1
|
Simms CH, Kovacs D, Hacker L, Sarson ET, Sokolova D, Christensen KE, Khrapichev A, Martin LAW, Vincent K, Conway SJ, Hammond EM, Langton MJ, Faulkner S. Binuclear Lanthanide Complexes as Magnetic Resonance and Optical Imaging Probes for Redox Sensing. Chemistry 2025:e202404748. [PMID: 40226941 DOI: 10.1002/chem.202404748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/15/2025]
Abstract
We report a family of lanthanide(III) complexes that act as redox probes via both magnetic resonance (MR) and luminescence outputs. The ligands are functionalized with nitro, azobenzene and azide groups which are reduced to a common aniline product, and each responds to both chemical and biocatalytic reductive conditions at different cathodic onset potentials. By judicious choice of complexed Ln(III), the probes can be optimized either for use in MR imaging (Ln = Gd), or as highly efficient turn-on luminescence probes (Ln = Tb). The Tb(III) analogues are essentially nonemissive, until reductive generation of the aniline affords a complex which when excited by visible light (488 nm) emits green light with a quantum yield of 45% and millisecond long luminescent lifetimes (ms). The tunable redox response and imaging modalities of these versatile complexes have the potential to open up new approaches to redox sensing, such as the imaging of hypoxic environments in biology.
Collapse
Affiliation(s)
- Charlie H Simms
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Daniel Kovacs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Lina Hacker
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Euan T Sarson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Daria Sokolova
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | - Kylie Vincent
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Stuart J Conway
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Box 951569, Los Angeles, CA, 90095-1569, USA
| | - Ester M Hammond
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Matthew J Langton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Stephen Faulkner
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
2
|
Recsei C, Cagnes M, Russell RA, Sonstrom RE, Darwish T. Studies in enantioselective microbial deuteration. Org Biomol Chem 2025; 23:3380-3392. [PMID: 40067215 DOI: 10.1039/d5ob00072f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
This study reports methods for reductive microbial deuteration with a high degree of isotopic labelling, focusing on economical approaches using various yeast strains and inexpensive carbon sources. A strategy of α-hydrogen exchange followed by deuterative microbial reduction gave >95% backbone perdeuteration for crucial chiral building blocks for medicinal and analytical applications, without loss of the enantioselectivity demonstrated in the corresponding protiative processes. Under an air atmosphere, Saccharomyces cerevisiae strain MBG5177 outperformed baker's yeast in the synthesis of (2-2H1)solketal, while Pichia pastoris strain X-33 provided >95% deuteration in the synthesis of the two studied building blocks using methanol-d4 as an affordable carbon source. These findings emphasise the potential of microbial strains not traditionally employed by synthetic organic chemists for isotope labelling. Finally, molecular rotational resonance spectroscopy (MRR) was employed as an analytical tool. MRR was shown to provide accurate measurement of site-specific deuteration levels and enantiopurity, validating its utility for simplifying process evaluation in deuterium-labelling chemistry. This work underscores the value of diverse microbial resources and advanced spectroscopic methods in advancing isotope labelling and biocatalysis, with implications for both research and industrial applications.
Collapse
Affiliation(s)
- Carl Recsei
- Australian Nuclear Science and Technology Organisation, National Deuteration Facility, New Illawarra Rd, Lucas Heights, New South Wales, 2234, Australia.
| | - Marina Cagnes
- Australian Nuclear Science and Technology Organisation, National Deuteration Facility, New Illawarra Rd, Lucas Heights, New South Wales, 2234, Australia.
| | - Robert A Russell
- Australian Nuclear Science and Technology Organisation, National Deuteration Facility, New Illawarra Rd, Lucas Heights, New South Wales, 2234, Australia.
| | - Reilly E Sonstrom
- BrightSpec, Inc., 770 Harris St, Suite 104b, Charlottesville, Virginia 22903, United States
| | - Tamim Darwish
- Australian Nuclear Science and Technology Organisation, National Deuteration Facility, New Illawarra Rd, Lucas Heights, New South Wales, 2234, Australia.
| |
Collapse
|
3
|
Gu J, Zhang LH, Zhuang HF, He Y. Atroposelective [4+1] annulation for the synthesis of isotopic isoindolinones bearing both central and axial chirality. Chem Sci 2025; 16:5735-5744. [PMID: 40046081 PMCID: PMC11877746 DOI: 10.1039/d5sc00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Isotopically chiral molecules have drawn much attention due to their practical applications in drug discovery. However, existing studies in this area are mainly limited to centrally chiral molecules and H/D exchange. Herein, we report a chiral phosphoric acid-catalyzed atroposelective [4+1] annulation of ketoaldehydes and 1H-indol-1-amines. By means of this strategy, a series of D- and 18O-labeled atropisomers featuring both central and axial chiralities are synthesized with high enantioselectivities and diastereoselectivities and good to excellent isotopic incorporation. Experimental and density functional theory studies suggest that the reaction involves a sequential condensation, cyclization and isomerization cascade, in which the second step is the enantio-determining process.
