1
|
Xu Y, Gao Z, Liu J, Yang Q, Xu S. Role of gut microbiome in suppression of cancers. Gut Microbes 2025; 17:2495183. [PMID: 40254597 PMCID: PMC12013426 DOI: 10.1080/19490976.2025.2495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/23/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
The pathogenesis of cancer is closely related to the disruption of homeostasis in the human body. The gut microbiome plays crucial roles in maintaining the homeostasis of its host throughout lifespan. In recent years, a large number of studies have shown that dysbiosis of the gut microbiome is involved in the entire process of cancer initiation, development, and prognosis by influencing the host immune system and metabolism. Some specific intestinal bacteria promote the occurrence and development of cancers under certain conditions. Conversely, some other specific intestinal bacteria suppress the oncogenesis and progression of cancers, including inhibiting the occurrence of cancers, delaying the progression of cancers and boosting the therapeutic effect on cancers. The promoting effects of the gut microbiome on cancers have been comprehensively discussed in the previous review. This article will review the latest advances in the roles and mechanisms of gut microbiome in cancer suppression, providing a new perspective for developing strategies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Jiaying Liu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qianqian Yang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| |
Collapse
|
2
|
Gelli HP, Vazquez-Uribe R, Buckley ST, Andersen JT, Alexander Sommer MO. Advanced microbiome therapeutics for oral delivery of peptides and proteins: Advances, challenges, and opportunities. Adv Drug Deliv Rev 2025:115603. [PMID: 40349728 DOI: 10.1016/j.addr.2025.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Peptide and protein medicines have changed the therapeutic landscape for many diseases, yet oral delivery remains a significant challenge due to enzymatic degradation, instability, and poor permeability in the gastrointestinal tract. Advanced Microbiome Therapeutics (AMTs) could overcome some of these barriers by producing and releasing therapeutic peptides directly in the gastrointestinal tract. AMTs can localize peptide production at the site of absorption, providing either sustained or controlled release while potentially reducing side effects associated with systemic administration. Here, this review assesses the status of AMTs for oral peptide delivery and discusses the potential integration of enzyme inhibitors, permeation enhancers, and mucoadhesive to improve oral bioavailability further. Combining these approaches could pave the way for more widespread oral delivery strategies for peptide and protein medicines.
Collapse
Affiliation(s)
- Hitesh P Gelli
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Jan Terje Andersen
- Department of Pharmacology, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | | |
Collapse
|
3
|
Wang Q, Mei Y, Rao W, Hong S, Chen A, Yang Y, Liu Q. The therapeutic effect of thermo-sensitive hydrogel loaded with recombinant mycobacterium smegmatis expressing exogenous IL-15 in abdominal metastasis. J Transl Med 2025; 23:509. [PMID: 40329350 PMCID: PMC12057015 DOI: 10.1186/s12967-025-06454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Tumor immunotherapy is one of the most promising strategies in cancer treatment. Specifically, intraperitoneal immunotherapy has emerged as a novel approach for dealing with abdominal metastases. Previously, we developed a genetically engineered strain of Mycobacterium smegmatis (Ms-IL15) that expresses the cytokine interleukin-15 (IL15), demonstrating significant anti-tumor effects after intratumoral injection. However, intratumoral infusion might not be feasible in the case of diffuse abdominal metastases, making intraperitoneal injection a preferred option. METHODS In this study, we developed a bacterial delivery system by incorporating Ms-IL15 into Poloxamer 407, an injectable thermosensitive hydrogel, for intraperitoneal administration. A murine model of peritoneal metastasis was established, and tumor-bearing mice were administered P407/Ms-IL15 once weekly for two consecutive weeks. The anti-tumor efficacy and alterations in the tumor immune microenvironment were systematically evaluated. RESULTS Intraperitoneal injection of this system exhibited a remarkable tumor-suppressive effect, significantly prolonging the survival of treated mice. Flow cytometric analysis of the tumor immune microenvironment revealed enhanced maturation and activation of dendritic cells (DC), an increased proportion of effector memory T cells and Granzyme B, and suppressed macrophage polarization towards the M2 phenotype. CONCLUSIONS Our findings indicate that a hydrogel-based bacterial delivery system is a safe and effective approach for the treatment of abdominal metastases.
Collapse
Affiliation(s)
- Qi Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yi Mei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenmei Rao
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Sen Hong
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Aoxing Chen
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yang Yang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Qin Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China.
- Department of Oncology, Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China.
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Gao X, Sun Y, Yang Y, Yang X, Liu Q, Guo X, Wu L, Wang Q. Directed evolution of hydroxylase XcP4H for enhanced 5-HTP production in engineered probiotics to treat depression. Int J Biol Macromol 2025; 307:142250. [PMID: 40113000 DOI: 10.1016/j.ijbiomac.2025.142250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Depression exhibits a complex and multifaceted pathophysiology, accompanied by high rates of relapse and disability with current medication treatments. 5-Hydroxytryptophan (5-HTP) is a promising candidate for depression therapy, but its poor pharmacokinetics hinders its clinical application. To address this limitation, we introduced the hydroxylase XcP4H into Escherichia coli Nissle 1917 (EcN) to biosynthesize 5-HTP in vivo. To create a high-yielding EcN strain for 5-HTP production, we engineered XcP4H through enzyme-directed evolution using a novel genetic code expansion-based high-throughput screening method. The most effective XcP4H variant achieved a 22-fold increase in 5-HTP production, and molecular dynamic simulations elucidated the underlying mechanisms. After pathway engineering and gene editing, we further improved the 5-HTP yield in EcN. When the most robust strain, EcN@5-HTP, was employed as a live therapeutic, it alleviated depressive-like behaviors in mice by increasing 5-HT levels in both the gut and brain, repairing neurological abnormalities, inhibiting inflammation, elevating SCFAs concentrations, and modulating gut microbiota dysbiosis. By integrating synthetic biology with enzyme-directed evolution, we successfully addressed the pharmacokinetic limitations of 5-HTP through a live therapeutic approach. This proof-of-concept design clearly demonstrates that combining synthetic biology with probiotics has the potential to significantly revolutionize our strategies for disease detection, prevention, and treatment.
