1
|
Chen S, Luo Y, Ruan S, Su G, Huang G. RNA binding protein ILF3 increases CEP55 mRNA stability to enhance malignant potential of breast cancer cells and suppress ferroptosis. Hereditas 2025; 162:10. [PMID: 39871389 PMCID: PMC11773698 DOI: 10.1186/s41065-025-00372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Ferroptosis has emerged as a promising therapeutic target in cancer treatment. CEP55, a key regulator of cell mitosis, plays a significant role in the tumorigenesis of many malignancies. In this study, we elucidated the function of CEP55 in the ferroptosis of breast cancer (BC). METHODS The protein levels of CEP55 and ILF3 were detected by immunoblotting or immunohistochemistry, and their mRNA levels were assessed by quantitative PCR. Cell invasion and migration were evaluated by transwell assay. Cell apoptosis and colony formation were tested by flow cytometry and colony formation assays, respectively. RNA immunoprecipitation (RIP) experiment and CEP55 mRNA stability assay were used to validate the relationship between ILF3 and CEP55 mRNA. Subcutaneous xenograft studies were performed to analyze the role of ILF3 depletion in tumor growth. RESULTS CEP55 and ILF3 were upregulated in most of human BC samples and MDA-MB-231 and MCF-7 BC cells. The depletion of CEP55 or ILF3 impaired the growth, invasion, and migration of MDA-MB-231 and MCF-7 cells, while promoted their ferroptosis and apoptosis. Mechanistically, ILF3 stabilized CEP55 mRNA to regulate CEP55 expression in BC cells. CEP55 restoration partially rescued the malignant potential defects of ILF3-depleted BC cells and attenuates their ferroptosis. Moreover, ILF3 depletion enhanced the anti-tumor growth activity of the ferroptosis inducer erastin in MDA-MB-231 subcutaneous xenograft tumors. CONCLUSION Our observations indicate that the depletion of ILF3 impairs the malignant potential of BC cells and promotes their ferroptosis by downregulating CEP55 expression. Silencing ILF3 or CEP55 could represent a potential therapeutic strategy for BC treatment.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China
| | - Yangyong Luo
- Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China
| | - Simin Ruan
- Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China
| | - Guosen Su
- Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China
| | - Guoxing Huang
- Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China.
| |
Collapse
|
2
|
Naher S, Iemura K, Miyashita S, Hoshino M, Tanaka K, Niwa S, Tsai JW, Kikkawa T, Osumi N. Kinesin-like motor protein KIF23 maintains neural stem and progenitor cell pools in the developing cortex. EMBO J 2025; 44:331-355. [PMID: 39632980 PMCID: PMC11729872 DOI: 10.1038/s44318-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Accurate mitotic division of neural stem and progenitor cells (NSPCs) is crucial for the coordinated generation of progenitors and mature neurons, which determines cortical size and structure. While mutations in the kinesin-like motor protein KIF23 gene have been recently linked to microcephaly in humans, the underlying mechanisms remain elusive. Here, we explore the pivotal role of KIF23 in embryonic cortical development. We characterize the dynamic expression of KIF23 in the cortical NSPCs of mice, ferrets, and humans during embryonic neurogenesis. Knockdown of Kif23 in mice results in precocious neurogenesis and neuronal apoptosis, attributed to an accelerated cell cycle exit, likely resulting from disrupted mitotic spindle orientation and impaired cytokinesis. Additionally, KIF23 depletion perturbs the apical surface structure of NSPCs by affecting the localization of apical junction proteins. We further demonstrate that the phenotypes induced by Kif23 knockdown are rescued by introducing wild-type human KIF23, but not by a microcephaly-associated variant. Our findings unveil a previously unexplored role of KIF23 in neural stem and progenitor cell maintenance via regulating spindle orientation and apical structure in addition to cytokinesis, shedding light on microcephaly pathogenesis.
Collapse
Affiliation(s)
- Sharmin Naher
- Department of Developmental Neuroscience, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Noriko Osumi
- Department of Developmental Neuroscience, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan.
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
3
|
Murphy H, Huang Q, Jensen J, Weber N, Mendonça L, Ly H, Liang Y. Characterization of bi-segmented and tri-segmented recombinant Pichinde virus particles. J Virol 2024; 98:e0079924. [PMID: 39264155 PMCID: PMC11494906 DOI: 10.1128/jvi.00799-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Mammarenaviruses include several highly virulent pathogens (e.g., Lassa virus) capable of causing severe hemorrhagic fever diseases for which there are no approved vaccines and limited treatment options. Mammarenaviruses are enveloped, bi-segmented ambisense RNA viruses. There is limited knowledge about cellular proteins incorporated into progeny virion particles and their potential biological roles in viral infection. Pichinde virus (PICV) is a prototypic arenavirus used to characterize mammarenavirus replication and pathogenesis. We have developed a recombinant PICV with a tri-segmented RNA genome as a viral vector platform. Whether the tri-segmented virion differs from the wild-type bi-segmented one in viral particle morphology and protein composition has not been addressed. In this study, recombinant PICV (rPICV) virions with a bi-segmented (rP18bi) and a tri-segmented (rP18tri) genome were purified by density-gradient ultracentrifugation and analyzed by cryo-electron microscopy and mass spectrometry. Both virion types are pleomorphic with spherical morphology and have no significant difference in size despite rP18tri having denser particles. Both virion types also contain similar sets of cellular proteins. Among the highly enriched virion-associated cellular proteins are components of the endosomal sorting complex required for transport pathway and vesicle trafficking, such as ALIX, Tsg101, VPS, CHMP, and Ras-associated binding proteins, which have known functions in virus assembly and budding. Other enriched cellular proteins include peripheral and transmembrane proteins, chaperone proteins, and ribosomal proteins; their biological roles in viral infection warrant further analysis. Our study provides important insights into mammarenavirus particle formation and aids in the future development of viral vectors and antiviral discovery.IMPORTANCEMammarenaviruses, such as Lassa virus, are enveloped RNA viruses that can cause severe hemorrhagic fever diseases (Lassa fever) with no approved vaccine and limited therapeutic options. Cellular proteins incorporated into progeny virion particles and their biological roles in mammarenavirus infection have not been well characterized. Pichinde virus (PICV) is a prototypic mammarenavirus used as a surrogate model for Lassa fever. We used cryo-electron microscopy and proteomic analysis to characterize the morphology and protein contents of the purified PICV particles that package either two (bi-segmented) or three (tri-segmented) genomic RNA segments. Our results demonstrate a similar virion morphology but different particle density for the bi- and tri-segmented viral particles and reveal major virion-associated cellular proteins. This study provides important insights into the virus-host interactions that can be used for antiviral development and optimizing arenavirus-based vaccine vectors.