Collapse
Affiliation(s)
- Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Li-Hong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
4
|
Wohlgemuth R. Enzyme Catalysis for Sustainable Value Creation Using Renewable Biobased Resources. Molecules 2024; 29:5772. [PMID: 39683928 DOI: 10.3390/molecules29235772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Enzyme catalysis was traditionally used by various human cultures to create value long before its basic concepts were uncovered. This was achieved by transforming the raw materials available from natural resources into useful products. Tremendous scientific and technological progress has been made globally in understanding what constitutes an enzyme; what reactions enzymes can catalyze; and how to search, develop, apply, and improve enzymes to make desired products. The useful properties of enzymes as nature's preferred catalysts, such as their high selectivity, diversity, and adaptability, enable their optimal function, whether in single or multiple reactions. Excellent opportunities for the resource-efficient manufacturing of compounds are provided by the actions of enzymes working in reaction cascades and pathways within the same reaction space, like molecular robots along a production line. Enzyme catalysis plays an increasingly prominent role in industrial innovation and responsible production in various areas, such as green and sustainable chemistry and industrial or white biotechnology. Sources of inspiration include current manufacturing or supply chain challenges, the treasure of natural enzymes, and opportunities to engineer tailor-made enzymes. Making the best use of the power of enzyme catalysis is essential for changing how current products are manufactured; how renewable biobased resources can replace fossil-based resources; and improving the safety, health, and environmental aspects of manufacturing processes to support cleaner and more sustainable production.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
5
|
Sokolova D, Vincent KA. Exploiting hydrogenases for biocatalytic hydrogenations. Chem Commun (Camb) 2024; 60:13667-13677. [PMID: 39511987 PMCID: PMC11563201 DOI: 10.1039/d4cc04525d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
The ability of hydrogenase enzymes to activate H2 with excellent selectivity leads to many interesting possibilities for biotechnology driven by H2 as a clean reductant. Here, we review examples where hydrogenase enzymes have been used to drive native and non-native hydrogenation reactions in solution or as part of a redox cascade on a conductive support, with a focus on the developments we have contributed to this field. In all of the examples discussed, hydrogenation reactions are enabled by coupled redox reactions: the oxidation of H2 at a hydrogenase active site, linked electronically (via relay clusters in the enzyme and/or via conductive support) to the site of a reduction reaction, and we note how this parallels developments in site-separated reactivity in heterogeneous catalysis. We discuss the productivities achieved with biocatalytic hydrogenations, the scope for application of these approaches in industrial biotechnology, possibilities for scaling the production of hydrogenases, and future opportunities. Our focus is on NiFe hydrogenases, but we discuss briefly how FeFe hydrogenases might contribute to this field.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
6
|
Lennartz S, Byrne HA, Kümmel S, Krauss M, Nowak KM. Hydrogen isotope labeling unravels origin of soil-bound organic contaminant residues in biodegradability testing. Nat Commun 2024; 15:9178. [PMID: 39448570 PMCID: PMC11502848 DOI: 10.1038/s41467-024-53478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Biodegradability testing in soil helps to identify safe synthetic organic chemicals but is still obscured by the formation of soil-bound 'non-extractable' residues (NERs). Present-day methodologies using radiocarbon or stable (13C, 15N) isotope labeling cannot easily differentiate soil-bound parent chemicals or transformation products (xenoNERs) from harmless soil-bound biomolecules of microbial degraders (bioNERs). Hypothesizing a minimal retention of hydrogen in biomolecules, we here apply stable hydrogen isotope - deuterium (D) - labeling to unravel the origin of NERs. Soil biodegradation tests with D- and 13C-labeled 2,4-D, glyphosate and sulfamethoxazole reveal consistently lower proportions of applied D than 13C in total NERs and in amino acids, a quantitative biomarker for bioNERs. Soil-bound D thus mostly represents xenoNERs and not bioNERs, enabling an efficient quantification of xenoNERs by just measuring the total bound D. D or tritium (T) labeling could thus improve the value of biodegradability testing results for diverse organic chemicals forming soil-bound residues.
Collapse
Affiliation(s)
- Sophie Lennartz
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Harriet A Byrne
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Karolina M Nowak
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
- Chair of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Sokolova D, Lurshay TC, Rowbotham JS, Stonadge G, Reeve HA, Cleary SE, Sudmeier T, Vincent KA. Selective hydrogenation of nitro compounds to amines by coupled redox reactions over a heterogeneous biocatalyst. Nat Commun 2024; 15:7297. [PMID: 39181899 PMCID: PMC11344822 DOI: 10.1038/s41467-024-51531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Cleaner synthesis of amines remains a key challenge in organic chemistry because of their prevalence in pharmaceuticals, agrochemicals and synthetic building blocks. Here, we report a different paradigm for chemoselective hydrogenation of nitro compounds to amines, under mild, aqueous conditions. The hydrogenase enzyme releases electrons from H2 to a carbon black support which facilitates nitro-group reduction. For 30 nitroarenes we demonstrate full conversion (isolated yields 78 - 96%), with products including pharmaceuticals benzocaine, procainamide and mesalazine, and 4-aminophenol - precursor to paracetamol (acetaminophen). We also showcase gram-scale synthesis of procainamide with 90% isolated yield. We demonstrate potential for extension to aliphatic substrates. The catalyst is highly selective for reduction of the nitro group over other unsaturated bonds, tolerant to a wide range of functional groups, and exhibits excellent stability in reactions lasting up to 72 hours and full reusability over 5 cycles with a total turnover number over 1 million, indicating scope for direct translation to fine chemical manufacturing.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Tara C Lurshay
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- HydRegen Limited, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, OX5 1PF, UK
| | - Jack S Rowbotham
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester, M1 7DN, UK
| | - Georgia Stonadge
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Holly A Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- HydRegen Limited, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, OX5 1PF, UK
| | - Sarah E Cleary
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
- HydRegen Limited, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, OX5 1PF, UK.
| | - Tim Sudmeier
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
8
|
Park S, Kim JH, Kim D, Kim Y, Kim S, Kim S. Simple and Efficient Enantioselective α-Deuteration Method of α-Amino Acids without External Chiral Sources. JACS AU 2024; 4:2246-2251. [PMID: 38938805 PMCID: PMC11200243 DOI: 10.1021/jacsau.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024]
Abstract
Deuterium-labeled α-amino acids are useful in research related to drug discovery and biomedical science. However, a high degree of site selectivity and stereoselectivity in the deuterium incorporation process is still difficult to achieve. Herein, we report a new enantioselective deuteration method at the α-position of several amino acids without external chiral sources. The proposed deuteration methods (NaOEt and EtOD) are highly selective and simple. Additionally, we provide a mechanistic study for this enantioretentive deuteration.
Collapse
Affiliation(s)
- Soojun Park
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Hyun Kim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- College
of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Seoul 06974, Republic of Korea
| | - Dongjun Kim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonjoon Kim
- Chemistry
Department, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Seonah Kim
- Chemistry
Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sanghee Kim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Han G, Li G, Sun Y. Electrocatalytic Hydrogenation Using Palladium Membrane Reactors. JACS AU 2024; 4:328-343. [PMID: 38425903 PMCID: PMC10900496 DOI: 10.1021/jacsau.3c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
Hydrogenation is a crucial chemical process employed in a myriad of industries, often facilitated by metals such as Pd, Pt, and Ni as catalysts. Traditional thermocatalytic hydrogenation usually necessitates high temperature and elevated pressure, making the process energy intensive. Electrocatalytic hydrogenation offers an alternative but suffers from issues such as competing H2 evolution, electrolyte separation, and limited solvent selection. This Perspective introduces the evolution and advantages of the electrocatalytic Pd membrane reactor (ePMR) as a solution to these challenges. ePMR utilizes a Pd membrane to physically separate the electrochemical chamber from the hydrogenation chamber, permitting the use of water as the hydrogen source and eliminating the need for H2 gas. This setup allows for greater control over reaction conditions, such as solvent and electrolyte selection, while mitigating issues such as low Faradaic efficiency and complex product separation. Several representative hydrogenation reactions (e.g., hydrogenation of C=C, C≡C, C=O, C≡N, and O=O bonds) achieved via ePMR over the past 30 years were concisely discussed to highlight the unique advantages of ePMR. Promising research directions along with the advancement of ePMR for more challenging hydrogenation reactions are also proposed. Finally, we provide a prospect for future development of this distinctive hydrogenation strategy using hydrogen-permeable membrane electrodes.
