center, Changzhou, Jiangsu, China
| | - Peng Wu
- Philips Healthcare, Shanghai, China
| | - Jie Chen
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Province Artificial Intelligence for Medical Images Engineering Research Center, Changzhou, Jiangsu, China
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Province Artificial Intelligence for Medical Images Engineering Research Center, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Tata P, Ghosh A, Jamma T, Kulkarni O, Ganesan R, Ray Dutta J. Caffeic Acid-Biogenic Amine Complexes Outperform Standard Drugs in Reducing Toxicity: Insights from In Vivo Iron Chelation Studies. Mol Pharm 2025. [PMID: 40315048 DOI: 10.1021/acs.molpharmaceut.4c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Iron homeostasis imbalance, caused by conditions such as thalassemia, sickle cell anemia, and myocardial infarction, often results in elevated free iron levels, leading to ferroptosis and severe organ damage. While current iron chelators like deferoxamine (DFO) and deferiprone are effective, they are associated with significant side effects, including nephrotoxicity, gastrointestinal bleeding, and liver fibrosis. This creates an urgent need for safer, natural-product-based alternatives for effective iron chelation therapy (ICT). This study investigates caffeic acid (CA)-based complexes with biogenic amines, specifically spermine (CA-Sp) and histidine (CA-His), as potential ICT candidates. Initial in vitro assays on HEK-293 cells under iron dextran (ID)-induced toxicity have demonstrated their protective effects, with CA-Sp exhibiting superior efficacy. The in vivo studies in mice have further validated their potential, showing remarkable iron chelation and toxicity mitigation compared to DFO. Inductively coupled plasma mass spectrometry (ICP-MS) reveals significant iron excretion in fecal matter in the treatment group along with reductions in serum ferritin levels. The markers of nephrotoxicity (creatinine) and liver function (ALT, AST) have also been shown to be normalized in treated groups, while immunological analyses have revealed restored levels of neutrophils, T cells, and B cells. Additionally, the inflammatory cytokines, TNF-α and IL-6, have exhibited significant reductions, with the CA-based formulations surpassing the effects of DFO. Histological analyses using Prussian blue staining have further confirmed reduced iron deposition in vital organs such as the liver, kidney, and spleen. These findings highlight CA-Sp as a particularly promising candidate for ICT, offering a safer and more effective strategy for managing iron overload and its associated complications.
Collapse
Affiliation(s)
- Pranathi Tata
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| | - Trinath Jamma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| |
Collapse
|
3
|
Bakhamis N, Awoyemi T, Vatish M, Townley H. Melanin Nanoparticles as a Safe and Effective Iron Chelation Therapy: An ex vivo Assessment of Human Placental Transfer in Pregnant Beta-Thalassemia. Int J Nanomedicine 2025; 20:4983-4999. [PMID: 40356859 PMCID: PMC12068315 DOI: 10.2147/ijn.s494710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/30/2025] [Indexed: 05/15/2025] Open
Abstract
Background Iron toxicity is a major contributor to adverse pregnancy outcomes in women with transfusion-dependent thalassemia. Currently used iron chelators are not recommended during pregnancy, as they can cross the placenta causing potential risk to the fetus. However, ceasing medication may adversely affect the mother's health in both the short- and long-term. Objective We previously demonstrated that melanin nanoparticles can effectively chelate iron, and this has been confirmed by others in iron-overloaded mice. This study aims to assess whether these nanoparticles cross the placenta and evaluate their biocompatibility and haemocompatibility. Study Design A library of 50 nm, 200 nm, and 500 nm melanin nanoparticles were synthesized and coated with Polyethylene Glycol (PEG) to improve their stability. The particles were tested for chelating iron efficacy in and biocompatibility. An in vitro BeWo (choriocarcinoma) cell model and ex vivo human placental perfusion system were used to assess nanoparticle transplacental passage. Results Melanin nanoparticles of all sizes were able to chelate iron with a maximum adsorption of 14 mm iron/g of material; significantly higher than Desferrioxamine (DFO) of the same concentration. It was also determined that PEGylated melanin nanoparticles with appropriate size (cut off 200 nm) could be restricted from passing across the placental barrier in an in vitro model using a human choriocarcinoma cell line and in an ex vivo human placental perfusion model. The particles did not cause red cell haemolysis or blood clotting at concentrations up to 1 mM. Conclusion It was demonstrated herein that transport of MNPs across the placental barrier is highly dependent on particle size (cut off size of 200 nm PEGylated MNPs). Findings suggest the possibility of providing a safe method of iron chelation during pregnancy. Future work using in vivo models will be applied to study systemic particle interactions.
Collapse
Affiliation(s)
- Nahla Bakhamis
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
| | - Toluwalase Awoyemi
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
| | - Manu Vatish
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
| | - Helen Townley
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Xu Y, Gu X, Li X, Chen Y, Wei Z, Wang J, Liu Y, Ji Y, Cheng Q, Jiang S, Yu J, Li X, Cui W, Ye X. β-Diketone Functionalized Microspheres Chelate Reactive Iron via Metal Coordination for Cartilage Repair. Adv Healthc Mater 2025; 14:e2403933. [PMID: 40045641 DOI: 10.1002/adhm.202403933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/23/2025] [Indexed: 04/18/2025]
Abstract
Excessive intracellular iron accumulation can induce mitochondrial dysfunction, leading to chondrocyte ferroptosis, a key contributor to cartilage damage in osteoarthritis (OA). Here, micelle-microfluidic hydrogel microspheres, featuring keto-enol-thiol bridged nano-sized secondary structures that disintegrate within the intracellular peroxidative environment to reveal β-diketone groups with metal chelation capabilities, are utilized for the in situ removal of reactive iron, thereby facilitating cartilage repair through the restoration of mitochondrial homeostasis. The relevant experiments demonstrate that the microspheres reduce iron influx by downregulating transferrin receptor (TfR1) expression and decrease mitochondrial iron uptake by upregulating mitochondrial outer membrane iron-sulfur cluster protein (CISD1), thus restoring intracellular mitochondrial iron homeostasis. Furthermore, the antioxidant properties of the ketone-thioether segments synergistically mitigate chondrocyte phospholipid peroxidation via Nrf2/SLC7A11/GPX4 axis, inhibiting ferroptosis and slowing OA progression. In summary, this system that in situ sustainably chelates reactive iron via metal coordination exhibits great potential in the minimally invasive treatment of OA and other ferroptosis-mediated diseases.
Collapse
Affiliation(s)
- Yong Xu
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Department of Spinal Surgery, Qinghai University Affiliated Hospital, 29 Tongren Road, Xi Ning, Qinghai, 810006, China
| | - Xin Gu
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xingchen Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yicheng Chen
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhenyuan Wei
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jielin Wang
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yi Liu
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yunhan Ji
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Qian Cheng
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Shuai Jiang
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jiangming Yu
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaoxiao Li
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - XiaoJian Ye
- Department of Orthopaedics, Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Center for Spinal Minimally Invasive Research, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
5
|
Hur W, Seong GH, Choi HS. Next generation drug clearance insights: real-time tracking in hepatobiliary and renal systems. LIGHT, SCIENCE & APPLICATIONS 2025; 14:98. [PMID: 40000616 PMCID: PMC11862125 DOI: 10.1038/s41377-025-01782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The integration of spatiotemporally resolved clearance pathway tracking (SRCPT) provides a new lens for evaluating drug clearance pathways, enabling precise mapping of physiological conditions of metabolic organs, such as liver or kidney impairment.
Collapse
Affiliation(s)
- Won Hur
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02124, USA
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02124, USA.
| |
Collapse
|
6
|
Wang M, Li H. Structure, Function, and Biosynthesis of Siderophores Produced by Streptomyces Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4425-4439. [PMID: 39808624 DOI: 10.1021/acs.jafc.4c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Since the natural supply of iron is low, microorganisms acquire iron by secreting siderophores. Streptomyces is known for its abundant secondary metabolites containing various types of siderophores, including hydroxamate, catecholate, and carboxylate. These siderophores are mainly synthesized through the nonribosomal peptide synthase (NRPS) and non-NRPS pathways and are regulated by ferric uptake regulator and diphtheria toxin regulators. Although both NRPS and non-NRPS pathways adenylate substrates, they differ significantly in the catalytic logic. Siderophores produced by Streptomyces play important roles in fields of agriculture, medicine, and environment. However, their structure, function, and synthetic mechanisms have been inadequately summarized. Therefore, this Review aimed to provide an overview of the classification, structure, biosynthesis, regulation, and applications of siderophores produced by Streptomyces. Finally, the need for a comprehensive and well-defined mechanism for synthesizing siderophores from Streptomyces was highlighted to further promote their commercialization and application in agriculture, medicine, and other areas.