Collapse
Affiliation(s)
- Hannah Murphy
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Jacob Jensen
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Noah Weber
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Luiza Mendonça
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
4
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
5
|
Wangmo D, Gates TJ, Zhao X, Sun R, Subramanian S. Centrosomal Protein 55 (CEP55) Drives Immune Exclusion and Resistance to Immune Checkpoint Inhibitors in Colorectal Cancer. Vaccines (Basel) 2024; 12:63. [PMID: 38250876 PMCID: PMC10820828 DOI: 10.3390/vaccines12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) currently ranks as the third most common cancer in the United States, and its incidence is on the rise, especially among younger individuals. Despite the remarkable success of immune checkpoint inhibitors (ICIs) in various cancers, most CRC patients fail to respond due to intrinsic resistance mechanisms. While microsatellite instability-high phenotypes serve as a reliable positive predictive biomarker for ICI treatment, the majority of CRC patients with microsatellite-stable (MSS) tumors remain ineligible for this therapeutic approach. In this study, we investigated the role of centrosomal protein 55 (CEP55) in shaping the tumor immune microenvironment in CRC. CEP55 is overexpressed in multiple cancer types and was shown to promote tumorigenesis by upregulating the PI3K/AKT pathway. Our data revealed that elevated CEP55 expression in CRC was associated with reduced T cell infiltration, contributing to immune exclusion. As CRC tumors progressed, CEP55 expression increased alongside sequential mutations in crucial driver genes (APC, KRAS, TP53, and SMAD4), indicating its involvement in tumor progression. CEP55 knockout significantly impaired tumor growth in vitro and in vivo, suggesting that CEP55 plays a crucial role in tumorigenesis. Furthermore, the CEP55 knockout increased CD8+ T cell infiltration and granzyme B production, indicating improved anti-tumor immunity. Additionally, we observed reduced regulatory T cell infiltration in CEP55 knockout tumors, suggesting diminished immune suppression. Most significantly, CEP55 knockout tumors demonstrated enhanced responsiveness to immune checkpoint inhibition in a clinically relevant orthotopic CRC model. Treatment with anti-PD1 significantly reduced tumor growth in CEP55 knockout tumors compared to control tumors, suggesting that inhibiting CEP55 could improve the efficacy of ICIs. Collectively, our study underscores the crucial role of CEP55 in driving immune exclusion and resistance to ICIs in CRC. Targeting CEP55 emerges as a promising therapeutic strategy to sensitize CRC to immune checkpoint inhibition, thereby improving survival outcomes for CRC patients.
Collapse
Affiliation(s)
- Dechen Wangmo
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.W.); (T.J.G.); (X.Z.)
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Travis J. Gates
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.W.); (T.J.G.); (X.Z.)
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xianda Zhao
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.W.); (T.J.G.); (X.Z.)
| | - Ruping Sun
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.W.); (T.J.G.); (X.Z.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Farmer T, Vaeth KF, Han KJ, Goering R, Taliaferro MJ, Prekeris R. The role of midbody-associated mRNAs in regulating abscission. J Cell Biol 2023; 222:e202306123. [PMID: 37922419 PMCID: PMC10624257 DOI: 10.1083/jcb.202306123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2023] Open
Abstract
Midbodies function during telophase to regulate the abscission step of cytokinesis. Until recently, it was thought that abscission-regulating proteins, such as ESCRT-III complex subunits, accumulate at the MB by directly or indirectly binding to the MB resident protein, CEP55. However, recent studies have shown that depletion of CEP55 does not fully block ESCRT-III targeting the MB. Here, we show that MBs contain mRNAs and that these MB-associated mRNAs can be locally translated, resulting in the accumulation of abscission-regulating proteins. We demonstrate that localized MB-associated translation of CHMP4B is required for its targeting to the abscission site and that 3' UTR-dependent CHMP4B mRNA targeting to the MB is required for successful completion of cytokinesis. Finally, we identify regulatory cis-elements within RNAs that are necessary and sufficient for mRNA trafficking to the MB. We propose a novel method of regulating cytokinesis and abscission by MB-associated targeting and localized translation of selective mRNAs.
Collapse
Affiliation(s)
- Trey Farmer
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine F. Vaeth
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew J. Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Goovaerts S, Hoskens H, Eller RJ, Herrick N, Musolf AM, Justice CM, Yuan M, Naqvi S, Lee MK, Vandermeulen D, Szabo-Rogers HL, Romitti PA, Boyadjiev SA, Marazita ML, Shaffer JR, Shriver MD, Wysocka J, Walsh S, Weinberg SM, Claes P. Joint multi-ancestry and admixed GWAS reveals the complex genetics behind human cranial vault shape. Nat Commun 2023; 14:7436. [PMID: 37973980 PMCID: PMC10654897 DOI: 10.1038/s41467-023-43237-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
The cranial vault in humans is highly variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. Here, we conduct a joint multi-ancestry and admixed multivariate genome-wide association study on 3D cranial vault shape extracted from magnetic resonance images of 6772 children from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up analyses indicate that these loci overlap with genomic risk loci for sagittal craniosynostosis, show elevated activity cranial neural crest cells, are enriched for processes related to skeletal development, and are shared with the face and brain. We present supporting evidence of regional localization for several of the identified genes based on expression patterns in the cranial vault bones of E15.5 mice. Overall, our study provides a comprehensive overview of the genetics underlying normal-range cranial vault shape and its relevance for understanding modern human craniofacial diversity and the etiology of congenital malformations.
