1
|
Huang R, Zhou G, Cai J, Cao C, Zhu Z, Wu Q, Zhang F, Ding Y. Maternal consumption of urbanized diet compromises early-life health in association with gut microbiota. Gut Microbes 2025; 17:2483783. [PMID: 40176259 PMCID: PMC11988223 DOI: 10.1080/19490976.2025.2483783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
Urbanization has significantly transformed dietary habits worldwide, contributing to a globally increased burden of non-communicable diseases and altered gut microbiota landscape. However, it is often overlooked that the adverse effects of these dietary changes can be transmitted from the mother to offspring during early developmental stages, subsequently influencing the predisposition to various diseases later in life. This review aims to delineate the detrimental effects of maternal urban-lifestyle diet (urbanized diet) on early-life health and gut microbiota assembly, provide mechanistic insights on how urbanized diet mediates mother-to-offspring transfer of bioactive substances in both intrauterine and extrauterine and thus affects fetal and neonatal development. Moreover, we also further propose a framework for developing microbiome-targeted precision nutrition and diet strategies specifically for pregnant and lactating women. The establishment of such knowledge can help develop proactive preventive measures from the beginning of life, ultimately reducing the long-term risk of disease and improving public health outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guicheng Zhou
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jie Cai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Cha Cao
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Dawson SL, Clarke G, Ponsonby AL, Loughman A, Mohebbi M, Borge TC, O'Neil A, Vuillermin P, Tang MLK, Craig JM, Jacka FN. A gut-focused perinatal dietary intervention is associated with lower alpha diversity of the infant gut microbiota: results from a randomised controlled trial. Nutr Neurosci 2025; 28:694-708. [PMID: 39422256 DOI: 10.1080/1028415x.2024.2413233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
OBJECTIVES In experimental models, the prenatal diet influences gut microbiota composition in mothers and offspring; however, it is unclear whether this occurs in humans. We investigated the effects of a gut-focused perinatal dietary intervention on maternal and infant gut microbiota composition four weeks after birth. METHODS This randomised controlled trial randomised pregnant women to receive dietary advice as part of standard care, or additionally receive a dietary intervention focused on the Australian Dietary Guidelines and increasing prebiotic and probiotic/fermented food intakes (ACTRN12616000936426). Study assessments occurred from gestation week 26 (baseline) to four weeks postpartum (follow-up). Faecal samples, collected at baseline for mothers, and follow-up for mothers and infants, underwent 16SrRNA sequencing. The primary outcome was a between-group mean difference in infant faecal Shannon index. Secondary outcomes included between-group differences in other microbiota measures, including maternal change from baseline CLR-transformed Prevotella abundance. RESULTS Forty-four women and 45 infants completed the study. The mean Shannon index of infants in the intervention group was -0.35 (95% CI: -0.64, -0.06, SD: 0.52) units lower than control group infants, corresponding to a medium effect size (Cohen's D: -0.74, 95% CI: -1.34, -0.13). The findings were similar using other metrics of α-diversity. There were no between-group differences in β-diversity, nor any differentially abundant taxa in infants. The intervention increased abundances of the genus Prevotella in mothers compared to controls. DISCUSSION This gut-focused perinatal dietary intervention was associated with differences in the maternal and infant gut microbiota composition. Larger studies are required to replicate and extend these findings.
Collapse
Affiliation(s)
- Samantha L Dawson
- IMPACT (The Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Hospital, Environmental & Genetic Epidemiology Research, APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Anne-Louise Ponsonby
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- The University of Melbourne, Parkville, Australia
| | - Amy Loughman
- IMPACT (The Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia
| | | | - Tiril Cecilie Borge
- Cluster of Reviews and Health Technology Assessments, Norwegian Institute of Public Health, Oslo, Norway
| | - Adrienne O'Neil
- IMPACT (The Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia
| | - Peter Vuillermin
- IMPACT (The Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- Barwon Health, Geelong, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- The University of Melbourne, Parkville, Australia
| | | | - Felice N Jacka
- IMPACT (The Institute for Mental and Physical Health and Clinical Translation), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
3
|
Gao Y, O'Hely M, Collier F, Ponsonby AL, Tang MLK, Molloy J, Vuillermin P. Maternal Carriage of Prevotella copri Is Associated With Increased Thymus Derived Naïve Regulatory T Cells in Cord Blood. Immunology 2025; 174:481-484. [PMID: 39949170 DOI: 10.1111/imm.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/01/2025] [Accepted: 01/13/2025] [Indexed: 03/08/2025] Open
Affiliation(s)
- Yuan Gao
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Melbourne, Australia
- Child Health Research Unit, Barwon Health, Geelong, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Martin O'Hely
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Melbourne, Australia
- Child Health Research Unit, Barwon Health, Geelong, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Australia
| | - Fiona Collier
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Melbourne, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - John Molloy
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Melbourne, Australia
- Child Health Research Unit, Barwon Health, Geelong, Australia
| | - Peter Vuillermin
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Melbourne, Australia
- Child Health Research Unit, Barwon Health, Geelong, Australia
| |
Collapse
|
4
|
Li C, Han T, Zhong P, Zhang Y, Zhao T, Wang S, Wang X, Tian Y, Gong G, Liu Y, Huang L, Lu Y, Wang Z. α2,6-linked sialylated oligosaccharides riched in goat milk alleviate food allergy by regulating the gut flora and mucin O-glycosylation. Carbohydr Polym 2025; 350:123049. [PMID: 39647952 DOI: 10.1016/j.carbpol.2024.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
The nutritious goat milk has low allergenicity. Oligosaccharides represent one of the crucial functional constituents in goat milk, which are structurally similar to human milk oligosaccharides (HMOs). Currently, the anti-allergic activity of GMOs has not been reported. In this study, GMOs were efficiently separated into neutral (NGMOs) and sialylated (SGMOs) fractions, following by qualitative and quantitative analysis at the isomer level using online LC-MS/MS. Fifteen NGMOs and 28 SGMOs were detected in goat milk, with 10 SGMOs reported for the first time. Distinctly, α2,6-linked SGMOs were 3.9 times more abundant in goat milk than in bovine milk, with the total relative content of 6'SL, 3'SLN and 6'NGL in SGMOs approach to 60%, which is more similar to HMOs. Orally administering GMOs, especially α2,6-linked sialylated oligosaccharides, significantly alleviated food allergy in ovalbumin-induced BALB/c mice. SGMOs restored the balance of Lachnospiraceae, Erysipelotrichaceae, and Bacteroidaceae, reconstructed the intestinal mucosal barrier, especially restored the levels of fucosylation, sialylation, and sulfation of mucin O-glycans, increased the expression of four core type 2 O-glycans (F1H2N2, F2H2N2, S1F2H2N2, and A1F1H2N2) significantly. This is the first comprehensive study of the anti-allergic activity of GMOs, and the results lay the foundation for the development of GMOs-based natural anti-allergic components.
Collapse
Affiliation(s)
- Cheng Li
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianjiao Han
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Peiyun Zhong
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuyang Zhang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tong Zhao
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shukai Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yang Tian
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
Li Y, Lin YF, Wang SH, Cheng Z, Liu WM, Zou ZH, Liu GM, Liu QM. Purified components of red-edge tea polysaccharide alleviate food allergy in mice by regulating intestinal homeostasis. Int J Biol Macromol 2025; 288:138671. [PMID: 39672399 DOI: 10.1016/j.ijbiomac.2024.138671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Previous studies found red-edge tea polysaccharides (RETPS)-3 and 4 have anti-allergic effects. To investigate the anti-food allergy activity of the RETPS-3/4, the ovalbumin-induced Balb/c mouse food allergy model was established. Food allergy symptoms, serum inflammatory factors, spleen and intestinal pathology were analyzed. The proportion of lymphocyte clusters was measured by flow cytometry. The intestinal flora of mice was examined using the 16S rDNA method. The results showed that RETPS-3/4 alleviated food allergy symptoms in mice, relieved intestinal injury, and reduced the contents of ovalbumin-specific immunoglobulin E, mast cell protease, and histamine in the serum of mice. In addition, RETPS-3/4 regulated the proportion of Th2 cells in mouse mesenteric lymph nodes and the abundance of Lactobacillus_muris and Prevotella. These results showed that RETPS-3/4 had anti-food allergy activity and could be developed as a functional anti-food allergy product.
Collapse
Affiliation(s)
- Yan Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Yong-Feng Lin
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Shao-Han Wang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Zhen Cheng
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Wen-Mei Liu
- San Ming MING BAWEI Industry Research Institute, Sanming 353000, China; Changting County Green Economy Ecological Health Industry Research Institute, Longyan 366300, China
| | - Ze-Hua Zou
- San Ming MING BAWEI Industry Research Institute, Sanming 353000, China; Changting County Green Economy Ecological Health Industry Research Institute, Longyan 366300, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China; Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China.
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China.
| |
Collapse
|
6
|
Faas MM, Smink AM. Shaping immunity: the influence of the maternal gut bacteria on fetal immune development. Semin Immunopathol 2025; 47:13. [PMID: 39891756 PMCID: PMC11787218 DOI: 10.1007/s00281-025-01039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
The development of the fetal immune response is a highly complex process. In the present review, we describe the development of the fetal immune response and the role of the maternal gut bacteria in this process. In contrast to the previous belief that the fetal immune response is inert, it is now thought that the fetal immune response is uniquely tolerant to maternal and allo-antigens, but able to respond to infectious agents, such as bacteria. This is accomplished by the development of T cells toward regulatory T cells rather than toward effector T cells, but also by the presence of functional innate immune cells, such as monocytes and NK cells. Moreover, in fetuses there is different programming of CD8 + T cells and memory T cells toward innate immune cells rather than to adaptive immune cells. The maternal gut bacteria are important in shaping the fetal immune response by producing bacterial products and metabolites that pass the placenta into the fetus and influence development of the fetal immune response. Insight into how and when these products affect the fetal immune response may open new treatment options with pre- or probiotics to affect the maternal gut bacteria and therewith the fetal immune response.
Collapse
Affiliation(s)
- Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands.
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| |
Collapse
|
7
|
Dawson SL, Todd E, Ward AC. The Interplay of Nutrition, the Gut Microbiota and Immunity and Its Contribution to Human Disease. Biomedicines 2025; 13:329. [PMID: 40002741 PMCID: PMC11853302 DOI: 10.3390/biomedicines13020329] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Nutrition, the gut microbiota and immunity are all important factors in the maintenance of health. However, there is a growing realization of the complex interplay between these elements coalescing in a nutrition-gut microbiota-immunity axis. This regulatory axis is critical for health with disruption being implicated in a broad range of diseases, including autoimmune disorders, allergies and mental health disorders. This new perspective continues to underpin a growing number of innovative therapeutic strategies targeting different elements of this axis to treat relevant diseases. This review describes the inter-relationships between nutrition, the gut microbiota and immunity. It then details several human diseases where disruption of the nutrition-gut microbiota-immunity axis has been identified and presents examples of how the various elements may be targeted therapeutically as alternate treatment strategies for these diseases.