Collapse
Affiliation(s)
- Mingxuan Wang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Honglin Li
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Chu J, Guo A, Hu S, Ma Y, Yang F, Xiao W. Evaluation of iron deposition in diabetic kidney disease using the kidney-to-muscle signal intensity ratio on routine MRI T2WI sequences. Abdom Radiol (NY) 2025:10.1007/s00261-025-04827-w. [PMID: 39928100 DOI: 10.1007/s00261-025-04827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVE The T2* technique in Blood Oxygen Level Dependent Magnetic Resonance Imaging (BOLD-MRI) has been established as a non-invasive standard for quantifying tissue iron levels. This study aims to assess the feasibility of obtaining quantitative iron-sensitive information from conventional MRI T2-weighted imaging (T2WI) sequences, typically used for anatomical rather than quantitative assessments, and to explore its potential as a routine monitoring tool for renal iron levels in diabetic kidney disease (DKD). METHODS A total of 142 patient imaging data from renal MRI scans were retrospectively analyzed. We measured the kidney and psoas major muscle signal intensity on T2WI sequences and calculated the kidney-to-muscle signal intensity ratio (K/M-SIR) to determine differences across patient groups. Relevant laboratory indices were collected to analyze the correlation between K/M-SIR and laboratory markers. RESULTS We included 42 clinically confirmed DKD patients, 47 patients with diabetes but no DKD, and 53 healthy subjects. The K/M-SIR was 2.66 ± 0.49 in DKD patients, 2.94 ± 0.51 in diabetic patients without DKD, and 2.95 ± 0.55 in healthy subjects. There were statistically significant differences in K/M-SIR between DKD patients and healthy subjects (p = 0.008) and between DKD patients and diabetic patients without DKD (p = 0.009). K/M-SIR values were negatively correlated with laboratory indices such as glycated hemoglobin (HbA1c), microalbuminuria (MAU), albumin-to-creatinine ratio (ACR), and 24-hour urinary protein (24 h UP). CONCLUSION The kidney-to-muscle signal intensity ratio (K/M-SIR) derived from routine MRI T2WI sequences is valuable for diagnosing DKD and may serve as a reliable non-invasive marker for assessing renal iron deposition in DKD, potentially aiding in the diagnosis and monitoring of DKD severity.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aotian Guo
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Hu
- Department of Radiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yiqi Ma
- Department of Radiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Fengning Yang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Paranjape S, Choi KY, Kashiwagi S, Choi HS. H-Dots: Renal Clearable Zwitterionic Nanocarriers for Disease Diagnosis and Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2111-2123. [PMID: 39823416 DOI: 10.1021/acs.langmuir.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics. To enable tissue- and organ-specific targeting while minimizing nonspecific uptake, renal clearable Harvard dots (H-dots) have emerged as a promising organic nanocarrier platform. Composed of an ε-polylysine backbone for a tunable charge, near-infrared fluorophores for tracking their fate in living organisms, and β-cyclodextrins for potential drug delivery, H-dots offer a multifunctional approach to theranostic nanomedicine. Recent studies demonstrate that H-dots are effective for targeted imaging and drug delivery to solid tumors. This review highlights current nanocarrier design strategies and recent advances in H-dot applications for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Swarali Paranjape
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Kyu Young Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital and Hallym University College of Medicine, Yeongdeungpo-gu, Seoul 07441, Republic of Korea
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
9
|
Thorwald MA, Sta Maria NS, Chakhoyan A, O'Day PA, Jacobs RE, Zlokovic B, Finch CE. Iron chelation by oral deferoxamine treatment decreased brain iron and iron signaling proteins. J Alzheimers Dis 2025; 103:1180-1190. [PMID: 39894909 DOI: 10.1177/13872877241313031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
BACKGROUND Deferoxamine (DFO) and other iron chelators are clinically used for cancer and stroke. They may also be useful for Alzheimer's disease (AD) to diminish iron from microbleeds. DFO may also stimulate antioxidant membrane repair which is impaired during AD. DFO and other chelators do enter the brain despite some contrary reports. OBJECTIVE Low dose, oral DFO was given in lab chow to wildtype (WT) C57BL/6 mice to evaluate potential impact on iron levels, iron-signaling and storage proteins, and amyloid-β protein precursor (AβPP) and processing enzymes. Young WT mice do not have microbleeds or disrupted blood-brain barrier of AD mice. METHODS Iron was measured by MRI and chemically after two weeks of dietary DFO. Cerebral cortex was examined for changes in iron metabolism, antioxidant signaling, and AβPP processing by western blot. RESULTS DFO decreased brain iron 18% (p < 0.01) estimated by R2 MRI and decreased seven major proteins that mediate iron metabolism by at least 25%. The iron storage proteins ferritin light and heavy chain decreased by at least 30%. AβPP and secretase enzymes also decreased by 30%. CONCLUSIONS WT mice respond to DFO with decreased AβPP, amyloid processing enzymes, and antioxidant repair. Potential DFO treatment for early-stage AD by DFO should consider the benefits of lowered AβPP and secretase enzymes.
Collapse
Affiliation(s)
- Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Naomi S Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ararat Chakhoyan
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peggy A O'Day
- Life and Environmental Sciences Department, University of California, Merced, CA, USA
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Dornsife College, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Sun J, Shen H, Dong J, Zhang J, Yue T, Zhang R. Melanin-Deferoxamine Nanoparticles Targeting Ferroptosis Mitigate Acute Kidney Injury via RONS Scavenging and Iron Ion Chelation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:282-296. [PMID: 39705095 DOI: 10.1021/acsami.4c14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Rhabdomyolysis (RM)-induced acute kidney injury (AKI) involves the release of large amounts of iron ions from excess myoglobin in the kidneys, which mediates the overproduction of reactive species with the onset of iron overload via the Fenton reaction, thus inducing ferroptosis and leading to renal dysfunction. Unfortunately, there are no effective treatments for AKI other than supportive care. Herein, we developed a multifunctional nanoplatform (MPD) by covalently bonding melanin nanoparticles (MP NPs) to deferoxamine. The nanoplatform has good dispersion and physiological stability, excellent chelating performance to iron ions, and broad-spectrum reactive species scavenging activity. Furthermore, cellular experiments showed that the NPs possessed high biocompatibility, antiapoptotic activity, antioxidant properties, and strong scavenging capacity of Fe2+ to mitigate iron overload, protecting the intracellular mitochondria from oxidative stress. Meanwhile, the intrinsic photoacoustic imaging capability of melanin allows the real-time monitoring of MPD NPs' target uptake and metabolic behavior in healthy and AKI mice. Most importantly, MPD NPs led to downregulation of the antioxidant pathway by targeting ferroptosis, thus effectively rescuing renal function in vivo, mitigating oxidative stress and inflammatory responses, and inhibiting renal tubular cell apoptosis. The nanoplatform offers a novel therapeutic strategy for RM-induced AKI.
Collapse
Affiliation(s)
- Jinghua Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Hao Shen
- Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan 030001, China
| | - Jin Zhang
- Shanxi Medical University, Taiyuan 030001, China
| | - Tao Yue
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
11
|
Guo D, Lin Q, Liu N, Jin Q, Liu C, Wang Y, Zhu X, Zong L. Copper-based metal-organic framework co-loaded doxorubicin and curcumin for anti-cancer with synergistic apoptosis and ferroptosis therapy. Int J Pharm 2024; 666:124744. [PMID: 39317244 DOI: 10.1016/j.ijpharm.2024.124744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The combination of chemotherapy and ferroptosis therapy can greatly improve the efficiency of tumor treatment. However, ferroptosis-based therapy is limited by the unsatisfactory Fenton activity and insufficient H2O2 supply in tumor cells. In this work, a nano-drug delivery system Cur@DOX@MOF-199 NPs was constructed to combine ferroptosis and apoptosis by loading curcumin (Cur) and doxorubicin (DOX) based on the copper-based organic framework MOF-199. Cur@DOX@MOF-199 NPs decompose quickly by glutathione (GSH), releasing Cu2+, DOX and Cur. Cu2+ can deplete GSH while also being reduced to Cu+; DOX can induce apoptosis and simultaneously boost H2O2 production. Moreover, Cur enhanced the expression of intracellular heme oxygenase-1 (HO-1), for decomposing heme and releasing Fe2+, which further combined with Cu+ to catalyze H2O2 for hydroxyl radical (OH) generation, leading to the accumulation of lipid peroxide and ferroptosis. As a result, Cur@DOX@MOF-199 NPs exhibited significantly enhanced antitumor efficacy in MCF-7 tumor-bearing mouse model, suggesting this nano formulation is an excellent synergetic pathway for apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Ding Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Qian Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Nian Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yubo Wang
- Medical College, Guangxi University, Nanning 530004, PR China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Lili Zong
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
12
|
Wang R, Xu S, Zhang M, Feng W, Wang C, Qiu X, Li J, Zhao W. Multifunctional chitosan-based hydrogels loaded with iridium nanoenzymes for skin wound repair. Carbohydr Polym 2024; 342:122325. [PMID: 39048214 DOI: 10.1016/j.carbpol.2024.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 07/27/2024]
Abstract
Hemostasis, infection, oxidative stress, and inflammation still severely impede the wound repair process. It is significant to develop multifunctional wound dressings that can function as needed in various stages of wound healing. In this study, iridium nanoparticles (IrNPs) with multi-enzyme mimetic activity were complexed with chitosan (CS) and fucoidan (FD) for the first time to make a multifunctional CS/FD/IrNPs hydrogel with excellent antioxidant effect. The hydrogel has excellent physicochemical properties. In particular, the incorporation of IrNPs imparts excellent antioxidant properties to the hydrogel, which could scavenge reactive oxygen species (ROS). In addition, the hydrogel shows excellent hemostatic and antibacterial properties. The CS/FD/IrNPs hydrogel performs fast and efficient hemostasis in 21 s. Moreover, the blood loss of the CS/FD/IrNPs hydrogel group was approximately 10% of that in the control group and the antibacterial rate of CS/FD/IrNPs hydrogel against E. coli and S. aureus was up to 95 %. In vivo results demonstrate that CS/FD/IrNPs hydrogel promotes wound healing by attenuating ROS levels, reducing oxidative damage, mitigating inflammation, and accelerating angiogenesis. To summarize, the CS/FD/IrNPs hydrogel system, with hemostatic, antibacterial, antioxidant, anti-inflammatory and pro-healing activities, can be a promising and effective strategy for the treatment of clinically difficult-to-heal wounds.