Collapse
Affiliation(s)
| | | | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
10
|
Gao J, Zhou C, Hai Y. Stereoselective Biocatalytic α-Deuteration of L-Amino Acids by a Pyridoxal 5'-Phosphate-Dependent Mannich Cyclase. Chembiochem 2023; 24:e202300561. [PMID: 37779345 PMCID: PMC10874886 DOI: 10.1002/cbic.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
α-Deuterated amino acids are valuable building blocks for developing deuterated drugs, and are important tools for studying biological systems. Biocatalytic deuteration represents an attractive strategy to directly access enantiopure α-deuterated amino acids. Here, we show that a PLP-dependent Mannich cyclase, LolT, involved in the biosynthesis of loline alkaloids, is capable of deuterating a diverse range of L-amino acids, including basic and acidic, nonpolar and polar, aliphatic and aromatic amino acids. Furthermore, complete deuteration of many amino acids can be achieved within minutes with exquisite control on the site- and stereoselectivity. During the course of this investigation, we also unexpectedly discovered that LolT exhibits β-elimination activity with L-cystine and O-acetyl-L-serine, confirming our previous hypothesis based on structural and phylogenetic analysis that LolT, a Cα-C bond forming enzyme, is evolved from a primordial Cβ-S lyase family. Overall, our study demonstrates that LolT is an extremely versatile biocatalyst, and can be used for not only heterocyclic quaternary amino acid biosynthesis, but also biocatalytic amino acid deuteration.
Collapse
Affiliation(s)
- Jinmin Gao
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Chen Zhou
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yang Hai
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
11
|
Ma C, Li X, Chen X, He X, Zhang ST, Jiang YQ, Yu B. Photocatalytic Umpolung Strategy for the Synthesis of α-Amino Phosphine Oxides and Deuterated Derivatives. Org Lett 2023; 25:8016-8021. [PMID: 37903293 DOI: 10.1021/acs.orglett.3c03193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Direct, economical, and green synthesis of deuterated α-amino phosphine oxides remains an elusive challenge in synthetic chemistry. Herein, we report a visible-light-driven umpolung strategy for synthesizing deuterated α-amino phosphine oxides from isocyanide using 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene as the photocatalyst and D2O as the deuterium source. Moreover, the streamlined and sustainable methodology can be applied in the modification of amino acids, natural products, and drugs. The strong antiproliferative activity of the desired products indicates that the method could provide a novel privileged scaffold for antitumor drug development.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaofeng Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiya Chen
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shu-Ting Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yu-Qin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Rowbotham JS, Nicholson JH, Ramirez MA, Urata K, Todd PMT, Karunanithy G, Lauterbach L, Reeve HA, Baldwin AJ, Vincent KA. Biocatalytic reductive amination as a route to isotopically labelled amino acids suitable for analysis of large proteins by NMR. Chem Sci 2023; 14:12160-12165. [PMID: 37969586 PMCID: PMC10631221 DOI: 10.1039/d3sc01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/20/2023] [Indexed: 11/17/2023] Open
Abstract
We demonstrate an atom-efficient and easy to use H2-driven biocatalytic platform for the enantioselective incorporation of 2H-atoms into amino acids. By combining the biocatalytic deuteration catalyst with amino acid dehydrogenase enzymes capable of reductive amination, we synthesised a library of multiply isotopically labelled amino acids from low-cost isotopic precursors, such as 2H2O and 15NH4+. The chosen approach avoids the use of pre-labeled 2H-reducing agents, and therefore vastly simplifies product cleanup. Notably, this strategy enables 2H, 15N, and an asymmetric centre to be introduced at a molecular site in a single step, with full selectivity, under benign conditions, and with near 100% atom economy. The method facilitates the preparation of amino acid isotopologues on a half-gram scale. These amino acids have wide applicability in the analytical life sciences, and in particular for NMR spectroscopic analysis of proteins. To demonstrate the benefits of the approach for enabling the workflow of protein NMR chemists, we prepared l-[α-2H,15N, β-13C]-alanine and integrated it into a large (>400 kDa) heat-shock protein oligomer, which was subsequently analysable by methyl-TROSY techniques, revealing new structural information.
Collapse
Affiliation(s)
- Jack S Rowbotham
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Jake H Nicholson
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Miguel A Ramirez
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Kouji Urata
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Peter M T Todd
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Gogulan Karunanithy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory Oxford UK
| | - Lars Lauterbach
- Technische Universität Berlin, Institute for Chemistry Straße des 17. Juni 135 10437 Berlin Germany
| | - Holly A Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Andrew J Baldwin
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory Oxford UK
- Kavli Institute for Nanoscience Discovery, University of Oxford Oxford OX1 3QU UK
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| |
Collapse
|
13
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
14
|
Luo J, Lu L, Montag M, Liang Y, Milstein D. Hydrogenative alkene perdeuteration aided by a transient cooperative ligand. Nat Chem 2023; 15:1384-1390. [PMID: 37667011 DOI: 10.1038/s41557-023-01313-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023]
Abstract
Deuterogenation of unsaturated organic compounds is an attractive route for installing C(sp3)-D bonds, but the existing methods typically use expensive D2 and introduce only two deuterium atoms per unsaturation. Herein we report the hydrogenative perdeuteration of alkenes using readily available H2 and D2O instead of D2, catalysed by an acridanide-based ruthenium pincer complex and resulting in the incorporation of up to 4.9 D atoms per C=C double bond in a single synthetic step. Importantly, adding a catalytic amount of thiol, which serves as a transient cooperative ligand, ensures the incorporation of deuterium rather than protium by balancing the rates of two sequential deuteration processes. The current method opens an avenue for installing perdeuteroalkyl groups at specific sites from widely available alkenes under mild conditions.
Collapse
Affiliation(s)
- Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lijun Lu
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Montag
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Recsei C, Russell RA, Cagnes M, Darwish T. Deuterated squalene and sterols from modified Saccharomyces cerevisiae. Org Biomol Chem 2023; 21:6537-6548. [PMID: 37523212 DOI: 10.1039/d3ob00754e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Uniformly deuterated sterols and biosynthetically related materials are important for neutron, NMR, tracing and bioanalysis studies as well as critical tools for the creation of improved lipid nanoparticle formulations. The production of sufficient quantities of materials relies not only on the engineering of microorganisms to selectively accumulate desired materials but also methods for the isolation, purification and characterisation of these materials to ensure their usefulness. Uniformly deuterated squalene, the universal precursor to sterols in biological systems, has been produced and characterised. Cholesterol has been produced with controlled levels of uniform deuteration, increased biosynthetic yield and a methodology developed for the extraction and purification of this material without HPLC. Two sterols, not previously produced in deuterated forms, have been prepared with uniform deuteration: 22,23-dihydrobrassicasterol and 24-methylenecholesterol. This report triples the number of sterols that have been produced with uniform deuteration, purified and characterised and provides a silylation/silver ion chromatography protocol for the separation of sterols which differ by the degree of unsaturation. The techniques for the 13C NMR analysis of deuterated sterols, site-specific deuteration levels and an analysis of key biosynthetic steps based on these data are reported.
