1
|
Wen J, Campbell S, Moore J, Lehman W, Rynkiewicz M. Screening single nucleotide changes to tropomyosin to identify novel cardiomyopathy mutants. J Mol Cell Cardiol 2025; 203:82-90. [PMID: 40268117 DOI: 10.1016/j.yjmcc.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Inherited cardiomyopathy is a broad class of heart disease that includes pathological cardiac remodeling such as hypertrophic and dilated cardiomyopathy, affecting 1/250-1/500 people worldwide. In many cases, mutations in proteins that make up the sarcomere, the basic subcellular unit of contraction, alter thin filament regulation and are the root cause of hypertrophic and dilated cardiomyopathy. Initially, compensations can maintain cardiac function, so patients may remain asymptomatic for years before a major cardiac episode. Early therapeutic intervention could rescue the deleterious effects of mutations thereby avoiding pathological remodeling, so prediction of potential outcomes and severity of as yet uncharacterized and known mutants of uncertain significance is critical. To accomplish this goal, we begin with the structure of the thin filament containing actin, tropomyosin, and troponin in its regulatory B- and C-states, incorporate all potential single nucleotide mutations to the tropomyosin sequence (over 1700 unique mutations), and then measure the interaction energy between tropomyosin and actin after energy minimization. Analysis of the database thus generated shows the tropomyosin residues resulting in large changes in tropomyosin-actin interaction, and therefore most likely to be deleterious to function. Some of these mutants have been observed in human patients, whereas others are novel. Global analysis further refines hotspots of mutation-sensitive, coiled-coil tropomyosin residues affecting actin interactions. Altogether, the database will allow research to focus in great depth on key candidates for functional analysis, for instance, by assaying in vitro motility and engineered heart tissue mechanics and assessing outcomes in animal models.
Collapse
Affiliation(s)
- Jian Wen
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jeffrey Moore
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Barry ME, Rynkiewicz MJ, Wen J, Tu AY, Regnier M, Lehman W, Moore JR. Dual role of Tropomyosin-R160 in thin filament regulation: Insights into phosphorylation-dependent cardiac relaxation and cardiomyopathy mechanisms. Arch Biochem Biophys 2025; 768:110380. [PMID: 40057222 DOI: 10.1016/j.abb.2025.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
β-adrenergic stimulation causes cell signaling that targets modulation of calcium levels as well as sarcomeric proteins to increases contractility. PKA phosphorylation of serine residues 23 and 24 of troponin I reduces calcium sensitivity and promotes cardiac relaxation. Our protein-protein docking and molecular dynamics studies revealed that Tpm-R160 is adjacent to these phosphorylation sites. In addition, Tpm-R160 has been identified as a disease-causing mutation site. Here, we investigated Tpm-R160's role in thin filament regulation and its interaction with phosphorylated TnI. Using invitro motility assays, calcium sensitivity was quantified in reconstituted thin filaments containing various combinations of a phosphomimetic version of troponin I (TnI-S23/24D) and tropomyosin where the charge and potential for electrostatic interaction was removed by mutation of Tpm-R160 to a neutral alanine (Tpm-R160A). As expected, the phosphomimetic TnI (TnI-S23/24D) reduced calcium sensitivity in thin filaments with wild-type tropomyosin. However, the phosphorylation-like effect was diminished in the presence of the Tpm-R160A mutation. Notably, Tpm-R160A alone, when paired with wild-type TnI, also showed reduced calcium sensitivity, indicating that mutation of Tpm-R160 affects thin filament regulation in the absence of phosphorylation. Our findings indicate that Tpm-R160 has a dual role in thin filament regulation: (1)it is crucial for proper interaction between phosphorylated TnI and Tpm-R160 during adrenergic-induced cardiac relaxation, and (2) at the same time, the arginine residue itself is additionally required for maintenance of overall calcium sensitivity. These results provide key insight into the molecular defects underlying cardiomyopathy and a framework for development of therapeutic strategies targeting Tpm-R160 interactions. (249 words).
Collapse
Affiliation(s)
- Meaghan E Barry
- University of Massachusetts Lowell, Department of Biological Sciences, One University Ave, Lowell, MA 01854, USA
| | - Michael J Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Jian Wen
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA, 98195-506, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA, 98195-506, USA
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Jeffrey R Moore
- University of Massachusetts Lowell, Department of Biological Sciences, One University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
3
|
Risi CM, Landim-Vieira M, Belknap B, Chase PB, Pinto JR, Galkin VE. The role of the troponin T interactions with actin in regulation of cardiac thin filament revealed by the troponin T pathogenic variant Ile79Asn. J Mol Cell Cardiol 2025; 204:55-67. [PMID: 40412797 DOI: 10.1016/j.yjmcc.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/28/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Cardiac muscle contraction/relaxation cycle depends on the rising and falling Ca2+ levels in sarcomeres that control the extent of interactions between myosin-based thick and actin-based thin filaments. Cardiac thin filament (cTF) consists of actin, tropomyosin (Tm) that regulates myosin binding to actin, and troponin complex that governs Tm position upon Ca2+-binding. Troponin has three subunits - Ca2+-binding troponin C (TnC), Tm stabilizing troponin T (TnT), and inhibitory troponin I (TnI). TnT N-terminus (TnT1) interactions with actin stabilize the inhibited state of cTF. TnC, TnI, and Tm work in concert to control actomyosin interactions. Cryo-electron microscopy (cryo-EM) provided factual structures of healthy cTF, but structures of cTF carrying missense mutations linked to human cardiomyopathy are unknown. Variant Ile79Asn in human cardiac TnT (TnT-I79N) increases myofilament Ca2+ sensitivity and slows cross-bridge kinetics, leading to severe hypertrophic/restrictive cardiomyopathy. Here, we used TnT-I79N mutation as a tool to examine the role of TnT1 in the complex mechanism of cTF regulation. Comparison of the cryo-EM structures of murine wild type and TnT-I79N native cTFs at systolic Ca2+ levels (pCa = 5.8) demonstrates that TnT-I79N causes 1) dissociation of the TnT1 loop from its actin interface that results in Tm release to a more activated position, 2) reduced interaction of TnI C-terminus with actin-Tm, and 3) increased frequency of Ca2+-bound regulatory units. Our data indicate that the TnT1 loop is a crucial element of the allosteric regulatory network that couples Tn subunits and Tm to maintain adequate cTF response to physiological Ca2+ levels during a heartbeat.
Collapse
Affiliation(s)
- Cristina M Risi
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Betty Belknap
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Vitold E Galkin
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA.
| |
Collapse
|
4
|
Ochala J, Feng M, Wang Q, Chaami C, Nollet E, Lewis CTA, Hessel AL, Michels M, Bedi KC, Margulies KB, Pinto JR, Campbell KS, Kuster DWD, van der Velden J. Heterogeneous Dysregulation of Myosin Super-Relaxation and Energetics in Hypertrophic Cardiomyopathy. Circ Heart Fail 2025:e012614. [PMID: 40391807 DOI: 10.1161/circheartfailure.124.012614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Hypertrophic cardiomyopathy is often linked to likely pathogenic and pathogenic variants in genes encoding myofilament proteins. The exact molecular mechanisms by which these lead to cardiac dysfunction and metabolic remodeling remain incompletely understood. Hence, here, we sought to determine whether likely pathogenic and pathogenic variants in thick (MYL2) and thin (TNNI3 or TNNT2) filament genes modulate the myosin super-relaxed state, a critical molecular regulator of heart energetics. METHODS We isolated cardiac strips from the septum of 13 patients with hypertrophic cardiomyopathy with MYL2, TNNI3, or TNNT2 gene variants and 10 nonfailing donors. We performed 2'-(or-3')-O-(N-methylanthraniloyl) ATP chase experiments and X-ray diffraction as well as all-atomistic molecular dynamics simulations. RESULTS We observed that, despite preserved myofilament lattice, likely pathogenic and pathogenic variants in thick and thin filament proteins have opposite effects on cardiac myosin autoinhibition and the subsequent proportion of myosin molecules in the ATP-preserving super-relaxed state. As expected, MYL2-associated thick filament variants depressed myosin super-relaxation. However, with TNNI3- or TNNT2-related thin filament variants, myosin heads adopt an energy-saving biochemical hibernating state. Ultimately, these thin filament defects blunted the in vitro response to the hypertrophic cardiomyopathy-targeted inhibitor, mavacamten. CONCLUSIONS Our findings indicate that, in hypertrophic cardiomyopathy, cardiac myosin super-relaxed state, associated ATP consumption, and in vitro mavacamten responsiveness depend on the type of myofilament variants. Our data warrant careful analyses of variant-specific responses to myosin inhibitors in the clinic.
Collapse
Affiliation(s)
- Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Denmark (J.O., C.C., E.N., C.T.A.L.)
- Myocardial Homeostasis and Cardiac Injury Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.O.)
| | - Miao Feng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui (M.F., Q.W.)
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui (M.F., Q.W.)
| | - Chahida Chaami
- Department of Biomedical Sciences, University of Copenhagen, Denmark (J.O., C.C., E.N., C.T.A.L.)
| | - Edgar Nollet
- Department of Biomedical Sciences, University of Copenhagen, Denmark (J.O., C.C., E.N., C.T.A.L.)
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Department of Experimental Cardiology, Amsterdam UMC, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
| | - Christopher T A Lewis
- Department of Biomedical Sciences, University of Copenhagen, Denmark (J.O., C.C., E.N., C.T.A.L.)
| | - Anthony L Hessel
- Institute of Physiology II, University of Muenster, Germany (A.L.H.)
- Accelerated Muscle Biotechnologies Consultants, Boston, MA (A.L.H.)
| | - Michelle Michels
- Erasmus Medical Center, Cardiovascular Institute, Thoraxcenter, Rotterdam, the Netherlands (M.M.)
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.C.B., K.B.M.)
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.C.B., K.B.M.)
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, The Florida State University, Tallahassee (J.R.P.)
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky College of Medicine, Lexington (K.S.C.)
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Department of Experimental Cardiology, Amsterdam UMC, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Department of Experimental Cardiology, Amsterdam UMC, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (E.N., D.W.D.K., J.v.d.V.)
| |
Collapse
|
5
|
Singh AK, Sudhan YG, Ramakrishna R, Durairajan SSK. Viral agents in neuromuscular pathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2025; 180:397-434. [PMID: 40414639 DOI: 10.1016/bs.irn.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
In recent years, viral infections have been increasingly identified as major players in neuromuscular pathologies. This chapter presents an overview of the evidence and future directions for virus-induced neuromuscular disorders. Information is integrated on the global burden of these diseases related to epidemiology, clinical features, diagnosis, treatment, and preventive strategies was integrated. Responsible viruses include enteroviruses, flaviviruses, herpesviruses, and emerging pathogens such as SARS-CoV-2. It represents a broad spectrum of neuromuscular disorders, including Guillain-Barré syndrome, viral myositis, and critical illness neuropathy/myopathy. The book chapter discusses different diagnostic approaches, therapy strategies, and rehabilitation methods, in addition to early intervention and preventive measures. This has led to new insights into novel therapies, unmet research needs, and future perspectives on viral neuromuscular disorders. This chapter demonstrates that supporting both clinical care and patient management with clinical research entails a profound understanding of the difficult interactions between the viruses concerned and the neuromuscular system.