Collapse
Affiliation(s)
- Seppe Goovaerts
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
| | - Hanne Hoskens
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Ryan J Eller
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Noah Herrick
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Anthony M Musolf
- Statistical Genetics Section, Computational and Statistical Genomics Branch, NHGRI, NIH, MD, Baltimore, USA
| | - Cristina M Justice
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meng Yuan
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Myoung Keun Lee
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dirk Vandermeulen
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Heather L Szabo-Rogers
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatchewan, Canada
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Mary L Marazita
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - John R Shaffer
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Seth M Weinberg
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Petsalaki E, Balafouti S, Kyriazi AA, Zachos G. The abscission checkpoint senses chromatin bridges through Top2α recruitment to DNA knots. J Cell Biol 2023; 222:e202303123. [PMID: 37638884 PMCID: PMC10461104 DOI: 10.1083/jcb.202303123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
In response to chromatin bridges, the abscission checkpoint delays completion of cytokinesis to prevent chromosome breakage or tetraploidization. Here, we show that spontaneous or replication stress-induced chromatin bridges exhibit "knots" of catenated and overtwisted DNA next to the midbody. Topoisomerase IIα (Top2α) forms abortive Top2-DNA cleavage complexes (Top2ccs) on DNA knots; furthermore, impaired Top2α-DNA cleavage activity correlates with chromatin bridge breakage in cytokinesis. Proteasomal degradation of Top2ccs is required for Rad17 localization to Top2-generated double-strand DNA ends on DNA knots; in turn, Rad17 promotes local recruitment of the MRN complex and downstream ATM-Chk2-INCENP signaling to delay abscission and prevent chromatin breakage. In contrast, dicentric chromosomes that do not exhibit knotted DNA fail to activate the abscission checkpoint in human cells. These findings are the first to describe a mechanism by which the abscission checkpoint detects chromatin bridges, through generation of abortive Top2ccs on DNA knots, to preserve genome integrity.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - Sofia Balafouti
- Department of Biology, University of Crete, Heraklion, Greece
| | | | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
9
|
Wang Y, Sheng F, Ying L, Lou Q, Yu Z, Wang K, Wang H. CEP55-associated lethal fetal syndrome: a case report of a Chinese family. Front Genet 2023; 14:1267241. [PMID: 37928238 PMCID: PMC10623345 DOI: 10.3389/fgene.2023.1267241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Background: Research on fetal loss related to germline mutations in single genes remains limited. Disruption of CEP55 has recently been established in association with perinatal deaths characterized by hydranencephaly, renal dysplasia, oligohydramnios, and characteristic dysmorphisms. We herein present a Chinese family with recurrent fetal losses due to compound heterozygous nonsense CEP55 variants. Case presentations: The Chinese couple had a history of five pregnancies, with four of them proceeding abnormally. Two stillbirths (II:3 and II:4) sequentially occurred in the third and fourth pregnancy. Prenatal ultrasound scans revealed phenotypic similarities between fetuses II:3 and II:4, including oligohydramnios, bilateral renal dysplasia and hydrocephalus/hydranencephaly. Clubfoot and syndactyly were also present in both stillborn babies. Fetus II:3 presented with endocardial cushion defects while fetus II:4 did not. With the product of conception in the fourth pregnancy, whole exome sequencing (WES) on fetus II:4 identified compound heterozygous nonsense CEP55 variants comprised of c.190C>T(p.Arg64*) and c.208A>T(p.Lys70*). Both variants were expected to result in lack of the TSG101 and ALIX binding domain. Sanger sequencing confirmed the presence and cosegregation of both variants. Conclusion: This is the fifth reported family wherein biallelic CEP55 variants lead to multiple perinatal deaths. Our findings, taken together with previously described phenotypically similar cases and even those with a milder and viable phenotype, broaden the genotypic and phenotypic spectrum of CEP55-associated lethal fetal syndrome, highlighting the vital biomolecular function of CEP55.
Collapse
Affiliation(s)
- Yeping Wang
- Jinhua Maternity and Child Health Care Hospital, Jinhua, China
- Jinhua Municipal Central Hospital, Jinhua, China
| | - Fang Sheng
- Jinhua Maternity and Child Health Care Hospital, Jinhua, China
| | | | - Qiaoli Lou
- Wuyi County First People's Hospital, Jinhua, China
| | - Zhaonan Yu
- Medical School of Tianjin University, Tianjin, China
- Hangzhou D. A. Medical Laboratory, Hangzhou, China
| | - Kaixuan Wang
- Jinhua Municipal Central Hospital, Jinhua, China
| | - Haoyi Wang
- Hangzhou D. A. Medical Laboratory, Hangzhou, China
- Precision Diagnosis and Treatment Center of Jinhua City, Jinhua, China
| |
Collapse
|
10
|
Wang C, Chen Y, Hu S, Liu X. Insights into the function of ESCRT and its role in enveloped virus infection. Front Microbiol 2023; 14:1261651. [PMID: 37869652 PMCID: PMC10587442 DOI: 10.3389/fmicb.2023.1261651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is an essential molecular machinery in eukaryotic cells that facilitates the invagination of endosomal membranes, leading to the formation of multivesicular bodies (MVBs). It participates in various cellular processes, including lipid bilayer remodeling, cytoplasmic separation, autophagy, membrane fission and re-modeling, plasma membrane repair, as well as the invasion, budding, and release of certain enveloped viruses. The ESCRT complex consists of five complexes, ESCRT-0 to ESCRT-III and VPS4, along with several accessory proteins. ESCRT-0 to ESCRT-II form soluble complexes that shuttle between the cytoplasm and membranes, mainly responsible for recruiting and transporting membrane proteins and viral particles, as well as recruiting ESCRT-III for membrane neck scission. ESCRT-III, a soluble monomer, directly participates in vesicle scission and release, while VPS4 hydrolyzes ATP to provide energy for ESCRT-III complex disassembly, enabling recycling. Studies have confirmed the hijacking of ESCRT complexes by enveloped viruses to facilitate their entry, replication, and budding. Recent research has focused on the interaction between various components of the ESCRT complex and different viruses. In this review, we discuss how different viruses hijack specific ESCRT regulatory proteins to impact the viral life cycle, aiming to explore commonalities in the interaction between viruses and the ESCRT system.
Collapse
Affiliation(s)
- Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Glover J, Scourfield EJ, Ventimiglia LN, Yang X, Lynham S, Agromayor M, Martin-Serrano J. UMAD1 contributes to ESCRT-III dynamic subunit turnover during cytokinetic abscission. J Cell Sci 2023; 136:jcs261097. [PMID: 37439191 PMCID: PMC10445733 DOI: 10.1242/jcs.261097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023] Open
Abstract
Abscission is the final stage of cytokinesis whereby the midbody, a thin intercellular bridge, is resolved to separate the daughter cells. Cytokinetic abscission is mediated by the endosomal sorting complex required for transport (ESCRT), a conserved membrane remodelling machinery. The midbody organiser CEP55 recruits early acting ESCRT factors such as ESCRT-I and ALIX (also known as PDCD6IP), which subsequently initiate the formation of ESCRT-III polymers that sever the midbody. We now identify UMAD1 as an ESCRT-I subunit that facilitates abscission. UMAD1 selectively associates with VPS37C and VPS37B, supporting the formation of cytokinesis-specific ESCRT-I assemblies. TSG101 recruits UMAD1 to the site of midbody abscission, to stabilise the CEP55-ESCRT-I interaction. We further demonstrate that the UMAD1-ESCRT-I interaction facilitates the final step of cytokinesis. Paradoxically, UMAD1 and ALIX co-depletion has synergistic effects on abscission, whereas ESCRT-III recruitment to the midbody is not inhibited. Importantly, we find that both UMAD1 and ALIX are required for the dynamic exchange of ESCRT-III subunits at the midbody. Therefore, UMAD1 reveals a key functional connection between ESCRT-I and ESCRT-III that is required for cytokinesis.