Collapse
Affiliation(s)
- Ruoying Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shixin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Feng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jierui Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
13
|
Funahashi Y, Park SH, Hebert JF, Eiwaz MB, Munhall AC, Groat T, Zeng L, Kim J, Choi HS, Hutchens MP. Nanotherapeutic kidney cell-specific targeting to ameliorate acute kidney injury. Kidney Int 2024; 106:597-610. [PMID: 39067856 DOI: 10.1016/j.kint.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Acute kidney injury (AKI) increases the risk of in-hospital death, adds to expense of care, and risk of early chronic kidney disease. AKI often follows an acute event such that timely treatment could ameliorate AKI and potentially reduce the risk of additional disease. Despite therapeutic success of dexamethasone in animal models, clinical trials have not demonstrated broad success. To improve the safety and efficacy of dexamethasone for AKI, we developed and characterized a novel, kidney-specific nanoparticle enabling specific within-kidney targeting to proximal tubular epithelial cells provided by the megalin ligand cilastatin. Cilastatin and dexamethasone were complexed to H-Dot nanoparticles, which were constructed from generally recognized as safe components. Cilastatin/Dexamethasone/H-Dot nanotherapeutics were found to be stable at plasma pH and demonstrated salutary release kinetics at urine pH. In vivo, they were specifically biodistributed to the kidney and bladder, with 75% recovery in the urine and with reduced systemic toxicity compared to native dexamethasone. Cilastatin complexation conferred proximal tubular epithelial cell specificity within the kidney in vivo and enabled dexamethasone delivery to the proximal tubular epithelial cell nucleus in vitro. The Cilastatin/Dexamethasone/H-Dot nanotherapeutic improved kidney function and reduced kidney cellular injury when administered to male C57BL/6 mice in two translational models of AKI (rhabdomyolysis and bilateral ischemia reperfusion). Thus, our design-based targeting and therapeutic loading of a kidney-specific nanoparticle resulted in preservation of the efficacy of dexamethasone, combined with reduced off-target disposition and toxic effects. Hence, our study illustrates a potential strategy to target AKI and other diseases of the kidney.
Collapse
Affiliation(s)
- Yoshio Funahashi
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Seung Hun Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica F Hebert
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Mahaba B Eiwaz
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Adam C Munhall
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Tahnee Groat
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Lingxue Zeng
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Jonghan Kim
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael P Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA; Operative Care Division, Portland VA Medical Center, Portland, Oregon, USA.
| |
Collapse
|
14
|
Lei L, Yuan J, Dai Z, Xiang S, Tu Q, Cui X, Zhai S, Chen X, He Z, Fang B, Xu Z, Yu H, Tang L, Zhang C. Targeting the Labile Iron Pool with Engineered DFO Nanosheets to Inhibit Ferroptosis for Parkinson's Disease Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409329. [PMID: 39221531 DOI: 10.1002/adma.202409329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis in neurons is considered one of the key factors that induces Parkinson's disease (PD), which is caused by excessive iron accumulation in the intracellular labile iron pool (LIP). The iron ions released from the LIP lead to the aberrant generation of reactive oxygen species (ROS) to trigger ferroptosis and exacerbate PD progression. Herein, a pioneering design of multifunctional nanoregulator deferoxamine (DFO)-integrated nanosheets (BDPR NSs) is presented that target the LIP to restrict ferroptosis and protect against PD. The BDPR NSs are constructed by incorporating a brain-targeting peptide and DFO into polydopamine-modified black phosphorus nanosheets. These BDPR NSs can sequester free iron ions, thereby ameliorating LIP overload and regulating iron metabolism. Furthermore, the BDPR NSs can decrease lipid peroxidation generation by mitigating ROS accumulation. More importantly, BDPR NSs can specifically accumulate in the mitochondria to suppress ROS generation and decrease mitochondrial iron accumulation. In vivo experiments demonstrated that the BDPR NSs highly efficiently mitigated dopaminergic neuronloss and its associated behavioral disorders by modulating the LIP and inhibiting ferroptosis. Thus, the BDPR-based nanovectors holds promise as a potential avenue for advancing PD therapy.
Collapse
Affiliation(s)
- Li Lei
- Department of Chemistry, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Jiali Yuan
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Zhijun Dai
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Song Xiang
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Qiuxia Tu
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Xing Cui
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China
| | - Suzhen Zhai
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaozhong Chen
- The Jinyang Hospital Affiliated to Guizhou Medical University: The Second People's Hospital of Guiyang, Guiyang, 550025, China
| | - Zhixu He
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China
| | - Chunlin Zhang
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
15
|
Zhu L, Du Y. A promising new approach to cancer therapy: Manipulate ferroptosis by hijacking endogenous iron. Int J Pharm 2024; 662:124517. [PMID: 39084581 DOI: 10.1016/j.ijpharm.2024.124517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Ferroptosis, a form of regulated cell death characterized by iron-dependent phospholipid peroxidation, has emerged as a focal point in the field of cancer therapy. Compared with other cell death modes such as apoptosis and necrosis, ferroptosis exhibits many distinct characteristics in the molecular mechanisms and cell morphology, offering a promising avenue for combating cancers that are resistant to conventional therapeutic modalities. In light of the serious side effects associated with current Fenton-modulating ferroptosis therapies utilizing exogenous iron-based inorganic nanomaterials, hijacking endogenous iron could serve as an effective alternative strategy to trigger ferroptosis through targeting cellular iron regulatory mechanisms. A better understanding of the underlying iron regulatory mechanism in the process of ferroptosis has shed light on the current findings of endogenous ferroptosis-based nanomedicine strategies for cancer therapy. Here in this review article, we provide a comprehensive discussion on the regulatory network of iron metabolism and its pivotal role in ferroptosis, and present recent updates on the application of nanoparticles endowed with the ability to hijack endogenous iron for ferroptosis. We envision that the insights in the study may expedite the development and translation of endogenous ferroptosis-based nanomedicines for effective cancer treatment.
Collapse
Affiliation(s)
- Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China.
| |
Collapse
|
16
|
Ning X, Zhong Y, Cai Q, Wang Y, Jia X, Hsieh JT, Zheng J, Yu M. Gold Nanoparticle Transport in the Injured Kidneys with Elevated Renal Function Biomarkers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402479. [PMID: 39073056 PMCID: PMC11410533 DOI: 10.1002/adma.202402479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Renal function biomarkers such as serum blood urea nitrogen (BUN) and creatinine (Cr) serve as key indicators for guiding clinical decisions before administering kidney-excreted small-molecule agents. With engineered nanoparticles increasingly designed to be renally clearable to expedite their clinical translation, understanding the relationship between renal function biomarkers and nanoparticle transport in diseased kidneys becomes crucial to their biosafety in future clinical applications. In this study, renal-clearable gold nanoparticles (AuNPs) are used as X-ray contrast agents to noninvasively track their transport and retention in cisplatin-injured kidneys with varying BUN and Cr levels. The findings reveal that AuNP transport is significantly slowed in the medulla of severely injured kidneys, with BUN and Cr levels elevated to 10 times normal. In mildly injured kidneys, where BUN and Cr levels only four to five times higher than normal, AuNP transport and retention are not predictable by BUN and Cr levels but correlate strongly with the degree of tubular injury due to the formation of gold-protein casts in the Henle's loop of the medulla. These results underscore the need for caution when employing renal-clearable nanomedicines in compromised kidneys and highlight the potential of renal-clearable AuNPs as X-ray probes for assessing kidney injuries noninvasively.
Collapse
Affiliation(s)
- Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yuncheng Zhong
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Qi Cai
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yaohong Wang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xun Jia
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Jer-Tsong Hsieh
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
17
|
Yang SQ, Zhao X, Zhang J, Liao DY, Wang YH, Wang YG. Ferroptosis in renal fibrosis: a mini-review. J Drug Target 2024; 32:785-793. [PMID: 38721679 DOI: 10.1080/1061186x.2024.2353363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Ferroptosis is a novel form of programmed cell death that is iron-dependent and distinct from autophagy, apoptosis, and necroptosis. It is primarily characterised by a decrease in glutathione peroxidase 4 (GPX4) activity, or by the accumulation of lipid peroxidation and reactive oxygen species (ROS). Renal fibrosis is a common pathological change in the progression of various primary and secondary renal diseases to end-stage renal disease and poses a serious threat to human health with high morbidity and mortality. Multiple pathways contribute to the development of renal fibrosis, with ferroptosis playing a crucial role in renal fibrosis pathogenesis due to its involvement in the production of ROS. Ferroptosis is related to several signalling pathways, including System Xc-/GPX4, abnormal iron metabolism and lipid peroxidation. A number of studies have indicated that ferroptosis is closely involved in the process of renal fibrosis caused by various kidney diseases such as glomerulonephritis, renal ischaemia-reperfusion injury, diabetic nephropathy and renal calculus. Identifying the underlying molecular mechanisms that determine cell death would open up new insights to address a therapeutic strategy to renal fibrosis. The review aimed to browse and summarise the known mechanisms of ferroptosis that may be associated with biological reactions of renal fibrosis.