Collapse
Affiliation(s)
- Carl Recsei
- Australian Nuclear Science and Technology Organisation, National Deuteration Facility, New Illawarra Rd, Lucas Heights, New South Wales, 2234, Australia.
| | - Robert A Russell
- Australian Nuclear Science and Technology Organisation, National Deuteration Facility, New Illawarra Rd, Lucas Heights, New South Wales, 2234, Australia.
| | - Marina Cagnes
- Australian Nuclear Science and Technology Organisation, National Deuteration Facility, New Illawarra Rd, Lucas Heights, New South Wales, 2234, Australia.
| | - Tamim Darwish
- Australian Nuclear Science and Technology Organisation, National Deuteration Facility, New Illawarra Rd, Lucas Heights, New South Wales, 2234, Australia.
| |
Collapse
|
16
|
Di Martino RMC, Maxwell BD, Pirali T. Deuterium in drug discovery: progress, opportunities and challenges. Nat Rev Drug Discov 2023; 22:562-584. [PMID: 37277503 PMCID: PMC10241557 DOI: 10.1038/s41573-023-00703-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/07/2023]
Abstract
Substitution of a hydrogen atom with its heavy isotope deuterium entails the addition of one neutron to a molecule. Despite being a subtle change, this structural modification, known as deuteration, may improve the pharmacokinetic and/or toxicity profile of drugs, potentially translating into improvements in efficacy and safety compared with the non-deuterated counterparts. Initially, efforts to exploit this potential primarily led to the development of deuterated analogues of marketed drugs through a 'deuterium switch' approach, such as deutetrabenazine, which became the first deuterated drug to receive FDA approval in 2017. In the past few years, the focus has shifted to applying deuteration in novel drug discovery, and the FDA approved the pioneering de novo deuterated drug deucravacitinib in 2022. In this Review, we highlight key milestones in the field of deuteration in drug discovery and development, emphasizing recent and instructive medicinal chemistry programmes and discussing the opportunities and hurdles for drug developers, as well as the questions that remain to be addressed.
Collapse
Affiliation(s)
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
17
|
Murray J, Hodgson DRW, O’Donoghue AC. Going Full Circle with Organocatalysis and Biocatalysis: The Latent Potential of Cofactor Mimics in Asymmetric Synthesis. J Org Chem 2023; 88:7619-7629. [PMID: 37126859 PMCID: PMC10278144 DOI: 10.1021/acs.joc.2c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/03/2023]
Abstract
Many enzymes work in tandem with small molecule cofactors, which have inspired organocatalyst designs. Chemical modification of cofactor scaffolds has increased organocatalytic reactivity and reaction scope. This synopsis presents a selection of recent advances in the use of cofactors (native and mimics) in organocatalysis and biocatalysis. We aim to highlight the benefits of combining fundamental knowledge gained in both bio- and organo-catalysis for asymmetric biocatalysis.
Collapse
Affiliation(s)
- Jacob Murray
- Department of Chemistry, Durham University, South Road, Durham DH1
3LE, United
Kingdom
| | - David R. W. Hodgson
- Department of Chemistry, Durham University, South Road, Durham DH1
3LE, United
Kingdom
| | | |
Collapse
|
18
|
Chandra Mouli HM, Vinod A, Kumari S, Tiwari AK, Kathiravan MK, Ravichandiran V, Peraman R. Deuterated driven new chemical entities: An optimistic way to improve therapeutic efficacy. Bioorg Chem 2023; 135:106490. [PMID: 37001472 DOI: 10.1016/j.bioorg.2023.106490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
In organic chemistry, the use of deuterium exchange as a tool to study the mechanism of chemical reaction has been well explored. Since two decades, the research focus on deuterated bioactive molecules has been gaining attention for investigating the therapeutic potential of deuterium replacement in a chemical structure. Recently, Food Drug Administration (FDA) approved the first deuterium-labeled drug "deutetrabenazine", and notified the deuterated drugs as new chemical entities (NCEs). Henceforth, the deuterium substitution driven structure activity relationship, preclinical pharmacokinetics, and toxicity studies were much initiated. Deuteration of a bioactive molecule often results in improved therapeutic efficacy due to the altered pharmacokinetic profile. This review provides a conceptual framework on the importance of deuterium atom in chemical structure of a drug, and its biological value in improved physiochemical properties, pharmacokinetics, biological target interaction, diagnosis, and toxicity. In addition, this review concisely updated the recent deuteration methods, chemical stability, challenges in drug development, deuterium-based imaging in diagnosis, and selected synthetic scheme of deuterated molecules.
Collapse
Affiliation(s)
- H M Chandra Mouli
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India
| | - Adithya Vinod
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India
| | - Shikha Kumari
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Science Campus, OH 43614, United States
| | - Amit K Tiwari
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Science Campus, OH 43614, United States
| | - M K Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India
| | - Ramalingam Peraman
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India.
| |
Collapse
|
19
|
Madden KS, Todd PM, Urata K, Russell AJ, Vincent KA, Reeve HA. A pharmacophore-based approach to demonstrating the scope of alcohol dehydrogenases. Bioorg Med Chem 2023; 83:117255. [PMID: 36966660 DOI: 10.1016/j.bmc.2023.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
Barriers to the ready adoption of biocatalysis into asymmetric synthesis for early stage medicinal chemistry are addressed, using ketone reduction by alcohol dehydrogenase as a model reaction. An efficient substrate screening approach is used to show the wide substrate scope of commercial alcohol dehydrogenase enzymes, with a high tolerance to chemical groups employed in drug discovery (heterocycle, trifluoromethyl and nitrile/nitro groups) observed. We use our screening data to build a preliminary predictive pharmacophore-based screening tool using Forge software, with a precision of 0.67/1, demonstrating the potential for developing substrate screening tools for commercially available enzymes without publicly available structures. We hope that this work will facilitate a culture shift towards adopting biocatalysis alongside traditional chemical catalytic methods in early stage drug discovery.
Collapse
|
20
|
Fu Y, Liu X, Xia Y, Guo X, Guo J, Zhang J, Zhao W, Wu Y, Wang J, Zhong F. Whole-cell-catalyzed hydrogenation/deuteration of aryl halides with a genetically repurposed photodehalogenase. Chem 2023. [DOI: 10.1016/j.chempr.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
21
|
Wei J, Zhao L, Zhang Y, Han G, He C, Wang C, Duan C. Enzyme Grafting with a Cofactor-Decorated Metal-Organic Capsule for Solar-to-Chemical Conversion. J Am Chem Soc 2023; 145:6719-6729. [PMID: 36916689 DOI: 10.1021/jacs.2c12636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Semi-artificial approaches to solar-to-chemical conversion can achieve chemical transformations that are beyond the capability of natural enzymes, but face marked challenges to facilitate in vivo cascades, due to their inevitable need for cofactor shuttling and regeneration. Here, we report on an enzyme grafting strategy to build a metal-organic capsule-docking artificial enzyme (metal-organic-enzyme, MOE) that comprised the self-assembly of a cofactor-decorated capsule and the supramolecular enzyme-recognition features between the enzyme scaffold and the capsule to bypass cofactor shuttling and regeneration. The incorporated NADH mimics within the metal-organic capsule interacted with the imine intermediate that formed from the condensation of the amines and the dehydrogenation of alcohol substrates in the microenvironment to form complexes within the capsule and subsequently served as an in situ-generated photoresponsive cofactor. Upon illumination, the photoresponsive cofactor facilitates efficient proton/electron transport between the inner space (supramolecular hydrogenation) and outer space (enzymatic dehydrogenation) of the capsule to dehydrogenize the alcohols and hydrogenize the imine intermediates, respectively, circumventing the conventionally complex multistep cofactor shuttling and regeneration. The semi-artificial enzyme endows the conversion of diverse types of alcohol to amine products in both aqueous/organic solutions and Escherichia coli with high efficiency, offering a wide range of opportunities for sustainable and environmentally friendly biomanufacturing of commodity and fine chemicals.