Collapse
Affiliation(s)
- Abhay Kumar Singh
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Yemgadda Goutham Sudhan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Ramakrisha Ramakrishna
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | | |
Collapse
|
6
|
Wang X, Solaro RJ, Dong WJ. Myosin-actin crossbridge independent sarcomere length induced Ca 2+ sensitivity changes in skinned myocardial fibers: Role of myosin heads. J Mol Cell Cardiol 2025; 202:90-101. [PMID: 40073932 DOI: 10.1016/j.yjmcc.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Sarcomere length-dependent activation (LDA) is essential to engaging the Frank-Starling mechanism in the beat-to-beat regulation of cardiac output. Through LDA, the heart increases the Ca2+ sensitivity of myocardial contraction at a longer sarcomere length, leading to an enhanced maximal force at the same level of Ca2+. Despite its importance in both normal and pathological states, the molecular mechanism underlying LDA, especially the origin of the sarcomere length (SL) induced increase in myofilament Ca2+sensitivity, remains elusive. The aim of this study is to interrogate the role of changes in the state of myosin heads during diastole as well as effects of strong force-generating cross-bridges (XB) as determinants of SL-induced Ca2+ sensitivity of troponin in membrane-free (skinned) rat myocardial fibers. Skinned myocardial fibers were reconstituted with troponin complex containing a fluorophore-modified cardiac troponin C, cTnC(13C/51C)AEDANS-DDPM, and recombinant cardiac troponin I (cTnI) mutant, ΔSP-cTnI, in which the switch peptide (Sp) of cTnI was replaced by a non-functional peptide link to partially block the force-generating reaction of myosin with actin. We used the reconstituted myocardial fibers as a platform to investigate how Ca2+ sensitivity of troponin within skinned myocardial fibers responds to sarcomere stretch with variations in the status of myosin-actin XBs. Muscle mechanics and fluorescence measurements clearly showed similar SL-induced increases in troponin Ca2+ sensitivity in either the presence or the absence of strong XBs, suggesting that the SL-induced Ca2+ sensitivity change is independent of reactions of force generating XB with the thin filament. The presence of mavacamten, a selective myosin-motor inhibitor known to promote transition of myosin heads from the weakly actin-bound state (ON or disordered relaxed (DRX) state) to the ordered off state (OFF or super-relaxed (SRX) state), blunted the observed SL-induced increases in Ca2+ sensitivity of troponin regardless of the presence of XBs, suggesting that the presence of the myosin heads in the weakly actin bound state, is essential for Ca2+-troponin to sense the sarcomere stretch. Results from skinned myocardial fibers reconstituted with troponin containing engineered TEV digestible mutant cTnI and cTnT suggest that the observed SL effect on Ca2+ sensitivity may involve potential interactions of weakly bound myosin heads with troponin in the actin/Tm cluster region interacting with cTnT-T1 and residues 182-229 of cTnT-T2. The mechanical stretch effects may then be subsequently transmitted to the N-cTnC via the IT arm of troponin and the N-terminus of cTnI. Our findings strongly indicate that SL-induced potential myosin-troponin interaction in diastole, rather than strong myosin-actin XBs, may be an essential molecular mechanism underlying LDA of myofilament.
Collapse
Affiliation(s)
- Xutu Wang
- Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99163-1062, USA
| | - R John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612-7342, USA
| | - Wen-Ji Dong
- Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99163-1062, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163-1062, USA.
| |
Collapse
|
7
|
Ramachandran B, Rynkiewicz M, Lehman W. Velcro-binding by cardiac troponin-I traps tropomyosin on actin in a low-energy relaxed state. Biochem Biophys Res Commun 2025; 757:151595. [PMID: 40088678 PMCID: PMC11938286 DOI: 10.1016/j.bbrc.2025.151595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
During muscle relaxation at low sarcoplasmic Ca2+-concentration, the 40-nm long tropomyosin coiled coil is attracted by the C-terminal regulatory domain of troponin subunit-I to a "steric-blocking" B-state position on actin subunits of cardiac and skeletal muscle thin filaments. Tropomyosin located in this B-state position obstructs myosin-binding sites on actin, limiting access of myosin-crossbridge heads on actin. In turn, the steric-hindrance imposed on myosin-binding diminishes actomyosin ATPase, crossbridge movement along actin, and contractility, thus causing relaxation. In contrast, during muscle activation, at high sarcoplasmic Ca2+ levels, the troponin-induced tropomyosin interference is relieved, the tropomyosin coiled coil returns to its default C-state position on actin, and contractility proceeds. In the current study, we examined the energetics associated with tropomyosin's shift in position from its C-state to its B-state on actin and the influence of troponin-I on this relaxed state transition. Control studies showed that in the absence of troponin, the free energy difference between B- and C-state positions of tropomyosin on actin is negligible, i.e. neither B- nor C-state is obviously preferred on troponin-free actin. In contrast, widely separated sites along the C-terminal regulatory domain of troponin-I are responsible for a favorable free energy change of about -0.75 kcal/mol, driving the tropomyosin C-state to B-state shift. Corresponding truncation and point mutations along C-terminal region of TnI lead to a less favorable regulatory transition and are linked to cardiac muscle dysfunction.
Collapse
Affiliation(s)
- Balajee Ramachandran
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, United States
| | - Michael Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, United States
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, United States.
| |
Collapse
|
8
|
Hill C, Kalakoutis M, Arcidiacono A, Paradine Cullup F, Wang Y, Fukutani A, Narayanan T, Brunello E, Fusi L, Irving M. Dual-filament regulation of relaxation in mammalian fast skeletal muscle. Proc Natl Acad Sci U S A 2025; 122:e2416324122. [PMID: 40073060 PMCID: PMC11929500 DOI: 10.1073/pnas.2416324122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
Muscle contraction is driven by myosin motors from the thick filaments pulling on the actin-containing thin filaments of the sarcomere, and it is regulated by structural changes in both filaments. Thin filaments are activated by an increase in intracellular calcium concentration [Ca2+]i and by myosin binding to actin. Thick filaments are activated by direct sensing of the filament load. However, these mechanisms cannot explain muscle relaxation when [Ca2+]i decreases at high load and myosin motors are attached to actin. There is, therefore, a fundamental gap in our understanding of muscle relaxation, despite its importance for muscle function in vivo, for example, for rapid eye movements or, on slower timescales, for the efficient control of posture. Here, we used time-resolved small-angle X-ray diffraction (SAXD) to determine how muscle thin and thick filaments switch OFF in extensor digitorum longus (EDL) muscles of the mouse in response to decreases in either [Ca2+]i or muscle load and to describe the distribution of muscle sarcomere lengths (SLs) during relaxation. We show that reducing load at high [Ca2+]i is more effective in switching OFF both the thick and thin filaments than reducing [Ca2+]i at high load in normal relaxation. In the latter case, the thick filaments initially remain fully ON, although the number of myosin motors bound to actin decreases and the force per attached motor increases. That initial slow phase of relaxation is abruptly terminated by yielding of one population of sarcomeres, triggering a redistribution of SLs that leads to the rapid completion of mechanical relaxation.
Collapse
Affiliation(s)
- Cameron Hill
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Michaeljohn Kalakoutis
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Alice Arcidiacono
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Flair Paradine Cullup
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Yanhong Wang
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Atsuki Fukutani
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | | | - Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
- Centre for Human and Applied Physiological Sciences, Shepherd’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| |
Collapse
|
9
|
Jani VP, Ma W. Thick-Filament-Based Regulation and the Determinants of Force Generation. Biomedicines 2025; 13:703. [PMID: 40149679 PMCID: PMC11939844 DOI: 10.3390/biomedicines13030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Thick-filament-based regulation in muscle is generally conceived as processes that modulate the number of myosin heads capable of force generation. It has been generally assumed that biochemical and structural assays of myosin active and inactive states provide equivalent measures of myosin recruitment, but recent studies indicate that this may not always be the case. Here, we studied the steady-state and dynamic mechanical changes in skinned porcine myocardium before and after treatment with omecamtiv mecarbil (OM) or piperine to help decipher how the biochemical and structural states of myosin separately affect contractile force. Methods: Force-Ca2+ relationships were obtained from skinned cardiomyocytes isolated from porcine myocardium before and after exposure to 1 μM OM and 7 μM piperine. Crossbridge kinetics were acquired using a step response stretch activation protocol allowing myosin attachment and detachment rates to be calculated. Results: OM augmented calcium-activated force at submaximal calcium levels that can be attributed to increased thick filament recruitment, increases in calcium sensitivity, an increased duty ratio, and from decelerated crossbridge detachment resulting in slowed crossbridge cycling kinetics. Piperine, in contrast, was able to increase activated force at submaximal calcium levels without appreciably affecting crossbridge cycling kinetics. Conclusions: Our study supports the notion that thick filament activation is primarily a process of myosin recruitment that is not necessarily coupled with the chemo-cycling of crossbridges. These new insights into thick filament activation mechanisms will need to be considered in the design of sarcomere-based therapies for treatment of myopathies.
Collapse
Affiliation(s)
- Vivek P. Jani
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weikang Ma
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60016, USA
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL 60016, USA
| |
Collapse
|
10
|
Woldeyes RA, Nishiga M, Roest ASV, Engel L, Giri P, Montenegro GC, Dunn AR, Spudich JA, Bernstein D, Schmid MF, Wu JC, Chiu W. Structure of the Thin Filament in Human iPSC-derived Cardiomyocytes and its Response to Heart Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.26.564098. [PMID: 37961228 PMCID: PMC10634850 DOI: 10.1101/2023.10.26.564098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiovascular diseases are a leading cause of death worldwide, but our understanding of the underlying mechanisms is limited, in part because of the complexity of the cellular machinery that controls the heart muscle contraction cycle. Cryogenic electron tomography (cryo-ET) provides a way to visualize diverse cellular machinery while preserving contextual information like subcellular localization and transient complex formation, but this approach has not been widely applied to the study of heart muscle cells (cardiomyocytes). Here, we deploy an optimized cryo-ET platform that enables cellular-structural biology in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using this platform, we reconstructed sub-nanometer resolution structures of the human cardiac muscle thin filament, a central component of the contractile machinery. Reconstructing the troponin complex, a regulatory component of the thin filament, from within cells, we identified previously unobserved conformations that highlight the structural flexibility of this regulatory complex. We next measured the impact of chemical and genetic perturbations associated with cardiovascular disease on the structure of troponin. In both cases, we found changes in troponin structure that are consistent with known disease phenotypes-highlighting the value of our approach for dissecting complex disease mechanisms in the cellular context.