Collapse
Affiliation(s)
- Si-Qi Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Xi Zhao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Jing Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Dong-Ying Liao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
| | - Yu-Han Wang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Yao-Guang Wang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| |
Collapse
|
18
|
Meng Y, Chen S, Li P, Wang C, Ni X. Tumor Cell Membrane-Encapsulated MLA Solid Lipid Nanoparticles for Targeted Diagnosis and Radiosensitization Therapy of Cutaneous Squamous Cell Carcinoma. Mol Pharm 2024; 21:3218-3232. [PMID: 38885477 DOI: 10.1021/acs.molpharmaceut.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Squamous cell carcinoma (SCC) is a common nonmelanoma skin cancer. Radiotherapy plays an integral role in treating SCC due to its characteristics, such as diminished intercellular adhesion, heightened cell migration and invasion capabilities, and immune evasion. These problems lead to inaccurate tumor boundary positioning and radiotherapy tolerance in SCC treatment. Thus, accurate localization and enhanced radiotherapy sensitivity are imperative for effective SCC treatment. To address the existing limitations in SCC therapy, we developed monoglyceride solid lipid nanoparticles (MG SLNs) and enveloped them with the A431 cell membrane (A431 CM) to create A431@MG. The characterization results showed that A431@MG was spherical. Furthermore, A431@MG had specific targeting for A431 cells. In A431 tumor-bearing mice, A431@MG demonstrated prolonged accumulation within tumors, ensuring precise boundary localization of SCC. We further advanced the approach by preparing MG SLNs encapsulating 5-aminolevulinic acid methyl ester (MLA) and desferrioxamine (DFO) with an A431 CM coating to yield A431@MG-MLA/DFO. Several studies have revealed that DFO effectively reduced iron content, impeding protoporphyrin IX (PpIX) biotransformation and promoting PpIX accumulation. Simultaneously, MLA was metabolized into PpIX upon cellular entry. During radiotherapy, the heightened PpIX levels enhanced reactive oxygen species (ROS) generation, inducing DNA and mitochondrial damage and leading to cell apoptosis. In A431 tumor-bearing mice, the A431@MG-MLA/DFO group exhibited notable radiotherapy sensitization, displaying superior tumor growth inhibition. Combining A431@MG-MLA/DFO with radiotherapy significantly improved anticancer efficacy, highlighting its potential to serve as an integrated diagnostic and therapeutic strategy for SCC.
Collapse
Affiliation(s)
- Yanyan Meng
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Shaoqing Chen
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Pengyin Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xinye Ni
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| |
Collapse
|
19
|
Zheng Y, Yi H, Zhan Z, Xue SS, Tang G, Yu X, Zhang DY. Reactive oxygen/nitrogen species scavenging and inflammatory regulation by renal-targeted bio-inspired rhodium nanozymes for acute kidney injury theranostics. J Colloid Interface Sci 2024; 662:413-425. [PMID: 38359505 DOI: 10.1016/j.jcis.2024.02.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Acute kidney injury (AKI) results from the rapid deterioration of renal function, which is mainly treated by transplantation and dialysis, and has a high mortality rate. Inflammation induced by excess reactive oxygen/nitrogen species (RONS) plays a crucial role in AKI. Although small molecule antioxidants have been utilized to alleviate AKI, low bioavailability and side-effect of these drugs tremendously limit their clinical use. Hence, we successfully construct ultra-small (2-4 nm) rhodium nanoparticles modified with l-serine (denoted as Rh-Ser). Our results show that Rh-Ser with multiple enzyme-mimicking activities, allows remove various RONS to protect damaged kidney cells. Additionally, the ultrasmall size of Rh-Ser is conducive to enrichment in the renal tubules, and the modification of l-serine enables Rh-Ser to bind to kidney injury molecule-1, which is highly expressed on the surface of damaged renal cells, thereby targeting the damaged kidney and increasing the retention time. Moreover, Rh-Ser allows the production of oxygen at the inflammatory site, thus further improving hypoxia and inhibiting pro-inflammatory macrophages to relieve inflammation, and increasing the survival rate of AKI mice from 0 to 80%, which exhibits a better therapeutic effect than that of small molecule drug. Photoacoustic and fluorescence imaging can effectively monitor and evaluate the enrichment and therapeutic effect of Rh-Ser. Our study provides a promising strategy for the targeted treatment of AKI via RONS scavenging and inflammatory regulation.
Collapse
Affiliation(s)
- Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Huixi Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhixiong Zhan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
20
|
Zhang Q, Chen C, Zou X, Wu W, Di Y, Li N, Fu A. Iron promotes ovarian cancer malignancy and advances platinum resistance by enhancing DNA repair via FTH1/FTL/POLQ/RAD51 axis. Cell Death Dis 2024; 15:329. [PMID: 38740757 PMCID: PMC11091064 DOI: 10.1038/s41419-024-06688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.
Collapse
Affiliation(s)
- Qingyu Zhang
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Caiyun Chen
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Xinxin Zou
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Weifeng Wu
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Yunbo Di
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Ning Li
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, 524023, China.
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Aizhen Fu
- Laboratory of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| |
Collapse
|
21
|
Liu J, Chen J, Lv J, Gong Y, Song J. The mechanisms of ferroptosis in the pathogenesis of kidney diseases. J Nephrol 2024; 37:865-879. [PMID: 38704472 DOI: 10.1007/s40620-024-01927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/07/2024] [Indexed: 05/06/2024]
Abstract
The pathological features of acute and chronic kidney diseases are closely associated with cell death in glomeruli and tubules. Ferroptosis is a form of programmed cell death characterized by iron overload-induced oxidative stress. Ferroptosis has recently gained increasing attention as a pathogenic mechanism of kidney damage. Specifically, the ferroptosis signaling pathway has been found to be involved in the pathological process of acute and chronic kidney injury, potentially contributing to the development of both acute and chronic kidney diseases. This paper aims to elucidate the underlying mechanisms of ferroptosis and its role in the pathogenesis of kidney disease, highlighting its significance and proposing novel directions for its treatment.
Collapse
Affiliation(s)
- Jia Liu
- Department of Medicine, Henan Technical Institute, Kaifeng, China
| | - Jianheng Chen
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Lv
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhang Gong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jie Song
- Department of Nephrology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Zhang W, Li B, Yu R, Xu W, Liu X, Su J, Yuan G. Hepcidin contributes to largemouth bass (Micropterus salmoides) against bacterial infections. Int J Biol Macromol 2024; 266:131144. [PMID: 38556234 DOI: 10.1016/j.ijbiomac.2024.131144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The increasing emergence and dissemination of bacterial pathogens in largemouth bass culture accelerate the desire for new treatment measures. Antimicrobial peptides as the host's antimicrobial source dominate the preferred molecules for discovering antibacterial agents. Here, the potential of Hepcidin-1 from largemouth bass (Micropterus salmoides) (MsHep-1) against bacterial infection is demonstrated. MsHep-1 not only improved the survival rate in infection experiments involving Nocardia seriolae (12 %) and Aeromonas hydrophila (18 %) but also coped with iron overload conditions in vivo. Moreover, the antibacterial activity of MsHep-1 in vitro was identified against both gram-negative and gram-positive bacteria. Mechanistic studies show MsHep-1 leads to bacterial death by changing the bacterial membrane potential and disrupting the bacterial membrane structure. These findings demonstrate that MsHep-1 may play an important role in the host response to bacterial infection. It provides promising strategies in the application of immunosuppression prevention and control in fish. AMPs may be a promising and available reservoir for treating the current bacterial diseases.
Collapse
Affiliation(s)
- Weixiang Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruying Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyan Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
23
|
Xia Y, Chen Z, Huang C, Shi L, Ma W, Chen X, Liu Y, Wang Y, Cai C, Huang Y, Liu W, Shi R, Luo Q. Investigation the mechanism of iron overload-induced colonic inflammation following ferric citrate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116241. [PMID: 38522287 DOI: 10.1016/j.ecoenv.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangqin Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu 611130, China
| | - Wenjing Ma
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Yucong Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyu Cai
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiang Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
24
|
Zhang J, Zhao W, Zhou Y, Xi S, Xu X, Du X, Zheng X, Hu W, Sun R, Tian Z, Fu B, Wei H. Pyroptotic T cell-derived active IL-16 has a driving function in ovarian endometriosis development. Cell Rep Med 2024; 5:101476. [PMID: 38508138 PMCID: PMC10983113 DOI: 10.1016/j.xcrm.2024.101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Endometriosis, affecting 6%-10% of women, often leads to pain and infertility and its underlying inflammatory mechanisms are poorly understood. We established endometriosis models in wild-type and IL16KO mice, revealing the driver function of IL-16 in initiating endometriosis-related inflammation. Using an in vitro system, we confirmed iron overload-induced GSDME-mediated pyroptosis as a key trigger for IL-16 activation and release. In addition, our research led to the development of Z30702029, a compound inhibiting GSDME-NTD-mediated pyroptosis, which shows promise as a therapeutic intervention for endometriosis. Importantly, our findings extend beyond endometriosis, highlighting GSDME-mediated pyroptosis as a broader pathway for IL-16 release and offering insights into potential treatments for various inflammatory conditions.