Collapse
Affiliation(s)
- Jianwei Wei
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chong Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
22
|
Song H, Zhang W, Zhou H, Wei J, Cai X, Yang F, Li W, Xu C. Remote Site-Selective C(sp 3)–H Monodeuteration of Unactivated Alkenes via Chain-Walking Strategy. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Heng Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hu Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Jingjing Wei
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Wei Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| |
Collapse
|
23
|
Recent advances in the catalytic N-methylation and N-trideuteromethylation reactions using methanol and deuterated methanol. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Ramanathan D, Shi Q, Xu M, Chang R, Peñín B, Funes-Ardoiz I, Ye J. Catalytic asymmetric deuterosilylation of exocyclic olefins with mannose-derived thiols and deuterium oxide. Org Chem Front 2023. [DOI: 10.1039/d2qo01979e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-free, photoinduced asymmetric deuterosilylation of exocyclic olefins has been achieved using a mannose-derived thiol catalyst.
Collapse
Affiliation(s)
- Devenderan Ramanathan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz Peñín
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Sheng FF, Gu JG, Liu KH, Zhang HH. Synthesis of β-Deuterated Amino Acids via Palladium-Catalyzed H/D Exchange. J Org Chem 2022; 87:16084-16089. [PMID: 36395460 DOI: 10.1021/acs.joc.2c01654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite several synthetic approaches that have been developed for α-deuterated amino acids, the synthesis of β-deuterated amino acids has remained a challenge. Herein, we disclose a palladium catalyzed H/D exchange protocol for a β-deuterated N-protected amino amide, which can be converted to a β-deuterated amino acid simply by removal of protecting groups. This protocol is highly efficient, simply manipulated, and appliable for deuterium-labeling of many amino amides. In addition, deuterium labeling of phenylalanine derivatives was also successful when pivalic acid served as an additive to promote the H/D exchange process.
Collapse
Affiliation(s)
- Fei-Fei Sheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Jian-Guo Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Kai-Hui Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Hong-Hai Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
26
|
Jansen-van Vuuren RD, Jedlovčnik L, Košmrlj J, Massey TE, Derdau V. Deuterated Drugs and Biomarkers in the COVID-19 Pandemic. ACS OMEGA 2022; 7:41840-41858. [PMID: 36440130 PMCID: PMC9685803 DOI: 10.1021/acsomega.2c04160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/18/2022] [Indexed: 06/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Initially identified in Wuhan (China) in December 2019, COVID-19 rapidly spread globally, resulting in the COVID-19 pandemic. Carriers of the SARS-CoV-2 can experience symptoms ranging from mild to severe (or no symptoms whatsoever). Although vaccination provides extra immunity toward SARS-CoV-2, there has been an urgent need to develop treatments for COVID-19 to alleviate symptoms for carriers of the disease. In seeking a potential treatment, deuterated compounds have played a critical role either as therapeutic agents or as internal MS standards for studying the pharmacological properties of new drugs by quantifying the parent compounds and metabolites. We have identified >70 examples of deuterium-labeled compounds associated with treatment of COVID-19. Of these, we found 9 repurposed drugs and >20 novel drugs studied for potential therapeutic roles along with a total of 38 compounds (drugs, biomarkers, and lipids) explored as internal mass spectrometry standards. This review details the synthetic pathways and modes of action of these compounds (if known), and a brief analysis of each study.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Luka Jedlovčnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Thomas E. Massey
- Department
of Biomedical and Molecular Sciences, School of Medicine, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Volker Derdau
- Research
& Development, Integrated Drug Discovery, Isotope Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst G876, Frankfurt/Main 65926, Germany
| |
Collapse
|
27
|
Xiang Z, Huang S, Zhao LL, Zhang Z, Chen K, Cao W, Zheng K, Yan X. Base-catalyzed H/D exchange of polychlorinated biphenyls. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Shi Q, Xu M, Chang R, Ramanathan D, Peñin B, Funes-Ardoiz I, Ye J. Visible-light mediated catalytic asymmetric radical deuteration at non-benzylic positions. Nat Commun 2022; 13:4453. [PMID: 35915119 PMCID: PMC9343372 DOI: 10.1038/s41467-022-32238-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/21/2022] [Indexed: 01/30/2023] Open
Abstract
Site- and enantioselective incorporation of deuterium into organic compounds is of broad interest in organic synthesis, especially within the pharmaceutical industry. While catalytic approaches relying on two-electron reaction manifolds have allowed for stereoselective delivery of a formal deuteride (D-) or deuteron (D+) at benzylic positions, complementary strategies that make use of one-electron deuterium atom transfer and target non-benzylic positions remain elusive. Here we report a photochemical approach for asymmetric radical deuteration by utilizing readily available peptide- or sugar-derived thiols as the catalyst and inexpensive deuterium oxide as the deuterium source. This metal-free platform enables four types of deuterofunctionalization reactions of exocyclic olefins and allows deuteration at non-benzylic positions with high levels of enantioselectivity and deuterium incorporation. Computational studies reveal that attractive non-covalent interactions are responsible for stereocontrol. We anticipate that our findings will open up new avenues for asymmetric deuteration.
Collapse
Affiliation(s)
- Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Devenderan Ramanathan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Beatriz Peñin
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain.
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
29
|
Zhou X, Yu T, Dong G. Site-Specific and Degree-Controlled Alkyl Deuteration via Cu-Catalyzed Redox-Neutral Deacylation. J Am Chem Soc 2022; 144:9570-9575. [PMID: 35613457 DOI: 10.1021/jacs.2c04382] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deuterated organic compounds have become increasingly important in many areas; however, it remains challenging to install deuterium site-selectively to unactivated aliphatic positions with control of the degree of deuteration. Here, we report a Cu-catalyzed degree-controlled deacylative deuteration of diverse alkyl groups with the methylketone (acetyl) moiety as a traceless activating group. The use of N-methylpicolino-hydrazonamide (MPHA) promotes efficient aromatization-driven C-C cleavage. Mono-, di-, and trideuteration at specific sites can be selectively achieved. The reaction is redox-neutral with broad functional group tolerance. The utility of this method has been demonstrated in forming a complete set of deuterated ethyl groups, merging with the Diels-Alder reaction, a net devinylative deuteration, and the synthesis of the d2-analogue of Austedo.