Collapse
Affiliation(s)
- Rahel A. Woldeyes
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alison S. Vander Roest
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Leeya Engel
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Prerna Giri
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael F. Schmid
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| |
Collapse
|
11
|
Doran MH, Rynkiewicz MJ, Despond E, Viswanathan MC, Madan A, Chitre K, Fenwick AJ, Sousa D, Lehman W, Dawson JF, Cammarato A. The hypertrophic cardiomyopathy-associated A331P actin variant enhances basal contractile activity and elicits resting muscle dysfunction. iScience 2025; 28:111816. [PMID: 39981516 PMCID: PMC11841076 DOI: 10.1016/j.isci.2025.111816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Previous studies aimed at defining the mechanistic basis of hypertrophic cardiomyopathy caused by A331P cardiac actin have reported conflicting results. The mutation is located along an actin surface strand, proximal to residues that interact with tropomyosin. These F-actin-tropomyosin associations are vital for proper contractile inhibition. To help resolve disease pathogenesis, we implemented a multidisciplinary approach. Transgenic Drosophila, expressing A331P actin, displayed skeletal muscle hypercontraction and elevated basal myocardial activity. A331P thin filaments, reconstituted using recombinant human cardiac actin, exhibited higher in vitro myosin-based sliding speeds, exclusively at low Ca2+ concentrations. Cryo-EM-based reconstructions revealed no detectable A331P-related structural perturbations in F-actin. In silico, however, the P331-containing actin surface strand was less mobile and established diminished van der Waal's attractive forces with tropomyosin, which correlated with greater variability in inhibitory tropomyosin positioning. Such mutation-induced effects potentially elevate resting contractile activity among our models and may stimulate pathology in patients.
Collapse
Affiliation(s)
- Matthew H. Doran
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - Evan Despond
- Department Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Meera C. Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Aditi Madan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Kripa Chitre
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Axel J. Fenwick
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Duncan Sousa
- Department of Biophysics, Johns Hopkins University, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - John F. Dawson
- Department Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Chumakova OS, Baklanova TN, Zateyshchikov DA. Clinical Features and Prospective Outcomes of Thin-Filament Hypertrophic Cardiomyopathy: Intrinsic Data and Comparative Insights from Other Cohorts. J Clin Med 2025; 14:866. [PMID: 39941537 PMCID: PMC11818361 DOI: 10.3390/jcm14030866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. The most frequently mutated genes encode proteins of the thick filament of the sarcomere, while mutations in thin-filament genes are rare findings in HCM cohorts. Recent studies have revealed distinct mechanisms of disease development linked to thin-filament mutations, highlighting the need for further investigation into this rare subgroup. Methods: A total of 82 adult patients with sarcomere-positive HCM were enrolled. Baseline characteristics and nearly five years of follow-up data from 15 patients with thin-filament mutations were analyzed and compared with those from 67 patients with thick-filament mutations and findings from other studies. Results: Compared to thick-filament HCM patients, individuals with thin-filament mutations exhibited significantly lower maximum left ventricular wall thickness, as measured by both echocardiography (p = 0.024) and cardiac magnetic resonance (p = 0.006), showed more rapid progression to advanced heart failure (HR = 5.6, p = 0.018), and less often underwent septal reduction therapy (p = 0.025). None of the thin-filament HCM patients experienced malignant arrhythmic events. Conclusions: In adults, thin-filament HCM is associated with a 'thinner' phenotype and a more rapid progression to advanced heart failure compared to thick-filament HCM. Data on a higher risk of malignant arrhythmias in thin-filament HCM remain controversial between studies and rather depend on the age of onset and genotype in each particular family.
Collapse
Affiliation(s)
- Olga S. Chumakova
- Moscow Healthcare Department, City Clinical Hospital 17, 119620 Moscow, Russia (D.A.Z.)
- E.I. Chazov National Medical Research Center for Cardiology, 121552 Moscow, Russia
| | - Tatiana N. Baklanova
- Moscow Healthcare Department, City Clinical Hospital 17, 119620 Moscow, Russia (D.A.Z.)
| | - Dmitry A. Zateyshchikov
- Moscow Healthcare Department, City Clinical Hospital 17, 119620 Moscow, Russia (D.A.Z.)
- E.I. Chazov National Medical Research Center for Cardiology, 121552 Moscow, Russia
| |
Collapse
|
13
|
Olalekan SO, Bakare OO, Okwute PG, Osonuga IO, Adeyanju MM, Edema VB. Hypertrophic cardiomyopathy: insights into pathophysiology and novel therapeutic strategies from clinical studies. Egypt Heart J 2025; 77:5. [PMID: 39776022 PMCID: PMC11706819 DOI: 10.1186/s43044-024-00600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a frequently encountered cardiac condition worldwide, often inherited, and characterized by intricate phenotypic and genetic manifestations. The natural progression of HCM is diverse, largely due to mutations in the contractile and relaxation proteins of the heart. These mutations disrupt the normal structure and functioning of the heart muscle, particularly affecting genes that encode proteins involved in the contraction and relaxation of cardiac muscle. MAIN BODY This review focused on understanding the role of contractile and relaxation proteins in the pathogenesis of hypertrophic cardiomyopathy. Mutations in contractile proteins such as myosin, actin, tropomyosin, and troponin are associated with hypercontractility and increased sensitivity of the heart muscle, leading to HCM. Additionally, impaired relaxation of the heart muscle, linked to abnormalities in proteins like phospholamban, sarcolipin, titin, myosin binding protein-C, and calsequestrin, contributes significantly to the disease. The review also explored the impact of targeted therapeutic approaches aimed at modulating these proteins to improve patient outcomes. Recent advances in therapeutic strategies, including novel pharmacological agents like mavacamten and aficamten, were examined for their potential to help patients manage the disease and lead more accommodating lifestyles. CONCLUSIONS The review underscored the significance of early diagnosis and personalized treatment approaches in managing HCM. Future research should prioritize the development of robust biomarkers for early detection and risk stratification, particularly in diverse populations, to enhance clinical outcomes. Furthermore, it is imperative to delve deeper into the genetic mutations and molecular mechanisms associated with HCM, with a focus on exploring the roles of less-studied myocardial relaxation proteins and their interactions with sarcomere constituents.
Collapse
Affiliation(s)
- Samuel Oluwadare Olalekan
- Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria.
| | | | | | - Ifabunmi Oduyemi Osonuga
- Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Muinat Moronke Adeyanju
- Department of Biochemistry, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Victoria Biola Edema
- Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| |
Collapse
|
14
|
Little M, Risi CM, Larrinaga TM, Summers MD, Nguyen T, Smith GE, Atherton J, Gregorio CC, Kostyukova AS, Galkin VE. Interaction of cardiac leiomodin with the native cardiac thin filament. PLoS Biol 2025; 23:e3003027. [PMID: 39883708 PMCID: PMC11813103 DOI: 10.1371/journal.pbio.3003027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/11/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Every heartbeat depends on cyclical contraction-relaxation produced by the interactions between myosin-containing thick and actin-based thin filaments (TFs) arranged into a crystalline-like lattice in the cardiac sarcomere. Therefore, the maintenance of thin filament length is crucial for myocardium function. The thin filament is comprised of an actin backbone, the regulatory troponin complex and tropomyosin that controls interactions between thick and thin filaments. Thin filament length is controlled by the tropomodulin family of proteins; tropomodulin caps pointed ends of thin filaments, and leiomodin (Lmod) promotes elongation of thin filaments by a "leaky-cap" mechanism. The broader distribution of Lmod on the thin filament implied to the possibility of its interaction with the sides of thin filaments. Here, we use biochemical and structural approaches to show that cardiac Lmod (Lmod2) binds to a specific region on the native cardiac thin filament in a Ca2+-dependent manner. We demonstrate that Lmod2's unique C-terminal extension is required for binding to the thin filament actin backbone and suggest that interactions with the troponin complex assist Lmod2's localization on the surface of thin filaments. We propose that Lmod2 regulates the length of cardiac thin filaments in a working myocardium by protecting newly formed thin filament units during systole and promoting actin polymerization at thin filament pointed ends during diastole.
Collapse
Affiliation(s)
- Madison Little
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Cristina M. Risi
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| | - Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
| | - Mason D. Summers
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Tyler Nguyen
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| | - Garry E. Smith
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Jennifer Atherton
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Vitold E. Galkin
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
15
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
16
|
Irving M. Functional control of myosin motors in the cardiac cycle. Nat Rev Cardiol 2025; 22:9-19. [PMID: 39030271 DOI: 10.1038/s41569-024-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/21/2024]
Abstract
Contraction of the heart is driven by cyclical interactions between myosin and actin filaments powered by ATP hydrolysis. The modular structure of heart muscle and the organ-level synchrony of the heartbeat ensure tight reciprocal coupling between this myosin ATPase cycle and the macroscopic cardiac cycle. The myosin motors respond to the cyclical activation of the actin and myosin filaments to drive the pressure changes that control the inflow and outflow valves of the heart chambers. Opening and closing of the valves in turn switches the myosin motors between roughly isometric and roughly isotonic contraction modes. Peak filament stress in the heart is much smaller than in fully activated skeletal muscle, although the myosin filaments in the two muscle types have the same number of myosin motors. Calculations indicate that only ~5% of the myosin motors in the heart are needed to generate peak systolic pressure, although many more motors are needed to drive ejection. Tight regulation of the number of active motors is essential for the efficient functioning of the healthy heart - this control is commonly disrupted by gene variants associated with inherited heart disease, and its restoration might be a useful end point in the development of novel therapies.