Collapse
Affiliation(s)
- Samantha L. Dawson
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Emma Todd
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
8
|
Li Y, Wu F, Wang Y, Li B, Prabhakaran P, Zhou W, Han Y, Sun-Waterhouse D, Li D, Li F. Sesamin Alleviates Allergen-Induced Diarrhea by Restoring Gut Microbiota Composition and Intestinal Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1965-1981. [PMID: 39772607 DOI: 10.1021/acs.jafc.4c10158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Food allergens are the key triggers of allergic diarrhea, causing damage to the immune-rich ileum. This weakens the mucosal barrier and tight junctions, increases intestinal permeability, and exacerbates allergen exposure, thereby worsening the condition. Sesamin, a natural lignan isolated from sesame seed, has shown potential in regulating immune responses, but its effects on intestinal health remain unclear. In this study, we constructed an ovalbumin (OVA)-induced allergic diarrhea mouse model, which demonstrated increased mast cell degranulation, reduced tight junction integrity, and impaired intestinal barrier function. Pro-inflammatory cytokines were significantly increased in the ileum, along with unbalanced cluster of differentiation 4 (CD4+) T-cell immunity, altered gut microbiota composition, and disrupted bacterial metabolism. Sesamin treatment significantly alleviated intestinal damage by modulating gut microbiota abundance, enhancing short-chain fatty acid (SCFA) production, and increasing SCFA receptor expression. This study suggests that sesamin may be a promising therapeutic candidate for allergic diarrhea and intestinal injury.
Collapse
Affiliation(s)
- Yu Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Fan Wu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Yongli Wang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Bo Li
- Jinan Vocational College of Nursing, Jinan 250102, China
| | - Pranesha Prabhakaran
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Wenbo Zhou
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yu Han
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
- School of Chemical Sciences, The University of Auckland, Auckland 92019, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Feng Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
9
|
Zeng S, Zhou M, Mu D, Wang S. Clinical implications of maternal multikingdom transmissions and early-life microbiota. THE LANCET. MICROBE 2025:101042. [PMID: 39818230 DOI: 10.1016/j.lanmic.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025]
Abstract
Mother-to-infant transmission of the bacteriome, virome, mycobiome, archaeome, and their mobile genetic elements has been recognised in nature as an important step for the infant to acquire and maintain a healthy early-life (from birth till age 3 years) microbiota. A comprehensive overview of other maternal multikingdom transmissions remains unavailable, except for that of the bacteriome. Associations between microorganisms and diseases throughout the human life span have been gradually discovered; however, whether these microorganisms are maternally derived and how they concomitantly interact with other microbial counterparts remain poorly understood. This Review first discusses the current understanding of maternal multikingdom transmissions, their contributions to the development of early-life microbiota, and the primary factors that influence the transmission processes. The clinical implications of the inherited microbiota on human health in early life have been emphasised upon next, along with highlighting of knowledge gaps that should be addressed in future research. Finally, interventions to restore typical vertical transmission or disturbed early-life microbiota have been discussed as potential therapeutic approaches.
Collapse
Affiliation(s)
- Shuqin Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meicen Zhou
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Shaopu Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Dera N, Kosińska-Kaczyńska K, Żeber-Lubecka N, Brawura-Biskupski-Samaha R, Massalska D, Szymusik I, Dera K, Ciebiera M. Impact of Early-Life Microbiota on Immune System Development and Allergic Disorders. Biomedicines 2025; 13:121. [PMID: 39857705 PMCID: PMC11762082 DOI: 10.3390/biomedicines13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Introduction: The shaping of the human intestinal microbiota starts during the intrauterine period and continues through the subsequent stages of extrauterine life. The microbiota plays a significant role in the predisposition and development of immune diseases, as well as various inflammatory processes. Importantly, the proper colonization of the fetal digestive system is influenced by maternal microbiota, the method of pregnancy completion and the further formation of the microbiota. In the subsequent stages of a child's life, breastfeeding, diet and the use of antibiotics influence the state of eubiosis, which determines proper growth and development from the neonatal period to adulthood. The literature data suggest that there is evidence to confirm that the intestinal microbiota of the infant plays an important role in regulating the immune response associated with the development of allergic diseases. However, the identification of specific bacterial species in relation to specific types of reactions in allergic diseases is the basic problem. Background: The main aim of the review was to demonstrate the influence of the microbiota of the mother, fetus and newborn on the functioning of the immune system in the context of allergies and asthma. Methods: We reviewed and thoroughly analyzed the content of over 1000 articles and abstracts between the beginning of June and the end of August 2024. Over 150 articles were selected for the detailed study. Results: The selection was based on the PubMed National Library of Medicine search engine, using selected keywords: "the impact of intestinal microbiota on the development of immune diseases and asthma", "intestinal microbiota and allergic diseases", "the impact of intrauterine microbiota on the development of asthma", "intrauterine microbiota and immune diseases", "intrauterine microbiota and atopic dermatitis", "intrauterine microbiota and food allergies", "maternal microbiota", "fetal microbiota" and "neonatal microbiota". The above relationships constituted the main criteria for including articles in the analysis. Conclusions: In the present review, we showed a relationship between the proper maternal microbiota and the normal functioning of the fetal and neonatal immune system. The state of eubiosis with an adequate amount and diversity of microbiota is essential in preventing the development of immune and allergic diseases. The way the microbiota is shaped, resulting from the health-promoting behavior of pregnant women, the rational conduct of the medical staff and the proper performance of the diagnostic and therapeutic process, is necessary to maintain the health of the mother and the child. Therefore, an appropriate lifestyle, rational antibiotic therapy as well as the way of completing the pregnancy are indispensable in the prevention of the above conditions. At the same time, considering the intestinal microbiota of the newborn in relation to the genera and phyla of bacteria that have a potentially protective effect, it is worth noting that the use of suitable probiotics and prebiotics seems to contribute to the protective effect.
Collapse
Affiliation(s)
- Norbert Dera
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland; (D.M.); (M.C.)
| | - Katarzyna Kosińska-Kaczyńska
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, 02-781 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Robert Brawura-Biskupski-Samaha
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
| | - Diana Massalska
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland; (D.M.); (M.C.)
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland
| | - Iwona Szymusik
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
| | - Kacper Dera
- Pediatric Ward, Department of Pediatrics, Center of Postgraduate Medical Education, Bielański Hospital, 01-809 Warsaw, Poland
| | - Michał Ciebiera
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland; (D.M.); (M.C.)
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland
| |
Collapse
|
11
|
Lin H, Perkins NJ, Nkoy F, Stanford JB, Schliep KC, Peddada SD. A Study of Short-Chain Fatty Acids During the Canalicular and Early Saccular Phases of Fetal Lung Development and Childhood Asthma. Genes (Basel) 2024; 15:1595. [PMID: 39766862 PMCID: PMC11675564 DOI: 10.3390/genes15121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Emerging literature indicates that the microbiome and its byproducts, such as short-chain fatty acids (SCFAs), play an important role in childhood diseases such as allergies and asthma. Specifically, there is evidence suggesting that SCFAs play a critical role in fetal immunoprogramming during the late saccular phase of fetal lung development. An increase in acetate during the late saccular phase is known to play a critical role in inhibiting histone deacetylases (HDACs), resulting in a cascade of events, including Treg immune regulation, involved in fetal immunoprogramming, and reduction in the asthma phenotype. However, it is not known whether changes in SCFA levels, especially acetate, occurred during the canalicular or early saccular phase among pregnant women whose children did not develop asthma. METHODS In this research, we investigated this question using plasma samples obtained from mothers during the 20th and 28th weeks of pregnancy. Mothers whose children developed asthma were categorized as cases, while those whose children did not were categorized as controls. The specimens were assayed for a panel of SCFAs consisting of acetate, propionate, butyrate, valerate, isobutyrate, and isovalerate. RESULTS The resulting data indicated no significant differences between the cases and controls, either at week 20 or week 28, in any of the SCFAs measured, despite the vascularization during these phases. CONCLUSIONS We did not find differences in measured SCFAs at week 20 or at week 28. A larger prospective study covering multiple time points is necessary to confirm the findings of this preliminary study. Such a study, together with the published literature regarding later time points, may help discover critical windows during pregnancy when simple manipulation of diet will result in healthier outcomes for infants.
Collapse
Affiliation(s)
- Huang Lin
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD 20742, USA;
| | - Neil J. Perkins
- Biostatistics and Bioinformatics Branch (BBB), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20817, USA;
| | - Flory Nkoy
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Joseph B. Stanford
- Division of Public Health, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA; (J.B.S.); (K.C.S.)
| | - Karen C. Schliep
- Division of Public Health, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA; (J.B.S.); (K.C.S.)
| | - Shyamal D. Peddada
- Biostatistics and Computational Biology Branch (BCBB), National Institute of Environmental Health Sciences (NIEHS), NIH, Durham, NC 27709, USA
| |
Collapse
|
12
|
Anaclerio F, Minelli M, Antonucci I, Gatta V, Stuppia L. Microbiota and Autism: A Review on Oral and Gut Microbiome Analysis Through 16S rRNA Sequencing. Biomedicines 2024; 12:2686. [PMID: 39767593 PMCID: PMC11726726 DOI: 10.3390/biomedicines12122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with multifactorial etiologies, including genetic, environmental, and microbiological factors. In recent years, increasing attention has been given to the role of the gut microbiota in ASD. Emerging evidence suggests that gut microbiota dysbiosis may influence the central nervous system through the gut-brain axis, potentially impacting behavior and neurodevelopment. The use of 16S rRNA gene sequencing has become a pivotal tool in profiling the microbial communities associated with ASD, offering valuable insights into bacterial diversity, composition, and potential functional roles. This review aims to provide a comprehensive analysis of current findings on the relationship between the gut and oral microbiota with ASD, and a particular focus on studies utilizing 16S rRNA sequencing. We will explore how gut microbiome alterations may contribute to ASD pathophysiology, discuss the limitations of existing research, and propose future directions for the integration of microbiome analysis in ASD diagnostics and treatment strategies. These findings underscore the potential role of microbiota in modulating ASD symptoms. The data suggest that specific bacterial taxa are consistently altered in ASD, which may have implications for understanding the gut-brain axis and its influence on neurodevelopment.
Collapse
Affiliation(s)
- Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (I.A.); (V.G.); (L.S.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Minelli
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (I.A.); (V.G.); (L.S.)