Collapse
Affiliation(s)
- James Glover
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Edward J. Scourfield
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Leandro N. Ventimiglia
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Xiaoping Yang
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London SE5 9NU, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London SE5 9NU, UK
| | - Monica Agromayor
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| | - Juan Martin-Serrano
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK
| |
Collapse
|
12
|
Elias RD, Zhu Y, Su Q, Ghirlando R, Zhang J, Deshmukh L. Reversible phase separation of ESCRT protein ALIX through tyrosine phosphorylation. SCIENCE ADVANCES 2023; 9:eadg3913. [PMID: 37450591 PMCID: PMC10348681 DOI: 10.1126/sciadv.adg3913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Cytokinetic abscission, the last step of cell division, is regulated by the ESCRT machinery. In response to mitotic errors, ESCRT proteins, namely, ALIX, CHMP4B, and CHMP4C, accumulate in the cytosolic compartments termed "abscission checkpoint bodies" (ACBs) to delay abscission and prevent tumorigenesis. ALIX contributes to the biogenesis and stability of ACBs via an unknown mechanism. We show that ALIX phase separates into nondynamic condensates in vitro and in vivo, mediated by the amyloidogenic portion of its proline-rich domain. ALIX condensates confined CHMP4 paralogs in vitro. These condensates dissolved and reformed upon reversible tyrosine phosphorylation of ALIX, mediated by Src kinase and PTP1B, and sequestration of CHMP4C altered their Src-mediated dissolution. NMR analysis revealed how ALIX triggers the activation of CHMP4 proteins, which is required for successful abscission. These results implicate ALIX's phase separation in the modulation of ACBs. This study also highlights how posttranslational modifications can control protein phase separation.
Collapse
Affiliation(s)
- Ruben D. Elias
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yingqi Zhu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qi Su
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lalit Deshmukh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Iegiani G, Ferraro A, Pallavicini G, Di Cunto F. The impact of TP53 activation and apoptosis in primary hereditary microcephaly. Front Neurosci 2023; 17:1220010. [PMID: 37457016 PMCID: PMC10338886 DOI: 10.3389/fnins.2023.1220010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a constellation of disorders that share significant brain size reduction and mild to moderate intellectual disability, which may be accompanied by a large variety of more invalidating clinical signs. Extensive neural progenitor cells (NPC) proliferation and differentiation are essential to determine brain final size. Accordingly, the 30 MCPH loci mapped so far (MCPH1-MCPH30) encode for proteins involved in microtubule and spindle organization, centriole biogenesis, nuclear envelope, DNA replication and repair, underscoring that a wide variety of cellular processes is required for sustaining NPC expansion during development. Current models propose that altered balance between symmetric and asymmetric division, as well as premature differentiation, are the main mechanisms leading to MCPH. Although studies of cellular alterations in microcephaly models have constantly shown the co-existence of high DNA damage and apoptosis levels, these mechanisms are less considered as primary factors. In this review we highlight how the molecular and cellular events produced by mutation of the majority of MCPH genes may converge on apoptotic death of NPCs and neurons, via TP53 activation. We propose that these mechanisms should be more carefully considered in the alterations of the sophisticated equilibrium between proliferation, differentiation and death produced by MCPH gene mutations. In consideration of the potential druggability of cell apoptotic pathways, a better understanding of their role in MCPH may significantly facilitate the development of translational approaches.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Alessia Ferraro
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Gianmarco Pallavicini
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Ferdinando Di Cunto
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| |
Collapse
|
14
|
Mueller JPJ, Dobosz M, O’Brien N, Abdoush N, Giusti AM, Lechmann M, Osl F, Wolf AK, Arellano-Viera E, Shaikh H, Sauer M, Rosenwald A, Herting F, Umaña P, Colombetti S, Pöschinger T, Beilhack A. ROCKETS - a novel one-for-all toolbox for light sheet microscopy in drug discovery. Front Immunol 2023; 14:1034032. [PMID: 36845124 PMCID: PMC9945347 DOI: 10.3389/fimmu.2023.1034032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advancing novel immunotherapy strategies requires refined tools in preclinical research to thoroughly assess drug targets, biodistribution, safety, and efficacy. Light sheet fluorescence microscopy (LSFM) offers unprecedented fast volumetric ex vivo imaging of large tissue samples in high resolution. Yet, to date laborious and unstandardized tissue processing procedures have limited throughput and broader applications in immunological research. Therefore, we developed a simple and harmonized protocol for processing, clearing and imaging of all mouse organs and even entire mouse bodies. Applying this Rapid Optical Clearing Kit for Enhanced Tissue Scanning (ROCKETS) in combination with LSFM allowed us to comprehensively study the in vivo biodistribution of an antibody targeting Epithelial Cell Adhesion Molecule (EpCAM) in 3D. Quantitative high-resolution scans of whole organs did not only reveal known EpCAM expression patterns but, importantly, uncovered several new EpCAM-binding sites. We identified gustatory papillae of the tongue, choroid plexi in the brain and duodenal papillae as previously unanticipated locations of high EpCAM expression. Subsequently, we confirmed high EpCAM expression also in human tongue and duodenal specimens. Choroid plexi and duodenal papillae may be considered as particularly sensitive sites due to their importance for liquor production or as critical junctions draining bile and digestive pancreatic enzymes into the small bowel, respectively. These newly gained insights appear highly relevant for clinical translation of EpCAM-addressing immunotherapies. Thus, ROCKETS in combination with LSFM may help to set new standards for preclinical evaluation of immunotherapeutic strategies. In conclusion, we propose ROCKETS as an ideal platform for a broader application of LSFM in immunological research optimally suited for quantitative co-localization studies of immunotherapeutic drugs and defined cell populations in the microanatomical context of organs or even whole mice.
Collapse
Affiliation(s)
- Joerg P. J. Mueller
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Dobosz
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nils O’Brien
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nassri Abdoush
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Anna Maria Giusti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Martin Lechmann
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Franz Osl
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ann-Katrin Wolf
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Estibaliz Arellano-Viera
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Frank Herting
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Pablo Umaña
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Sara Colombetti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Thomas Pöschinger
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| |
Collapse
|
15
|
High-Content RNAi Phenotypic Screening Unveils the Involvement of Human Ubiquitin-Related Enzymes in Late Cytokinesis. Cells 2022; 11:cells11233862. [PMID: 36497121 PMCID: PMC9737832 DOI: 10.3390/cells11233862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
CEP55 is a central regulator of late cytokinesis and is overexpressed in numerous cancers. Its post-translationally controlled recruitment to the midbody is crucial to the structural coordination of the abscission sequence. Our recent evidence that CEP55 contains two ubiquitin-binding domains was the first structural and functional link between ubiquitin signaling and ESCRT-mediated severing of the intercellular bridge. So far, high-content screens focusing on cytokinesis have used multinucleation as the endpoint readout. Here, we report an automated image-based detection method of intercellular bridges, which we applied to further our understanding of late cytokinetic signaling by performing an RNAi screen of ubiquitin ligases and deubiquitinases. A secondary validation confirmed four candidate genes, i.e., LNX2, NEURL, UCHL1 and RNF157, whose downregulation variably affects interconnected phenotypes related to CEP55 and its UBDs, as follows: decreased recruitment of CEP55 to the midbody, increased number of midbody remnants per cell, and increased frequency of intercellular bridges or multinucleation events. This brings into question the Notch-dependent or independent contributions of LNX2 and NEURL proteins to late cytokinesis. Similarly, the role of UCHL1 in autophagy could link its function with the fate of midbody remnants. Beyond the biological interest, this high-content screening approach could also be used to isolate anticancer drugs that act by impairing cytokinesis and CEP55 functions.