Collapse
Affiliation(s)
- Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and BHF Centre for Research Excellence, King's College London, London, UK.
| |
Collapse
|
17
|
Yang Z, Sheehan AM, Messer AE, Tsui S, Sparrow A, Redwood C, Kren V, Gould IR, Marston SB. Nutraceuticals silybin B, resveratrol, and epigallocatechin-3 gallate-bind to cardiac muscle troponin to restore the loss of lusitropy caused by cardiomyopathy mutations in vitro, in vivo, and in silico. Front Physiol 2024; 15:1489439. [PMID: 39735723 PMCID: PMC11672104 DOI: 10.3389/fphys.2024.1489439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/06/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca2+ associated with a higher rate of Ca2+ dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy). Cardiomyopathy-linked mutations primarily affect Ca2+ regulation or the PKA-dependent modulatory system, such that Ca2+-sensitivity becomes independent of phosphorylation level (uncoupling) and this could be sufficient to induce cardiomyopathy. A drug that could restore the phosphorylation-dependent modulation of Ca2+-sensitivity could have potential for treatment of these pathologies. We have found that a number of small molecules, including silybin B, resveratrol and EGCG, can restore coupling in single filament assays. Methods We did molecular dynamics simulations (5x1500ns for each condition) of the unphosphorylated and phosphorylated cardiac troponin core with the G159D DCM mutation in the presence of the 5 ligands and analysed the effects on several dynamic parameters. We also studied the effect of the ligands on the contractility of cardiac muscle myocytes with ACTC E99K and TNNT2 R92Q mutations in response to dobutamine. Results Silybin B, EGCG and resveratrol restored the phosphorylation-induced change in molecular dynamics to wild-type values, whilst silybin A, an inactive isomer of silybin B, and Epicatechin gallate, an EGCG analogue that does not recouple, did not. We analysed the atomic-level changes induced by ligand binding to explain recoupling. Mutations ACTC E99K and TNNT2 R92Q blunt the increased relaxation speed response to β1 adrenergic stimulation of cardiac myocytes and we found that resveratrol, EGCG and silybin B could restore the β1 adrenergic response, whereas silybin A did not. Discussion The uncoupling phenomenon caused by cardiomyopathy-related mutations and the ability of small molecules to restore coupling in vitro and lusitropy in myocytes is observed at the cellular, molecular and atomistic levels therefore, restoring lusitropy is a suitable target for treatment. Further research on compounds that restore lusitropy is thus indicated as treatments for genetic cardiomyopathies. Further molecular dynamics simulations could define the specific properties needed for recoupling and allow for the prediction and design of potential new drugs.
Collapse
Affiliation(s)
- Zeyu Yang
- Institute of Chemical Biology, Molecular Sciences Research Hub and Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Alice M Sheehan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sharmane Tsui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alexander Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ian R Gould
- Institute of Chemical Biology, Molecular Sciences Research Hub and Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Steven B Marston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Dominic KL, Schmidt AV, Granzier H, Campbell KS, Stelzer JE. Mechanism-based myofilament manipulation to treat diastolic dysfunction in HFpEF. Front Physiol 2024; 15:1512550. [PMID: 39726859 PMCID: PMC11669688 DOI: 10.3389/fphys.2024.1512550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major public health challenge, affecting millions worldwide and placing a significant burden on healthcare systems due to high hospitalization rates and limited treatment options. HFpEF is characterized by impaired cardiac relaxation, or diastolic dysfunction. However, there are no therapies that directly treat the primary feature of the disease. This is due in part to the complexity of normal diastolic function, and the challenge of isolating the mechanisms responsible for dysfunction in HFpEF. Without a clear understanding of the mechanisms driving diastolic dysfunction, progress in treatment development has been slow. In this review, we highlight three key areas of molecular dysregulation directly underlying impaired cardiac relaxation in HFpEF: altered calcium sensitivity in the troponin complex, impaired phosphorylation of myosin-binding protein C (cMyBP-C), and reduced titin compliance. We explore how targeting these pathways can restore normal relaxation, improve diastolic function, and potentially provide new therapeutic strategies for HFpEF treatment. Developing effective HFpEF therapies requires precision targeting to balance systolic and diastolic function, avoiding both upstream non-specificity and downstream rigidity. This review highlights three rational molecular targets with a strong mechanistic basis and potential for therapeutic success.
Collapse
Affiliation(s)
- Katherine L. Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alexandra V. Schmidt
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Bogomolova AP, Katrukha IA. Troponins and Skeletal Muscle Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2083-2106. [PMID: 39865025 DOI: 10.1134/s0006297924120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025]
Abstract
Skeletal muscles account for ~30-40% of the total weight of human body and are responsible for its most important functions, including movement, respiration, thermogenesis, and glucose and protein metabolism. Skeletal muscle damage negatively impacts the whole-body functioning, leading to deterioration of the quality of life and, in severe cases, death. Therefore, timely diagnosis and therapy for skeletal muscle dysfunction are important goals of modern medicine. In this review, we focused on the skeletal troponins that are proteins in the thin filaments of muscle fibers. Skeletal troponins play a key role in regulation of muscle contraction. Biochemical properties of these proteins and their use as biomarkers of skeletal muscle damage are described in this review. One of the most convenient and sensitive methods of protein biomarker measurement in biological liquids is immunochemical analysis; hence, we examined the factors that influence immunochemical detection of skeletal troponins and should be taken into account when developing diagnostic test systems. Also, we reviewed the available data on the skeletal troponin mutations that are considered to be associated with pathologies leading to the development of diseases and discussed utilization of troponins as drug targets for treatment of the skeletal muscle disorders.
Collapse
Affiliation(s)
- Agnessa P Bogomolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Hytest Ltd., Turku, Finland
| | - Ivan A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, Finland
| |
Collapse
|
20
|
Haghighat L, DeJong C, Teerlink JR. New and future heart failure drugs. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1389-1407. [PMID: 39632985 DOI: 10.1038/s44161-024-00576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
In the past decade, our understanding of heart failure pathophysiology has advanced significantly, resulting in the development of new medications such as angiotensin-neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors and oral soluble guanylate cyclase stimulators. Backed by positive findings from large randomized controlled trials, recommendations for their use were recently included in the 2022 AHA/ACC/HFSA guidelines and 2023 ESC guidelines for management of heart failure. Promising drugs for future heart failure treatment include agents that modulate the neurohormonal system, vasodilators, anti-inflammatory drugs, mitotropes, which improve deranged energy metabolism of the failing heart, and myotropes, which increase cardiac contractility by affecting cardiac sarcomere function. Here, we discuss these new and future heart failure drugs. We explain their mechanisms of action, critically evaluate their performance in clinical trials and summarize the clinical scenarios in which the latest guidelines recommend their use. This Review aims to offer clinicians and researchers a comprehensive overview of novel therapeutic classes in heart failure treatment.
Collapse
Affiliation(s)
- Leila Haghighat
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Sutter Health, Palo Alto Medical Foundation, Burlingame, CA, USA
| | - Colette DeJong
- Section of Cardiology, VA Palo Alto Health Care System and School of Medicine, Stanford University, Palo Alto, CA, USA
| | - John R Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Ghanta KP, Tardiff JC, Schwartz SD. The transmission of mutation effects in a multiprotein machine: A comprehensive metadynamics study of the cardiac thin filament. Protein Sci 2024; 33:e5215. [PMID: 39548812 PMCID: PMC11568392 DOI: 10.1002/pro.5215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024]
Abstract
The binding of Ca2+ ions within the troponin core of the cardiac thin filament (CTF) regulates normal contraction and relaxation. Mutations within the troponin complexes are known to alter normal functions and result in the eventual development of cardiomyopathy. However, despite the importance of the problem, detailed microscopic knowledge of the mechanism of pathogenic effect of point mutations and their effects on the conformational free energy surface of CTF remains elusive. Mutations are known to transmit their effects hundreds of angstroms along this protein complex and between different component proteins. To explore the impact of point mutations on the conformational free energy barrier between the closed and blocked state of CTF, and to understand the transmission of mutation, we have carried out metadynamics simulations for the wild-type (WT) and two mutants (cardiac troponin T Arg92Trp (R92W) and Arg92Leu (R92L)). Specifically, we have investigated the conformational modification of the tropomyosin (Tm) and the troponin (Tn) complex during the closed-to-blocked state transition for both the WT and two hypertrophic cardiomyopathy causing mutations. Our calculations demonstrated that mutations within the cardiac troponin T (cTnT) protein alter conformational properties of the Tm and the other proteins of the Tn complex as well as the Ca2+ binding affinity of the cTnC protein through the indirect mediation of cardiac troponin I (cTnI). Importantly, the data revealed a significant influence of the mutations on the conformational transition free energy barriers for both the Tm and cTnC proteins. Furthermore, we found both mutations independently alter the free energy barrier of transitions of cTnT. Such alteration in the free energy upon mutation of one protein in a complex, allosterically affects the others through structural and dynamical changes, leading to a pathogenic effect on the function of the thin filament.
Collapse
Affiliation(s)
| | - Jil C. Tardiff
- Department of Biomedical EngineeringThe University of ArizonaTucsonArizonaUSA
| | - Steven D. Schwartz
- Department of Chemistry and BiochemistryThe University of ArizonaTucsonArizonaUSA
| |
Collapse
|
22
|
Huang HL, Suchenko A, Grandinetti G, Balasubramanian MK, Chinthalapudi K, Heissler SM. Cryo-EM structures of cardiac muscle α-actin mutants M305L and A331P give insights into the structural mechanisms of hypertrophic cardiomyopathy. Eur J Cell Biol 2024; 103:151460. [PMID: 39393252 PMCID: PMC11611453 DOI: 10.1016/j.ejcb.2024.151460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024] Open
Abstract
Cardiac muscle α-actin is a key protein of the thin filament in the muscle sarcomere that, together with myosin thick filaments, produce force and contraction important for normal heart function. Missense mutations in cardiac muscle α-actin can cause hypertrophic cardiomyopathy, a complex disorder of the heart characterized by hypercontractility at the molecular scale that leads to diverse clinical phenotypes. While the clinical aspects of hypertrophic cardiomyopathy have been extensively studied, the molecular mechanisms of missense mutations in cardiac muscle α-actin that cause the disease remain largely elusive. Here we used cryo-electron microscopy to reveal the structures of hypertrophic cardiomyopathy-associated actin mutations M305L and A331P in the filamentous state. We show that the mutations have subtle impacts on the overall architecture of the actin filament with mutation-specific changes in the nucleotide binding cleft active site, interprotomer interfaces, and local changes around the mutation site. This suggests that structural changes induced by M305L and A331P have implications for the positioning of the thin filament protein tropomyosin and the interaction with myosin motors. Overall, this study supports a structural model whereby altered interactions between thick and thin filament proteins contribute to disease mechanisms in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Hsiang-Ling Huang
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Andrejus Suchenko
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical Sciences, Coventry, United Kingdom
| | - Giovanna Grandinetti
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA; Center for Electron Microscopy and Analysis, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology and Warwick Medical School, Division of Biomedical Sciences, Coventry, United Kingdom
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Wang Y, Fusi L, Ovejero JG, Hill C, Juma S, Cullup FP, Ghisleni A, Park-Holohan SJ, Ma W, Irving T, Narayanan T, Irving M, Brunello E. Load-dependence of the activation of myosin filaments in heart muscle. J Physiol 2024; 602:6889-6907. [PMID: 39552044 DOI: 10.1113/jp287434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Contraction of heart muscle requires activation of both the actin and myosin filaments. The mechanism of myosin filament activation is unknown, but the leading candidate hypothesis is direct mechano-sensing by the filaments. Here, we tested this hypothesis by activating intact trabeculae from rat heart by electrical stimulation under different loads and measuring myosin filament activation by X-ray diffraction. Unexpectedly, we found that the distinct structural changes in the myosin filament associated with activation had different dependences on the load. In early activation, all the structural changes indicated faster activation at higher load, as expected from the mechano-sensing hypothesis, but, at later times, the helical order of the myosin motors characteristic of the inactivated state was lost even at very low load. We conclude that mechano-sensing does operate in heart muscle, but it is supplemented by a previously undescribed mechanism that links myosin filament activation to actin filament activation. KEY POINTS: Myosin filament activation controls the strength and speed of contraction in heart muscle. Early activation of the myosin filament is determined by the filament load. At later times, myosin filament activation is controlled by a load independent pathway. This load independent pathway provides new targets and assays for drug development.