- Department of Medical Genetics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (I.A.); (V.G.); (L.S.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (I.A.); (V.G.); (L.S.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.M.); (I.A.); (V.G.); (L.S.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
13
|
Gogos A, Thomson S, Drummond K, Holland L, O'Hely M, Dawson S, Marx W, Mansell T, Burgner D, Saffery R, Sly P, Collier F, Tang ML, Symeonides C, Vuillermin P, Ponsonby AL. Socioeconomic adversity, maternal nutrition, and the prenatal programming of offspring cognition and language at two years of age through maternal inflammation. Brain Behav Immun 2024; 122:471-482. [PMID: 39163911 DOI: 10.1016/j.bbi.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/18/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Increasing rates of child neurodevelopmental vulnerability are a significant public health challenge. The adverse effect of socioeconomic adversity on offspring cognition may be mediated through elevated prenatal maternal systemic inflammation, but the role of modifiable antecedents such as maternal nutrition has not yet been clarified. This study aimed to examine (1) whether prenatal factors, with an emphasis on maternal nutrition, were associated with prenatal maternal systemic inflammation at 28 weeks' gestation, including the metabolomic marker glycoprotein acetyls (GlycA); (2) the extent to which the association between prenatal maternal nutrition and child cognition and language at age two years was mediated by elevated maternal inflammation in pregnancy; (3) the extent to which the associations between prenatal socioeconomic adversity and child neurodevelopment were mediated through prenatal maternal nutrition and GlycA levels. We used a prospective population-derived pre-birth longitudinal cohort study, the Barwon Infant Study (Barwon region of Victoria, Australia), where 1074 mother-child pairs were recruited by 28 weeks' gestation using an unselected sampling frame. Exposures included prenatal factors such as maternal diet measured by a validated food frequency questionnaire at 28 weeks' gestation and dietary patterns determined by principal component analysis. The main outcome measures were maternal inflammatory biomarkers (GlycA and hsCRP levels) at 28 weeks' gestation, and offspring Bayley-III cognition and language scores at age two years. Results showed that the 'modern wholefoods' and 'processed' maternal dietary patterns were independently associated with reduced and elevated maternal inflammation respectively (GlycA or hsCRP p < 0.001), and also with higher and reduced offspring Bayley-III scores respectively (cognition p ≤ 0.004, language p ≤ 0.009). Associations between dietary patterns and offspring cognition and language were partially mediated by higher maternal GlycA (indirect effect: cognition p ≤ 0.036, language p ≤ 0.05), but were less evident for hsCRP. The maternal dietary patterns mediated 22 % of the association between socioeconomic adversity (lower maternal education and/or lower household income vs otherwise) and poorer offspring cognition (indirect effect p = 0.001). Variation in prenatal GlycA levels that were independent of these dietary measures appeared less important. In conclusion, modifiable prenatal maternal dietary patterns were associated with adverse child neurocognitive outcomes through their effect on maternal inflammation (GlycA). Maternal diet may partially explain the association between socioeconomic adversity and child neurocognitive vulnerability. Maternal diet-by-inflammation pathways are an attractive target for future intervention studies.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Lada Holland
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Samantha Dawson
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Peter Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia; Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Fiona Collier
- Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, VIC, Australia; Barwon Health, Geelong, VIC, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Department of Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Lian J, Xia L, Wang G, Wu W, Yi P, Li M, Su X, Chen Y, Li X, Dou F, Wang Z. Multi-omics evaluation of clinical-grade human umbilical cord-derived mesenchymal stem cells in synergistic improvement of aging related disorders in a senescence-accelerated mouse model. Stem Cell Res Ther 2024; 15:383. [PMID: 39468666 PMCID: PMC11520580 DOI: 10.1186/s13287-024-03986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The prevalence of age-related disorders, particularly in neurological and cardiovascular systems, is an increasing global health concern. Mesenchymal stem cell (MSC) therapy, particularly using human umbilical cord-derived MSCs (HUCMSCs), has shown promise in mitigating these disorders. This study investigates the effects of HUCMSCs on aging-related conditions in a senescence-accelerated mouse model (SAMP8), with a focus on DNA damage, gut microbiota alterations, and metabolic changes. METHODS SAMP8 mice were treated with clinical-grade HUCMSCs via intraperitoneal injections. Behavioral and physical assessments were conducted to evaluate cognitive and motor functions. The Single-Strand Break Mapping at Nucleotide Genome Level (SSiNGLe) method was employed to assess DNA single-strand breaks (SSBs) across the genome, with particular attention to exonic regions and transcription start sites. Gut microbiota composition was analyzed using 16S rRNA sequencing, and carboxyl metabolomic profiling was performed to identify changes in circulating metabolites. RESULTS HUCMSC treatment significantly improved motor coordination and reduced anxiety in SAMP8 mice. SSiNGLe analysis revealed a notable reduction in DNA SSBs in MSC-treated mice, especially in critical genomic regions, suggesting that HUCMSCs may mitigate age-related DNA damage. The functional annotation of the DNA breaktome indicated a potential link between reduced DNA damage and altered metabolic pathways. Additionally, beneficial alterations in gut microbiota were observed, including an increase in short-chain fatty acid (SCFA)-producing bacteria, which correlated with improved metabolic profiles. CONCLUSION The administration of HUCMSCs in SAMP8 mice not only reduces DNA damage but also induces favorable changes in gut microbiota and metabolism. The observed alterations in DNA break patterns, along with specific changes in microbiota and metabolic profiles, suggest that these could serve as potential biomarkers for evaluating the efficacy of HUCMSCs in treating age-related disorders. This highlights a promising avenue for the development of new therapeutic strategies that leverage these biomarkers, to enhance the effectiveness of HUCMSC-based treatments for aging-associated diseases.
Collapse
Affiliation(s)
- Jiabian Lian
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Guohao Wang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Weijing Wu
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Ping Yi
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Meilin Li
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Xufeng Su
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Yushuo Chen
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Xun Li
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Zhanxiang Wang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
15
|
Li J, Shen N, He W, Pan Y, Wu J, Zhao R, Mo X, Li Y. Gut microbiome impact on childhood allergic rhinitis and house dust mite IgE responses. Pediatr Res 2024:10.1038/s41390-024-03645-y. [PMID: 39433961 DOI: 10.1038/s41390-024-03645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The correlation between the gut microbiota and airway inflammation in childhood allergic rhinitis (AR), particularly concerning allergen exposure, remains insufficiently explored. This study aimed to link gut microbiota changes with house dust mite (HDM)-specific IgE responses in pediatric AR. METHODS Using metagenomic shotgun sequencing, we compared the fecal microbiota of 60 children with HDM-AR to 48 healthy controls (HC), analyzing the link to IgE reactions. We examined the effects of oral Escherichia (E.) fergusonii treatment in mice sensitized with ovalbumin and HDM on allergic symptoms, mucosal cell infiltration, Th1/Th2/Tregs balance in the spleen, serum cytokine levels, and E. fergusonii presence in feces. RESULTS Children with HDM-AR have a less diverse gut microbiome and lower levels of E. fergusonii compared to controls, with a negative correlation between E. fergusonii abundance and HDM-specific IgE levels. In mice sensitized with OVA and HDM, oral administration of E. fergusonii improved allergic symptoms, reduced nasal eosinophils/mast cells infiltration and adjusted Th cell populations towards a non-allergic profile in splenic lymphocytes with exception of IFN-γ change in serum. CONCLUSION These findings underline the potential of targeting gut microbiota, particularly E. fergusonii, in managing childhood HDM-AR, suggesting a promising approach for future interventions. IMPACT The composition and distribution of gut microbiota in children with HDM-AR are significant changed. The abundance of Escherichia genus is decreased in HDM-AR children. HDM-specific IgE levels are strongly negatively associated with E. fergusonii abundance. Oral administration of E. fergusonii effectively suppresses allergic responses in murine model. These findings offer novel insights into the diagnosis and treatment of HDM-AR, which suggested that E. fergusonii holds promise as a potential therapeutic avenue for managing HDM-AR.
Collapse
Affiliation(s)
- Junyang Li
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun He
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Pan
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Wu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruike Zhao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youjin Li
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of Otolaryngology, Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China.
| |
Collapse
|
16
|
Donald K, Finlay BB. Mechanisms of microbe-mediated immune development in the context of antibiotics and asthma. FRONTIERS IN ALLERGY 2024; 5:1469426. [PMID: 39469482 PMCID: PMC11513386 DOI: 10.3389/falgy.2024.1469426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
The gut houses 70%-80% of the body's immune cells and represents the main point of contact between the immune system and the outside world. Immune maturation occurs largely after birth and is guided by the gut microbiota. In addition to the many human clinical studies that have identified relationships between gut microbiota composition and disease outcomes, experimental research has demonstrated a plethora of mechanisms by which specific microbes and microbial metabolites train the developing immune system. The healthy maturation of the gut microbiota has been well-characterized and discreet stages marked by changes in abundance of specific microbes have been identified. Building on Chapter 8, which discusses experimental models used to study the relationship between the gut microbiota and asthma, the present review aims to dive deeper into the specific microbes and metabolites that drive key processes in immune development. The implications of microbiota maturation patterns in the context of asthma and allergies, as well as the effects of antibiotics on microbe-immune crosstalk, will also be discussed.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Departmentof Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Departmentof Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Singh AK, Kumar P, Mishra SK, Rajput VD, Tiwari KN, Singh AK, Minkina T, Pandey AK, Upadhyay P. A Dual Therapeutic Approach to Diabetes Mellitus via Bioactive Phytochemicals Found in a Poly Herbal Extract by Restoration of Favorable Gut Flora and Related Short-Chain Fatty Acids. Appl Biochem Biotechnol 2024; 196:6690-6715. [PMID: 38393580 DOI: 10.1007/s12010-024-04879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Diabetes mellitus (DM), a metabolic and endocrine condition, poses a serious threat to human health and longevity. The emerging role of gut microbiome associated with bioactive compounds has recently created a new hope for DM treatment. UHPLC-HRMS methods were used to identify these compounds in a poly herbal ethanolic extract (PHE). The effects of PHE on body weight (BW), fasting blood glucose (FBG) level, gut microbiota, fecal short-chain fatty acids (SCFAs) production, and the correlation between DM-related indices and gut microbes, in rats were investigated. Chebulic acid (0.368%), gallic acid (0.469%), andrographolide (1.304%), berberine (6.442%), and numerous polysaccharides were the most representative constituents in PHE. A more significant BW gain and a reduction in FBG level towards normal of PHE 600 mg/kg treated rats group were resulted at the end of 28th days of the study. Moreover, the composition of the gut microbiota corroborated the study's hypothesis, as evidenced by an increased ratio of Bacteroidetes to Firmicutes and some beneficial microbial species, including Prevotella copri and Lactobacillus hamster. The relative abundance of Bifidobacterium pseudolongum, Ruminococcus bromii, and Blautia producta was found to decline in PHE treatment groups as compared to diabetic group. The abundance of beneficial bacteria in PHE 600 mg/kg treatment group was concurrently associated with increased SCFAs concentrations of acetate and propionate (7.26 nmol/g and 4.13 nmol/g). The findings of this study suggest a promising approach to prevent DM by demonstrating that these naturally occurring compounds decreased FBG levels by increasing SCFAs content and SCFAs producing gut microbiota.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Singh
- Department of Chemistry, Mariahu PG College, VBS Purvanchal University, Jaunpur, Uttar Pradesh, 222161, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Ajay Kumar Pandey
- Department of Kaychikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prabhat Upadhyay
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
18
|
Mousavian AH, Zare Garizi F, Ghoreshi B, Ketabi S, Eslami S, Ejtahed HS, Qorbani M. The association of infant and mother gut microbiomes with development of allergic diseases in children: a systematic review. J Asthma 2024; 61:1121-1135. [PMID: 38506489 DOI: 10.1080/02770903.2024.2332921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE It is believed that gut microbiota alteration leads to both intestinal and non-intestinal diseases in children. Since infants inherit maternal microbiota during pregnancy and lactation, recent studies suggest that changes in maternal microbiota can cause immune disorders as well. This systematic review was designed to assess the association between the child and mother's gut microbiome and allergy development in childhood. DATA SOURCES In this systematic review, international databases including PubMed, Scopus, and ISI/WOS were searched until January 2023 to identify relevant studies. STUDY SELECTIONS Observational studies that analyzed infant or maternal stool microbiome and their association with allergy development in children were included in this study. Data extraction and quality assessment of the included studies were independently conducted by two researchers. RESULTS Of the 1694 papers evaluated, 21 studies examined neonate gut microbiome by analyzing stool samples and six studies examined maternal gut microbiota. A total of 5319 participants were included in this study. Asthma followed by eczema and dermatitis were the most common allergy disorders among children. Urbanization caused a lack of diversity in the bacterial microbiota as well as lower levels of Bifidobacterium and Lachnospira associated with a higher risk of allergy. In contrast, higher levels of Roseburia and Flavonifractor were associated with lower allergy risk. CONCLUSIONS This systematic review shows that gut microbiota may be associated with allergy development. Further studies are required to provide a definitive answer.