Collapse
Affiliation(s)
- Xiaowei Gao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China.
| | - Yingjie Sun
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yanhong Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiu Yang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qiuyu Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiurong Guo
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lijuan Wu
- Department of Endocrinology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Qin Wang
- Dazhou Vocational College of Chinese Medicine, Dazhou 635000, China.
| |
Collapse
|
5
|
Yin Y, Cheng X, Xie R, Fan D, Li H, Zhong S, Wegner SV, Zeng W, Chen F. Empowering bacteria with light: Optogenetically engineered bacteria for light-controlled disease theranostics and regulation. J Control Release 2025; 383:113787. [PMID: 40311686 DOI: 10.1016/j.jconrel.2025.113787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/19/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Bacterial therapy has emerged as a promising approach for disease treatment due to its environmental sensitivity, immunogenicity, and modifiability. However, the clinical application of engineered bacteria is limited by differences of expression levels in patients and possible off-targeting. Optogenetics, which combines optics and genetics, offers key advantages such as remote controllability, non-invasiveness, and precise spatiotemporal control. By utilizing optogenetic tools, the behavior of engineered bacteria can be finely regulated, enabling on-demand control of the dosage and location of their therapeutic products. In this review, we highlight the latest advancements in the optogenetic engineering of bacteria for light-controlled disease theranostics and therapeutic regulation. By constructing a three-dimensional analytical framework of "sense-produce-apply", we begin by discussing the key components of bacterial optogenetic systems, categorizing them based on their photosensitive protein response to blue, green, and red light. Next, we introduce innovative light-producing tools that extend beyond traditional light sources. Then, special emphasis is placed on the biomedical applications of optogenetically engineered bacteria in treating diseases such as cancer, intestinal inflammation and systemic disease regulation. Finally, we address the challenges and future prospects of bacterial optogenetics, outlining potential directions for enhancing the safety and efficacy of light-controlled bacterial therapies. This review aims to provide insights and strategies for researchers working to advance the application of optogenetically engineered bacteria in drug delivery, precision medicine and therapeutic regulation.
Collapse
Affiliation(s)
- Ying Yin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ruyan Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Haohan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shibo Zhong
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster 48149, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster 48149, Germany
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
6
|
Qiu X, Gao Q, Wang J, Zhang Z, Tao L. The microbiota-m 6A-metabolism axis: Implications for therapeutic strategies in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189317. [PMID: 40222422 DOI: 10.1016/j.bbcan.2025.189317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Gastrointestinal (GI) cancers remain a leading cause of cancer-related mortality worldwide, with metabolic reprogramming recognized as a central driver of tumor progression and therapeutic resistance. Among the key regulatory layers, N6-methyladenosine (m6A) RNA modification-mediated by methyltransferases (writers such as METTL3/14), RNA-binding proteins (readers like YTHDFs and IGF2BPs), and demethylases (erasers including FTO and ALKBH5), plays a pivotal role in controlling gene expression and metabolic flux in the tumor context. Concurrently, the gut microbiota profoundly influences GI tumorigenesis and immune evasion by modulating metabolite availability and remodeling the tumor microenvironment. Recent evidence has uncovered a bidirectional crosstalk between microbial metabolites and m6A methylation: microbiota-derived signals dynamically regulate m6A deposition on metabolic and immune transcripts, while m6A modifications, in turn, regulate the stability and translation of key mRNAs such as PD-L1 and FOXP3. This reciprocal interaction forms self-reinforcing epigenetic circuits that drive tumor plasticity, immune escape, and metabolic adaptation. In this review, we dissect the molecular underpinnings of the microbiota-m6A-metabolism axis in GI cancers and explore its potential to inform novel strategies in immunotherapy, metabolic intervention, and microbiome-guided precision oncology.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qi Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiahui Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Tao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
7
|
Aminian-Dehkordi J, Dickson A, Valiei A, Mofrad MRK. MetaBiome: a multiscale model integrating agent-based and metabolic networks to reveal spatial regulation in gut mucosal microbial communities. mSystems 2025:e0165224. [PMID: 40183581 DOI: 10.1128/msystems.01652-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Mucosal microbial communities (MMCs) are complex ecosystems near the mucosal layers of the gut essential for maintaining health and modulating disease states. Despite advances in high-throughput omics technologies, current methodologies struggle to capture the dynamic metabolic interactions and spatiotemporal variations within MMCs. In this work, we present MetaBiome, a multiscale model integrating agent-based modeling (ABM), finite volume methods, and constraint-based models to explore the metabolic interactions within these communities. Integrating ABM allows for the detailed representation of individual microbial agents each governed by rules that dictate cell growth, division, and interactions with their surroundings. Through a layered approach-encompassing microenvironmental conditions, agent information, and metabolic pathways-we simulated different communities to showcase the potential of the model. Using our in-silico platform, we explored the dynamics and spatiotemporal patterns of MMCs in the proximal small intestine and the cecum, simulating the physiological conditions of the two gut regions. Our findings revealed how specific microbes adapt their metabolic processes based on substrate availability and local environmental conditions, shedding light on spatial metabolite regulation and informing targeted therapies for localized gut diseases. MetaBiome provides a detailed representation of microbial agents and their interactions, surpassing the limitations of traditional grid-based systems. This work marks a significant advancement in microbial ecology, as it offers new insights into predicting and analyzing microbial communities.IMPORTANCEOur study presents a novel multiscale model that combines agent-based modeling, finite volume methods, and genome-scale metabolic models to simulate the complex dynamics of mucosal microbial communities in the gut. This integrated approach allows us to capture spatial and temporal variations in microbial interactions and metabolism that are difficult to study experimentally. Key findings from our model include the following: (i) prediction of metabolic cross-feeding and spatial organization in multi-species communities, (ii) insights into how oxygen gradients and nutrient availability shape community composition in different gut regions, and (iii) identification of spatiallyregulated metabolic pathways and enzymes in E. coli. We believe this work represents a significant advance in computational modeling of microbial communities and provides new insights into the spatial regulation of gut microbiome metabolism. The multiscale modeling approach we have developed could be broadly applicable for studying other complex microbial ecosystems.