Collapse
Affiliation(s)
- Yanhong Wang
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Jesus G Ovejero
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Cameron Hill
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Samina Juma
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Flair Paradine Cullup
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Andrea Ghisleni
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - So-Jin Park-Holohan
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Weikang Ma
- BioCAT, Dept of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Thomas Irving
- BioCAT, Dept of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| |
Collapse
|
24
|
Sevrieva IR, Kampourakis T, Irving M. Structural changes in troponin during activation of skeletal and heart muscle determined in situ by polarised fluorescence. Biophys Rev 2024; 16:753-772. [PMID: 39830118 PMCID: PMC11735716 DOI: 10.1007/s12551-024-01245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Calcium binding to troponin triggers the contraction of skeletal and heart muscle through structural changes in the thin filaments that allow myosin motors from the thick filaments to bind to actin and drive filament sliding. Here, we review studies in which those changes were determined in demembranated fibres of skeletal and heart muscle using fluorescence for in situ structure (FISS), which determines domain orientations using polarised fluorescence from bifunctional rhodamine attached to cysteine pairs in the target domain. We describe the changes in the orientations of the N-terminal lobe of troponin C (TnCN) and the troponin IT arm in skeletal and cardiac muscle cells associated with contraction and compare the orientations with those determined in isolated cardiac thin filaments by cryo-electron microscopy. We show that the orientations of the IT arm determined by the two approaches are essentially the same and that this region acts as an almost rigid scaffold for regulatory changes in the more mobile regions of troponin. However, the TnCN orientations determined by the two methods are clearly distinct in both low- and high-calcium conditions. We discuss the implications of these results for the role of TnCN in mediating the multiple signalling pathways acting through troponin in heart muscle cells and the general advantages and limitations of FISS and cryo-EM for determining protein domain orientations in cells and multiprotein complexes.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, UK
| | - Thomas Kampourakis
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY USA
| | - Malcolm Irving
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, UK
| |
Collapse
|
25
|
Garg A, Jansen S, Greenberg L, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. Proc Natl Acad Sci U S A 2024; 121:e2405020121. [PMID: 39503885 PMCID: PMC11572969 DOI: 10.1073/pnas.2405020121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/17/2024] [Indexed: 11/13/2024] Open
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 variant, R256H. We previously identified this variant in a family with dilated cardiomyopathy, who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using cryoelectron microscopy, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human-induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric organization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
26
|
Toporcer T, Grendel T, Špaková I, Blichárová A, Verbóová Ľ, Benetinová Z, Čižmárová B, Rabajdová M, Toporcerová S. An In Vivo Model of Estrogen Supplementation Concerning the Expression of Ca 2+-Dependent Exchangers and Mortality, Vitality and Survival After Myocardial Infarction in Ovariectomized Rats. J Cardiovasc Dev Dis 2024; 11:352. [PMID: 39590195 PMCID: PMC11595027 DOI: 10.3390/jcdd11110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Ischemic-reperfusion damage of cardiomyocytes due to myocardial infarction (MI) often leads to the death of an individual. Premenopausal women have been observed to have a significantly lower risk of cardiovascular disease (CVD) than men of the same age. In menopausal women, this trend is significantly reversed, and the risk of CVD increases up to 10-fold. Estrogens affect the development and function of the heart muscle, and as they decrease, the risk and poor prognosis of CVD increase. This study is focused on the effects of estrogen supplementation on morbidity, vitality, and NCX1 expression after MI on a model system. METHODS In this study, female Sprague Dawley rats (n = 58), which were divided into three experimental groups (NN-control group, non-supplemented; OVX-N-ovariectomized, non-supplemented; OVX-S-ovariectomized, supplemented), received left thoracotomy in the fourth intercostal space. The left anterior descendent coronary artery was ligated 2 mm from its origin with an 8.0 suture. An immunohistological analysis as well as an RT-PCR analysis of NCX1 expression were performed. RESULTS A higher survival rate was recorded in the OVX-N group (86%) in comparison with the OVX-S group (53%) (p < 0.05). In addition, higher NCX1 expression 7 days/14 days after MI in the OVX-S group in comparison with the NN and OVX-N (p < 0.001 and p < 0.05) groups was recorded. Seven days after MI, a significantly higher expression (p < 0.005) of mRNA NCX1 in the OVX-N group was also recorded in comparison with the NN group. CONCLUSIONS This study provides a comprehensive description of the effect of estrogen supplementation on NCX1 expression and overall vitality in ovariectomized rats that survived MI.
Collapse
Affiliation(s)
- Tomáš Toporcer
- Department of Heart Surgery, East Slovak Institute of Cardiovascular Disease and Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
| | - Tomáš Grendel
- Department of Anesthesiology and Intensive Medicine, East Slovak Institute of Cardiovascular Disease and Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Alžbeta Blichárová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Ľudmila Verbóová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Zuzana Benetinová
- Department of Pathology, Louis Pasteur University Hospital and Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (A.B.); (Ľ.V.); (Z.B.)
| | - Beata Čižmárová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia (B.Č.); (M.R.)
| | - Silvia Toporcerová
- Department of Gynecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University and Gyncare, 040 11 Košice, Slovakia
| |
Collapse
|
27
|
Duan M, Lv C, Zang J, Leng X, Zhao G, Zhang T. Metals at the Helm: Revolutionizing Protein Assembly and Applications. Macromol Biosci 2024; 24:e2400126. [PMID: 39239781 DOI: 10.1002/mabi.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Indexed: 09/07/2024]
Abstract
Protein assembly is an essential process in biological systems, where proteins self-assemble into complex structures with diverse functions. Inspired by the exquisite control over protein assembly in nature, scientists have been exploring ways to design and assemble protein structures with precise control over their topologies and functions. One promising approach for achieving this goal is through metal coordination, which utilizes metal-binding motifs to mediate protein-protein interactions and assemble protein complexes with controlled stoichiometry and geometry. Metal coordination provides a modular and tunable approach for protein assembly and de novo structure design, where the metal ion acts as a molecular glue that holds the protein subunits together in a specific orientation. Metal-coordinated protein assemblies have shown great potential for developing functional metalloproteinase, novel biomaterials and integrated drug delivery systems. In this review, an overview of the recent advances in protein assemblies benefited from metal coordination is provided, focusing on various protein arrangements in different dimensions including protein oligomers, protein nanocage and higher-order protein architectures. Moreover, the key metal-binding motifs and strategies used to assemble protein structures with precise control over their properties are highlighted. The potential applications of metal-mediated protein assemblies in biotechnology and biomedicine are also discussed.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojing Leng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
28
|
Ragusa R, Caselli C. Focus on cardiac troponin complex: From gene expression to cardiomyopathy. Genes Dis 2024; 11:101263. [PMID: 39211905 PMCID: PMC11357864 DOI: 10.1016/j.gendis.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
29
|
Lynn ML, Jimenez J, Castillo RL, Vasquez C, Klass MM, Baldo A, Kim A, Gibson C, Murphy AM, Tardiff JC. Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation. Circ Res 2024; 135:974-989. [PMID: 39328062 PMCID: PMC11502267 DOI: 10.1161/circresaha.124.325223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort, which suggests the potential involvement of myofilament regulators in relaxation. A molecular-level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cTnC (cardiac troponin C)-cTnI (cardiac troponin I) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI. METHODS HCM mutations R92L-cTnT (cardiac troponin T; Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo, in vitro, and in silico via 2-dimensional echocardiography, Western blotting, ex vivo hemodynamics, stopped-flow kinetics, time-resolved fluorescence resonance energy transfer, and molecular dynamics simulations. RESULTS The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D23D24) was sufficient to recover diastolic function to non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D23D24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via time-resolved fluorescence resonance energy transfer revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing time-resolved fluorescence resonance energy transfer distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence. CONCLUSIONS These data show that the early diastolic dysfunction observed in a subset of HCM is attributable to allosterically mediated structural changes at the cTnC-cTnI interface that impair accessibility of PKA, thereby blunting β-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa L. Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Jesus Jimenez
- Department of Medicine, Washington University at St. Louis, St. Louis, MO
| | - Romi L. Castillo
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Catherine Vasquez
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Matthew M. Klass
- Department of Physiological Sciences, University of Arizona, Tucson, AZ
| | - Anthony Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Andrew Kim
- Department of Physiology, University of Arizona, Tucson, AZ
| | - Cyonna Gibson
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
| | - Anne M. Murphy
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson AZ
- Department of Medicine, Washington University at St. Louis, St. Louis, MO
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
- Department of Physiological Sciences, University of Arizona, Tucson, AZ
- Department of Physiology, University of Arizona, Tucson, AZ
| |
Collapse
|
30
|
Cubuk J, Greenberg L, Greenberg AE, Emenecker RJ, Stuchell-Brereton MD, Holehouse AS, Soranno A, Greenberg MJ. Structural dynamics of the intrinsically disordered linker region of cardiac troponin T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596451. [PMID: 38853835 PMCID: PMC11160775 DOI: 10.1101/2024.05.30.596451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The cardiac troponin complex, composed of troponins I, T, and C, plays a central role in regulating the calcium-dependent interactions between myosin and the thin filament. Mutations in troponin can cause cardiomyopathies; however, it is still a major challenge to connect how changes in sequence affect troponin's function. Recent high-resolution structures of the thin filament revealed critical insights into the structure-function relationship of troponin, but there remain large, unresolved segments of troponin, including the troponin-T linker region that is a hotspot for cardiomyopathy mutations. This linker region is predicted to be intrinsically disordered, with behaviors that are not well described by traditional structural approaches; however, this proposal has not been experimentally verified. Here, we used a combination of single-molecule Förster resonance energy transfer (FRET), molecular dynamics simulations, and functional reconstitution assays to investigate the troponin-T linker region. We show that in the context of both isolated troponin and the fully regulated troponin complex, the linker behaves as a dynamic, intrinsically disordered region. This region undergoes polyampholyte expansion in the presence of high salt and distinct conformational changes during the assembly of the troponin complex. We also examine the ΔE160 hypertrophic cardiomyopathy mutation in the linker and demonstrate that it does not affect the conformational dynamics of the linker, rather it allosterically affects interactions with other troponin complex subunits, leading to increased molecular contractility. Taken together, our data clearly demonstrate the importance of disorder within the troponin-T linker and provide new insights into the molecular mechanisms driving the pathogenesis of cardiomyopathies.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Akiva E. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Ryan J. Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Melissa D. Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| |
Collapse
|
31
|
Spahiu E, Uta P, Kraft T, Nayak A, Amrute-Nayak M. Influence of native thin filament type on the regulation of atrial and ventricular myosin motor activity. J Biol Chem 2024; 300:107854. [PMID: 39369990 PMCID: PMC11570844 DOI: 10.1016/j.jbc.2024.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Ca2+-mediated activation of thin filaments is a crucial step in initiating striated muscle contraction. To gain mechanistic insight into this regulatory process, thin filament (TF) components and myosin motors from diverse species and tissue sources are often combined in minimal in vitro systems. The contribution of tissue-specific TF composition with native myosin motors in generating contraction speed remains unclear. To examine TF-mediated regulation, we established a procedure to purify native TFs (nTF) and myosin motors (M-II) from the same cardiac tissue samples as low as 10 mg and investigated their influence on gliding speeds and Ca2+ sensitivity. The rabbit atrial and ventricular nTFs and M-II were assessed in in vitro nTF motility experiments under varying Ca2+ concentrations. The speed-pCa relationship yielded a maximum TF speed of 2.58 μm/s for atrial (aM-II) and 1.51 μm/s for ventricular myosin (vM-II), both higher than the respective unregulated actin filament gliding speeds. The Ca2+ sensitivity was different for both protein sources. After swapping the nTFs, the ventricular TFs increased their gliding speed on atrial myosin, while the atrial nTFs reduced their gliding speed on ventricular myosin. Swapping of the nTFs decreased the calcium sensitivity for both vM-II and aM-II, indicating a strong influence of the thin filament source. These studies suggest that the nTF-myosin combination is critical to understanding the Ca2+ sensitivity of the shortening speed. Our approach is highly relevant to studying precious human cardiac samples, that is, small myectomy samples, to address the alteration of contraction speed and Ca2+ sensitivity in cardiomyopathies.