Collapse
Affiliation(s)
- Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Tingting Yu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Doyon TJ, Buller AR. Site-Selective Deuteration of Amino Acids through Dual-Protein Catalysis. J Am Chem Soc 2022; 144:7327-7336. [PMID: 35416652 PMCID: PMC10634506 DOI: 10.1021/jacs.2c00608] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Deuterated amino acids have been recognized for their utility in drug development, for facilitating nuclear magnetic resonance (NMR) analysis, and as probes for enzyme mechanism. Small molecule-based methods for the site-selective synthesis of deuterated amino acids typically involve de novo synthesis of the compound from deuterated precursors. In comparison, enzymatic methods for introducing deuterium offer improved efficiency, operating directly on free amino acids to achieve hydrogen-deuterium (H/D) exchange. However, site selectivity remains a significant challenge for enzyme-mediated deuteration, limiting access to desirable deuteration motifs. Here, we use enzyme-catalyzed deuteration, combined with steady-state kinetic analysis and ultraviolet (UV)-vis spectroscopy to probe the mechanism of a two-protein system responsible for the biosynthesis of l-allo-Ile. We show that an aminotransferase (DsaD) can pair with a small partner protein (DsaE) to catalyze Cα and Cβ H/D exchange of amino acids, while reactions without DsaE lead exclusively to Cα-deuteration. With conditions for improved catalysis, we evaluate the substrate scope for Cα/Cβ-deuteration and demonstrate the utility of this system for preparative-scale, selective labeling of amino acids.
Collapse
Affiliation(s)
- Tyler J Doyon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew R Buller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Fortunato GV, Pizzutilo E, Katsounaros I, Göhl D, Lewis RJ, Mayrhofer KJJ, Hutchings GJ, Freakley SJ, Ledendecker M. Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nat Commun 2022; 13:1973. [PMID: 35418132 PMCID: PMC9007970 DOI: 10.1038/s41467-022-29536-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Research in thermo- and electrocatalysis have often preceded in isolation, even for similar reactions. Here, the authors compare current trends in both fields and elaborate on the commonalities and differences with a specific focus on the production of hydrogen peroxide.
Collapse
Affiliation(s)
- Guilherme V Fortunato
- Institute of Chemistry of São Carlos, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Enrico Pizzutilo
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Ioannis Katsounaros
- Forschungszentrum Jülich, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058, Erlangen, Germany
| | - Daniel Göhl
- Department of Technical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Richard J Lewis
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Karl J J Mayrhofer
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.,Forschungszentrum Jülich, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058, Erlangen, Germany.,Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Simon J Freakley
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Marc Ledendecker
- Department of Technical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
32
|
Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry 2022; 28:e202103949. [PMID: 35133702 DOI: 10.1002/chem.202103949] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Biocatalysis integrate microbiologists, enzymologists, and organic chemists to access the repertoire of pharmaceutical and agrochemicals with high chemoselectivity, regioselectivity, and enantioselectivity. The saturation of carbon-carbon double bonds by biocatalysts challenges the conventional chemical methodology as it bypasses the use of precious metals (in combination with chiral ligands and molecular hydrogen) or organocatalysts. In this line, Ene-reductases (ERs) from the Old Yellow Enzymes (OYEs) family are found to be a prominent asymmetric biocatalyst that is increasingly used in academia and industries towards unparalleled stereoselective trans-hydrogenations of activated C=C bonds. ERs gained prominence as they were used as individual catalysts, multi-enzyme cascades, and in conjugation with chemical reagents (chemoenzymatic approach). Besides, ERs' participation in the photoelectrochemical and radical-mediated process helps to unlock many scopes outside traditional biocatalysis. These up-and-coming methodologies entice the enzymologists and chemists to explore, expand and harness the chemistries displayed by ERs for industrial settings. Herein, we reviewed the last five year's exploration of organic transformations using ERs.
Collapse
Affiliation(s)
- Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Chemistry Department and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
33
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
34
|
Henriques DSG, Rojo‐Wiechel E, Klare S, Mika R, Höthker S, Schacht JH, Schmickler N, Gansäuer A. Titanocene(III)‐Catalyzed Precision Deuteration of Epoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dina Schwarz G. Henriques
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Elena Rojo‐Wiechel
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Regine Mika
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Sebastian Höthker
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Jonathan H. Schacht
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Niklas Schmickler
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
35
|
Henriques DSG, Rojo‐Wiechel E, Klare S, Mika R, Höthker S, Schacht JH, Schmickler N, Gansäuer A. Titanocene(III)-Catalyzed Precision Deuteration of Epoxides. Angew Chem Int Ed Engl 2022; 61:e202114198. [PMID: 34845824 PMCID: PMC9305931 DOI: 10.1002/anie.202114198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/13/2022]
Abstract
We describe a titanocene(III)-catalyzed deuterosilylation of epoxides that provides β-deuterated anti-Markovnikov alcohols with excellent D-incorporation, in high yield, and often excellent diastereoselectivity after desilylation. The key to the success of the reaction is a novel activation method of Cp2 TiCl2 and (tBuC5 H4 )2 TiCl2 with BnMgBr and PhSiD3 to provide [(RC5 H4 )2 Ti(III)D] without isotope scrambling. It was developed after discovering an off-cycle scrambling with the previously described method. Our precision deuteration can be applied to the synthesis of drug precursors and highlights the power of combining radical chemistry with organometallic catalysis.
Collapse
Affiliation(s)
- Dina Schwarz G. Henriques
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Elena Rojo‐Wiechel
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Regine Mika
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Sebastian Höthker
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jonathan H. Schacht
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Niklas Schmickler
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
36
|
Valiente A, Martínez‐Pardo P, Kaur G, Johansson MJ, Martín‐Matute B. Electrochemical Proton Reduction over Nickel Foam for Z-Stereoselective Semihydrogenation/deuteration of Functionalized Alkynes. CHEMSUSCHEM 2022; 15:e202102221. [PMID: 34738723 PMCID: PMC9300003 DOI: 10.1002/cssc.202102221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Selective reduction strategies based on abundant-metal catalysts are very important in the production of chemicals. In this paper, a method for the electrochemical semihydrogenation and semideuteration of alkynes to form Z-alkenes was developed, using a simple nickel foam as catalyst and H3 O+ or D3 O+ as sources of hydrogen or deuterium. Good yields and excellent stereoselectivities (Z/E up to 20 : 1) were obtained under very mild reaction conditions. The reaction proceeded with terminal and nonterminal alkynes, and also with alkynes containing easily reducible functional groups, such as carbonyl groups, as well as aryl chlorides, bromides, and even iodides. The nickel-foam electrocatalyst could be recycled up to 14 times without any change in its catalytic properties.