Collapse
Affiliation(s)
- Javad Aminian-Dehkordi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
| | - Andrew Dickson
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
| | - Amin Valiei
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California, USA
| |
Collapse
|
8
|
Raeisi H, Leeflang J, Hasan S, Woods SL. Bioengineered Probiotics for Clostridioides difficile Infection: An Overview of the Challenges and Potential for This New Treatment Approach. Probiotics Antimicrob Proteins 2025; 17:763-780. [PMID: 39531149 DOI: 10.1007/s12602-024-10398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The rapid increase in microbial antibiotic resistance in Clostridioides difficile (C. difficile) strains and the formation of hypervirulent strains have been associated with a global increase in the incidence of C. difficile infection (CDI) and subsequently, an increase in the rate of recurrence. These consequences have led to an urgent need to develop new and promising alternative strategies to control this pathogen. Engineered probiotics are exciting new bacterial strains produced by editing the genome of the original probiotics. Recently, engineered probiotics have been used to develop delivery vehicles for vaccines, diagnostics, and therapeutics. Recent studies have demonstrated engineered probiotics may potentially be an effective approach to control or treat CDI. This review provides a brief overview of the considerations for engineered probiotics for medicinal use, with a focus on recent preclinical research using engineered probiotics to prevent or treat CDI. We also address the challenges faced in the production of engineered strains and how they may be overcome in the application of these agents to meet patient needs in the future.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Julia Leeflang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Sadia Hasan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
9
|
Xu L, Bai X, Jeong D, Lee D, Semidey F, Li C, Oh EJ. Engineering Saccharomyces boulardii for enhanced surface display capacity. Microb Cell Fact 2025; 24:76. [PMID: 40170054 PMCID: PMC11959792 DOI: 10.1186/s12934-025-02702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025] Open
Abstract
Saccharomyces boulardii (Sb) has gained significant attention for its potential therapeutic application as a probiotic yeast strain. Current approaches often leverage its secretion and display capabilities to deliver therapeutic agents aimed at alleviating intestinal disorders. However, relatively few studies have focused on optimizing its display efficiency. In this study, we evaluated two surface display systems, Aga2- and Sed1-based, for use in Sb by systematically modifying display cassette components and the host strain. Initially, both systems were tested in Saccharomyces cerevisiae (Sc) and Sb to validate their design. Sc consistently outperformed Sb in both display expression and efficiency, highlighting the need for further optimization in Sb. To enhance the display efficiency in Sb, we investigated specific modifications to the display cassette, including the use of linker sequences for Aga2 and variations in anchor length for Sed1. These experiments identified key factors influencing display performance. Subsequently, we engineered a modified Sb strain, LIP02, by overexpressing AGA1 and deleting cell wall-related genes (CCW12, CCW14, and FYV5). These modifications were expected to expand the available docking sites for the protein of interest (POI) and improve overall protein secretion and display efficiency. As a result, the modified strain exhibited a significant enhancement in display capacity compared to the wild-type Sb strain. Furthermore, genome integration of the display cassette in LIP02 enhanced both stability and expression compared to plasmid-based systems. Importantly, the functionality of β-glucosidase displayed on LIP02 was preserved, as demonstrated by improved enzymatic activity and robust growth on cellobiose as the sole carbon source. These findings establish LIP02 as a superior host for surface display applications in Sb, offering a more stable and efficient platform for the expression of therapeutic proteins and other functional biomolecules.