Collapse
Affiliation(s)
- Emrulla Spahiu
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Petra Uta
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
32
|
Hei B, Tardiff JC, Schwartz SD. Human cardiac β-myosin powerstroke energetics: Thin filament, Pi displacement, and mutation effects. Biophys J 2024; 123:3133-3142. [PMID: 39001604 PMCID: PMC11427785 DOI: 10.1016/j.bpj.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
The powerstroke of human cardiac β-myosin is an important stage of the cross-bridge cycle that generates force for muscle contraction. However, the starting structure of this process has never been resolved, and the relative timing of the powerstroke and inorganic phosphate (Pi) release is still controversial. In this study, we generated an atomistic model of myosin on the thin filament and utilized metadynamics simulations to predict the absent starting structure of the powerstroke. We demonstrated that the displacement of Pi from the active site during the powerstroke is likely necessary, reducing the energy barrier of the conformation change. The effects of the presence of the thin filament, the hypertrophic cardiomyopathy mutation R712L, and the binding of mavacamten on the powerstroke process were also investigated.
Collapse
Affiliation(s)
- Bai Hei
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona.
| |
Collapse
|
33
|
Creso JG, Gokhan I, Rynkiewicz MJ, Lehman W, Moore JR, Campbell SG. In silico and in vitro models reveal the molecular mechanisms of hypocontractility caused by TPM1 M8R. Front Physiol 2024; 15:1452509. [PMID: 39282088 PMCID: PMC11392859 DOI: 10.3389/fphys.2024.1452509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is an inherited disorder often leading to severe heart failure. Linkage studies in affected families have revealed hundreds of different mutations that can cause DCM, with most occurring in genes associated with the cardiac sarcomere. We have developed an investigational pipeline for discovering mechanistic genotype-phenotype relationships in DCM and here apply it to the DCM-linked tropomyosin mutation TPM1 M8R. Atomistic simulations predict that M8R increases flexibility of the tropomyosin chain and enhances affinity for the blocked or inactive state of tropomyosin on actin. Applying these molecular effects to a Markov model of the cardiac thin filament reproduced the shifts in Ca2+sensitivity, maximum force, and a qualitative drop in cooperativity that were observed in an in vitro system containing TPM1 M8R. The model was then used to simulate the impact of M8R expression on twitch contractions of intact cardiac muscle, predicting that M8R would reduce peak force and duration of contraction in a dose-dependent manner. To evaluate this prediction, TPM1 M8R was expressed via adenovirus in human engineered heart tissues and isometric twitch force was observed. The mutant tissues manifested depressed contractility and twitch duration that agreed in detail with model predictions. Additional exploratory simulations suggest that M8R-mediated alterations in tropomyosin-actin interactions contribute more potently than tropomyosin chain stiffness to cardiac twitch dysfunction, and presumably to the ultimate manifestation of DCM. This study is an example of the growing potential for successful in silico prediction of mutation pathogenicity for inherited cardiac muscle disorders.
Collapse
Affiliation(s)
- Jenette G. Creso
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Ilhan Gokhan
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - William Lehman
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jeffrey R. Moore
- Department of Biological Sciences, University of Massachusetts–Lowell, Lowell, MA, United States
| | - Stuart G. Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
34
|
Schneider J, Jasnin M. Molecular architecture of the actin cytoskeleton: From single cells to whole organisms using cryo-electron tomography. Curr Opin Cell Biol 2024; 88:102356. [PMID: 38608425 DOI: 10.1016/j.ceb.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Cryo-electron tomography (cryo-ET) has begun to provide intricate views of cellular architecture at unprecedented resolutions. Considerable efforts are being made to further optimize and automate the cryo-ET workflow, from sample preparation to data acquisition and analysis, to enable visual proteomics inside of cells. Here, we will discuss the latest advances in cryo-ET that go hand in hand with their application to the actin cytoskeleton. The development of deep learning tools for automated annotation of tomographic reconstructions and the serial lift-out sample preparation procedure will soon make it possible to perform high-resolution structural biology in a whole new range of samples, from multicellular organisms to organoids and tissues.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
35
|
Rynkiewicz MJ, Childers MC, Karpicheva OE, Regnier M, Geeves MA, Lehman W. Myosin's powerstroke transitions define atomic scale movement of cardiac thin filament tropomyosin. J Gen Physiol 2024; 156:e202413538. [PMID: 38607351 PMCID: PMC11010328 DOI: 10.1085/jgp.202413538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Dynamic interactions between the myosin motor head on thick filaments and the actin molecular track on thin filaments drive the myosin-crossbridge cycle that powers muscle contraction. The process is initiated by Ca2+ and the opening of troponin-tropomyosin-blocked myosin-binding sites on actin. The ensuing recruitment of myosin heads and their transformation from pre-powerstroke to post-powerstroke conformation on actin produce the force required for contraction. Cryo-EM-based atomic models confirm that during this process, tropomyosin occupies three different average positions on actin. Tropomyosin pivoting on actin away from a TnI-imposed myosin-blocking position accounts for part of the Ca2+ activation observed. However, the structure of tropomyosin on thin filaments that follows pre-powerstroke myosin binding and its translocation during myosin's pre-powerstroke to post-powerstroke transition remains unresolved. Here, we approach this transition computationally in silico. We used the myosin helix-loop-helix motif as an anchor to dock models of pre-powerstroke cardiac myosin to the cleft between neighboring actin subunits along cardiac thin filaments. We then performed targeted molecular dynamics simulations of the transition between pre- and post-powerstroke conformations on actin in the presence of cardiac troponin-tropomyosin. These simulations show Arg 369 and Glu 370 on the tip of myosin Loop-4 encountering identically charged residues on tropomyosin. The charge repulsion between residues causes tropomyosin translocation across actin, thus accounting for the final regulatory step in the activation of the thin filament, and, in turn, facilitating myosin movement along the filament. We suggest that during muscle activity, myosin-induced tropomyosin movement is likely to result in unencumbered myosin head interactions on actin at low-energy cost.
Collapse
Affiliation(s)
- Michael J. Rynkiewicz
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Olga E. Karpicheva
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - William Lehman
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
36
|
Solaro RJ, Goldspink PH, Wolska BM. Emerging Concepts of Mechanisms Controlling Cardiac Tension: Focus on Familial Dilated Cardiomyopathy (DCM) and Sarcomere-Directed Therapies. Biomedicines 2024; 12:999. [PMID: 38790961 PMCID: PMC11117855 DOI: 10.3390/biomedicines12050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Novel therapies for the treatment of familial dilated cardiomyopathy (DCM) are lacking. Shaping research directions to clinical needs is critical. Triggers for the progression of the disorder commonly occur due to specific gene variants that affect the production of sarcomeric/cytoskeletal proteins. Generally, these variants cause a decrease in tension by the myofilaments, resulting in signaling abnormalities within the micro-environment, which over time result in structural and functional maladaptations, leading to heart failure (HF). Current concepts support the hypothesis that the mutant sarcomere proteins induce a causal depression in the tension-time integral (TTI) of linear preparations of cardiac muscle. However, molecular mechanisms underlying tension generation particularly concerning mutant proteins and their impact on sarcomere molecular signaling are currently controversial. Thus, there is a need for clarification as to how mutant proteins affect sarcomere molecular signaling in the etiology and progression of DCM. A main topic in this controversy is the control of the number of tension-generating myosin heads reacting with the thin filament. One line of investigation proposes that this number is determined by changes in the ratio of myosin heads in a sequestered super-relaxed state (SRX) or in a disordered relaxed state (DRX) poised for force generation upon the Ca2+ activation of the thin filament. Contrasting evidence from nanometer-micrometer-scale X-ray diffraction in intact trabeculae indicates that the SRX/DRX states may have a lesser role. Instead, the proposal is that myosin heads are in a basal OFF state in relaxation then transfer to an ON state through a mechano-sensing mechanism induced during early thin filament activation and increasing thick filament strain. Recent evidence about the modulation of these mechanisms by protein phosphorylation has also introduced a need for reconsidering the control of tension. We discuss these mechanisms that lead to different ideas related to how tension is disturbed by levels of mutant sarcomere proteins linked to the expression of gene variants in the complex landscape of DCM. Resolving the various mechanisms and incorporating them into a unified concept is crucial for gaining a comprehensive understanding of DCM. This deeper understanding is not only important for diagnosis and treatment strategies with small molecules, but also for understanding the reciprocal signaling processes that occur between cardiac myocytes and their micro-environment. By unraveling these complexities, we can pave the way for improved therapeutic interventions for managing DCM.