Collapse
|
16
|
Andrade V, Echard A. Mechanics and regulation of cytokinetic abscission. Front Cell Dev Biol 2022; 10:1046617. [PMID: 36506096 PMCID: PMC9730121 DOI: 10.3389/fcell.2022.1046617] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Cytokinetic abscission leads to the physical cut of the intercellular bridge (ICB) connecting the daughter cells and concludes cell division. In different animal cells, it is well established that the ESCRT-III machinery is responsible for the constriction and scission of the ICB. Here, we review the mechanical context of abscission. We first summarize the evidence that the ICB is initially under high tension and explain why, paradoxically, this can inhibit abscission in epithelial cells by impacting on ESCRT-III assembly. We next detail the different mechanisms that have been recently identified to release ICB tension and trigger abscission. Finally, we discuss whether traction-induced mechanical cell rupture could represent an ancient alternative mechanism of abscission and suggest future research avenues to further understand the role of mechanics in regulating abscission.
Collapse
Affiliation(s)
- Virginia Andrade
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,Collège Doctoral, Sorbonne Université, Paris, France
| | - Arnaud Echard
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,*Correspondence: Arnaud Echard,
| |
Collapse
|
17
|
Gerhold AR, Labbé JC, Singh R. Uncoupling cell division and cytokinesis during germline development in metazoans. Front Cell Dev Biol 2022; 10:1001689. [PMID: 36407108 PMCID: PMC9669650 DOI: 10.3389/fcell.2022.1001689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The canonical eukaryotic cell cycle ends with cytokinesis, which physically divides the mother cell in two and allows the cycle to resume in the newly individualized daughter cells. However, during germline development in nearly all metazoans, dividing germ cells undergo incomplete cytokinesis and germ cells stay connected by intercellular bridges which allow the exchange of cytoplasm and organelles between cells. The near ubiquity of incomplete cytokinesis in animal germ lines suggests that this is an ancient feature that is fundamental for the development and function of this tissue. While cytokinesis has been studied for several decades, the mechanisms that enable regulated incomplete cytokinesis in germ cells are only beginning to emerge. Here we review the current knowledge on the regulation of germ cell intercellular bridge formation, focusing on findings made using mouse, Drosophila melanogaster and Caenorhabditis elegans as experimental systems.
Collapse
Affiliation(s)
- Abigail R. Gerhold
- Department of Biology, McGill University, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Succ. Centre-ville, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Ramya Singh
- Department of Biology, McGill University, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
| |
Collapse
|
18
|
Wenzel DM, Mackay DR, Skalicky JJ, Paine EL, Miller MS, Ullman KS, Sundquist WI. Comprehensive analysis of the human ESCRT-III-MIT domain interactome reveals new cofactors for cytokinetic abscission. eLife 2022; 11:e77779. [PMID: 36107470 PMCID: PMC9477494 DOI: 10.7554/elife.77779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The 12 related human ESCRT-III proteins form filaments that constrict membranes and mediate fission, including during cytokinetic abscission. The C-terminal tails of polymerized ESCRT-III subunits also bind proteins that contain Microtubule-Interacting and Trafficking (MIT) domains. MIT domains can interact with ESCRT-III tails in many different ways to create a complex binding code that is used to recruit essential cofactors to sites of ESCRT activity. Here, we have comprehensively and quantitatively mapped the interactions between all known ESCRT-III tails and 19 recombinant human MIT domains. We measured 228 pairwise interactions, quantified 60 positive interactions, and discovered 18 previously unreported interactions. We also report the crystal structure of the SPASTIN MIT domain in complex with the IST1 C-terminal tail. Three MIT enzymes were studied in detail and shown to: (1) localize to cytokinetic midbody membrane bridges through interactions with their specific ESCRT-III binding partners (SPASTIN-IST1, KATNA1-CHMP3, and CAPN7-IST1), (2) function in abscission (SPASTIN, KATNA1, and CAPN7), and (3) function in the 'NoCut' abscission checkpoint (SPASTIN and CAPN7). Our studies define the human MIT-ESCRT-III interactome, identify new factors and activities required for cytokinetic abscission and its regulation, and provide a platform for analyzing ESCRT-III and MIT cofactor interactions in all ESCRT-mediated processes.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Elliott L Paine
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Matthew S Miller
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
19
|
Panagiotou TC, Chen A, Wilde A. An anillin-CIN85-SEPT9 complex promotes intercellular bridge maturation required for successful cytokinesis. Cell Rep 2022; 40:111274. [PMID: 36044846 DOI: 10.1016/j.celrep.2022.111274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/17/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Cleavage of one cell into two is the most dramatic event in the life of a cell. Plasma membrane fission occurs within a narrow intercellular bridge (ICB) between the daughter cells, but the mechanisms underlying ICB formation and maturation are poorly understood. Here we identify CIN85 as an ICB assembly factor and demonstrate its requirement for robust and timely cytokinesis. CIN85 interacts directly with the N-terminal region of anillin and SEPT9 and thereby facilitates SEPT9-containing filament localization to the plasma membrane of the ICB. In contrast, the C-terminal pleckstrin homology (PH) domain of anillin binds to septin units lacking SEPT9 but enriched in SEPT11. Anillin's interactions with distinct septin units are required to promote ICB elongation and maturation that, we propose, generate the physical space into which the abscission machinery is recruited to drive the final membrane scission event releasing two independent daughter cells.
Collapse
Affiliation(s)
- Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1M1, Canada
| | - Anan Chen
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1M1, Canada
| | - Andrew Wilde
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1M1, Canada.
| |
Collapse
|
20
|
The Abscission Checkpoint: A Guardian of Chromosomal Stability. Cells 2021; 10:cells10123350. [PMID: 34943860 PMCID: PMC8699595 DOI: 10.3390/cells10123350] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
The abscission checkpoint contributes to the fidelity of chromosome segregation by delaying completion of cytokinesis (abscission) when there is chromatin lagging in the intercellular bridge between dividing cells. Although additional triggers of an abscission checkpoint-delay have been described, including nuclear pore defects, replication stress or high intercellular bridge tension, this review will focus only on chromatin bridges. In the presence of such abnormal chromosomal tethers in mammalian cells, the abscission checkpoint requires proper localization and optimal kinase activity of the Chromosomal Passenger Complex (CPC)-catalytic subunit Aurora B at the midbody and culminates in the inhibition of Endosomal Sorting Complex Required for Transport-III (ESCRT-III) components at the abscission site to delay the final cut. Furthermore, cells with an active checkpoint stabilize the narrow cytoplasmic canal that connects the two daughter cells until the chromatin bridges are resolved. Unsuccessful resolution of chromatin bridges in checkpoint-deficient cells or in cells with unstable intercellular canals can lead to chromatin bridge breakage or tetraploidization by regression of the cleavage furrow. In turn, these outcomes can lead to accumulation of DNA damage, chromothripsis, generation of hypermutation clusters and chromosomal instability, which are associated with cancer formation or progression. Recently, many important questions regarding the mechanisms of the abscission checkpoint have been investigated, such as how the presence of chromatin bridges is signaled to the CPC, how Aurora B localization and kinase activity is regulated in late midbodies, the signaling pathways by which Aurora B implements the abscission delay, and how the actin cytoskeleton is remodeled to stabilize intercellular canals with DNA bridges. Here, we review recent progress toward understanding the mechanisms of the abscission checkpoint and its role in guarding genome integrity at the chromosome level, and consider its potential implications for cancer therapy.