Collapse
Affiliation(s)
- Luping Xu
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Deokyeol Jeong
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Dahye Lee
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Fransheska Semidey
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Chenhai Li
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Díaz GY, da Silva VA, Kalantarnia F, Scheck K, Tschofen SA, Tuffs SW, Willerth SM. Using Three-Dimensional Bioprinting to Generate Realistic Models of Wound Healing. Adv Wound Care (New Rochelle) 2025. [PMID: 40040420 DOI: 10.1089/wound.2024.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Significance: The skin serves as the primary defense against external stimuli, making it vulnerable to damage. Injuries can cause a dysregulated environment, resulting in chronic inflammation and inhibition of cell proliferation and migration, which delays recovery. Innovative approaches, such as three-dimensional (3D) bioprinting, can foster a controlled healing environment by promoting synergy between the skin microbiome and cells. Recent Advances: Traditional approaches to wound healing have focused on fostering an environment conducive to the interplay between cells, extracellular proteins, and growth factors. 3D bioprinting, a manufacturing technology with applications in tissue engineering, deposits biomaterial-based bioink containing living cells to fabricate custom-designed tissue scaffolds in a layer-by-layer fashion. This process controls the architecture and composition of a construct, producing multilayered and complex structures such as skin. Critical Issues: The selection of biomaterials for scaffolds has been a challenge when 3D skin tissue engineering. While prioritizing mechanical properties, current biomaterials often lack the ability to interact with environmental stimuli such as pH, temperature, or oxygen levels. Employing smart biomaterials that integrate bioactive molecules and adapt to external conditions could overcome these limitations. This innovation would enable scaffolds to create a sustainable wound-healing environment, fostering microbiome balance, reducing inflammation, and facilitating cellular recovery and tissue restoration, addressing critical gaps in existing wound care solutions. Future Directions: Novel bioink formulations for skin injury recovery are focused on improving long-term cell viability, proliferation, vascularization, and immune integration. Efficient recovery of the skin microbiome using bioactive molecules has the potential to create microenriched environments that support the recovery of the skin microbiome and restore immune regulation. This promising direction for future research aims to improve patient outcomes in wound care.
Collapse
Affiliation(s)
- Giselle Y Díaz
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | | | | | - Silken A Tschofen
- Department of Biochemistry and Microbiology, University of Victoria Faculty of Science, Victoria, Canada
| | - Stephen W Tuffs
- Department of Biochemistry and Microbiology, University of Victoria Faculty of Science, Victoria, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Axolotl Biosciences, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, Canada
- Biomedical Engineering Program, University of Victoria, Victoria, Canada
- Centre for Advanced Materials and Technology, University of Victoria, Victoria, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Zheng L, Wang H, Zhong X, Jia L, Shi G, Bai C, Yang R, Huang Z, Jiang Y, Wei J, Dong Z, Li J, Long Y, Dai L, Li Z, Chen C, Wang J. Reprogramming tumor microenvironment with precise photothermal therapy by calreticulin nanobody-engineered probiotics. Biomaterials 2025; 314:122809. [PMID: 39303415 DOI: 10.1016/j.biomaterials.2024.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Targeted therapies have revolutionized traditional cancer treatments by precisely targeting tumor cells, enhancing efficacy and safety. Despite this advancement, the proportion of cancer patients eligible for such therapies remains low due to the absence of suitable targets. Here, we investigate whether the translocation of the immunogenic cell death (ICD) marker calreticulin (CALR) from the endoplasmic reticulum (ER) to the cell surface following ICD induction can serve as a target for targeted therapies. To target CALR, a nanobody Nb215 identified from a naïve VHH phage library with high binding affinity to both human and mouse CALR was employed to engineer probiotic EcN 1917. Our results demonstrated that CALR nanobody-modified EcN-215 coupled with the photothermal dye indocyanine green (ICG) was able to exert NIR-II imaging-guide photothermal therapy (PTT). Moreover, PTT with EcN-215/ICG can reshape the tumor microenvironment by enhancing the infiltration of CD45+CD3+ T cells and CD11b+F4/80+ macrophages. Furthermore, the antitumor activity of CALR-targeted EcN-215/ICG is synergistically enhanced by blocking CD47-SIRPα axis. Collectively, our study provides a proof of concept for CALR-targeted therapy. Given that CALR translocation can be induced by various anticancer therapies across numerous tumor cell lines, CALR-targeted therapies hold promise as a novel approach for treating multiple types of cancers.
Collapse
Affiliation(s)
- Liuhai Zheng
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China; Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China; Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaoru Zhong
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Guangwei Shi
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China; Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528399, China
| | - Chongzhi Bai
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Runwei Yang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528399, China
| | - Zhenhui Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuke Jiang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jinxi Wei
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Zhiyu Dong
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Jiexuan Li
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Ying Long
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China
| | - Lingyun Dai
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Zhijie Li
- Department of Hyperbaric Oxygen Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China.
| | - Chunbo Chen
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Jigang Wang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Wang N, Wu S, Huang L, Hu Y, He X, He J, Hu B, Xu Y, Rong Y, Yuan C, Zeng X, Wang F. Intratumoral microbiome: implications for immune modulation and innovative therapeutic strategies in cancer. J Biomed Sci 2025; 32:23. [PMID: 39966840 PMCID: PMC11837407 DOI: 10.1186/s12929-025-01117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Recent advancements have revealed the presence of a microbiome within tumor tissues, underscoring the crucial role of the tumor microbiome in the tumor ecosystem. This review delves into the characteristics of the intratumoral microbiome, underscoring its dual role in modulating immune responses and its potential to both suppress and promote tumor growth. We examine state-of-the-art techniques for detecting and analyzing intratumoral bacteria, with a particular focus on their interactions with the immune system and the resulting implications for cancer prognosis and treatment. By elucidating the intricate crosstalk between the intratumoral microbiome and the host immune system, we aim to uncover novel therapeutic strategies that enhance the efficacy of cancer treatments. Additionally, this review addresses the existing challenges and future prospects within this burgeoning field, advocating for the integration of microbiome research into comprehensive cancer therapy frameworks.