Collapse
Affiliation(s)
- R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
| | - Beata M. Wolska
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.H.G.); (B.M.W.)
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
37
|
Risi CM, Belknap B, Atherton J, Coscarella IL, White HD, Bryant Chase P, Pinto JR, Galkin VE. Troponin Structural Dynamics in the Native Cardiac Thin Filament Revealed by Cryo Electron Microscopy. J Mol Biol 2024; 436:168498. [PMID: 38387550 PMCID: PMC11007730 DOI: 10.1016/j.jmb.2024.168498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Cardiac muscle contraction occurs due to repetitive interactions between myosin thick and actin thin filaments (TF) regulated by Ca2+ levels, active cross-bridges, and cardiac myosin-binding protein C (cMyBP-C). The cardiac TF (cTF) has two nonequivalent strands, each comprised of actin, tropomyosin (Tm), and troponin (Tn). Tn shifts Tm away from myosin-binding sites on actin at elevated Ca2+ levels to allow formation of force-producing actomyosin cross-bridges. The Tn complex is comprised of three distinct polypeptides - Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. The molecular mechanism of their collective action is unresolved due to lack of comprehensive structural information on Tn region of cTF. C1 domain of cMyBP-C activates cTF in the absence of Ca2+ to the same extent as rigor myosin. Here we used cryo-EM of native cTFs to show that cTF Tn core adopts multiple structural conformations at high and low Ca2+ levels and that the two strands are structurally distinct. At high Ca2+ levels, cTF is not entirely activated by Ca2+ but exists in either partially or fully activated state. Complete dissociation of TnI C-terminus is required for full activation. In presence of cMyBP-C C1 domain, Tn core adopts a fully activated conformation, even in absence of Ca2+. Our data provide a structural description for the requirement of myosin to fully activate cTFs and explain increased affinity of TnC to Ca2+ in presence of active cross-bridges. We suggest that allosteric coupling between Tn subunits and Tm is required to control actomyosin interactions.
Collapse
Affiliation(s)
- Cristina M Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Jennifer Atherton
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Isabella Leite Coscarella
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
38
|
Kondacs L, Parijat P, Cobb AJA, Kampourakis T. Synthesis and Biophysical Characterization of Fingolimod Derivatives as Cardiac Troponin Antagonists. ACS Med Chem Lett 2024; 15:413-417. [PMID: 38505838 PMCID: PMC10945792 DOI: 10.1021/acsmedchemlett.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
Calcium binding to cardiac troponin C (cTnC) in the thin filaments acts as a trigger for cardiac muscle contraction. The N-lobe of cTnC (NcTnC) undergoes a conformational change in the presence of calcium that allows for interaction with the switch region of cardiac troponin I (cTnISP), releasing its inhibitory effect on the thin filament structure. The small molecule fingolimod inhibits cTnC-cTnISP interactions via electrostatic repulsion between its positively charged tail and positively charged residues in cTnISP and acts as a calcium desensitizer of the contractile myofilaments. Here we investigate the structure-activity relationship of the fingolimod hydrophobic headgroup and show that increasing the alkyl chain length increases both its affinity for NcTnC and its inhibitory effect on the NcTnC-cTnISP interaction and that decreasing flexibility completely abolishes these effects. Strikingly, the longer derivatives have no effect on the calcium affinity of cTnC, suggesting that they act as better inhibitors.
Collapse
Affiliation(s)
- Laszlo Kondacs
- Department
of Chemistry, King’s College London, Britannia House, London SE1 1DB, United Kingdom
| | - Priyanka Parijat
- Randall
Centre for Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s
College London, London SE1 1UL, United Kingdom
| | - Alexander J. A. Cobb
- Department
of Chemistry, King’s College London, Britannia House, London SE1 1DB, United Kingdom
| | - Thomas Kampourakis
- Randall
Centre for Cell and Molecular Biophysics and British Heart Foundation
Centre of Research Excellence, King’s
College London, London SE1 1UL, United Kingdom
| |
Collapse
|
39
|
Garg A, Jansen S, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.583979. [PMID: 38559046 PMCID: PMC10979883 DOI: 10.1101/2024.03.10.583979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 mutation, R256H. We previously identified this mutation in multiple family members with dilated cardiomyopathy (DCM), who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent functional effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using Cryo-EM, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric disorganization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine Johns Hopkins University Baltimore MD USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Barry ME, Rynkiewicz MJ, Pavadai E, Viana A, Lehman W, Moore JR. Glutamate 139 of tropomyosin is critical for cardiac thin filament blocked-state stabilization. J Mol Cell Cardiol 2024; 188:30-37. [PMID: 38266978 PMCID: PMC11654406 DOI: 10.1016/j.yjmcc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The cardiac thin filament proteins troponin and tropomyosin control actomyosin formation and thus cardiac contractility. Calcium binding to troponin changes tropomyosin position along the thin filament, allowing myosin head binding to actin required for heart muscle contraction. The thin filament regulatory proteins are hot spots for genetic mutations causing heart muscle dysfunction. While much of the thin filament structure has been characterized, critical regions of troponin and tropomyosin involved in triggering conformational changes remain unresolved. A poorly resolved region, helix-4 (H4) of troponin I, is thought to stabilize tropomyosin in a position on actin that blocks actomyosin interactions at low calcium concentrations during muscle relaxation. We have proposed that contact between glutamate 139 on tropomyosin and positively charged residues on H4 leads to blocking-state stabilization. In this study, we attempted to disrupt these interactions by replacing E139 with lysine (E139K) to define the importance of this residue in thin filament regulation. Comparison of mutant and wild-type tropomyosin was carried out using in-vitro motility assays, actin co-sedimentation, and molecular dynamics simulations to determine perturbations in troponin-tropomyosin function caused by the tropomyosin mutation. Motility assays revealed that mutant thin filaments moved at higher velocity at low calcium with increased calcium sensitivity demonstrating that tropomyosin residue 139 is vital for proper tropomyosin-mediated inhibition during relaxation. Similarly, molecular dynamic simulations revealed a mutation-induced decrease in interaction energy between tropomyosin-E139K and troponin I (R170 and K174). These results suggest that salt-bridge stabilization of tropomyosin position by troponin IH4 is essential to prevent actomyosin interactions during cardiac muscle relaxation.
Collapse
Affiliation(s)
- Meaghan E Barry
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America
| | - Michael J Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Elumalai Pavadai
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Alex Viana
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America.
| |
Collapse
|
41
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Chen L, Liu J, Rastegarpouyani H, Janssen PML, Pinto JR, Taylor KA. Structure of mavacamten-free human cardiac thick filaments within the sarcomere by cryoelectron tomography. Proc Natl Acad Sci U S A 2024; 121:e2311883121. [PMID: 38386705 PMCID: PMC10907299 DOI: 10.1073/pnas.2311883121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT06516
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Hosna Rastegarpouyani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH43210
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State College of Medicine, Florida State University, Tallahassee, FL32306
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| |
Collapse
|
43
|
Abstract
Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.
Collapse
Affiliation(s)
- Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
44
|
Sequeira V, Maack C, Reil GH, Reil JC. Exploring the Connection Between Relaxed Myosin States and the Anrep Effect. Circ Res 2024; 134:117-134. [PMID: 38175910 DOI: 10.1161/circresaha.123.323173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The Anrep effect is an adaptive response that increases left ventricular contractility following an acute rise in afterload. Although the mechanistic origin remains undefined, recent findings suggest a two-phase activation of resting myosin for contraction, involving strain-sensitive and posttranslational phases. We propose that this mobilization represents a transition among the relaxed states of myosin-specifically, from the super-relaxed (SRX) to the disordered-relaxed (DRX)-with DRX myosin ready to participate in force generation. This hypothesis offers a unified explanation that connects myosin's SRX-DRX equilibrium and the Anrep effect as parts of a singular phenomenon. We underscore the significance of this equilibrium in modulating contractility, primarily studied in the context of hypertrophic cardiomyopathy, the most common inherited cardiomyopathy associated with diastolic dysfunction, hypercontractility, and left ventricular hypertrophy. As we posit that the cellular basis of the Anrep effect relies on a two-phased transition of myosin from the SRX to the contraction-ready DRX configuration, any dysregulation in this equilibrium may result in the pathological manifestation of the Anrep phenomenon. For instance, in hypertrophic cardiomyopathy, hypercontractility is linked to a considerable shift of myosin to the DRX state, implying a persistent activation of the Anrep effect. These valuable insights call for additional research to uncover a clinical Anrep fingerprint in pathological states. Here, we demonstrate through noninvasive echocardiographic pressure-volume measurements that this fingerprint is evident in 12 patients with hypertrophic obstructive cardiomyopathy before septal myocardial ablation. This unique signature is characterized by enhanced contractility, indicated by a leftward shift and steepening of the end-systolic pressure-volume relationship, and a prolonged systolic ejection time adjusted for heart rate, which reverses post-procedure. The clinical application of this concept has potential implications beyond hypertrophic cardiomyopathy, extending to other genetic cardiomyopathies and even noncongenital heart diseases with complex etiologies across a broad spectrum of left ventricular ejection fractions.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Deutsche Zentrum für Herzinsuffizienz (DZHI), Würzburg, Germany (V.S., C.M.)
| | - Christoph Maack
- Department of Translational Science Universitätsklinikum, Deutsche Zentrum für Herzinsuffizienz (DZHI), Würzburg, Germany (V.S., C.M.)
| | - Gert-Hinrich Reil
- Klinik für Kardiologie, Klinikum Oldenburg, Innere Medizin I, Germany (G.-H.R.)
| | - Jan-Christian Reil
- Klinik für Allgemeine und Interventionelle Kardiologie, Herz- und Diabetes-Zentrum Nordrhein-Westphalen, Germany (J.-C.R.)
| |
Collapse
|
45
|
Farkas D, Szikora S, Jijumon AS, Polgár TF, Patai R, Tóth MÁ, Bugyi B, Gajdos T, Bíró P, Novák T, Erdélyi M, Mihály J. Peripheral thickening of the sarcomeres and pointed end elongation of the thin filaments are both promoted by SALS and its formin interaction partners. PLoS Genet 2024; 20:e1011117. [PMID: 38198522 PMCID: PMC10805286 DOI: 10.1371/journal.pgen.1011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/23/2024] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.