Collapse
Affiliation(s)
- Jinghe Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Weidong Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Yonggang Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Shengdi Xi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiuxiu Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianghui Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaohu Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Weiping Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rui Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Binqing Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China.
| | - Haiming Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
25
|
Ficiarà E, Stura I, Vernone A, Silvagno F, Cavalli R, Guiot C. Iron Overload in Brain: Transport Mismatches, Microbleeding Events, and How Nanochelating Therapies May Counteract Their Effects. Int J Mol Sci 2024; 25:2337. [PMID: 38397013 PMCID: PMC10889007 DOI: 10.3390/ijms25042337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;
| | - Ilaria Stura
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Annamaria Vernone
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Francesca Silvagno
- Department of Oncology, Università degli Studi di Torino, 10126 Torino, TO, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, Università degli Studi di Torino, 10125 Torino, TO, Italy;
| | - Caterina Guiot
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| |
Collapse
|
26
|
Li S, Han Q, Liu C, Wang Y, Liu F, Pan S, Zuo L, Gao D, Chen K, Feng Q, Liu Z, Liu D. Role of ferroptosis in chronic kidney disease. Cell Commun Signal 2024; 22:113. [PMID: 38347570 PMCID: PMC10860320 DOI: 10.1186/s12964-023-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 02/15/2024] Open
Abstract
Chronic kidney disease (CKD) has historically been a significant global health concern, profoundly impacting both life and well-being. In the process of CKD, with the gradual loss of renal function, the incidence of various life-threatening complications, such as cardiovascular diseases, cerebrovascular accident, infection and stroke, is also increasing rapidly. Unfortunately, existing treatments exhibit limited ability to halt the progression of kidney injury in CKD, emphasizing the urgent need to delve into the precise molecular mechanisms governing the occurrence and development of CKD while identifying novel therapeutic targets. Renal fibrosis, a typical pathological feature of CKD, plays a pivotal role in disrupting normal renal structures and the loss of renal function. Ferroptosis is a recently discovered iron-dependent form of cell death characterized by lipid peroxide accumulation. Ferroptosis has emerged as a potential key player in various diseases and the initiation of organ fibrosis. Substantial evidence suggests that ferroptosis may significantly contribute to the intricate interplay between CKD and its progression. This review comprehensively outlines the intricate relationship between CKD and ferroptosis in terms of iron metabolism and lipid peroxidation, and discusses the current landscape of pharmacological research on ferroptosis, shedding light on promising avenues for intervention. It further illustrates recent breakthroughs in ferroptosis-related regulatory mechanisms implicated in the progression of CKD, thereby providing new insights for CKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Chang Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Kai Chen
- Kaifeng Renmin Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
27
|
Wei Z, Yu H, Zhao H, Wei M, Xing H, Pei J, Yang Y, Ren K. Broadening horizons: ferroptosis as a new target for traumatic brain injury. BURNS & TRAUMA 2024; 12:tkad051. [PMID: 38250705 PMCID: PMC10799763 DOI: 10.1093/burnst/tkad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, No. 1, Longhu Middle Ring Road, Jinshui District, Zhengzhou, China
| | - Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, No. 1, Longhu Middle Ring Road, Jinshui District, Luoyang, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, No. 263, Kaiyuan Avenue, Luolong District, Harbin, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People’s Hospital, No. 198, Funiu Road, Zhongyuan District, Henan province, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No. 198, Funiu Road, Zhongyuan District, Zhengzhou 450052, China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
28
|
Luan Y, Yang Y, Luan Y, Liu H, Xing H, Pei J, Liu H, Qin B, Ren K. Targeting ferroptosis and ferritinophagy: new targets for cardiovascular diseases. J Zhejiang Univ Sci B 2024; 25:1-22. [PMID: 38163663 PMCID: PMC10758208 DOI: 10.1631/jzus.b2300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/21/2023] [Indexed: 01/03/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading factor driving mortality worldwide. Iron, an essential trace mineral, is important in numerous biological processes, and its role in CVDs has raised broad discussion for decades. Iron-mediated cell death, namely ferroptosis, has attracted much attention due to its critical role in cardiomyocyte damage and CVDs. Furthermore, ferritinophagy is the upstream mechanism that induces ferroptosis, and is closely related to CVDs. This review aims to delineate the processes and mechanisms of ferroptosis and ferritinophagy, and the regulatory pathways and molecular targets involved in ferritinophagy, and to determine their roles in CVDs. Furthermore, we discuss the possibility of targeting ferritinophagy-induced ferroptosis modulators for treating CVDs. Collectively, this review offers some new insights into the pathology of CVDs and identifies possible therapeutic targets.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People's Hospital, Zhengzhou 450052, China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Bo Qin
- Center for Translational Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
29
|
Ficiarà E, Molinar C, Gazzin S, Jayanti S, Argenziano M, Nasi L, Casoli F, Albertini F, Ansari SA, Marcantoni A, Tomagra G, Carabelli V, Guiot C, D’Agata F, Cavalli R. Developing Iron Nanochelating Agents: Preliminary Investigation of Effectiveness and Safety for Central Nervous System Applications. Int J Mol Sci 2024; 25:729. [PMID: 38255803 PMCID: PMC10815234 DOI: 10.3390/ijms25020729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Excessive iron levels are believed to contribute to the development of neurodegenerative disorders by promoting oxidative stress and harmful protein clustering. Novel chelation treatments that can effectively remove excess iron while minimizing negative effects on the nervous system are being explored. This study focuses on the creation and evaluation of innovative nanobubble (NB) formulations, shelled with various polymers such as glycol-chitosan (GC) and glycol-chitosan conjugated with deferoxamine (DFO), to enhance their ability to bind iron. Various methods were used to evaluate their physical and chemical properties, chelation capacity in diverse iron solutions and impact on reactive oxygen species (ROS). Notably, the GC-DFO NBs demonstrated the ability to decrease amyloid-β protein misfolding caused by iron. To assess potential toxicity, in vitro cytotoxicity testing was conducted using organotypic brain cultures from the substantia nigra, revealing no adverse effects at appropriate concentrations. Additionally, the impact of NBs on spontaneous electrical signaling in hippocampal neurons was examined. Our findings suggest a novel nanochelation approach utilizing DFO-conjugated NBs for the removal of excess iron in cerebral regions, potentially preventing neurotoxic effects.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, Center for Neuroscience, University of Camerino, 62032 Camerino, Italy;
| | - Chiara Molinar
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.G.); (S.J.)
| | - Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.G.); (S.J.)
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Lucia Nasi
- Institute of Materials for Electronics and Magnetism (IMEM) CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Francesca Casoli
- Institute of Materials for Electronics and Magnetism (IMEM) CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Franca Albertini
- Institute of Materials for Electronics and Magnetism (IMEM) CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Shoeb Anwar Ansari
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (C.G.)
| | - Andrea Marcantoni
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Giulia Tomagra
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Valentina Carabelli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (C.G.)
| | - Federico D’Agata
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (C.G.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (C.M.); (M.A.); (A.M.); (G.T.); (V.C.); (R.C.)
| |
Collapse
|
30
|
Cen J, Zhu H, Hong C, Zhang X, Liu S, Yang B, Yu Y, Wen Y, Cao J, Chen W. Synthesis and structure-activity optimization of hydroxypyridinones against rhabdomyolysis-induced acute kidney injury. Eur J Med Chem 2024; 263:115933. [PMID: 37976703 DOI: 10.1016/j.ejmech.2023.115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The important role of accumulated iron is well recognized in the pathophysiology of rhabdomyolysis-induced acute kidney injury (RM-AKI). Our previous work further confirmed the labile iron triggered iron-dependent ferroptosis thus leading to the renal failure. In view of this, a series of hydroxypyridinones (HOPOs) with excellent iron chelation capability have been designed and synthesized in this study. A lead compound 6k was identified with good ferroptosis inhibition (EC50 = 20 μM) and no obvious cytotoxicity (CC50 > 100 μM), indicating a good therapeutic window (safety index = CC50/EC50 > 5.00). Moreover, intraperitoneal treatment of 6k (10 mg/kg) displayed a superior protective effect than deferiprone (50 mg/kg) in glycerol-induced RM-AKI mice with alleviating kidney dysfunction and pathological injury, decreasing the renal iron level as well as downregulating the mRNA level of ferroptosis associated genes (Acls4 and Ptgs2). Also, 6k exhibited a good in vivo safety profile, even at single high dose up to 1 g/kg without inducing mortality or toxic symptoms. Importantly, 6k could significantly upregulate the protein hypoxia-inducible factor 1α, possibly involving HIF pathway against the ferroptosis. These results collectively highlighted that the strategy of iron chelation and downstream ferroptosis inhibition has a therapeutic potential against RM-AKI.
Collapse
Affiliation(s)
- Jie Cen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haiying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenggang Hong
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuangrong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China; Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, China
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuanmei Wen
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China; Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, China; Cancer Center of Zhejiang University, Hangzhou, China.
| | - Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Qiao O, Wang X, Wang Y, Li N, Gong Y. Ferroptosis in acute kidney injury following crush syndrome: A novel target for treatment. J Adv Res 2023; 54:211-222. [PMID: 36702249 PMCID: PMC10703611 DOI: 10.1016/j.jare.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI. AIM OF REVIEW This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI. KEY SCIENTIFIC CONCEPTS OF REVIEW One of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI.
Collapse
Affiliation(s)
- Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| |
Collapse
|
32
|
Ríos-Silva M, Cárdenas Y, Ortega-Macías AG, Trujillo X, Murillo-Zamora E, Mendoza-Cano O, Bricio-Barrios JA, Ibarra I, Huerta M. Animal models of kidney iron overload and ferroptosis: a review of the literature. Biometals 2023; 36:1173-1187. [PMID: 37356039 DOI: 10.1007/s10534-023-00518-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
In recent years, it has been identified that excess iron contributes to the development of various pathologies and their complications. Kidney diseases do not escape the toxic effects of iron, and ferroptosis is identified as a pathophysiological mechanism that could be a therapeutic target to avoid damage or progression of kidney disease. Ferroptosis is cell death associated with iron-dependent oxidative stress. To study the effects of iron overload (IOL) in the kidney, numerous animal models have been developed. The methodological differences between these models should reflect the IOL-generating mechanisms associated with human IOL diseases. A careful choice of animal model should be considered for translational purposes.