Collapse
Affiliation(s)
- Amir-Hossein Mousavian
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zare Garizi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Behnaz Ghoreshi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Siavash Ketabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
19
|
Davis EC, Monaco CL, Insel R, Järvinen KM. Gut microbiome in the first 1000 days and risk for childhood food allergy. Ann Allergy Asthma Immunol 2024; 133:252-261. [PMID: 38494114 PMCID: PMC11344696 DOI: 10.1016/j.anai.2024.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVE To summarize recent data on the association between gut microbiome composition and food allergy (FA) in early childhood and highlight potential host-microbiome interactions that reinforce or abrogate oral tolerance. DATA SOURCES PubMed search of English-language articles related to FA, other atopic disease, and the gut microbiome in pregnancy and early childhood. STUDY SELECTIONS Human studies published after 2015 assessing the relationship between the gut bacteriome and virome in the first 2 years of life and FA or food sensitization development in early childhood were prioritized. Additional human studies conducted on the prenatal gut microbiome or other atopic diseases and preclinical studies are also discussed. RESULTS Children who developed FA harbored lower abundances of Bifidobacterium and Clostridia species and had a less mature microbiome during infancy. The early bacterial microbiome protects against FA through production of anti-inflammatory metabolites and induction of T regulatory cells and may also affect FA risk through a role in trained immunity. Infant enteric phage communities are related to childhood asthma development, though no data are available for FA. Maternal gut microbiome during pregnancy is associated with childhood FA risk, potentially through transplacental delivery of maternal bacterial metabolites, though human studies are lacking. CONCLUSION The maternal and infant microbiomes throughout the first 1000 days of life influence FA risk through a number of proposed mechanisms. Further large, longitudinal cohort studies using taxonomic, functional, and metabolomic analysis of the bacterial and viral microbiomes are needed to provide further insight on the host-microbe interactions underlying FA pathogenesis in childhood.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Cynthia L Monaco
- Division of Infectious Disease, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard Insel
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
20
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Sasaki M, Suaini NHA, Afghani J, Heye KN, O'Mahony L, Venter C, Lauener R, Frei R, Roduit C. Systematic review of the association between short-chain fatty acids and allergic diseases. Allergy 2024; 79:1789-1811. [PMID: 38391245 DOI: 10.1111/all.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
We performed a systematic review to investigate the current evidence on the association between allergic diseases and short chain fatty acids (SCFAs), which are microbially produced and suggested as one mechanism on how gut microbiome affects the risk of allergic diseases. Medline, Embase and Web of Science were searched from data inception until September 2022. We identified 37 papers, of which 17 investigated prenatal or early childhood SCFAs and the development of allergic diseases in childhood, and 20 assessed SCFAs in patients with pre-existing allergic diseases. Study design, study populations, outcome definition, analysis method and reporting of the results varied between papers. Overall, there was some evidence showing that the three main SCFAs (acetate, propionate and butyrate) in the first few years of life had a protective effect against allergic diseases, especially for atopic dermatitis, wheeze or asthma and IgE-mediated food allergy in childhood. The association between each SCFA and allergic disease appeared to be different by disease and the age of assessment. Further research that can determine the potentially timing specific effect of each SCFA will be useful to investigate how SCFAs can be used in treatment or in prevention against allergic diseases.
Collapse
Affiliation(s)
- Mari Sasaki
- University Children's Hospital Zürich, Zürich, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Noor H A Suaini
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jamie Afghani
- Environmental Medicine Faculty of Medicine, University of Augsburg, Augsburg, Germany
- ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
- Institute of Environmental Medicine, Environmental Health Centre, Helmholtz Munich - German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
| | - Kristina N Heye
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Liam O'Mahony
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Carina Venter
- Pediatric Allergy and Immunology, University of Colorado/Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Roger Lauener
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Remo Frei
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Caroline Roduit
- University Children's Hospital Zürich, Zürich, Switzerland
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
22
|
Herman K, Brough HA, Pier J, Venter C, Järvinen KM. Prevention of IgE-Mediated Food Allergy: Emerging Strategies Through Maternal and Neonatal Interventions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1686-1694. [PMID: 38677585 PMCID: PMC11420814 DOI: 10.1016/j.jaip.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Whereas the early introduction of highly allergenic foods has been shown to be effective at preventing the onset of food allergy (FA) in high-risk infants, sensitization to food antigens can occur prior to complementary food introduction, and thus, additional earlier FA prevention strategies are urgently needed. Currently, aside from early introduction of peanut and egg, no therapies are strongly recommended by international professional allergy societies for the primary prevention of FA. This review focuses on maternal- and neonatal-directed interventions that are being actively investigated and developed, including maternal dietary factors and supplementation, specific elimination diets, breastfeeding, cow's milk formula supplementation, microbiome manipulations, bacterial lysate therapy, and skin barrier therapies. Evaluating how these factors and various prenatal/early life environmental exposures may impact the development of FA is crucial for accurately counseling caregivers in the prevention of FA.
Collapse
Affiliation(s)
- Katherine Herman
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Center for Food Allergy, University of Rochester Medical Center, Rochester, NY
| | - Helen A Brough
- Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, Children's Allergy Service. King's College London, Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, London, UK
| | - Jennifer Pier
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Center for Food Allergy, University of Rochester Medical Center, Rochester, NY
| | - Carina Venter
- Section of Pediatric Allergy and Immunology, Children's Hospital Colorado/University of Colorado, Denver, Colo
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Center for Food Allergy, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
23
|
Vélez-Ixta JM, Juárez-Castelán CJ, Ramírez-Sánchez D, Lázaro-Pérez NDS, Castro-Arellano JJ, Romero-Maldonado S, Rico-Arzate E, Hoyo-Vadillo C, Salgado-Mancilla M, Gómez-Cruz CY, Krishnakumar A, Piña-Escobedo A, Benitez-Guerrero T, Pizano-Zárate ML, Cruz-Narváez Y, García-Mena J. Post Natal Microbial and Metabolite Transmission: The Path from Mother to Infant. Nutrients 2024; 16:1990. [PMID: 38999737 PMCID: PMC11243545 DOI: 10.3390/nu16131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The entero-mammary pathway is a specialized route that selectively translocates bacteria to the newborn's gut, playing a crucial role in neonatal development. Previous studies report shared bacterial and archaeal taxa between human milk and neonatal intestine. However, the functional implications for neonatal development are not fully understood due to limited evidence. This study aimed to identify and characterize the microbiota and metabolome of human milk, mother, and infant stool samples using high-throughput DNA sequencing and FT-ICR MS methodology at delivery and 4 months post-partum. Twenty-one mothers and twenty-five infants were included in this study. Our results on bacterial composition suggest vertical transmission of bacteria through breastfeeding, with major changes occurring during the first 4 months of life. Metabolite chemical characterization sheds light on the growing complexity of the metabolites. Further data integration and network analysis disclosed the interactions between different bacteria and metabolites in the biological system as well as possible unknown pathways. Our findings suggest a shared bacteriome in breastfed mother-neonate pairs, influenced by maternal lifestyle and delivery conditions, serving as probiotic agents in infants for their healthy development. Also, the presence of food biomarkers in infants suggests their origin from breast milk, implying selective vertical transmission of these features.
Collapse
Affiliation(s)
- Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - Carmen Josefina Juárez-Castelán
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - Daniela Ramírez-Sánchez
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - Noemí del Socorro Lázaro-Pérez
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - José Javier Castro-Arellano
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (J.J.C.-A.); (E.R.-A.); (M.S.-M.); (C.Y.G.-C.)
| | - Silvia Romero-Maldonado
- Unidad de Cuidados Intermedios al Recién Nacido, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico;
| | - Enrique Rico-Arzate
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (J.J.C.-A.); (E.R.-A.); (M.S.-M.); (C.Y.G.-C.)
| | - Carlos Hoyo-Vadillo
- Departamento de Farmacología, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico;
| | - Marisol Salgado-Mancilla
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (J.J.C.-A.); (E.R.-A.); (M.S.-M.); (C.Y.G.-C.)
| | - Carlos Yamel Gómez-Cruz
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (J.J.C.-A.); (E.R.-A.); (M.S.-M.); (C.Y.G.-C.)
| | - Aparna Krishnakumar
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - Tizziani Benitez-Guerrero
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - María Luisa Pizano-Zárate
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico
- Unidad de Medicina Familiar No. 4, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (J.J.C.-A.); (E.R.-A.); (M.S.-M.); (C.Y.G.-C.)