Collapse
|
21
|
Almagro J, Messal HA, Zaw Thin M, van Rheenen J, Behrens A. Tissue clearing to examine tumour complexity in three dimensions. Nat Rev Cancer 2021; 21:718-730. [PMID: 34331034 DOI: 10.1038/s41568-021-00382-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The visualization of whole organs and organisms through tissue clearing and fluorescence volumetric imaging has revolutionized the way we look at biological samples. Its application to solid tumours is changing our perception of tumour architecture, revealing signalling networks and cell interactions critical in tumour progression, and provides a powerful new strategy for cancer diagnostics. This Review introduces the latest advances in tissue clearing and three-dimensional imaging, examines the challenges in clearing epithelia - the tissue of origin of most malignancies - and discusses the insights that tissue clearing has brought to cancer research, as well as the prospective applications to experimental and clinical oncology.
Collapse
Affiliation(s)
- Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Hendrik A Messal
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - May Zaw Thin
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK.
- Convergence Science Centre and Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
22
|
Carrillo-Garcia J, Herrera-Fernández V, Serra SA, Rubio-Moscardo F, Vogel-Gonzalez M, Doñate-Macian P, Hevia CF, Pujades C, Valverde MA. The mechanosensitive Piezo1 channel controls endosome trafficking for an efficient cytokinetic abscission. SCIENCE ADVANCES 2021; 7:eabi7785. [PMID: 34714681 PMCID: PMC8555900 DOI: 10.1126/sciadv.abi7785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Mechanical forces are exerted throughout cytokinesis, the final step of cell division. Yet, how forces are transduced and affect the signaling dynamics of cytokinetic proteins remains poorly characterized. We now show that the mechanosensitive Piezo1 channel is activated at the intercellular bridge (ICB) connecting daughter cells to regulate abscission. Inhibition of Piezo1 caused multinucleation both in vitro and in vivo. Piezo1 positioning at the ICB during cytokinesis depends on Pacsin3. Pharmacological and genetic inhibition of Piezo1 or Pacsin3 resulted in mislocation of Rab11-family-interacting protein 3 (Rab11-FIP3) endosomes, apoptosis-linked gene 2-interacting protein X (ALIX), and endosomal sorting complex required for transport III (ESCRT-III). Furthermore, we identified FIP3 as the link between Piezo1-generated Ca2+ signals and ALIX delivery to the ICB, where ALIX recruits the ESCRT-III component charged multivesicular body protein 4B, which promotes abscission. These results provide a different view of how mechanical forces participate in cytokinesis and identify Piezo1 as a key modulator of endosome trafficking.
Collapse
Affiliation(s)
- Julia Carrillo-Garcia
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Selma A. Serra
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Fanny Rubio-Moscardo
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Marina Vogel-Gonzalez
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Pablo Doñate-Macian
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Miguel A. Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
23
|
Rashidieh B, Shohayeb B, Bain AL, Fortuna PRJ, Sinha D, Burgess A, Mills R, Adams RC, Lopez JA, Blumbergs P, Finnie J, Kalimutho M, Piper M, Hudson JE, Ng DCH, Khanna KK. Cep55 regulation of PI3K/Akt signaling is required for neocortical development and ciliogenesis. PLoS Genet 2021; 17:e1009334. [PMID: 34710087 PMCID: PMC8577787 DOI: 10.1371/journal.pgen.1009334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 11/09/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Homozygous nonsense mutations in CEP55 are associated with several congenital malformations that lead to perinatal lethality suggesting that it plays a critical role in regulation of embryonic development. CEP55 has previously been studied as a crucial regulator of cytokinesis, predominantly in transformed cells, and its dysregulation is linked to carcinogenesis. However, its molecular functions during embryonic development in mammals require further investigation. We have generated a Cep55 knockout (Cep55-/-) mouse model which demonstrated preweaning lethality associated with a wide range of neural defects. Focusing our analysis on the neocortex, we show that Cep55-/- embryos exhibited depleted neural stem/progenitor cells in the ventricular zone as a result of significantly increased cellular apoptosis. Mechanistically, we demonstrated that Cep55-loss downregulates the pGsk3β/β-Catenin/Myc axis in an Akt-dependent manner. The elevated apoptosis of neural stem/progenitors was recapitulated using Cep55-deficient human cerebral organoids and we could rescue the phenotype by inhibiting active Gsk3β. Additionally, we show that Cep55-loss leads to a significant reduction of ciliated cells, highlighting a novel role in regulating ciliogenesis. Collectively, our findings demonstrate a critical role of Cep55 during brain development and provide mechanistic insights that may have important implications for genetic syndromes associated with Cep55-loss.
Collapse
Affiliation(s)
- Behnam Rashidieh
- QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Environment and Sciences, Griffith University, Nathan, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | | | | | - Debottam Sinha
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Sydney, Australia
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, Australia
| | - Richard Mills
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Rachael C. Adams
- QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - J. Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Environment and Sciences, Griffith University, Nathan, Australia
| | - Peter Blumbergs
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - John Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | | | - Michael Piper
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | | | - Dominic C. H. Ng
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
24
|
Merigliano C, Burla R, La Torre M, Del Giudice S, Teo H, Liew CW, Chojnowski A, Goh WI, Olmos Y, Maccaroni K, Giubettini M, Chiolo I, Carlton JG, Raimondo D, Vernì F, Stewart CL, Rhodes D, Wright GD, Burke BE, Saggio I. AKTIP interacts with ESCRT I and is needed for the recruitment of ESCRT III subunits to the midbody. PLoS Genet 2021; 17:e1009757. [PMID: 34449766 PMCID: PMC8428793 DOI: 10.1371/journal.pgen.1009757] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/09/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission. To complete cell division, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by a machinery named “endosomal sorting complex required for transport” (ESCRT). The dissection of this machinery is important in basic biology and for investigating diseases in which cell division is altered. AKTIP, a factor discovered to be needed for chromosome integrity, shares similarities with a component of the ESCRT machinery named TSG101. Here we present evidence that AKTIP is part of the ESCRT machinery, as TSG101. More specifically, we show that AKTIP physically interacts with members of the ESCRT machinery and forms a characteristic circular structure at the center of the bridge linking the daughter cells. We also show that the reduction of AKTIP levels causes defects in the assembly of the ESCRT machinery and in cell division. In future work, it will be interesting to investigate the association of AKTIP with cancer, because in tumorigenesis cell division is altered and since an implication in cancer has been described for TSG101 and other ESCRT factors.