Collapse
Affiliation(s)
- Mónica Ríos-Silva
- Consejo Nacional de Humanidades, Ciencia y Tecnología, Mexico City, Mexico City, Mexico
| | - Yolitzy Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico
| | | | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico
| | - Efrén Murillo-Zamora
- Unidad de Investigación en Epidemiología Clínica, Instituto Mexicano del Seguro Social, Villa de Álvarez, Colima, Mexico
| | - Oliver Mendoza-Cano
- Facultad de Ingeniería Civil, Universidad de Colima, Coquimatlán, Colima, Mexico
| | | | - Isabel Ibarra
- Facultad de Medicina, Universidad de Colima, Colima, Colima, Mexico
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico.
| |
Collapse
|
33
|
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304294. [PMID: 37897322 PMCID: PMC10754137 DOI: 10.1002/advs.202304294] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 10/30/2023]
Abstract
With the changing disease spectrum, atherosclerosis has become increasingly prevalent worldwide and the associated diseases have emerged as the leading cause of death. Due to their fascinating physical, chemical, and biological characteristics, nanomaterials are regarded as a promising tool to tackle enormous challenges in medicine. The emerging discipline of nanomedicine has filled a huge application gap in the atherosclerotic field, ushering a new generation of diagnosis and treatment strategies. Herein, based on the essential pathogenic contributors of atherogenesis, as well as the distinct composition/structural characteristics, synthesis strategies, and surface design of nanoplatforms, the three major application branches (nanodiagnosis, nanotherapy, and nanotheranostic) of nanomedicine in atherosclerosis are elaborated. Then, state-of-art studies containing a sequence of representative and significant achievements are summarized in detail with an emphasis on the intrinsic interaction/relationship between nanomedicines and atherosclerosis. Particularly, attention is paid to the biosafety of nanomedicines, which aims to pave the way for future clinical translation of this burgeoning field. Finally, this comprehensive review is concluded by proposing unresolved key scientific issues and sharing the vision and expectation for the future, fully elucidating the closed loop from atherogenesis to the application paradigm of nanomedicines for advancing the early achievement of clinical applications.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Rong Wu
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
34
|
Zhang Y, Tian X, Teng A, Li Y, Jiao Y, Zhao K, Wang Y, Li R, Yang N, Wang W. Polyphenols and polyphenols-based biopolymer materials: Regulating iron absorption and availability from spontaneous to controllable. Crit Rev Food Sci Nutr 2023; 63:12341-12359. [PMID: 35852177 DOI: 10.1080/10408398.2022.2101092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron is an important trace element in the body, and it will seriously affect the body's normal operation if it is taken too much or too little. A large number of patients around the world are suffering from iron disorders. However, there are many problems using drugs to treat iron overload and causing prolonged and unbearable suffering for patients. Controlling iron absorption and utilization through diet is becoming the acceptable, safe and healthy method. At present, many literatures have reported that polyphenols can interact with iron ions and can be expected to chelate iron ions, depending on their types and structures. Besides, polyphenols often interact with other macromolecules in the diet, which may complicate this phenols-Fe behavior and give rise to the necessity of building phenolic based biopolymer materials. The biopolymer materials, constructed by self-assembly (non-covalent) or chemical modification (covalent), show excellent properties such as good permeability, targeting, biocompatibility, and high chelation ability. It is believed that this review can greatly facilitate the development of polyphenols-based biopolymer materials construction for regulating iron and improving the well-being of patients.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anguo Teng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
35
|
Liu T, Guo C, Xu S, Hu G, Wang L. A Novel Strategy to Improve Tumor Targeting of Hydrophilic Drugs and Nanoparticles for Imaging Guided Synergetic Therapy. Adv Healthc Mater 2023; 12:e2300883. [PMID: 37437241 DOI: 10.1002/adhm.202300883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The fast renal clearance of hydrophilic small molecular anticancer drugs and ultrasmall nanoparticles (NPs) results in the low utilization rate and certain side effects, thus improving the tumor targeting is highly desired but faces great challenges. A novel and general β-cyclodextrin (CD) aggregation-induced assembly strategy to fabricate doxorubicin (DOX) and CD-coated NPs (such as Au) co-encapsulated pH-responsive nanocomposites (NCs) is proposed. By adding DOX×HCl and reducing pH in a reversed microemulsion system, hydrophilic CD-coated AuNPs rapidly assemble into large NCs. Then in situ polymerization of dopamine and sequentially coordinating with Cu2+ on the surface of NCs provide extra weak acid responsiveness, chemodynamic therapy (CDT), and improved biocompatibility as well as stability. The subsequent tumor microenvironment responsive dissociation notably improves their passive tumor targeting, bioavailability, imaging, and therapeutic capabilities, as well as facilitates their internalization by tumor cells and metabolic clearance, thereby reducing side effects. The combination of polymerized dopamine and assembled AuNPs reinforces photothermal capability, thus further boosting CDT through thermally amplifying Cu-catalyzed Fenton-like reaction. Both in vitro and in vivo studies confirm the desirable outcomes of these NCs as photoacoustic imaging guided trimodal (thermally enhanced CDT, photothermal therapy, and chemotherapy) synergistic tumor treatment agents with minimal systemic toxicity.
Collapse
Affiliation(s)
- Taoxia Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
36
|
Hider RC, Pourzand C, Ma Y, Cilibrizzi A. Optical Imaging Opportunities to Inspect the Nature of Cytosolic Iron Pools. Molecules 2023; 28:6467. [PMID: 37764245 PMCID: PMC10537325 DOI: 10.3390/molecules28186467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The chemical nature of intracellular labile iron pools (LIPs) is described. By virtue of the kinetic lability of these pools, it is suggested that the isolation of such species by chromatography methods will not be possible, but rather mass spectrometric techniques should be adopted. Iron-sensitive fluorescent probes, which have been developed for the detection and quantification of LIP, are described, including those specifically designed to monitor cytosolic, mitochondrial, and lysosomal LIPs. The potential of near-infrared (NIR) probes for in vivo monitoring of LIP is discussed.
Collapse
Affiliation(s)
- Robert Charles Hider
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK;
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK;
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
- Centre for Bioengineering and Biomedical Technologies, University of Bath, Bath BA2 7AY, UK
| | - Yongmin Ma
- Institute of Advanced Studies, School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China;
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
37
|
Kinoshita N, Gessho M, Torii T, Ashida Y, Akamatsu M, Guo AK, Lee S, Katsuno T, Nakajima W, Budirahardja Y, Miyoshi D, Todokoro T, Ishida H, Nishikata T, Kawauchi K. The iron chelator deferriferrichrysin induces paraptosis via extracellular signal-related kinase activation in cancer cells. Genes Cells 2023; 28:653-662. [PMID: 37264202 DOI: 10.1111/gtc.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Cancer cells generally exhibit increased iron uptake, which contributes to their abnormal growth and metastatic ability. Iron chelators have thus recently attracted attention as potential anticancer agents. Here, we show that deferriferrichrysin (Dfcy), a natural product from Aspergillus oryzae acts as an iron chelator to induce paraptosis (a programmed cell death pathway characterized by ER dilation) in MCF-7 human breast cancer cells and H1299 human lung cancer cells. We first examined the anticancer efficacy of Dfcy in cancer cells and found that Dfcy induced ER dilation and reduced the number of viable cells. Extracellular signal-related kinase (ERK) was activated by Dfcy treatment, and the MEK inhibitor U0126, a small molecule commonly used to inhibit ERK activity, prevented the increase in ER dilation in Dfcy-treated cells. Concomitantly, the decrease in the number of viable cells upon treatment with Dfcy was attenuated by U0126. Taken together, these results demonstrate that the iron chelator Dfcy exhibits anticancer effects via induction of ERK-dependent paraptosis.
Collapse
Affiliation(s)
- Natsuki Kinoshita
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Masaya Gessho
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Takeru Torii
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Yukako Ashida
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Minori Akamatsu
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Alvin Kunyao Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Sunmin Lee
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Tatsuya Katsuno
- Center of Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yemima Budirahardja
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | | | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co., Ltd, Kyoto, Japan
| | - Takahito Nishikata
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| |
Collapse
|
38
|
Jones G, Zeng L, Kim J. Application of Allometric Scaling to Nanochelator Pharmacokinetics. ACS OMEGA 2023; 8:27256-27263. [PMID: 37546686 PMCID: PMC10399172 DOI: 10.1021/acsomega.3c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023]
Abstract
Deferoxamine (DFO) is an effective FDA-approved iron chelator; however, its use is considerably limited by off-target toxicities and an extremely cumbersome dose regimen involving daily infusions. The recent development of a deferoxamine-based nanochelator (DFO-NP) with selective renal excretion has shown promise in ameliorating iron overload and associated physiological complications in rodent models with a substantially improved safety profile. While the dose- and administration route-dependent pharmacokinetics (PK) of DFO-NPs have been recently characterized, the optimized PK model was not validated, and the prior studies did not directly address the clinical translatability of DFO-NPs into humans. In the present work, these gaps were addressed by applying allometric scaling of DFO-NP PK in rats to predict those in mice and humans. First, this approach predicted serum concentration-time profiles of DFO-NPs, which were similar to those experimentally measured in mice, validating the nonlinear disposition and absorption models for DFO-NPs across the species. Subsequently, we explored the utility of allometric scaling by predicting the PK profile of DFO-NPs in humans under clinically relevant dosing schemes. These in silico efforts demonstrated that the novel nanochelator is expected to improve the PK of DFO when compared to standard infusion regimens of native DFO. Moreover, reasonable formulation strategies were identified and discussed for both early clinical development and more sophisticated formulation development.