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| |
Collapse
|
24
|
Notarbartolo V, Badiane BA, Insinga V, Giuffrè M. Antimicrobial Stewardship: A Correct Management to Reduce Sepsis in NICU Settings. Antibiotics (Basel) 2024; 13:520. [PMID: 38927186 PMCID: PMC11200753 DOI: 10.3390/antibiotics13060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery of antimicrobial drugs has led to a significant increase in survival from infections; however, they are very often prescribed and administered, even when their use is not necessary and appropriate. Newborns are particularly exposed to infections due to the poor effectiveness and the immaturity of their immune systems. For this reason, in Neonatal Intensive Care Units (NICUs), the use of antimicrobial drugs is often decisive and life-saving, and it must be started promptly to ensure its effectiveness in consideration of the possible rapid evolution of the infection towards sepsis. Nevertheless, the misuse of antibiotics in the neonatal period leads not only to an increase in the development and wide spreading of antimicrobial resistance (AMR) but it is also associated with various short-term (e.g., alterations of the microbiota) and long-term (e.g., increased risk of allergic disease and obesity) effects. It appears fundamental to use antibiotics only when strictly necessary; specific decision-making algorithms and electronic calculators can help limit the use of unnecessary antibiotic drugs. The aim of this narrative review is to summarize the right balance between the risks and benefits of antimicrobial therapy in NICUs; for this purpose, specific Antimicrobial Stewardship Programs (ASPs) in neonatal care and the creation of a specific antimicrobial stewardship team are requested.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Neonatology and Neonatal Intensive Care Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Bintu Ayla Badiane
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (B.A.B.); (M.G.)
| | - Vincenzo Insinga
- Neonatology and Neonatal Intensive Care Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (B.A.B.); (M.G.)
| |
Collapse
|
25
|
Mousavi Khaneghah A, Mostashari P. Decoding food reactions: a detailed exploration of food allergies vs. intolerances and sensitivities. Crit Rev Food Sci Nutr 2024; 65:2669-2713. [PMID: 38747015 DOI: 10.1080/10408398.2024.2349740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The food matrix is a complex system encompassing all constituent elements in food production. It influences the digestibility of these elements through direct interactions and affects the digestive environment. Furthermore, the gastrointestinal system possesses precise mechanisms that efficiently process dietary components into essential nutrients, effectively preventing the onset of abnormal immune responses or dysfunctional host reactions in most instances. However, the incidence of adverse food reactions is constantly increasing, and evidence indicates that this process is environmental. Adverse reactions can be categorized as toxic or nontoxic. Toxic reactions are dose-dependent and can result from natural compounds, processing-induced substances, or contaminants. Nontoxic reactions like food intolerance and hypersensitivity depend on individual susceptibility and evoke specific pathological and physiological responses. This review aims to elucidate the mechanisms underlying the occurrence of immune- (food allergies and sensitivities) and non-immune-mediated (food intolerance) reactions, emphasizing the fundamental distinctions between these two categories. Enhanced comprehension and distinction of these mechanisms will significantly contribute to advancing preventive and therapeutic approaches and establishing guidelines for food labeling concerning immune-mediated reactions.
Collapse
Affiliation(s)
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
26
|
Xiao L, Zhou T, Zuo Z, Sun N, Zhao F. Spatiotemporal patterns of the pregnancy microbiome and links to reproductive disorders. Sci Bull (Beijing) 2024; 69:1275-1285. [PMID: 38388298 DOI: 10.1016/j.scib.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
The microbiome of females undergoes extensive remodeling during pregnancy, which is likely to have an impact on the health of both mothers and offspring. Nevertheless, large-scale integrated investigations characterizing microbiome dynamics across key body habitats are lacking. Here, we performed an extensive meta-analysis that compiles and analyzes microbiome profiles from >10,000 samples across the gut, vagina, and oral cavity of pregnant women from diverse geographical regions. We have unveiled unexpected variations in the taxonomic, functional, and ecological characteristics of microbial communities throughout the course of pregnancy. The gut microbiota showed distinct trajectories between Western and non-Western populations. The vagina microbiota exhibited fluctuating transitions at the genus level across gestation, while the oral microbiota remained relatively stable. We also identified distinctive microbial signatures associated with prevalent pregnancy-related disorders, including opposite variations in the oral and gut microbiota of patients with gestational diabetes and disrupted microbial networks in preterm birth. This study establishes a comprehensive atlas of the pregnancy microbiome by integrating multidimensional datasets and offers foundational insights into the intricate interplay between microbes and host factors that underlie reproductive health.
Collapse
Affiliation(s)
- Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Zhou
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Ningxia Sun
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Barker-Tejeda TC, Zubeldia-Varela E, Macías-Camero A, Alonso L, Martín-Antoniano IA, Rey-Stolle MF, Mera-Berriatua L, Bazire R, Cabrera-Freitag P, Shanmuganathan M, Britz-McKibbin P, Ubeda C, Francino MP, Barber D, Ibáñez-Sandín MD, Barbas C, Pérez-Gordo M, Villaseñor A. Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach. Nat Commun 2024; 15:3004. [PMID: 38589361 PMCID: PMC11001937 DOI: 10.1038/s41467-024-47182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.
Collapse
Affiliation(s)
- Tomás Clive Barker-Tejeda
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Elisa Zubeldia-Varela
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Andrea Macías-Camero
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Adoración Martín-Antoniano
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Estudios de las Adicciones IEA-CEU, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Leticia Mera-Berriatua
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Raphaëlle Bazire
- Department of Allergy, Hospital Infantil Niño Jesús, Fib-HNJ, Madrid, Spain
- Instituto de Investigación Sanitaria-La Princesa, Madrid, Spain
| | - Paula Cabrera-Freitag
- Pedriatic Allergy Unit, Allergy Service, Hospital General Universitario Gregorio Marañón, and Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Carles Ubeda
- Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - M Pilar Francino
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
- Joint Research Unit in Genomics and Health, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO) and Institut de Biologia Integrativa de Sistemes (Universitat de València / Consejo Superior de Investigaciones Científicas), València, Spain
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - María Dolores Ibáñez-Sandín
- Department of Allergy, Hospital Infantil Niño Jesús, Fib-HNJ, Madrid, Spain
- Instituto de Investigación Sanitaria-La Princesa, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Marina Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| | - Alma Villaseñor
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| |
Collapse
|
28
|
Lu X, Shi Z, Jiang L, Zhang S. Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology. Front Immunol 2024; 15:1362784. [PMID: 38545107 PMCID: PMC10965710 DOI: 10.3389/fimmu.2024.1362784] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring.
Collapse
Affiliation(s)
- Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Zhan Shi
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
29
|
Cho H, Kim J, Kim S, Jeong HI, Kwon M, Kim HM, Shim JS, Kim K, Baek J, Kyung Y, Choi SJ, Oh SY, Bae J, Won HH, Kim J, Ahn K. Postpartum Maternal Anxiety Affects the Development of Food Allergy Through Dietary and Gut Microbial Diversity During Early Infancy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:154-167. [PMID: 38528383 DOI: 10.4168/aair.2024.16.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 03/27/2024]
Abstract
PURPOSE We aimed to investigate the mediating factors between maternal anxiety and the development of food allergy (FA) in children until 2 years from birth. METHODS In this longitudinal cohort of 122 mother-child dyads from pregnancy to 24 months of age, we regularly surveyed maternal psychological states, infant feeding data, and allergic symptoms and collected stool samples at 6 months of age for microbiome analysis. Considering the temporal order of data collection, we investigated serial mediating effects and indirect effects among maternal anxiety, dietary diversity (DD), gut microbial diversity, and FA using structural equation modeling. RESULTS Among the 122 infants, 15 (12.3%) were diagnosed with FA. Increased maternal anxiety between 3 and 6 months after delivery was associated with a lower DD score. Infants with low DD at 4 months showed low gut microbial richness, which was associated with FA development. When the infants were grouped into 4 subtypes, using consensus clustering of 13 gut bacteria significantly associated with maternal anxiety and DD, Prevotella, Eubacterium, Clostridiales and Lachnospiraceae were more abundant in the group with lower FA occurrence. CONCLUSIONS Postpartum maternal anxiety, mediated by reduced DD and gut microbial diversity, may be a risk factor for the development of FA in infants during the first 2 years of life.
Collapse
Affiliation(s)
- Hyunbin Cho
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Jiwon Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sukyung Kim
- Department of Pediatrics, Hallym University Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Hwaseong, Korea
| | - Hye-In Jeong
- Department of Pediatrics, Eulji University Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Mijeong Kwon
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Mi Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Sun Shim
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Kyunga Kim
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Jihyun Baek
- Department of Psychology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yechan Kyung
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jaewoong Bae
- R&D Institute, BioEleven Co., Ltd., Seoul, Korea
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea.
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea
| |
Collapse
|
30
|
Adamczak AM, Werblińska A, Jamka M, Walkowiak J. Maternal-Foetal/Infant Interactions-Gut Microbiota and Immune Health. Biomedicines 2024; 12:490. [PMID: 38540103 PMCID: PMC10967760 DOI: 10.3390/biomedicines12030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, the number of scientific publications on the role of intestinal microbiota in shaping human health, as well as the occurrence of intestinal dysbiosis in various disease entities, has increased dynamically. However, there is a gap in comprehensively understanding the factors influencing a child's gut microbiota. This review discusses the establishment of gut microbiota and the immunological mechanisms regulating children's microbiota, emphasising the importance of prioritising the development of appropriate gut microbiota in a child from the planning stages of pregnancy. The databases PubMed, Web of Sciences, Cochrane, Scopus and Google Scholar were searched to identify relevant articles. A child's gut microbiota composition is influenced by numerous factors, such as diet during pregnancy, antibiotic therapy, the mother's vaginal microbiota, delivery method, and, later, feeding method and environmental factors. During pregnancy, the foetus naturally acquires bacterial strains from the mother through the placenta, thereby shaping the newborn's immune system. Inappropriate maternal vaginal microbiota may increase the risk of preterm birth. Formula-fed infants typically exhibit a more diverse microbiota than their breastfed counterparts. These factors, among others, shape the maturation of the child's immune system, impacting the production of IgA antibodies that are central to cellular humoral immune defence. Further research should focus on identifying specific microbiota-immune system interactions influencing a child's immune health and developing personalised treatment strategies for immune-related disorders.