Collapse
Affiliation(s)
| | - Romina Burla
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | | | - Hsiangling Teo
- Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Chong Wai Liew
- Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Alexandre Chojnowski
- A*STAR, Developmental and Regenerative Biology, ASLR, Agency for Science, Technology and Research, Singapore
- A*STAR, Singapore Nuclear Dynamics and Architecture, ASLR Skin Research Labs, Agency for Science, Technology and Research, Singapore
| | - Wah Ing Goh
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore
| | - Yolanda Olmos
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Klizia Maccaroni
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | | | - Irene Chiolo
- University of Southern California, Molecular and Computational Biology Dept., Los Angeles, California, United States of America
| | - Jeremy G. Carlton
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Fiammetta Vernì
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | - Colin L. Stewart
- A*STAR, Developmental and Regenerative Biology, ASLR, Agency for Science, Technology and Research, Singapore
- Dept. of Physiology National University of Singapore, Singapore
| | - Daniela Rhodes
- Institute of Structural Biology, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Graham D. Wright
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore
| | - Brian E. Burke
- A*STAR, Singapore Nuclear Dynamics and Architecture, ASLR Skin Research Labs, Agency for Science, Technology and Research, Singapore
| | - Isabella Saggio
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Institute of Structural Biology, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
25
|
González-Martínez J, Cwetsch AW, Martínez-Alonso D, López-Sainz LR, Almagro J, Melati A, Gómez J, Pérez-Martínez M, Megías D, Boskovic J, Gilabert-Juan J, Graña-Castro O, Pierani A, Behrens A, Ortega S, Malumbres M. Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias. JCI Insight 2021; 6:e146364. [PMID: 34237032 PMCID: PMC8409993 DOI: 10.1172/jci.insight.146364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that — whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development — lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.
Collapse
Affiliation(s)
- José González-Martínez
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Andrzej W Cwetsch
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Imagine Institute of Genetic Diseases, University of Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris, INSERM U-1266, University of Paris, Paris, France
| | - Diego Martínez-Alonso
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Luis R López-Sainz
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna Melati
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | - Javier Gilabert-Juan
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,University of Paris, NeuroDiderot, Inserm, Paris, France
| | | | - Alessandra Pierani
- Imagine Institute of Genetic Diseases, University of Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris, INSERM U-1266, University of Paris, Paris, France
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,Faculty of Life Sciences, King's College London, Guy's Campus, London, United Kingdom
| | | | - Marcos Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
26
|
Little JN, Dwyer ND. Cep55: abscission boss or assistant? Trends Cell Biol 2021; 31:789-791. [PMID: 34400044 DOI: 10.1016/j.tcb.2021.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Abscission is the second stage of cytokinesis. Cep55, a coiled-coil protein, is thought to recruit endosomal sorting complexes required for transport (ESCRTs) to the midbody to complete abscission. However, recent studies of Cep55-knockout mice reveal that most cells can complete abscission without Cep55. More work is needed to understand abscission mechanisms in different cell types.
Collapse
Affiliation(s)
- Jessica N Little
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Noelle D Dwyer
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
27
|
McNeely KC, Dwyer ND. Cytokinetic Abscission Regulation in Neural Stem Cells and Tissue Development. CURRENT STEM CELL REPORTS 2021; 7:161-173. [PMID: 36303610 PMCID: PMC9603694 DOI: 10.1007/s40778-021-00193-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purpose of Review How stem cells balance proliferation with differentiation, giving rise to specific daughter cells during development to build an embryo or tissue, remains an open question. Here, we discuss recent evidence that cytokinetic abscission regulation in stem cells, particularly neural stem cells (NSCs), is part of the answer. Abscission is a multi-step process mediated by the midbody, a microtubule-based structure formed in the intercellular bridge between daughter cells after mitosis. Recent Findings Human mutations and mouse knockouts in abscission genes reveal that subtle disruptions of NSC abscission can cause brain malformations. Experiments in several epithelial systems have shown that midbodies serve as scaffolds for apical junction proteins and are positioned near apical membrane fate determinants. Abscission timing is tightly controlled and developmentally regulated in stem cells, with delayed abscission in early embryos and faster abscission later. Midbody remnants (MBRs) contain over 400 proteins and may influence polarity, fate, and ciliogenesis. Summary As NSCs and other stem cells build tissues, they tightly regulate three aspects of abscission: midbody positioning, duration, and MBR handling. Midbody positioning and remnants establish or maintain cell polarity. MBRs are deposited on the apical membranes of epithelia, can be released or internalized by surrounding cells, and may sequester fate determinants or transfer information between cells. Work in cell lines and simpler systems has shown multiple roles for abscission regulation influencing stem cell polarity, potency, and daughter fates during development. Elucidating how the abscission process influences cell fate and tissue growth is important for our continued understanding of brain development and stem cell biology.
Collapse
|
28
|
Williams LK, Mackay DR, Whitney MA, Couldwell GC, Sundquist WI, Ullman KS. Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing. eLife 2021; 10:63743. [PMID: 34346309 PMCID: PMC8437436 DOI: 10.7554/elife.63743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from mitotic interchromatin granules, transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission. When a cell divides, it must first carefully duplicate its genetic information and package these copies into compartments housed in the two new cells. Errors in this process lead to genetic mistakes that trigger cancer or other harmful biological events. Quality control checks exist to catch errors before it is too late. This includes a final ‘abscission’ checkpoint right before the end of division, when the two new cells are still connected by a thin membrane bridge. If cells fail to pass this ‘no cut’ checkpoint, they delay severing their connection until the mistake is fixed. A group of proteins called ESCRTs is responsible for splitting the two cells apart if nothing is amiss. The abscission checkpoint blocks this process by altering certain proteins in the ESCRT complex, but exactly how this works is not yet clear. To find out more, Strohacker et al. imaged ESCRT factors in a new experimental system in which the abscission checkpoint is active in many cells. This showed that, in this context, certain ESCRT components were rerouted from the thread of membrane between the daughter cells to previously unknown structures, which Strohacker et al. named abscission checkpoint bodies. These entities also sequestered other factors that participate in the abscission checkpoint and factors that contribute to gene expression. These results are key to better understand how cells regulate their division; in particular, they provide a new framework to explore when this process goes wrong and contributes to cancer.