Collapse
Affiliation(s)
- Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Si Wu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yue Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jourong He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ben Hu
- Center for Tumor Precision Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Xiantao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
13
|
Baker ZR, Zhang Y, Zhang H, Franklin HC, Serpa PBS, Southard T, Li L, Hsu BB. Sustained in situ protein production and release in the mammalian gut by an engineered bacteriophage. Nat Biotechnol 2025:10.1038/s41587-025-02570-7. [PMID: 39966654 DOI: 10.1038/s41587-025-02570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Oral administration of biologic drugs is challenging because of the degradative activity of the upper gastrointestinal tract. Strategies that use engineered microbes to produce biologics in the lower gastrointestinal tract are limited by competition with resident commensal bacteria. Here we demonstrate the engineering of bacteriophage (phage) that infect resident commensals to express heterologous proteins released during cell lysis. Working with the virulent T4 phage, which targets resident, nonpathogenic Escherichia coli, we first identify T4-specific promoters with maximal protein expression and minimal impact on T4 phage titers. We engineer T4 phage to express a serine protease inhibitor of a pro-inflammatory enzyme with increased activity in ulcerative colitis and observe reduced enzyme activity in a mouse model of colitis. We also apply the approach to reduce weight gain and inflammation in mouse models of diet-induced obesity. This work highlights an application of virulent phages in the mammalian gut as engineerable vectors to release therapeutics from resident gut bacteria.
Collapse
Affiliation(s)
- Zachary R Baker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Haiyan Zhang
- Metabolism Core, Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Hollyn C Franklin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Priscila B S Serpa
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Teresa Southard
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Bryan B Hsu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Sang G, Wang B, Xie Y, Chen Y, Yang F. Engineered Probiotic-Based Biomaterials for Inflammatory Bowel Disease Treatment. Theranostics 2025; 15:3289-3315. [PMID: 40093907 PMCID: PMC11905135 DOI: 10.7150/thno.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/09/2024] [Indexed: 03/19/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition affecting the intestines, marked by immune-mediated inflammation. This disease is known for its recurrent nature and the challenges it presents in treatment. Recently, probiotic have gained attention as a promising alternative to traditional small molecular drugs and monoclonal antibody chemotherapies for IBD. Probiotic, recognized as a "living" therapeutic agent, offers targeted treatment with minimal side effects and the flexibility for biological modifications, making them highly effective for IBD management. This comprehensive review presents the latest advancements in engineering probiotic-based materials, ranging from basic treatment mechanisms to the modification techniques used in IBD management. It delves deep into how probiotic produces therapeutic effects in the intestinal environment and discusses various strategies to enhance probiotic's efficacy, including genetic modifications and formulation improvements. Additionally, the review addresses the challenges, practical application conditions, and future research directions of probiotic-based therapies in IBD treatment, providing insights into their feasibility and potential clinical implications.
Collapse
Affiliation(s)
- Guangze Sang
- Department of Inorganic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, 200433, P. R. China
| | - Bingkai Wang
- Department of Inorganic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, 200433, P. R. China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Feng Yang
- Department of Inorganic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, 200433, P. R. China
| |
Collapse
|
15
|
Wu F, Lin S, Luo H, Wang C, Liu J, Zhu X, Pang Y. Noncontact microbiota transplantation by core-shell microgel-enabled nonleakage envelopment. SCIENCE ADVANCES 2025; 11:eadr7373. [PMID: 39908366 PMCID: PMC11797561 DOI: 10.1126/sciadv.adr7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Transplantation of beneficial bacteria to specific microbiota has been widely exploited to treat diseases by reshaping a healthy microbial structure. However, direct exposure of exogenous bacteria in vivo suffers from low bioavailability and infection risk. Here, we describe a noncontact microbiota transplantation system (NMTS) by core-shell microgel-enabled nonleakage envelopment. Bacteria are encapsulated into the core of core-shell microgels via two-step light-initiated emulsion polymerization of gelatin methacrylate. NMTS is versatile for biocontainment of diverse strains, showing near complete encapsulation and negligible influence on bacterial activity. As a proof-of-concept study on probiotic transplantation to the gut microbiota, NMTS demonstrates the shielding effect to protect sealed bacteria from intraluminal insults of low pH and bile acid, the toughness to prevent bacterial leakage during entire gastrointestinal passage and reduce infection risk, and the permeability to release beneficial metabolites and reconstruct a balanced intestinal microbial structure, proposing a contactless fashion for advanced microbiota transplantation.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huilong Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuhan Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jinyao Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Gao S, Li X, Han B. Bacterial and bacterial derivatives-based drug delivery systems: a novel approach for treating central nervous system disorders. Expert Opin Drug Deliv 2025; 22:163-180. [PMID: 39688950 DOI: 10.1080/17425247.2024.2444364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Bacteria and their derivatives show great potential as drug delivery systems due to their unique chemotaxis, biocompatibility, and targeting abilities. In CNS disease treatment, bacterial carriers can cross the blood-brain barrier (BBB) and deliver drugs precisely, overcoming limitations of traditional methods. Advances in genetic engineering, synthetic biology, and nanotechnology have transformed these systems into multifunctional platforms for personalized CNS treatment. AREAS COVERED This review examines the latest research on bacterial carriers for treating ischemic brain injury, neurodegenerative diseases, and gliomas. Bacteria efficiently cross the blood-brain barrier via active targeting, endocytosis, paracellular transport, and the nose-to-brain route for precise drug delivery. Various bacterial drug delivery systems, such as OMVs and bacterial ghosts, are explored for their design and application. Databases were searched in Google Scholar for the period up to December 2024. EXPERT OPINION Future developments in bacterial drug delivery will rely on AI-driven design and high-throughput engineering, enhancing treatment precision. Personalized medicine will further optimize bacterial carriers for individual patients, but challenges such as biosafety, immune rejection, and scalability must be addressed. As multimodal diagnostic and therapeutic strategies advance, bacterial carriers are expected to play a central role in CNS disease treatment, offering novel precision medicine solutions.