Collapse
Affiliation(s)
- Ada Maria Adamczak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznań, Poland; (A.M.A.); (M.J.)
| | - Alicja Werblińska
- Greater Poland Centre for Pulmonology and Thoracic Surgery Named after Eugenia and Janusz Zeyland, 62 Szamarzewskiego Street, 60-569 Poznań, Poland;
| | - Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznań, Poland; (A.M.A.); (M.J.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznań, Poland; (A.M.A.); (M.J.)
| |
Collapse
|
31
|
Liu M, Zhang J, Zhou Y, Xiong S, Zhou M, Wu L, Liu Q, Chen Z, Jiang H, Yang J, Liu Y, Wang Y, Chen C, Huang L. Gut microbiota affects the estrus return of sows by regulating the metabolism of sex steroid hormones. J Anim Sci Biotechnol 2023; 14:155. [PMID: 38115159 PMCID: PMC10731813 DOI: 10.1186/s40104-023-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Sex hormones play important roles in the estrus return of post-weaning sows. Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota. However, the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown. RESULTS In this study, we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows. Using metagenomic sequencing data from 85 fecal samples, we identified 37 bacterial species that were significantly associated with estrus return. Normally returning sows were characterized by increased abundances of L. reuteri and P. copri and decreased abundances of B. fragilis, S. suis, and B. pseudolongum. The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome. The results were confirmed in a validation cohort. Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis. An integrated analysis of differential bacterial species, metagenome, and fecal metabolome provided evidence that normal return-associated bacterial species L. reuteri and Prevotella spp. participated in the degradation of pregnenolone, progesterone, and testosterone, thereby promoting estrogen biosynthesis. Furthermore, the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return. CONCLUSIONS An integrated analysis of differentially abundant bacterial species, metagenome, and fecal metabolome revealed the involvement of L. reuteri and Prevotella spp. in sow estrus return. These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones, suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning.
Collapse
Affiliation(s)
- Min Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jia Zhang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunyan Zhou
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuqi Xiong
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mengqing Zhou
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin Wu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qin Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhe Chen
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Jiang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiawen Yang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuxin Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yaxiang Wang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Congying Chen
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
32
|
Abdelsalam NA, Hegazy SM, Aziz RK. The curious case of Prevotella copri. Gut Microbes 2023; 15:2249152. [PMID: 37655441 PMCID: PMC10478744 DOI: 10.1080/19490976.2023.2249152] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Prevotella copri is an abundant member of the human gastrointestinal microbiome, whose relative abundance has curiously been associated with positive and negative impacts on diseases, such as Parkinson's disease and rheumatoid arthritis. Yet, the verdict is still out on the definitive role of P. copri in human health, and on the effect of different diets on its relative abundance in the gut microbiome. The puzzling discrepancies among P. copri studies have only recently been attributed to the diversity of its strains, which substantially differ in their encoded metabolic patterns from the commonly used reference strain. However, such strain differences cannot be resolved by common 16S rRNA amplicon profiling methods. Here, we scrutinize P. copri, its versatile metabolic potential, and the hypotheses behind the conflicting observations on its association with diet and human health. We also provide suggestions for designing studies and bioinformatics pipelines to better research P. copri.
Collapse
Affiliation(s)
| | - Shaimaa M. Hegazy
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ramy K. Aziz
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Ren X, Wang L, Wang Z, Wang L, Kong Y, Guo Y, Sun L. Association between parental occupational exposure and the risk of asthma in offspring: A meta-analysis and systematic review. Medicine (Baltimore) 2023; 102:e36345. [PMID: 38050266 PMCID: PMC10695554 DOI: 10.1097/md.0000000000036345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Previous epidemiological studies have shown inconsistent results regarding the relation between the risk of asthma in offspring and parental occupational exposure. Therefore, we conducted a comprehensive and systematic collection of currently available epidemiological data to quantify the correlation between the 2. METHODS Related studies published before March 2023 were identified through searches of the Cochrane Library, Embase, PubMed, and Web of Science databases. The quality of included studies was assessed using the Newcastle-Ottawa Scale, while pooled odds ratios (ORs) with 95% confidence intervals (CIs) were computed using fixed-effect or random-effects models. RESULTS This systematic review included 10 cohort studies, with a total of 89,571 parent-child pairs included in the quantitative analysis. The results exhibited a substantial association between parental occupational exposure to allergens (OR = 1.11; 95% CI: 1.00, 1.23; P = .051) and irritants (OR = 1.19; 95% CI: 1.07, 1.32; P = .001) and an increased risk of asthma in offspring. This association was also observed in the analysis of wheezing (OR = 1.22; 95% CI: 1.11, 1.35; P < .001 and OR = 1.19; 95% CI: 1.08, 1.32; P = .001). Subgroup analysis demonstrated that maternal occupational exposure to allergens (OR = 1.07; 95% CI: 1.02, 1.12; P = .008) and irritants (OR = 1.13; 95% CI: 1.05, 1.21; P = .001) significantly increased the risk of childhood asthma. Furthermore, parental postnatal occupational exposure to allergens (OR = 1.26; 95% CI: 1.10, 1.46; P = .001) and irritants (OR = 1.26; 95% CI: 1.06, 1.49; P = .009) had a more pronounced impact on childhood asthma. Higher levels of exposure (OR = 1.26; 95% CI: 1.10, 1.46; P = .001 and OR = 1.30; 95% CI: 1.16, 1.47; P < .001) were recognized as significant risk factors for childhood asthma. CONCLUSION Parental occupational exposure to allergens and irritants increases the risk of asthma and wheezing in offspring, with maternal exposure, postnatal exposure, and high-dose exposure being the primary risk factors for childhood asthma.
Collapse
Affiliation(s)
- Xiaoting Ren
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lie Wang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lei Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yibu Kong
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Yinan Guo
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Liping Sun
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Jilin, China
| |
Collapse
|
34
|
Mahdavinia M, Fyolek JP, Jiang J, Thivalapill N, Bilaver LA, Warren C, Fox S, Nimmagadda SR, Newmark PJ, Sharma H, Assa'ad A, Seed PC, Gupta RS. Gut microbiome is associated with asthma and race in children with food allergy. J Allergy Clin Immunol 2023; 152:1541-1549.e1. [PMID: 37714436 PMCID: PMC10872992 DOI: 10.1016/j.jaci.2023.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND The composition of the gut microbiome has been associated with development of atopic conditions such as food allergy (FA) and asthma. African American or Black children with FA have higher rate of asthma compared to their White counterparts. OBJECTIVE We sought to investigate whether the diversity and relative abundance (RA) of gut microbiota is different between children with FA from different racial backgrounds living in the same cities. Furthermore, we aimed to understand whether the difference in the gut microbiota is associated with asthma in children with FA. METHODS We analyzed and compared the stool microbiome of a cohort of Black and White children with FA by shotgun genomic sequencing. RESULTS A total of 152 children with IgE-mediated FA enrolled onto FORWARD (Food Allergy Outcomes Related to White and African American Racial Differences); 30 Black and 122 White children were included. The RA of several bacteria was associated with race and asthma. Most notably the RA of Bacteroides thetaiotaomicron, Chlamydia thrachomatis, Parabacteroides goldsteinii, and Bacteroides eggerthii were significantly higher, while the RA of Bifidobacterium sp CAG:754, Parabacterium johnsonii, Bacteroides intestinalis, and Bifidobacterium breve were significantly lower in stool samples of Black children compared to White children. Asthma was associated with lower RA of B breve, Bifidobacterium catenulatum, Prevotella copri, Veilloella sp CAG:933, and Bacteroides plebius, and higher RA of 3 Bacteroides species. CONCLUSIONS The observed variations in the gut microbiota of Black and White children such as differences in the Bacteroides and Bifidobacterium species along with their association to history of asthma in our cohort is indicative of their potential role in the higher rate of asthma observed among Black children with FA.
Collapse
Affiliation(s)
- Mahboobeh Mahdavinia
- Division of Allergy and Immunology, Department of Medicine and Department of Pediatrics, Rush University Medical Center, Chicago, Ill.
| | - John P Fyolek
- Center for Food Allergy and Asthma Research and Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Jialing Jiang
- Center for Food Allergy and Asthma Research and Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Neil Thivalapill
- Center for Food Allergy and Asthma Research and Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lucy A Bilaver
- Center for Food Allergy and Asthma Research and Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Christopher Warren
- Center for Food Allergy and Asthma Research and Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Susan Fox
- Division of Allergy and Immunology, Department of Medicine and Department of Pediatrics, Rush University Medical Center, Chicago, Ill
| | - Sai R Nimmagadda
- Center for Food Allergy and Asthma Research and Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Pamela J Newmark
- Center for Food Allergy and Asthma Research and Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Hemant Sharma
- Division of Allergy and Immunology, Children's National Health Systems, Washington, DC
| | - Amal Assa'ad
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati, Cincinnati, Ohio
| | - Patrick C Seed
- Division of Infectious Disease, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Ruchi S Gupta
- Center for Food Allergy and Asthma Research and Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
35
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Yuan J, Tong P, Meng X, Wu Y, Li X, Gao J, Chen H. Oral exposure to Staphylococcus aureus enterotoxin B could promote the Ovalbumin-induced food allergy by enhancing the activation of DCs and T cells. Front Immunol 2023; 14:1250458. [PMID: 37908363 PMCID: PMC10615071 DOI: 10.3389/fimmu.2023.1250458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Recent work highlighted the importance of environmental contaminants in the development of allergic diseases. Methods The intestinal mucosal barrier, Th (helper T) cells, DCs (dendritic cells), and intestinal flora were analyzed with flow cytometry, RNA-seq, and 16s sequencing in the present study to demonstrate whether the exposure of enterotoxins like Staphylococcus aureus enterotoxin B (SEB) in allergens could promote the development of food allergy. Results and discussion We found that co-exposure to SEB and Ovalbumin (OVA) could impair the intestinal barrier, imbalance the intestinal Th immune, and cause the decline of intestinal flora diversity in OVA-sensitized mice. Moreover, with the co-stimulation of SEB, the transport of OVA was enhanced in the Caco-2 cell monolayer, the uptake and presentation of OVA were promoted in the bone marrow dendritic cells (BMDCs), and Th cell differentiation was also enhanced. In summary, co-exposure to SEB in allergens should be considered a food allergy risk factor.