Collapse
Affiliation(s)
- Gregory Jones
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Lingxue Zeng
- Department
of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jonghan Kim
- Department
of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
39
|
Zhu H, Cen J, Hong C, Wang H, Wen Y, He Q, Yu Y, Cao J, Chen W. Targeting Labile Iron-Mediated Ferroptosis Provides a Potential Therapeutic Strategy for Rhabdomyolysis-Induced Acute Kidney Injury. ACS Chem Biol 2023; 18:1294-1304. [PMID: 37172039 DOI: 10.1021/acschembio.2c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Acute kidney injury (AKI) is a global health problem that occurs in a variety of clinical settings. Despite some advances in supportive clinical care, no medicinal intervention has been demonstrated to reliably prevent AKI thus far. Therefore, it is highly necessary to investigate the pathophysiology and mechanisms involved in AKI for the discovery of therapeutics. In the current study, a robust change in the level of renal malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) and elevated renal iron levels were observed in murine rhabdomyolysis-induced AKI (RM-AKI), which supports a pathogenic role of labile iron-mediated ferroptosis and provides a chance to utilize iron chelation for RM-AKI prevention. Given that the existing small molecule-based iron chelators did not show promising preventative effects against RM-AKI, we further designed and synthesized a new hydroxypyridinone-based iron chelator to potently inhibit labile iron-mediated ferroptosis. Lead compound AKI-02 was identified, which remarkably protected renal proximal tubular epithelial cells from ferroptosis as well as showed excellent iron chelation ability. Moreover, administration of AKI-02 led to renal function recovery, a result that was substantiated by the decreased contents of BUN and creatinine, as well as the reduced labile iron level and improved histopathology. Thus, our studies highlighted that targeting labile iron-mediated ferroptosis could provide therapeutic benefits against RM-AKI.
Collapse
Affiliation(s)
- Haiying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Cen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenggang Hong
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanmei Wen
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310058, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310058, China
| |
Collapse
|
40
|
Zeinivand M, Sharifi M, Hassanshahi G, Nedaei SE. Deferoxamine has the Potential to Improve the COVID-19-Related Inflammatory Response in Diabetic Patients. Int J Pept Res Ther 2023; 29:63. [PMID: 37273802 PMCID: PMC10227407 DOI: 10.1007/s10989-023-10516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 06/06/2023]
Abstract
The clinical state of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been considered a pandemic disease (COVID-19) that is rapidly spreading worldwide. Despite all global efforts, the only treatment for COVID-19 is supportive care and there has been no efficient treatment to fight this plague. It is confirmed that patients with chronic diseases such as cardiovascular disorder and diabetes; are more vulnerable to COVID-19. In the severe type of COVID-19, laboratory findings showed a remarkably enhanced C-reactive protein, IL-6 serum, Iron, and ferritin, which suggest an inflammatory response. Inflammation results in iron homeostasis imbalance and causes iron overload, exacerbating the SARSCOV2 infection. More importantly, recent studies have established that SARS-CoV-2 needs iron for viral replication and also activation. As a result, managing iron overload in diabetic patients with COVID-19 could be an early therapeutic approach to limit the lethal inflammatory response of COVID-19. In this review, Deferoxamine (DFO) has been proposed as an effective iron chelator agent. Graphical Abstract
Collapse
Affiliation(s)
- Motahareh Zeinivand
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoomeh Sharifi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences Tehran, Tehran, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
41
|
Zhu Z, Liu X, Li P, Wang H, Zhang Y, Liu M, Ren J. Renal Clearable Quantum Dot-Drug Conjugates Modulate Labile Iron Species and Scavenge Free Radicals for Attenuating Chemotherapeutic Drug-Induced Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21854-21865. [PMID: 37115671 DOI: 10.1021/acsami.3c00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemotherapeutic drug-induced acute kidney injury (AKI) involves pathologically increased labile iron species in the kidneys that mediate the excessive generation of reactive oxygen species (ROS) to induce ferroptosis and apoptosis, subsequently driving renal dysfunction. Herein, we report renal clearable quantum dot-drug conjugates (QDCs) composed of carbon quantum dot (CDs), deferoxamine (DFO), and poly(ethylene glycol) (PEG) for attenuating chemotherapeutic drug-induced AKI. The CDs component in QDCs can not only provide DFO with high renal specificity to effectively remove the pathological labile iron species in the kidneys to block the source of ROS generation but also exert high antioxidative effects to avoid renal oxidative damage caused by the ROS that have been overproduced. In cisplatin-induced AKI mice, QDCs can inhibit ferroptosis and apoptosis with high efficacy for AKI treatment. This study will provide a new paradigm to realize enhanced therapeutic efficacy for AKI by simultaneously removing the pathological labile iron species and eliminating overproduced ROS in the kidneys to achieve the goal of addressing both symptoms and root causes.
Collapse
Affiliation(s)
- Zitong Zhu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, P. R. China
| | - Penghui Li
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanjie Zhang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Mengmeng Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
42
|
Ji C, Huang Y, Sun L, Geng H, Liu W, Grimes CA, Luo M, Feng X, Cai Q. Tracking of Intestinal Probiotics In Vivo by NIR-IIb Fluorescence Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20603-20612. [PMID: 37078734 DOI: 10.1021/acsami.2c20610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to accurately characterize microorganism distribution in the intestinal tract is helpful for understanding intrinsic mechanisms. Within the intestine, traditional optical probes used for microorganism labeling commonly suffer from a low imaging penetration depth and poor resolution. We report a novel observation tool useful for microbial research by labeling near-infrared-IIb (NIR-IIb, 1500-1700 nm) lanthanide nanomaterials NaGdF4:Yb3+,Er3+@NaGdF4,Nd3+ (Er@Nd NPs) onto the surface of Lactobacillus bulgaricus (L. bulgaricus) via EDC-NHS chemistry. We monitor microorganisms in tissue by two-photon excitation (TPE) microscopy and in vivo with NIR-IIb imaging. This dual-technique approach offers great potential for determining the distribution of transplanted bacteria in the intestinal tract with a higher spatiotemporal resolution.
Collapse
Affiliation(s)
- Chenhui Ji
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Yao Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Leilei Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Hongchao Geng
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467000, Henan, China
| | - Wensheng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Craig A Grimes
- Flux Photon Corporation, Alpharetta, Georgia 30005, United States
| | - Miaomiao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| |
Collapse
|
43
|
Shao M, Wang Y, Dong H, Wang L, Zhang X, Han X, Sang X, Bao Y, Peng M, Cao G. From liver fibrosis to hepatocarcinogenesis: Role of excessive liver H2O2 and targeting nanotherapeutics. Bioact Mater 2023; 23:187-205. [PMID: 36406254 PMCID: PMC9663332 DOI: 10.1016/j.bioactmat.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis and hepatocellular carcinoma (HCC) have been worldwide threats nowadays. Liver fibrosis is reversible in early stages but will develop precancerosis of HCC in cirrhotic stage. In pathological liver, excessive H2O2 is generated and accumulated, which impacts the functionality of hepatocytes, Kupffer cells (KCs) and hepatic stellate cells (HSCs), leading to genesis of fibrosis and HCC. H2O2 accumulation is associated with overproduction of superoxide anion (O2•−) and abolished antioxidant enzyme systems. Plenty of therapeutics focused on H2O2 have shown satisfactory effects against liver fibrosis or HCC in different ways. This review summarized the reasons of liver H2O2 accumulation, and the role of H2O2 in genesis of liver fibrosis and HCC. Additionally, nanotherapeutics targeting H2O2 were summarized for further consideration of antifibrotic or antitumor therapy. Liver fibrosis and HCC are closely related because ROS induced liver damage and inflammation, especially over-cumulated H2O2. Excess H2O2 diffusion in pathological liver was due to increased metabolic rate and diminished cellular antioxidant systems. Freely diffused H2O2 damaged liver-specific cells, thereby leading to fibrogenesis and hepatocarcinogenesis. Nanotherapeutics targeting H2O2 are summarized for treatment of liver fibrosis and HCC, and also challenges are proposed.
Collapse
|
44
|
Natural polyphenol-based nanoparticles for the treatment of iron-overload disease. J Control Release 2023; 356:84-92. [PMID: 36813037 DOI: 10.1016/j.jconrel.2023.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Iron-overload diseases are characterized by a variety of symptoms resulting from excessive iron stores, oxidative stress and consequent end-organ damage. Deferoxamine (DFO) is an iron-chelator that can protect tissues from iron-induced damage. However, its application is limited due to its low stability and weak free radical scavenging ability. Herein, natural polyphenols have been employed to enhance the protective efficacy of DFO through the construction of supramolecular dynamic amphiphiles, which self-assemble into spherical nanoparticles with excellent scavenging capacity against both iron (III) and reactive oxygen species (ROS). This class of natural polyphenols-assisted nanoparticles was found to exhibit enhanced protective efficacy both in vitro in an iron-overload cell model and in vivo in an intracerebral hemorrhage model. This strategy of constructing natural polyphenols- assisted nanoparticles could benefit the treatment of iron-overload related diseases with excessive accumulation of toxic or harmful substances.