Collapse
Affiliation(s)
- Shizhu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| | - Xin Li
- Orthopedic Medical Center, 2nd hospital of Jilin University, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
17
|
Pribyl AL, Hugenholtz P, Cooper MA. A decade of advances in human gut microbiome-derived biotherapeutics. Nat Microbiol 2025; 10:301-312. [PMID: 39779879 DOI: 10.1038/s41564-024-01896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use. Next-generation therapies based on readily culturable and as-yet-unculturable colonic bacterial species (with the latter estimated to comprise 63% of all detected species) have not yet progressed to pivotal phase 3 trials. This reflects the many challenges involved in developing a new class of drugs in an evolving field. Here we discuss the evolution of the live biotherapeutics field over the past decade, from the development of first-generation products to the emergence of rationally designed second- and third-generation live biotherapeutics. Finally, we present our outlook for the future of this field.
Collapse
Affiliation(s)
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia.
| | | |
Collapse
|
18
|
Chen A, Gong Y, Wu S, Du Y, Liu Z, Jiang Y, Li J, Miao YB. Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics. J Nanobiotechnology 2025; 23:72. [PMID: 39893419 PMCID: PMC11786591 DOI: 10.1186/s12951-025-03141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Oral probiotics have significant potential for preventing and treating many diseases. Yet, their efficacy is often hindered by challenges related to survival and colonization within the gastrointestinal tract. Nanoparticles emerge as a transformative solution, offering robust protection and enhancing the stability and bioavailability of these probiotics. This review explores the innovative application of nanoparticle-armored engineered probiotics for precise disease treatment, specifically addressing the physiological barriers associated with oral administration. A comprehensive evaluation of various nano-armor probiotics and encapsulation methods is provided, carefully analyzing their respective merits and limitations, alongside strategies to enhance probiotic survival and achieve targeted delivery and colonization within the gastrointestinal tract. Furthermore, the review explores the potential clinical applications of nano-armored probiotics in precision therapeutics, critically addressing safety and regulatory considerations, and proposing the innovative concept of 'probiotic intestinal colonization with nano armor' for brain-targeted therapies. Ultimately, this review aspires to guide the advancement of nano-armored probiotic therapies, driving progress in precision medicine and paving the way for groundbreaking treatment modalities.
Collapse
Affiliation(s)
- Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Shaoquan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ye Du
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| |
Collapse
|
19
|
Xiao J, Hou Y, Luo X, Zhu Y, Li W, Li B, Zhou L, Chen X, Guo Y, Zhang X, He H, Liu X. Clostridium Scindens Protects Against Vancomycin-Induced Cholestasis and Liver Fibrosis by Activating Intestinal FXR-FGF15/19 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406445. [PMID: 39680750 PMCID: PMC11791999 DOI: 10.1002/advs.202406445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/11/2024] [Indexed: 12/18/2024]
Abstract
Primary sclerosing cholangitis (PSC) is characterized by abnormal bile acid metabolites and altered gut microbiota, with no effective treatments available. Vancomycin, a glycopeptide antibiotic, has emerged as a promising candidate. However, the mechanism by which vancomycin impacts the progression of PSC remains unknown. Mice treated with vancomycin exhibit increased hepatic collagen deposition and injury, due to the inhibition of intestinal FXR-FGF15/19 axis and the elevation of bile acid levels. These effects are associated with the reduction in Clostridia XIVa, especially Clostridium scindens (C. scindens). Gavage of C. scindens alleviates vancomycin-induced bile acid accumulation and liver fibrosis via activating intestinal FXR-FGF15/19 signaling. Similar effects are observed in mice treated with engineered Escherichia coli Nissle 1917 that are capable of expressing bile acid 7α-dehydratas (BaiE) from C. scindens (EcN-BaiE). Activating intestinal FXR-FGF15/19 signaling by fexaramine (Fex) or recombinant protein FGF19 reverse vancomycin-induced liver injury and fibrosis. These results demonstrate that long-term oral vancomycin exacerbates cholestatic liver injury, while C. scindens mitigates this effect by activating the intestinal FXR-FGF15/19 signaling pathway. This underscores the importance of monitoring bile acid levels in PSC patients receiving vancomycin treatment and suggests that C. scindens may serve as a potential therapeutic approach for PSC patients.
Collapse
Affiliation(s)
- Jintao Xiao
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yanliang Hou
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xingyang Luo
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yuhao Zhu
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Wenhu Li
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Bingbing Li
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - LinXiang Zhou
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xia Chen
- Department of Clinical LaboratoryXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ying Guo
- Department of Clinical PharmacologyXiangya HospitalHunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaHunan410008China
| | - Xiaomei Zhang
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Haiyue He
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xiaowei Liu
- Department of GastroenterologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
20
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
21
|
Tadimarri VS, Blanch-Asensio M, Deshpande K, Baumann J, Baumann C, Müller R, Trujillo S, Sankaran S. PEARL: Protein Eluting Alginate with Recombinant Lactobacilli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408316. [PMID: 39871788 DOI: 10.1002/smll.202408316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/10/2025] [Indexed: 01/29/2025]
Abstract
Engineered living materials (ELMs) made of bacteria in hydrogels have shown considerable promise for therapeutic applications through controlled and sustained release of complex biopharmaceuticals at low costs and with reduced wastage. While most therapeutic ELMs use E. coli due to its large genetic toolbox, most live biotherapeutic bacteria in development are lactic acid bacteria due to native health benefits they offer. Among these, lactobacilli form the largest family of probiotics with therapeutic potential in almost all sites of the body with a microbiome. A major factor limiting the use of lactobacilli in ELMs is their limited genetic toolbox. This study expands on recent work to expand the genetic programmability of probiotic Lactiplantibacillus plantarum WCFS1 for protein secretion and encapsulate it in a simple, cost-effective, and biocompatible core-shell alginate bead to develop an ELM. The controlled release of recombinant proteins is demonstrated, even up to 14 days from this ELM, thereby terming it PEARL - Protein Eluting Alginate with Recombinant Lactobacilli. Notably, lactobacillus encapsulation offered benefits like bacterial containment, protein release profile stabilization, and metabolite-induced cytotoxicity prevention. These findings demonstrate the mutual benefits of combining recombinant lactobacilli with alginate for the controlled and sustained release of proteins.