Collapse
Affiliation(s)
- Jin Yuan
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- College of Food Science & Technology, Nanchang University, Nanchang, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- College of Food Science & Technology, Nanchang University, Nanchang, China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Notarbartolo V, Carta M, Accomando S, Giuffrè M. The First 1000 Days of Life: How Changes in the Microbiota Can Influence Food Allergy Onset in Children. Nutrients 2023; 15:4014. [PMID: 37764797 PMCID: PMC10534753 DOI: 10.3390/nu15184014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Allergic disease, including food allergies (FA)s, has been identified as a major global disease. The first 1000 days of life can be a "window of opportunity" or a "window of susceptibility", during which several factors can predispose children to FA development. Changes in the composition of the gut microbiota from pregnancy to infancy may play a pivotal role in this regard: some bacterial genera, such as Lactobacillus and Bifidobacterium, seem to be protective against FA development. On the contrary, Clostridium and Staphylococcus appear to be unprotective. METHODS We conducted research on the most recent literature (2013-2023) using the PubMed and Scopus databases. We included original papers, clinical trials, meta-analyses, and reviews in English. Case reports, series, and letters were excluded. RESULTS During pregnancy, the maternal diet can play a fundamental role in influencing the gut microbiota composition of newborns. After birth, human milk can promote the development of protective microbial species via human milk oligosaccharides (HMOs), which play a prebiotic role. Moreover, complementary feeding can modify the gut microbiota's composition. CONCLUSIONS The first two years of life are a critical period, during which several factors can increase the risk of FA development in genetically predisposed children.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Neonatal Intensive Care Unit with Neonatology, “G.F. Ingrassia” Hospital Unit, ASP 6, 90131 Palermo, Italy;
| | - Maurizio Carta
- Neonatology and Neonatal Intensive Care Unit, University Hospital Policlinic “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Salvatore Accomando
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| | - Mario Giuffrè
- Neonatology and Neonatal Intensive Care Unit, University Hospital Policlinic “Paolo Giaccone”, 90127 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
38
|
Gao Y, Stokholm J, O'Hely M, Ponsonby AL, Tang MLK, Ranganathan S, Saffery R, Harrison LC, Collier F, Gray L, Burgner D, Molloy J, Sly PD, Brix S, Frøkiær H, Vuillermin P. Gut microbiota maturity mediates the protective effect of siblings on food allergy. J Allergy Clin Immunol 2023; 152:667-675. [PMID: 37150361 DOI: 10.1016/j.jaci.2023.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The mechanisms underlying the protective effect of older siblings on allergic disease remain unclear but may relate to the infant gut microbiota. OBJECTIVE We sought to investigate whether having older siblings decreases the risk of IgE-mediated food allergy by accelerating the maturation of the infant gut microbiota. METHODS In a birth cohort assembled using an unselected antenatal sampling frame (n = 1074), fecal samples were collected at 1 month, 6 months, and 1 year, and food allergy status at 1 year was determined by skin prick test and in-hospital food challenge. We used 16S rRNA gene amplicon sequencing to derive amplicon sequence variants. Among a random subcohort (n = 323), microbiota-by-age z scores at each time point were calculated using fecal amplicon sequence variants to represent the gut microbiota maturation over the first year of life. RESULTS A greater number of siblings was associated with a higher microbiota-by-age z score at age 1 year (β = 0.15 per an additional sibling; 95% CI, 0.05-0.24; P = .003), which was in turn associated with decreased odds of food allergy (odds ratio, 0.45; 95% CI, 0.33-0.61; P < .001). Microbiota-by-age z scores mediated 63% of the protective effect of siblings. Analogous associations were not observed at younger ages. CONCLUSIONS The protective effect of older siblings on the risk of developing IgE-mediated food allergy during infancy is substantially mediated by advanced maturation of the gut microbiota at age 1 year.
Collapse
Affiliation(s)
- Yuan Gao
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Martin O'Hely
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Developing Brain Division, The Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Leonard C Harrison
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Fiona Collier
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia
| | - Lawrence Gray
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - John Molloy
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia; Faculty of Health, Deakin University, Geelong, Australia
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hanne Frøkiær
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Vuillermin
- Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, Australia; Child Health Research Unit, Barwon Health, Geelong, Australia.
| |
Collapse
|
39
|
Toda M, Hellwig M, Hattori H, Henle T, Vieths S. Advanced glycation end products and allergy. ALLERGO JOURNAL INTERNATIONAL 2023; 32:296-301. [DOI: 10.1007/s40629-023-00259-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 01/03/2025]
|
40
|
Fontaine F, Turjeman S, Callens K, Koren O. The intersection of undernutrition, microbiome, and child development in the first years of life. Nat Commun 2023; 14:3554. [PMID: 37322020 PMCID: PMC10272168 DOI: 10.1038/s41467-023-39285-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Undernutrition affects about one out of five children worldwide. It is associated with impaired growth, neurodevelopment deficits, and increased infectious morbidity and mortality. Undernutrition, however, cannot be solely attributed to a lack of food or nutrient deficiency but rather results from a complex mix of biological and environmental factors. Recent research has shown that the gut microbiome is intimately involved in the metabolism of dietary components, in growth, in the training of the immune system, and in healthy development. In this review, we look at these features in the first three years of life, which is a critical window for both microbiome establishment and maturation and child development. We also discuss the potential of the microbiome in undernutrition interventions, which could increase efficacy and improve child health outcomes.
Collapse
Affiliation(s)
- Fanette Fontaine
- Food and Agriculture Organization of the United Nations, Rome, Italy
- Université Paris- Cité, 75006, Paris, France
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Karel Callens
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
41
|
Wu Y, Zhang G, Wang Y, Wei X, Liu H, Zhang L, Zhang L. A Review on Maternal and Infant Microbiota and Their Implications for the Prevention and Treatment of Allergic Diseases. Nutrients 2023; 15:nu15112483. [PMID: 37299446 DOI: 10.3390/nu15112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Allergic diseases, which are closely related to the composition and metabolism of maternal and infant flora, are prevalent in infants worldwide. The mother's breast milk, intestinal, and vaginal flora directly or indirectly influence the development of the infant's immune system from pregnancy to lactation, and the compositional and functional alterations of maternal flora are associated with allergic diseases in infants. Meanwhile, the infant's own flora, represented by the intestinal flora, indicates and regulates the occurrence of allergic diseases and is altered with the intervention of allergic diseases. By searching and selecting relevant literature in PubMed from 2010 to 2023, the mechanisms of allergy development in infants and the links between maternal and infant flora and infant allergic diseases are reviewed, including the effects of flora composition and its consequences on infant metabolism. The critical role of maternal and infant flora in allergic diseases has provided a window for probiotics as a microbial therapy. Therefore, the uses and mechanisms by which probiotics, such as lactic acid bacteria, can help to improve the homeostasis of both the mother and the infant, and thereby treat allergies, are also described.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Gongsheng Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yucong Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Wei
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huanhuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
42
|
Sinha T, Brushett S, Prins J, Zhernakova A. The maternal gut microbiome during pregnancy and its role in maternal and infant health. Curr Opin Microbiol 2023; 74:102309. [PMID: 37068462 DOI: 10.1016/j.mib.2023.102309] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 04/19/2023]
Abstract
There is growing knowledge that the maternal gut microbiome undergoes substantial changes during pregnancy. However, despite the recognition that the maternal gut microbiome influences maternal and infant health, we still have a limited understanding of the clinical and environmental factors that can impact the maternal gut microbiome during pregnancy and the consequences of these changes. Here, we review the current body of knowledge about factors shaping the maternal gut microbiome during pregnancy and its role in the development of pregnancy complications and infant health.
Collapse
Affiliation(s)
- Trishla Sinha
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Siobhan Brushett
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jelmer Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
43
|
Smith PK, Venter C, O’Mahony L, Canani RB, Lesslar OJL. Do advanced glycation end products contribute to food allergy? FRONTIERS IN ALLERGY 2023; 4:1148181. [PMID: 37081999 PMCID: PMC10111965 DOI: 10.3389/falgy.2023.1148181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Sugars can bind non-enzymatically to proteins, nucleic acids or lipids and form compounds called Advanced Glycation End Products (AGEs). Although AGEs can form in vivo, factors in the Western diet such as high amounts of added sugars, processing methods such as dehydration of proteins, high temperature sterilisation to extend shelf life, and cooking methods such as frying and microwaving (and reheating), can lead to inordinate levels of dietary AGEs. Dietary AGEs (dAGEs) have the capacity to bind to the Receptor for Advanced Glycation End Products (RAGE) which is part of the endogenous threat detection network. There are persuasive epidemiological and biochemical arguments that correlate the rise in food allergy in several Western countries with increases in dAGEs. The increased consumption of dAGEs is enmeshed in current theories of the aetiology of food allergy which will be discussed.
Collapse
Affiliation(s)
- P. K. Smith
- Clinical Medicine and Menzies School of Research, Griffith University, Gold Coast, QLD, Australia
- Correspondence: P. K. Smith
| | - C. Venter
- Children’s Hospital Colorado, University of Colorado, Aurora, CO, United States
| | - L. O’Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R. Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE-Advanced Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | | |
Collapse
|
44
|
Jin S, Zhang Z, Zhang G, He B, Qin Y, Yang B, Yu Z, Wang J. Maternal Rumen Bacteriota Shapes the Offspring Rumen Bacteriota, Affecting the Development of Young Ruminants. Microbiol Spectr 2023; 11:e0359022. [PMID: 36809041 PMCID: PMC10100811 DOI: 10.1128/spectrum.03590-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
The maternal rumen microbiota can affect the infantile rumen microbiota and likely offspring growth, and some rumen microbes are heritable and are associated with host traits. However, little is known about the heritable microbes of the maternal rumen microbiota and their role in and effect on the growth of young ruminants. From analyzing the ruminal bacteriota from 128 Hu sheep dams and their 179 offspring lambs, we identified the potential heritable rumen bacteria and developed random forest prediction models to predict birth weight, weaning weight, and preweaning gain of the young ruminants using rumen bacteria as predictors. We showed that the dams tended to shape the bacteriota of the offspring. About 4.0% of the prevalent amplicon sequence variants (ASVs) of rumen bacteria were heritable (h2 > 0.2 and P < 0.05), and together they accounted for 4.8% and 31.5% of the rumen bacteria in relative abundance in the dams and the lambs, respectively. Heritable bacteria classified to Prevotellaceae appeared to play a key role in the rumen niche and contribute to rumen fermentation and the growth performance of lambs. Lamb growth traits could be successfully predicted using some maternal ASVs, and the accuracy of the predictive models was improved when some ASVs from both dams and their offspring were included. IMPORTANCE Using a study design that enabled direct comparison of the rumen microbiota between sheep dams and their lambs, between littermates, and between sheep dams and lambs from other mothers, we identified the heritable subsets of rumen bacteriota in Hu sheep, some of which may play important roles in affecting the growth traits of young lambs. Some maternal rumen bacteria could help predict the growth traits of the young offspring, and they may assist in breeding of and selection for high-performance sheep.
Collapse
Affiliation(s)
- Shuwen Jin
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Zhe Zhang
- Institute of Animal Breeding, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Gonghai Zhang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Bo He
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Yilang Qin
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- MoE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Research Progress of Fecal Microbiota Transplantation in Liver Diseases. J Clin Med 2023; 12:jcm12041683. [PMID: 36836218 PMCID: PMC9960958 DOI: 10.3390/jcm12041683] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence suggested that gut microbiota is associated with liver diseases through the gut-liver axis. The imbalance of gut microbiota could be correlated with the occurrence, development, and prognosis of a series of liver diseases, including alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), viral hepatitis, cirrhosis, primary sclerosing cholangitis (PSC), and hepatocellular carcinoma (HCC). Fecal microbiota transplantation (FMT) seems to be a method to normalize the patient's gut microbiota. This method has been traced back to the 4th century. In recent decade, FMT has been highly regarded in several clinical trials. As a novel approach to reconstruct the intestinal microecological balance, FMT has been used to treat the chronic liver diseases. Therefore, in this review, the role of FMT in the treatment of liver diseases was summarized. In addition, the relationship between gut and liver was explored through the gut-liver axis, and the definition, objectives, advantages, and procedures of FMT were described. Finally, the clinical value of FMT therapy in liver transplant (LT) recipients was briefly discussed.