Collapse
Affiliation(s)
- Alejandro Valiente
- Department of Organic ChemistryStockholm University The Arrhenius Laboratory 16C106 91StockholmSweden
| | - Pablo Martínez‐Pardo
- Department of Organic ChemistryStockholm University The Arrhenius Laboratory 16C106 91StockholmSweden
| | - Gurpreet Kaur
- Department of Organic ChemistryStockholm University The Arrhenius Laboratory 16C106 91StockholmSweden
| | - Magnus J. Johansson
- Medicinal Chemistry, Research and Early Development; Cardiovascular, Renal and Metabolism (CVRM)Biopharmaceuticals R&D AstraZenecaPepparedsleden 143150Mölndal, GothenburgSweden
| | - Belén Martín‐Matute
- Department of Organic ChemistryStockholm University The Arrhenius Laboratory 16C106 91StockholmSweden
| |
Collapse
|
37
|
Wang L, Lou Y, Xu W, Chen Z, Xu J, Wu Q. Biocatalytic Site-Selective Hydrogen Isotope Exchange of Unsaturated Fragments with D2O. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lanlan Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yujiao Lou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
38
|
Cook A, MacLean H, St. Onge P, Newman SG. Nickel-Catalyzed Reductive Deoxygenation of Diverse C–O Bond-Bearing Functional Groups. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Haydn MacLean
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Piers St. Onge
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
39
|
Xu J, Lou Y, Wang L, Wang Z, Xu W, Ma W, Chen Z, Chen X, Wu Q. Rational Design of Biocatalytic Deuteration Platform of Aldehydes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Yujiao Lou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Lanlan Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Wenqian Ma
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xiaoyang Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
40
|
Poznansky B, Cleary SE, Thompson LA, Reeve HA, Vincent KA. Boosting the Productivity of H2-Driven Biocatalysis in a Commercial Hydrogenation Flow Reactor Using H2 From Water Electrolysis. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.718257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Translation of redox biocatalysis into a commercial hydrogenation flow reactor, with in-built electrolytic H2 generation, was achieved using immobilized enzyme systems. Carbon-supported biocatalysts were first tested in batch mode, and were then transferred into continuous flow columns for H2-driven, NADH-dependent asymmetric ketone reductions. The biocatalysts were thus handled comparably to heterogeneous metal catalysts, but operated at room temperature and 1–50 bar H2, highlighting that biocatalytic strategies enable implementation of hydrogenation reactions under mild–moderate conditions. Continuous flow reactions were demonstrated as a strategy for process intensification; high conversions were achieved in short residence times, with a high biocatalyst turnover frequency and productivity. These results show the prospect of using enzymes in reactor infrastructure designed for conventional heterogeneous hydrogenations.
Collapse
|
41
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:16962-16993. [PMID: 38505660 PMCID: PMC10946893 DOI: 10.1002/ange.202014931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 03/21/2024]
Abstract
AbstractDie Enzymkatalyse gewinnt zunehmend an Bedeutung in der Synthesechemie. Die durch Bioinformatik und Enzym‐Engineering stetig wachsende Zahl von Biokatalysatoren eröffnet eine große Vielfalt selektiver Reaktionen. Insbesondere für späte Funktionalisierungsreaktionen ist die Biokatalyse ein geeignetes Werkzeug, das oftmals der konventionellen De‐novo‐Synthese überlegen ist. Enzyme haben sich als nützlich erwiesen, um funktionelle Gruppen direkt in komplexe Molekülgerüste einzuführen sowie für die rasche Diversifizierung von Substanzbibliotheken. Biokatalytische Oxyfunktionalisierungen, Halogenierungen, Methylierungen, Reduktionen und Amidierungen sind von besonderem Interesse, da diese Strukturmotive häufig in Pharmazeutika vertreten sind. Dieser Aufsatz gibt einen Überblick über die Stärken und Schwächen der enzymkatalysierten späten Modifizierungen durch native und optimierte Enzyme in der Synthesechemie. Ebenso werden wichtige Beispiele in der Wirkstoffentwicklung hervorgehoben.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| |
Collapse
|
42
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew Chem Int Ed Engl 2021; 60:16824-16855. [PMID: 33453143 PMCID: PMC8359417 DOI: 10.1002/anie.202014931] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis. Enzymes have proven to be useful for direct introduction of functional groups into complex scaffolds, as well as for rapid diversification of compound libraries. Particularly important and highly topical are enzyme-catalysed oxyfunctionalisations, halogenations, methylations, reductions, and amide bond formations due to the high prevalence of these motifs in pharmaceuticals. This Review gives an overview of the strengths and limitations of enzymatic late-stage modifications using native and engineered enzymes in synthesis while focusing on important examples in drug development.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
43
|
Darshana D, Sureram S, Mahidol C, Ruchirawat S, Kittakoop P. Spontaneous conversion of prenyl halides to acids: application in metal-free preparation of deuterated compounds under mild conditions. Org Biomol Chem 2021; 19:7390-7402. [PMID: 34296730 DOI: 10.1039/d1ob01275d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we reveal a simple generation of deuterium halide (DX) from common and inexpensive reagents readily available in a synthetic chemistry laboratory, i.e. prenyl-, allyl-, and propargyl halides, under mild conditions. We envisaged that in situ generation of an acid, deuterium halide, would be useful for acid-catalyzed reactions and could be employed for organocatalytic deuteration. The present work reports a metal-free method for deuterium labeling covering a broad range of substrate including phenolic compounds (i.e. flavonoids and stilbenes), indoles, pyrroles, carbonyl compounds, and steroids. This method was also applied for commonly used drugs such as loxoprofen, haloperidol, stanolone, progesterone, androstenedione, donepezil, ketorolac, adrenosterone, cortisone, pregnenolone, and dexamethasone. A gram-scale chromatography-free synthesis of some deuterated compounds is demonstrated in this work. This work provides a simple, clean and by-product-free, site-selective deuteration, and the deuterated products are obtained without chromatographic separation. When applying these initiators for other acid-catalyzed reactions, the deuterium isotope effects of DX may provide products which are different from those obtained from reactions using common acids. Although the mechanism of the spontaneous transformation of prenyl halides to acid is unclear, this overlooked chemistry may be useful for many reactions.
Collapse
Affiliation(s)
- Dhanushka Darshana
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.
| | | | | | | | | |
Collapse
|
44
|
Xu J, Fan J, Lou Y, Xu W, Wang Z, Li D, Zhou H, Lin X, Wu Q. Light-driven decarboxylative deuteration enabled by a divergently engineered photodecarboxylase. Nat Commun 2021; 12:3983. [PMID: 34172745 PMCID: PMC8233396 DOI: 10.1038/s41467-021-24259-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/10/2021] [Indexed: 12/05/2022] Open
Abstract
Despite the well-established chemical processes for C-D bond formation, the toolbox of enzymatic methodologies for deuterium incorporation has remained underdeveloped. Here we describe a photodecarboxylase from Chlorella variabilis NC64A (CvFAP)-catalyzed approach for the decarboxylative deuteration of various carboxylic acids by employing D2O as a cheap and readily available deuterium source. Divergent protein engineering of WT-CvFAP is implemented using Focused Rational Iterative Site-specific Mutagenesis (FRISM) as a strategy for expanding the substrate scope. Using specific mutants, several series of substrates including different chain length acids, racemic substrates as well as bulky cyclic acids are successfully converted into the deuterated products (>40 examples). In many cases WT-CvFAP fails completely. This approach also enables the enantiocomplementary kinetic resolution of racemic acids to afford chiral deuterated products, which can hardly be accomplished by existing methods. MD simulations explain the results of improved catalytic activity and stereoselectivity of WT CvFAP and mutants.