Collapse
Affiliation(s)
- Varun Sai Tadimarri
- INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany
- Saarland University, 66123, Saarbrücken, Germany
| | - Marc Blanch-Asensio
- INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany
- Saarland University, 66123, Saarbrücken, Germany
| | - Ketaki Deshpande
- INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany
- Saarland University, 66123, Saarbrücken, Germany
| | - Jonas Baumann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Carole Baumann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus E8 1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Braunschweig, Germany
| | - Sara Trujillo
- INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany
| | - Shrikrishnan Sankaran
- INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany
| |
Collapse
|
22
|
Woo SG, Kim SK, Lee SG, Lee DH. Engineering probiotic Escherichia coli for inflammation-responsive indoleacetic acid production using RiboJ-enhanced genetic circuits. J Biol Eng 2025; 19:10. [PMID: 39838372 PMCID: PMC11753152 DOI: 10.1186/s13036-025-00479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND As our understanding of gut microbiota's metabolic impacts on health grows, the interest in engineered probiotics has intensified. This study aimed to engineer the probiotic Escherichia coli Nissle 1917 (EcN) to produce indoleacetic acid (IAA) in response to gut inflammatory biomarkers thiosulfate and nitrate. RESULTS Genetic circuits were developed to initiate IAA synthesis upon detecting inflammatory signals, optimizing a heterologous IAA biosynthetic pathway, and incorporating a RiboJ insulator to enhance IAA production. The engineered EcN strains demonstrated increased IAA production in the presence of thiosulfate and nitrate. An IAA-responsive genetic circuit using the IacR transcription factor from Pseudomonas putida 1290 was also developed for real-time IAA monitoring. CONCLUSIONS Given IAA's role in reducing gastrointestinal inflammation, further refinement of this strain could lead to effective, in situ IAA-based therapies. This proof-of-concept advances the field of live biotherapeutic products and offers a promising approach for targeted therapy in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Seung-Gyun Woo
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Seong Keun Kim
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Dae-Hee Lee
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon-si, 16419, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
23
|
Su D, Li M, Xie Y, Xu Z, Lv G, Jiu Y, Lin J, Chang CJ, Chen H, Cheng F. Gut commensal bacteria Parabacteroides goldsteinii-derived outer membrane vesicles suppress skin inflammation in psoriasis. J Control Release 2025; 377:127-145. [PMID: 39532207 DOI: 10.1016/j.jconrel.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Despite gut microbiota-derived extracellular vesicles (EVs) serving as pivotal mediators in bacteria-host cell interactions, their potential role in modulating skin inflammation remains poorly understood. Here, we developed strategies for mass production of Parabacteroides goldsteinii-derived outer membrane vesicles (Pg OMVs), commonly known as EVs. We found that orally administered Pg OMVs can reach the colon, traverse the intestinal barrier, and circulate to the inflamed skin of psoriasis-like mice, resulting in reduced epidermal hyperplasia, suppressed infiltration of inflammatory cells in the skin lesions, and effective amelioration of both skin and systemic inflammation. Additionally, subcutaneous injection of thermosensitive PF-127 hydrogel loaded with Pg OMVs exerts similar immunomodulatory effects, allowing sustained release of Pg OMVs into skin cells, effectively suppressing skin inflammation and ameliorating symptoms of psoriasis. This study unveils the importance of gut microbiota-derived OMVs, which can target inflamed skin via both the gut-skin axis and local skin administration, providing a promising alternative to live bacteria therapy for the treatment of skin inflammatory diseases.
Collapse
Affiliation(s)
- Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Manchun Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuedong Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhanxue Xu
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Guowen Lv
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Jingxiong Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chih-Jung Chang
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China; School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
24
|
Grilc NK, Kristl J, Zupančič Š. Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? Colloids Surf B Biointerfaces 2025; 245:114329. [PMID: 39486375 DOI: 10.1016/j.colsurfb.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
25
|
Jin K, Huang Y, Che H, Wu Y. Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology. Microb Biotechnol 2025; 18:e70080. [PMID: 39801378 PMCID: PMC11725985 DOI: 10.1111/1751-7915.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Using synthetic biology techniques, bacteria have been engineered to serve as microrobots for diagnosing diseases and delivering treatments. These engineered bacteria can be used individually or in combination as microbial consortia. The components within these consortia complement each other, enhancing diagnostic accuracy and providing synergistic effects that improve treatment efficacy. The application of microbial therapies in cancer, intestinal diseases, and metabolic disorders underscores their significant potential. The impact of these therapies on the host's native microbiota is crucial, as engineered microbes can modulate and interact with the host's microbial environment, influencing treatment outcomes and overall health. Despite numerous advancements, challenges remain. These include ensuring the long-term survival and safety of bacteria, developing new chassis microbes and gene editing techniques for non-model strains, minimising potential toxicity, and understanding bacterial interactions with the host microbiota. This mini-review examines the current state of engineered bacteria and microbial consortia in disease diagnosis and treatment, highlighting advancements, challenges, and future directions in this promising field.