Collapse
Affiliation(s)
- Lauren K Williams
- Biochemistry and Oncological Sciences, University of Utah, Salt Lake City, United States
| | - Douglas R Mackay
- Oncological Sciences, University of Utah, Salt Lake City, United States
| | | | | | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | | |
Collapse
|
29
|
Yang Q, Qi M, Chen Y, Tian S, Liao F, Dong W. ASPM is a Novel Candidate Gene Associated with Colorectal Cancer Cell Growth. DNA Cell Biol 2021; 40:921-935. [PMID: 34042518 DOI: 10.1089/dna.2020.6457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent diseases worldwide; however, the molecular mechanisms involved in CRC remain unclear. Thus, we aimed to explore a novel biomarker for CRC. In this study, we screened 361 differentially expressed genes; 152 downregulated genes; and 209 upregulated genes) through analysis of the GSE44861, GSE110223, GSE110224, and GSE113513 CRC datasets. Next, ASPM, CCNA2, CCNB1, CEP55, KIF20A, MAD2L1, MELK, RRM2, TOP2A, TPX2, TRIP13, and TTK were identified as hub genes associated with the cell cycle in CRC through comprehensive bioinformatics analysis using the Cytoscape and Metascape software, the Database for Annotation, Visualization, and Integrated Discovery (DAVID), and the Oncomine and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) databases. Furthermore, ASPM mRNA expression in CRC tissues was verified in Oncomine, The Cancer Genome Atlas and our data, and ASPM was found to be significantly upregulated in CRC tissues compared with that in the noncancer colon tissues. Functionally, we showed that overexpression of ASPM significantly promoted the proliferation and inhibited apoptosis; silencing of ASPM suppressed the proliferation of CRC cells by affecting the cell cycle G1/S transition by reducing cyclin E1 expression, and inducing apoptosis. Overall, our findings indicated that ASPM plays a crucial role in the regulation of CRC cell proliferation, and ASPM is a potential candidate diagnostic tool and therapeutic target for CRC.
Collapse
Affiliation(s)
- Qian Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Mingming Qi
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yongyu Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, P.R. China
| | - Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, P.R. China
| |
Collapse
|
30
|
Loss of Coiled-Coil Protein Cep55 Impairs Neural Stem Cell Abscission and Results in p53-Dependent Apoptosis in Developing Cortex. J Neurosci 2021; 41:3344-3365. [PMID: 33622776 DOI: 10.1523/jneurosci.1955-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/24/2020] [Accepted: 02/13/2021] [Indexed: 12/23/2022] Open
Abstract
To build the brain, embryonic neural stem cells (NSCs) tightly regulate their cell divisions, undergoing a polarized form of cytokinesis that is poorly understood. Cytokinetic abscission is mediated by the midbody to sever the daughter cells at the apical membrane. In cell lines, the coiled-coil protein Cep55 was reported to be required for abscission. Mutations of Cep55 in humans cause a variety of cortical malformations. However, its role in the specialized divisions of NSCs is unclear. Here, we elucidate the roles of Cep55 in abscission and brain development. KO of Cep55 in mice causes abscission defects in neural and non-neural cell types, and postnatal lethality. The brain is disproportionately affected, with severe microcephaly at birth. Quantitative analyses of abscission in fixed and live cortical NSCs show that Cep55 acts to increase the speed and success rate of abscission, by facilitating ESCRT recruitment and timely microtubule disassembly. However, most NSCs complete abscission successfully in the absence of Cep55 Those that fail show a tissue-specific response: binucleate NSCs and neurons elevate p53, but binucleate fibroblasts do not. This leads to massive apoptosis in the brain, but not other tissues. Double KO of both p53 and Cep55 blocks apoptosis but only partially rescues Cep55 -/- brain size. This may be because of the persistent NSC cell division defects and p53-independent premature cell cycle exit. This work adds to emerging evidence that abscission regulation and error tolerance vary by cell type and are especially crucial in neural stem cells as they build the brain.SIGNIFICANCE STATEMENT During brain growth, embryonic neural stem cells (NSCs) must divide many times. In the last step of cell division, the daughter cell severs its connection to the mother stem cell, a process called abscission. The protein Cep55 is thought to be essential for recruiting proteins to the mother-daughter cell connection to complete abscission. We find that Cep55 mutants have very small brains with disturbed structure, but almost normal size bodies. NSC abscission can occur, but it is slower than normal, and failures are increased. Furthermore, NSCs that do fail abscission activate a signal for programmed cell death, whereas non-neural cells do not. Blocking this signal only partly restores brain growth, showing that regulation of abscission is crucial for brain development.
Collapse
|
31
|
Messal HA, Almagro J, Zaw Thin M, Tedeschi A, Ciccarelli A, Blackie L, Anderson KI, Miguel-Aliaga I, van Rheenen J, Behrens A. Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH. Nat Protoc 2020; 16:239-262. [PMID: 33247285 DOI: 10.1038/s41596-020-00414-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Advances in light-sheet and confocal microscopy now allow imaging of cleared large biological tissue samples and enable the 3D appreciation of cell and protein localization in their native organ environment. However, the sample preparations for such imaging are often onerous, and their capability for antigen detection is limited. Here, we describe FLASH (fast light-microscopic analysis of antibody-stained whole organs), a simple, rapid, fully customizable technique for molecular phenotyping of intact tissue volumes. FLASH utilizes non-degradative epitope recovery and membrane solubilization to enable the detection of a multitude of membranous, cytoplasmic and nuclear antigens in whole mouse organs and embryos, human biopsies, organoids and Drosophila. Retrieval and immunolabeling of epithelial markers, an obstacle for previous clearing techniques, can be achieved with FLASH. Upon volumetric imaging, FLASH-processed samples preserve their architecture and integrity and can be paraffin-embedded for subsequent histopathological analysis. The technique can be performed by scientists trained in light microscopy and yields results in <1 week.
Collapse
Affiliation(s)
- Hendrik A Messal
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.,Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - May Zaw Thin
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Antonio Tedeschi
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | | | - Laura Blackie
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Kurt I Anderson
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK. .,Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK. .,Convergence Science Centre, Imperial College London, London, UK. .,The Institute of Cancer Research, London, UK.
| |
Collapse
|
32
|
Petronczki M, Tedeschi A. Cell Division: Switching On ECT2 in a Non-Canonical Fashion. Curr Biol 2020; 30:R947-R949. [PMID: 32810457 DOI: 10.1016/j.cub.2020.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Determining the site of cell cleavage is crucial for cytokinesis and involves precise activation of the RhoGEF ECT2. A new study demonstrates how a non-canonical interaction of ECT2 with centralspindlin underlies cytokinesis in animal cells, solving a mechanistic conundrum.
Collapse
Affiliation(s)
- Mark Petronczki
- Boehringer Ingelheim RCV GmbH & Co KG, A-1121 Vienna, Austria
| | - Antonio Tedeschi
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|