Collapse
Affiliation(s)
- Dávid Farkas
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - A. S. Jijumon
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mónika Ágnes Tóth
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- University of Szeged, Department of Genetics, Szeged, Hungary
| |
Collapse
|
46
|
Heeley DH, Belknap B, Atherton JL, Hasan SC, White HD. Effect of the N-terminal extension in myosin essential light chain A1 on the mechanism of actomyosin ATP hydrolysis. J Biol Chem 2024; 300:105521. [PMID: 38042484 PMCID: PMC10777021 DOI: 10.1016/j.jbc.2023.105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
Myosin essential light chains A1 and A2 are identical isoforms except for an extension of ∼40 amino acids at the N terminus of A1 that binds F-actin. The extension has no bearing on the burst hydrolysis rate (M-ATP → M-ADP-Pi) as determined by chemical quench flow (100 μM isoenzyme). Whereas actomyosin-S1A2 steady state MgATPase (low ionic strength, 20 °C) is hyperbolically dependent on concentration: Vmax 7.6 s-1, Kapp 6.4 μM (F-actin) and Vmax 10.1 s-1, Kapp 5.5 μM (native thin filaments, pCa 4), the relationship for myosin-S1A1 is bimodal; an initial rise at low concentration followed by a decline to one-third the Vmax of S1A2, indicative of more than one rate-limiting step and A1-enforced flux through the slower actomyosin-limited hydrolysis pathway. In double-mixing stopped-flow with an indicator, Ca(II)-mediated activation of Pi dissociation (regulatedAM-ADP-Pi → regulatedAM-ADP + Pi) is attenuated by A1 attachment to thin filaments (pCa 4). The maximum accelerated rates of Pi dissociation are: 81 s-1 (S1A1, Kapp 8.9 μM) versus 129 s-1 (S1A2, Kapp 58 μM). To investigate apomyosin-S1-mediated activation, thin filaments (EGTA) are premixed with a given isomyosin-S1 and double-mixing is repeated with myosin-S1A1 in the first mix. Similar maximum rates of Pi dissociation are observed, 44.5 s-1 (S1A1) and 47.1 s-1 (S1A2), which are lower than for Ca(II) activation. Overall, these results biochemically demonstrate how the longer light chain A1 can contribute to slower contraction and higher force and the shorter version A2 to faster contraction and lower force, consistent with their distribution in different types of striated muscle.
Collapse
Affiliation(s)
- David H Heeley
- Department of Biochemistry, Memorial University, St John's, Newfoundland, Canada.
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Jennifer L Atherton
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Stephanie C Hasan
- Department of Biochemistry, Memorial University, St John's, Newfoundland, Canada
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
47
|
Terrell K, Choi S, Choi S. Calcium's Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions. Int J Mol Sci 2023; 24:17034. [PMID: 38069357 PMCID: PMC10706910 DOI: 10.3390/ijms242317034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Calcium research, since its pivotal discovery in the early 1800s through the heating of limestone, has led to the identification of its multi-functional roles. These include its functions as a reducing agent in chemical processes, structural properties in shells and bones, and significant role in cells relating to this review: cellular signaling. Calcium signaling involves the movement of calcium ions within or between cells, which can affect the electrochemical gradients between intra- and extracellular membranes, ligand binding, enzyme activity, and other mechanisms that determine cell fate. Calcium signaling in muscle, as elucidated by the sliding filament model, plays a significant role in muscle contraction. However, as organisms age, alterations occur within muscle tissue. These changes include sarcopenia, loss of neuromuscular junctions, and changes in mineral concentration, all of which have implications for calcium's role. Additionally, a field of study that has gained recent attention, cellular senescence, is associated with aging and disturbed calcium homeostasis, and is thought to affect sarcopenia progression. Changes seen in calcium upon aging may also be influenced by its crosstalk with other minerals such as iron and zinc. This review investigates the role of calcium signaling in aging muscle and cellular senescence. We also aim to elucidate the interactions among calcium, iron, and zinc across various cells and conditions, ultimately deepening our understanding of calcium signaling in muscle aging.
Collapse
Affiliation(s)
| | | | - Sangyong Choi
- Department of Nutritional Sciences, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
48
|
Robaszkiewicz K, Siatkowska M, Wadman RI, Kamsteeg EJ, Chen Z, Merve A, Parton M, Bugiardini E, de Bie C, Moraczewska J. A Novel Variant in TPM3 Causing Muscle Weakness and Concomitant Hypercontractile Phenotype. Int J Mol Sci 2023; 24:16147. [PMID: 38003336 PMCID: PMC10671854 DOI: 10.3390/ijms242216147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
A novel variant of unknown significance c.8A > G (p.Glu3Gly) in TPM3 was detected in two unrelated families. TPM3 encodes the transcript variant Tpm3.12 (NM_152263.4), the tropomyosin isoform specifically expressed in slow skeletal muscle fibers. The patients presented with slowly progressive muscle weakness associated with Achilles tendon contractures of early childhood onset. Histopathology revealed features consistent with a nemaline rod myopathy. Biochemical in vitro assays performed with reconstituted thin filaments revealed defects in the assembly of the thin filament and regulation of actin-myosin interactions. The substitution p.Glu3Gly increased polymerization of Tpm3.12, but did not significantly change its affinity to actin alone. Affinity of Tpm3.12 to actin in the presence of troponin ± Ca2+ was decreased by the mutation, which was due to reduced interactions with troponin. Altered molecular interactions affected Ca2+-dependent regulation of the thin filament interactions with myosin, resulting in increased Ca2+ sensitivity and decreased relaxation of the actin-activated myosin ATPase activity. The hypercontractile molecular phenotype probably explains the distal joint contractions observed in the patients, but additional research is needed to explain the relatively mild severity of the contractures. The slowly progressive muscle weakness is most likely caused by the lack of relaxation and prolonged contractions which cause muscle wasting. This work provides evidence for the pathogenicity of the TPM3 c.8A > G variant, which allows for its classification as (likely) pathogenic.
Collapse
Affiliation(s)
- Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| | - Małgorzata Siatkowska
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| | - Renske I. Wadman
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Erik-Jan Kamsteeg
- Department of Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Zhiyong Chen
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
- Department of Neurology, National Neuroscience Institute, Singapore 308433, Singapore
| | - Ashirwad Merve
- Department of Neuropathology, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK;
| | - Matthew Parton
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
| | - Enrico Bugiardini
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology, London WC1N 3BG, UK; (Z.C.); (M.P.); (E.B.)
| | - Charlotte de Bie
- Department of Genetics, University Medical Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Kazimierz Wielki University, 85-671 Bydgoszcz, Poland; (K.R.); (M.S.)
| |
Collapse
|
49
|
Carrington G, Hau A, Kosta S, Dugdale HF, Muntoni F, D’Amico A, Van den Bergh P, Romero NB, Malfatti E, Vilchez JJ, Oldfors A, Pajusalu S, Õunap K, Giralt-Pujol M, Zanoteli E, Campbell KS, Iwamoto H, Peckham M, Ochala J. Human skeletal myopathy myosin mutations disrupt myosin head sequestration. JCI Insight 2023; 8:e172322. [PMID: 37788100 PMCID: PMC10721271 DOI: 10.1172/jci.insight.172322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Myosin heavy chains encoded by MYH7 and MYH2 are abundant in human skeletal muscle and important for muscle contraction. However, it is unclear how mutations in these genes disrupt myosin structure and function leading to skeletal muscle myopathies termed myosinopathies. Here, we used multiple approaches to analyze the effects of common MYH7 and MYH2 mutations in the light meromyosin (LMM) region of myosin. Analyses of expressed and purified MYH7 and MYH2 LMM mutant proteins combined with in silico modeling showed that myosin coiled coil structure and packing of filaments in vitro are commonly disrupted. Using muscle biopsies from patients and fluorescent ATP analog chase protocols to estimate the proportion of myosin heads that were super-relaxed, together with x-ray diffraction measurements to estimate myosin head order, we found that basal myosin ATP consumption was increased and the myosin super-relaxed state was decreased in vivo. In addition, myofiber mechanics experiments to investigate contractile function showed that myofiber contractility was not affected. These findings indicate that the structural remodeling associated with LMM mutations induces a pathogenic state in which formation of shutdown heads is impaired, thus increasing myosin head ATP demand in the filaments, rather than affecting contractility. These key findings will help design future therapies for myosinopathies.
Collapse
Affiliation(s)
- Glenn Carrington
- The Astbury Centre for Structural and Molecular Biology and
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Abbi Hau
- Centre of Human and Applied Physiological Sciences and
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, United Kingdom
| | - Sarah Kosta
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Hannah F. Dugdale
- Centre of Human and Applied Physiological Sciences and
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | - Adele D’Amico
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Peter Van den Bergh
- Neuromuscular Reference Center, Neurology Department, University Hospital Saint-Luc, Brussels, Belgium
| | - Norma B. Romero
- Neuromuscular Morphology Unit, Institute of Myology, Myology Research Centre INSERM, Sorbonne University, Hôpital Pitié-Salpêtrière, Paris, France
| | - Edoardo Malfatti
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Inserm U955, Creteil, France
- U1179 UVSQ-INSERM Handicap Neuromuscular: Physiology, Biotherapy and Applied Pharmacology, UFR Simone Veil-Santé, Université Versailles Saint Quentin en Yvelines, Paris-Saclay, France
| | - Juan Jesus Vilchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sander Pajusalu
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Marta Giralt-Pujol
- The Astbury Centre for Structural and Molecular Biology and
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Edmar Zanoteli
- Universidade de São Paulo, Hospital das Clínicas, Faculty of Medicine, Department of Neurology, São Paulo SP, Brazil
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Neurology, São Paulo SP, Brazil
| | - Kenneth S. Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Michelle Peckham
- The Astbury Centre for Structural and Molecular Biology and
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Tamborrini D, Wang Z, Wagner T, Tacke S, Stabrin M, Grange M, Kho AL, Rees M, Bennett P, Gautel M, Raunser S. Structure of the native myosin filament in the relaxed cardiac sarcomere. Nature 2023; 623:863-871. [PMID: 37914933 PMCID: PMC10665186 DOI: 10.1038/s41586-023-06690-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-β chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-β chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.
Collapse
Affiliation(s)
- Davide Tamborrini
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sebastian Tacke
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Markus Stabrin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michael Grange
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Martin Rees
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Pauline Bennett
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|