Collapse
|
45
|
Feng J, Li Y, He F, Zhang F. RBM15 silencing promotes ferroptosis by regulating the TGF-β/Smad2 pathway in lung cancer. ENVIRONMENTAL TOXICOLOGY 2023; 38:950-961. [PMID: 36715115 DOI: 10.1002/tox.23741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE We assessed the function and mechanism of RNA binding motif protein 15 (RBM15) silencing in lung cancer development. METHODS The effects of RBM15 knockdown on A549 and H1299 cells were evaluated by MTT, EdU, wound healing, and transwell assay. We then detected the functions of RBM15 silencing on lipid peroxidation, labile iron pool (LIP), ferrous iron (Fe2+ ), and ferroptosis-related genes. RNA sequencing was performed after RBM15 knockout in lung cancer cells, followed by differentially expressed genes (DEGs), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. Finally, the expression of RBM15 and pathway-related genes was determined by western blot. RESULTS RBM15 was highly expressed in lung cancer cells. RBM15 silencing reduced the viability, inhibited cell proliferation, invasion, and migration, and suppressed tumor growth in the xenograft mouse model. Knockout of RBM15 regulated ferroptosis-related gene expression. LIP, Fe2+ , and lipid peroxidation were distinctly increased by the knockout of RBM15. RNA-seq sequencing revealed that there are 367 up-regulated and 368 down-regulated DEGs, which were enriched in molecular functions, biological processes, and cellular components. RBM15 silencing reduced the expression of TGF-β/Smad2, and TGF-β activator (SRI-011381) reversed the inhibitory effect of RBM15 silencing on tumor cell growth. CONCLUSION We demonstrated that RBM15 silencing promoted ferroptosis in lung cancer cells by TGF-β/Smad2 pathway, thereby inhibiting lung cancer cell growth, which may provide new light for lung cancer treatment.
Collapse
Affiliation(s)
- Jing Feng
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Yaling Li
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fen He
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fuwei Zhang
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
46
|
Siahcheshm P, Heiden P. High quantum yield carbon quantum dots as selective fluorescent turn-off probes for dual detection of Fe2+/Fe3+ ions. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Huang L, Nie T, Jiang L, Chen Y, Zhou Y, Cai X, Zheng Y, Wang L, Wu J, Ying T. Acidity-Biodegradable Iridium-Coordinated Nanosheets for Amplified Ferroptotic Cell Death Through Multiple Regulatory Pathways. Adv Healthc Mater 2023; 12:e2202562. [PMID: 36610060 DOI: 10.1002/adhm.202202562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Indexed: 01/09/2023]
Abstract
Ferroptosis-based treatment strategies display the potential to suppress some malignant tumors with intrinsic apoptosis resistance. However, current related cancer treatments are still hampered by insufficient intracellular reactive oxygen species (ROS) levels and Fe2+ contents, posing considerable challenges for their clinical translation. Herein, an intracellular acid-biodegradable iridium-coordinated nanosheets (Ir-Hemin) with sonodynamic therapy (SDT) properties to effectively induce ferroptosis in tumor cells through multiple regulatory pathways are proposed. Under ultrasound (US) irradiation, Ir-Hemin nanosheets act as nanosonosensitizers to effectively generate ROS, subsequently causing the accumulation of lipid peroxides (LPO) and inducing ferroptotic cell death. Furthermore, these Ir-Hemin nanosheets decompose quickly to release hemin and Ir(IV), which deplete intracellular glutathione (GSH) to deactivate the enzyme glutathione peroxidase 4 (GPX4) and initiate the ferroptosis pathway. Specifically, the released hemin enables heme oxygenase 1 (HO-1) upregulation for endogenous ferrous ion supplementation, which compensates for the toxicity concerns brought about by the large uptake of exogenous iron. Surprisingly, Ir-Hemin nanosheets exhibit high tumor accumulation and trigger effective ferroptosis for tumor therapy. These Ir-Hemin nanosheets display pronounced synergistic anticancer efficacy under US stimulation both in vitro and in vivo, providing a strong rationale for the application of ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Lili Huang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tongtong Nie
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Ying Chen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yixuan Zhou
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Longchen Wang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.,Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
48
|
Gong Y, Liu H, Ke S, Zhuo L, Wang H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front Cardiovasc Med 2023; 9:1037741. [PMID: 36684578 PMCID: PMC9846151 DOI: 10.3389/fcvm.2022.1037741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular disease remains one of the leading causes of death in China, with increasingly serious negative effects on people and society. Despite significant advances in preventing and treating cardiovascular diseases, such as atrial fibrillation/flutter and heart failure over the last few years, much more remains to be done. Therefore, developing innovative methods for identifying and managing cardiovascular disorders is critical. Nanomaterials provide multiple benefits in biomedicine, primarily better catalytic activity, drug loading, targeting, and imaging. Biomimetic materials and nanoparticles are specially combined to synthesize biomimetic nanoparticles that successfully reduce the nanoparticles' toxicity and immunogenicity while enhancing histocompatibility. Additionally, the biological targeting capability of nanoparticles facilitates the diagnosis and therapy of cardiovascular disease. Nowadays, nanomedicine still faces numerous challenges, which necessitates creating nanoparticles that are highly selective, toxic-free, and better clinically applicable. This study reviews the scientific accomplishments in this field over the past few years covering the classification, applications, and prospects of noble metal biomimetic nanozymes and biomimetic nanocarriers.
Collapse
Affiliation(s)
- Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,Li Zhuo,
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China,*Correspondence: Haibin Wang,
| |
Collapse
|
49
|
Jones G, Zeng L, Kim J. Mechanism-Based Pharmacokinetic Modeling of Absorption and Disposition of a Deferoxamine-Based Nanochelator in Rats. Mol Pharm 2023; 20:481-490. [PMID: 36378830 DOI: 10.1021/acs.molpharmaceut.2c00737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deferoxamine (DFO) is an effective FDA-approved iron chelator. However, its use is considerably limited by off-target toxicities and an extremely cumbersome dose regimen with daily infusions. The recent development of a deferoxamine-based nanochelator (DFO-NP) with selective renal excretion has shown promise in ameliorating animal models of iron overload with a substantially improved safety profile. To further the preclinical development of this promising nanochelator and to inform on the feasibility of clinical development, it is necessary to fully characterize the dose and administration-route-dependent pharmacokinetics and to develop predictive pharmacokinetic (PK) models describing absorption and disposition. Herein, we have evaluated the absorption, distribution, and elimination of DFO-NPs after intravenous and subcutaneous (SC) injection at therapeutically relevant doses in Sprague Dawley rats. We also characterized compartment-based model structures and identified model-based parameters to quantitatively describe the PK of DFO-NPs. Our modeling efforts confirmed that disposition could be described using a three-compartment mamillary model with elimination and saturable reabsorption both occurring from the third compartment. We also determined that absorption was nonlinear and best described by parallel saturable and first-order processes. Finally, we characterized a novel pathway for saturable SC absorption of an ultrasmall organic nanoparticle directly into the systemic circulation, which offers a novel strategy for improving drug exposure for nanotherapeutics.
Collapse
Affiliation(s)
- Gregory Jones
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Lingxue Zeng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
50
|
Huo M, Tang Z, Wang L, Zhang L, Guo H, Chen Y, Gu P, Shi J. Magnesium hexacyanoferrate nanocatalysts attenuate chemodrug-induced cardiotoxicity through an anti-apoptosis mechanism driven by modulation of ferrous iron. Nat Commun 2022; 13:7778. [PMID: 36522337 PMCID: PMC9755285 DOI: 10.1038/s41467-022-35503-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Distressing and lethal cardiotoxicity is one of the major severe side effects of using anthracycline drugs such as doxorubicin for cancer chemotherapy. The currently available strategy to counteract these side effects relies on the administration of cardioprotective agents such as Dexrazoxane, which unfortunately has unsatisfactory efficacy and produces secondary myelosuppression. In the present work, aiming to target the characteristic ferrous iron overload in the doxorubicin-contaminated cardiac microenvironment, a biocompatible nanomedicine prepared by the polyvinylpyrrolidone-directed assembly of magnesium hexacyanoferrate nanocatalysts is designed and constructed for highly efficient intracellular ferrous ion capture and antioxidation. The synthesized magnesium hexacyanoferrate nanocatalysts display prominent superoxide radical dismutation and catalytic H2O2 decomposition activities to eliminate cytotoxic radical species. Excellent in vitro and in vivo cardioprotection from these magnesium hexacyanoferrate nanocatalysts are demonstrated, and the underlying intracellular ferrous ion traffic regulation mechanism has been explored in detail. The marked cardioprotective effect and biocompatibility render these magnesium hexacyanoferrate nanocatalysts to be highly promising and clinically transformable cardioprotective agents that can be employed during cancer treatment.
Collapse
Affiliation(s)
- Minfeng Huo
- grid.24516.340000000123704535Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200072 Shanghai, P. R. China ,grid.454856.e0000 0001 1957 6294State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050 Shanghai, P. R. China ,grid.410726.60000 0004 1797 8419Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Zhimin Tang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 200011 Shanghai, P.R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011 Shanghai, P.R. China
| | - Liying Wang
- grid.24516.340000000123704535Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200072 Shanghai, P. R. China
| | - Linlin Zhang
- grid.454856.e0000 0001 1957 6294State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050 Shanghai, P. R. China
| | - Haiyan Guo
- grid.412633.10000 0004 1799 0733Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, P. R. China
| | - Yu Chen
- grid.39436.3b0000 0001 2323 5732Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P.R. China
| | - Ping Gu
- grid.410726.60000 0004 1797 8419Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China ,grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 200011 Shanghai, P.R. China
| | - Jianlin Shi
- grid.24516.340000000123704535Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200072 Shanghai, P. R. China ,grid.454856.e0000 0001 1957 6294State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050 Shanghai, P. R. China ,grid.410726.60000 0004 1797 8419Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| |
Collapse
|