Collapse
|
46
|
Lee-Sarwar KA, Chen YC, Yao Chen Y, Kozyrskyj AL, Mandhane PJ, Turvey SE, Subbarao P, Bisgaard H, Stokholm J, Chawes B, Sørensen SJ, Kelly RS, Lasky-Su J, Zeiger RS, O’Connor GT, Sandel MT, Bacharier LB, Beigelman A, Carey VJ, Harshfield BJ, Laranjo N, Gold DR, Weiss ST, Litonjua AA. The maternal prenatal and offspring early-life gut microbiome of childhood asthma phenotypes. Allergy 2023; 78:418-428. [PMID: 36107703 PMCID: PMC9892205 DOI: 10.1111/all.15516] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND The infant fecal microbiome is known to impact subsequent asthma risk, but the environmental exposures impacting this association, the role of the maternal microbiome, and how the microbiome impacts different childhood asthma phenotypes are unknown. METHODS Our objective was to identify associations between features of the prenatal and early-life fecal microbiomes and child asthma phenotypes. We analyzed fecal 16 s rRNA microbiome profiling and fecal metabolomic profiling from stool samples collected from mothers during the third trimester of pregnancy (n = 120) and offspring at ages 3-6 months (n = 265), 1 (n = 436) and 3 years (n = 506) in a total of 657 mother-child pairs participating in the Vitamin D Antenatal Asthma Reduction Trial. We used clinical data from birth to age 6 years to characterize subjects with asthma as having early, transient or active asthma phenotypes. In addition to identifying specific genera that were robustly associated with asthma phenotypes in multiple covariate-adjusted models, we clustered subjects by their longitudinal microbiome composition and sought associations between fecal metabolites and relevant microbiome and clinical features. RESULTS Seven maternal and two infant fecal microbial taxa were robustly associated with at least one asthma phenotype, and a longitudinal gut microenvironment profile was associated with early asthma (Fisher exact test p = .03). Though mode of delivery was not directly associated with asthma, we found substantial evidence for a pathway whereby cesarean section reduces fecal Bacteroides and microbial sphingolipids, increasing susceptibility to early asthma. CONCLUSION Overall, our results suggest that the early-life, including prenatal, fecal microbiome modifies risk of asthma, especially asthma with onset by age 3 years.
Collapse
Affiliation(s)
- Kathleen A. Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yih-Chieh Chen
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuan Yao Chen
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | - Piush J. Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Pediatrics & Physiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Søren J. Sørensen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert S. Zeiger
- Department of Clinical Science Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - George T. O’Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Megan T. Sandel
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Leonard B. Bacharier
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt University Medical Center, Nashville, TN, USA
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, MO and St Louis Children’s Hospital, St Louis, MO, USA
- The Kipper Institute of Allergy and Immunology, Schneider Children’s Medical Center of Israel, Tel Aviv University, Israel
| | - Vincent J. Carey
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin J. Harshfield
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nancy Laranjo
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Diane R. Gold
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
47
|
Dietary fiber and SCFAs in the regulation of mucosal immunity. J Allergy Clin Immunol 2023; 151:361-370. [PMID: 36543697 DOI: 10.1016/j.jaci.2022.11.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022]
Abstract
Gut bacterial metabolites such as short-chain fatty acids (SCFAs) have important effects on immune cells and the gut. SCFAs derive from the fermentation of dietary fiber by gut commensal bacteria. Insufficient fiber intake thus compromises SCFA production and, as a consequence, the host's physiology (particularly immune functions). We propose that many Western diseases, including those associated with impaired mucosal responses such as food allergy and asthma, may be affected by insufficient fiber intake and reduced SCFA levels in the gut and blood. Insufficient fiber intake is 1 alternative, or contributor, on top of the "hygiene hypothesis" to the rise of Western lifestyle diseases, and the 2 ideas need to be reconciled. The mechanisms by which SCFAs influence immunity and gut homeostasis are varied; they include stimulation of G protein-coupled receptors (GPCRs), such as GPR43 or GPR41; inhibition of histone deacetylases (and hence, gene transcription changes); and induction of intracellular metabolic changes. SCFAs modulate at many different levels to alter mucosal homeostasis, including changes to gut epithelial integrity, increases in regulatory T-cell numbers and function, and decreased expression of numerous inflammatory cytokines. There is scope for preventing and/or treating diseases by using diets that alter SCFA levels.
Collapse
|
48
|
Chen Z, Yang H, Fu H, Wu L, Liu M, Jiang H, Liu Q, Wang Y, Xiong S, Zhou M, Sun X, Chen C, Huang L. Gut bacterial species in late trimester of pregnant sows influence the occurrence of stillborn piglet through pro-inflammation response. Front Immunol 2023; 13:1101130. [PMID: 36741405 PMCID: PMC9890068 DOI: 10.3389/fimmu.2022.1101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Maternal gut microbiota is an important regulator for the metabolism and immunity of the fetus during pregnancy. Recent studies have indicated that maternal intestinal microbiota is closely linked to the development of fetus and infant health. Some bacterial metabolites are considered to be directly involved in immunoregulation of fetus during pregnancy. However, the detailed mechanisms are largely unknown. In this study, we exploited the potential correlation between the gut microbiota of pregnant sows and the occurrence of stillborn piglets by combining the 16S rRNA gene and metagenomic sequencing data, and fecal metabolome in different cohorts. The results showed that several bacterial species from Bacteroides, potential pathogens, and LPS-producing bacteria exhibited significantly higher abundances in the gut of sows giving birth to stillborn piglets. Especially, Bacteroides fragilis stood out as the key driver in both tested cohorts and showed the most significant association with the occurrence of stillborn piglets in the DN1 cohort. However, several species producing short-chain fatty acids (SCFAs), such as Prevotella copri, Clostridium butyricum and Faecalibacterium prausnitzii were enriched in the gut of normal sows. Functional capacity analysis of gut microbiome revealed that the pathways associated with infectious diseases and immune diseases were enriched in sows giving birth to stillborn piglets. However, energy metabolism had higher abundance in normal sows. Fecal metabolome profiling analysis found that Lysophosphatidylethanolamine and phosphatidylethanolamine which are the main components of cell membrane of Gram-negative bacteria showed significantly higher concentration in stillbirth sows, while SCFAs had higher concentration in normal sows. These metabolites were significantly associated with the stillborn-associated bacterial species including Bacteroides fragilis. Lipopolysaccharide (LPS), IL-1β, IL-6, FABP2, and zonulin had higher concentration in the serum of stillbirth sows, indicating increased intestinal permeability and pro-inflammatory response. The results from this study suggested that certain sow gut bacterial species in late trimester of pregnancy, e.g., an excess abundance of Bacteroides fragilis, produced high concentration of LPS which induced sow pro-inflammatory response and might cause the death of the relatively weak piglets in a farrow. This study provided novel evidences about the effect of maternal gut microbiota on the fetus development and health.
Collapse
Affiliation(s)
| | - Hui Yang
- *Correspondence: Lusheng Huang, ; Congying Chen, ; Hui Yang,
| | | | | | | | | | | | | | | | | | | | - Congying Chen
- *Correspondence: Lusheng Huang, ; Congying Chen, ; Hui Yang,
| | - Lusheng Huang
- *Correspondence: Lusheng Huang, ; Congying Chen, ; Hui Yang,
| |
Collapse
|
49
|
Tian M, Li Q, Zheng T, Yang S, Chen F, Guan W, Zhang S. Maternal microbe-specific modulation of the offspring microbiome and development during pregnancy and lactation. Gut Microbes 2023; 15:2206505. [PMID: 37184203 DOI: 10.1080/19490976.2023.2206505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The maternal microbiome is essential for the healthy growth and development of offspring and has long-term effects later in life. Recent advances indicate that the maternal microbiome begins to regulate fetal health and development during pregnancy. Furthermore, the maternal microbiome continues to affect early microbial colonization via birth and breastfeeding. Compelling evidence indicates that the maternal microbiome is involved in the regulation of immune and brain development and affects the risk of related diseases. Modulating offspring development by maternal diet and probiotic intervention during pregnancy and breastfeeding could be a promising therapy in the future. In this review, we summarize and discuss the current understanding of maternal microbiota development, perinatal microbial metabolite transfer, mother-to-infant microbial transmission during/after birth and its association with immune and brain development as well as corresponding diseases.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
50
|
Kennedy KM, de Goffau MC, Perez-Muñoz ME, Arrieta MC, Bäckhed F, Bork P, Braun T, Bushman FD, Dore J, de Vos WM, Earl AM, Eisen JA, Elovitz MA, Ganal-Vonarburg SC, Gänzle MG, Garrett WS, Hall LJ, Hornef MW, Huttenhower C, Konnikova L, Lebeer S, Macpherson AJ, Massey RC, McHardy AC, Koren O, Lawley TD, Ley RE, O'Mahony L, O'Toole PW, Pamer EG, Parkhill J, Raes J, Rattei T, Salonen A, Segal E, Segata N, Shanahan F, Sloboda DM, Smith GCS, Sokol H, Spector TD, Surette MG, Tannock GW, Walker AW, Yassour M, Walter J. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613:639-649. [PMID: 36697862 PMCID: PMC11333990 DOI: 10.1038/s41586-022-05546-8] [Citation(s) in RCA: 191] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/09/2022] [Indexed: 01/26/2023]
Abstract
Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.
Collapse
Affiliation(s)
- Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marcus C de Goffau
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Wellcome Sanger Institute, Cambridge, UK
| | - Maria Elisa Perez-Muñoz
- Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marie-Claire Arrieta
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thorsten Braun
- Department of Obstetrics and Experimental Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederic D Bushman
- Department of Microbiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Dore
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jonathan A Eisen
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michael G Gänzle
- Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Department of Medicine and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL-Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Curtis Huttenhower
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liza Konnikova
- Departments of Pediatrics and Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J Macpherson
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ruth C Massey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alice Carolyn McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover Braunschweig site, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Trevor D Lawley
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jeroen Raes
- VIB Center for Microbiology, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eran Segal
- Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Harry Sokol
- Gastroenterology Department, AP-HP, Saint Antoine Hospital, Centre de Recherche Saint-Antoine, CRSA, INSERM and Sorbonne Université, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Moran Yassour
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|