Collapse
Affiliation(s)
- Jian Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Jiajie Fan
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Yujiao Lou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
| | - Danyang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Haonan Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Xianfu Lin
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
45
|
Zhao X, Cleary SE, Zor C, Grobert N, Reeve HA, Vincent KA. Chemo-bio catalysis using carbon supports: application in H 2-driven cofactor recycling. Chem Sci 2021; 12:8105-8114. [PMID: 34194700 PMCID: PMC8208311 DOI: 10.1039/d1sc00295c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Heterogeneous biocatalytic hydrogenation is an attractive strategy for clean, enantioselective C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
X reduction. This approach relies on enzymes powered by H2-driven NADH recycling. Commercially available carbon-supported metal (metal/C) catalysts are investigated here for direct H2-driven NAD+ reduction. Selected metal/C catalysts are then used for H2 oxidation with electrons transferred via the conductive carbon support material to an adsorbed enzyme for NAD+ reduction. These chemo-bio catalysts show improved activity and selectivity for generating bioactive NADH under ambient reaction conditions compared to metal/C catalysts. The metal/C catalysts and carbon support materials (all activated carbon or carbon black) are characterised to probe which properties potentially influence catalyst activity. The optimised chemo-bio catalysts are then used to supply NADH to an alcohol dehydrogenase for enantioselective (>99% ee) ketone reductions, leading to high cofactor turnover numbers and Pd and NAD+ reductase activities of 441 h−1 and 2347 h−1, respectively. This method demonstrates a new way of combining chemo- and biocatalysis on carbon supports, highlighted here for selective hydrogenation reactions. Heterogeneous chemo-bio catalytic hydrogenation is an attractive strategy for clean, enantioselective CX reduction.![]()
Collapse
Affiliation(s)
- Xu Zhao
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Sarah E Cleary
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Ceren Zor
- Department of Materials, University of Oxford Parks Road Oxford OX1 3PH UK
| | - Nicole Grobert
- Department of Materials, University of Oxford Parks Road Oxford OX1 3PH UK
| | - Holly A Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
46
|
Rowbotham JS, Reeve HA, Vincent KA. Hybrid Chemo-, Bio-, and Electrocatalysis for Atom-Efficient Deuteration of Cofactors in Heavy Water. ACS Catal 2021; 11:2596-2604. [PMID: 33842020 PMCID: PMC8025731 DOI: 10.1021/acscatal.0c03437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/31/2021] [Indexed: 11/29/2022]
Abstract
Deuterium-labeled nicotinamide cofactors such as [4-2H]-NADH can be used as mechanistic probes in biological redox processes and offer a route to the synthesis of selectively [2H] labeled chemicals via biocatalytic reductive deuteration. Atom-efficient routes to the formation and recycling of [4-2H]-NADH are therefore highly desirable but require careful design in order to alleviate the requirement for [2H]-labeled reducing agents. In this work, we explore a suite of electrode or hydrogen gas driven catalyst systems for the generation of [4-2H]-NADH and consider their use for driving reductive deuteration reactions. Catalysts are evaluated for their chemoselectivity, stereoselectivity, and isotopic selectivity, and it is shown that inclusion of an electronically coupled NAD+-reducing enzyme delivers considerable advantages over purely metal based systems, yielding exclusively [4S-2H]-NADH. We further demonstrate the applicability of these types of [4S-2H]-NADH recycling systems for driving reductive deuteration reactions, regardless of the facioselectivity of the coupled enzyme.
Collapse
Affiliation(s)
- Jack S. Rowbotham
- Department of Chemistry,
Inorganic Chemistry Laboratory, University
of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Holly A. Reeve
- Department of Chemistry,
Inorganic Chemistry Laboratory, University
of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kylie A. Vincent
- Department of Chemistry,
Inorganic Chemistry Laboratory, University
of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
47
|
Park K, Ito N, Yamada T, Sajiki H. Efficient Continuous-Flow H–D Exchange Reaction of Aromatic Nuclei in D 2O/2-PrOH Mixed Solvent in a Catalyst Cartridge Packed with Platinum on Carbon Beads. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Naoya Ito
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
48
|
Rowbotham JS, Hardy AP, Reeve HA, Vincent KA. Synthesis of [4S- 2 H]NADH, [4R- 2 H]NADH, [4- 2 H 2 ]NADH and [4- 2 H]NAD + cofactors through heterogeneous biocatalysis in heavy water. J Labelled Comp Radiopharm 2021; 64:181-186. [PMID: 33497029 PMCID: PMC8048645 DOI: 10.1002/jlcr.3899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/14/2022]
Abstract
This practitioner protocol describes the synthesis of a family of deuterated nicotinamide cofactors: [4S‐2H]NADH, [4R‐2H]NADH, [4‐2H2]NADH and [4‐2H]NAD+. The application of a recently developed H2‐driven heterogeneous biocatalyst enables the cofactors to be prepared with high (>90%) 2H‐incorporation with 2H2O as the only isotope source.
Collapse
Affiliation(s)
- Jack S Rowbotham
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Adam P Hardy
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Holly A Reeve
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Kylie A Vincent
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Wu J, Qian B, Lu L, Yang H, Shang Y, Zhang J. Access to the C2 C–H olefination, alkylation and deuteration of indoles by rhodium( iii) catalysis: an opportunity for diverse syntheses. Org Chem Front 2021. [DOI: 10.1039/d1qo00133g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A concise approach for a diversity-oriented synthesis via regioselective C2 C–H olefination, alkylation, and deuteration of indoles by Rh(iii) catalysis is described.
Collapse
Affiliation(s)
- Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Baiyang Qian
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Lili Lu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Haitao Yang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| |
Collapse
|
50
|
Yang P, Zhang L, Fu K, Sun Y, Wang X, Yue J, Ma Y, Tang B. Nickel-Catalyzed Asymmetric Transfer Hydrogenation and α-Selective Deuteration of N-Sulfonyl Imines with Alcohols: Access to α-Deuterated Chiral Amines. Org Lett 2020; 22:8278-8284. [PMID: 33044081 DOI: 10.1021/acs.orglett.0c02921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A nickel-catalyzed enantioselective transfer hydrogenation and deuteration of N-sulfonyl imines was developed. Excellent α-selectivity and high deuterium content were achieved by using inexpensive 2-propanol-d8 as a deuterium source. As a highlight, no deuteration of β-C-H and the remote C-H of N-sulfonyl amines occurred, which is hard to achieve using other imines or by hydrogen isotope exchange with D2O. Mechanism studies indicated a stepwise pathway through the [Ni-D] intermediate.
Collapse
Affiliation(s)
- Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Li Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Kaiyue Fu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Yaxin Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiuhua Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Jieyu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|