Collapse
Affiliation(s)
- Kai Jin
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yi Huang
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Hailong Che
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yihan Wu
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| |
Collapse
|
26
|
Vazquez-Uribe R, Hedin KA, Licht TR, Nieuwdorp M, Sommer MOA. Advanced microbiome therapeutics as a novel modality for oral delivery of peptides to manage metabolic diseases. Trends Endocrinol Metab 2025; 36:29-41. [PMID: 38782649 DOI: 10.1016/j.tem.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The rising prevalence of metabolic diseases calls for innovative treatments. Peptide-based drugs have transformed the management of conditions such as obesity and type 2 diabetes. Yet, challenges persist in oral delivery of these peptides. This review explores the potential of 'advanced microbiome therapeutics' (AMTs), which involve engineered microbes for delivery of peptides in situ, thereby enhancing their bioavailability. Preclinical work on AMTs has shown promise in treating animal models of metabolic diseases, including obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease. Outstanding challenges toward realizing the potential of AMTs involve improving peptide expression, ensuring predictable colonization control, enhancing stability, and managing safety and biocontainment concerns. Still, AMTs have potential for revolutionizing the treatment of metabolic diseases, potentially offering dynamic and personalized novel therapeutic approaches.
Collapse
Affiliation(s)
- Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
27
|
Song C, Zhao C. Innovative Bacterial Therapies and Genetic Engineering Approaches in Colorectal Cancer: A Review of Emerging Strategies and Clinical Implications. J Microbiol Biotechnol 2024; 34:2397-2412. [PMID: 39467702 PMCID: PMC11733548 DOI: 10.4014/jmb.2408.08026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) is considered a widespread cancer, ranking second in mortality and incidence among cancer patients worldwide. CRC develops from adenoma to carcinoma through the dynamic interplay of genetic and environmental factors. The conventional modes of treatment, including operation, chemotherapy, and irradiation, are associated with significant challenges, such as drug resistance and toxicity, necessitating the exploration of new treatment modalities. These difficulties reveal the necessity of the emergence of new therapeutic approaches. This review mainly emphasizes the bacterial-based therapies that have recently developed like the engineered bacteriophage therapy and bacterial immunotherapy that pale the existing chemotherapy in terms of toxicity but are effective in killing tumor cells. Also, it also investigates various molecular genetic engineering strategies such as CRISPR-Cas9, CRISPR prime editing and gene silencing to achieve better targeting of CRC. Implementing these new approaches into the forefront of CRC treatment may bring better, more effective therapy with fewer side effects on patients' quality of life.
Collapse
Affiliation(s)
- Chunxiao Song
- Department of Colorectal and Anal Surgery, Weifang People's Hospital, Weifang 261000, P. R. China
| | - Chunwu Zhao
- Department of Gastrointestinal Surgery, Weifang People's Hospital, Weifang 261000, P. R. China
| |
Collapse
|
28
|
Tiwari A, Ika Krisnawati D, Susilowati E, Mutalik C, Kuo TR. Next-Generation Probiotics and Chronic Diseases: A Review of Current Research and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27679-27700. [PMID: 39588716 DOI: 10.1021/acs.jafc.4c08702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The burgeoning field of microbiome research has profoundly reshaped our comprehension of human health, particularly highlighting the potential of probiotics and fecal microbiota transplantation (FMT) as therapeutic interventions. While the benefits of traditional probiotics are well-recognized, the efficacy and mechanisms remain ambiguous, and FMT's long-term effects are still being investigated. Recent advancements in high-throughput sequencing have identified gut microbes with significant health benefits, paving the way for next-generation probiotics (NGPs). These NGPs, engineered through synthetic biology and bioinformatics, are designed to address specific disease states with enhanced stability and viability. This review synthesizes current research on NGP stability, challenges in delivery, and their applications in preventing and treating chronic diseases such as diabetes, obesity, and cardiovascular diseases. We explore the physiological characteristics, safety profiles, and mechanisms of action of various NGP strains while also addressing the challenges and opportunities presented by their integration into clinical practice. The potential of NGPs to revolutionize microbiome-based therapies and improve clinical outcomes is immense, underscoring the need for further research to optimize their efficacy and ensure their safety.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237 East Java, Indonesia
| | - Erna Susilowati
- Akademi Kesehatan Dharma Husada Kediri, Kediri, 64118 East Java, Indonesia
| | - Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
29
|
Luo Z, Qi Z, Luo J, Chen T. Potential applications of engineered bacteria in disease diagnosis and treatment. MICROBIOME RESEARCH REPORTS 2024; 4:10. [PMID: 40207274 PMCID: PMC11977365 DOI: 10.20517/mrr.2024.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 04/11/2025]
Abstract
Probiotics are live microorganisms that confer health benefits to the host when administered in appropriate quantities. This beneficial effect has spurred extensive research in the medical and health fields. With rapid advancements in synthetic biology, the genetic and biological characteristics of a broad array of probiotics have been elucidated. Utilizing these insights, genetic editing technologies now enable the precise modification of probiotics, leading to the development of engineered bacteria. Emerging evidence underscores the significant potential of these engineered bacteria in disease management. This review explores the methodologies for creating engineered bacteria, their preliminary applications in healthcare, and the mechanisms underlying their functions. Engineered bacteria are being developed for roles such as in vivo drug delivery systems, biosensors, and mucosal vaccines, thereby contributing to the treatment, diagnosis, and prevention of conditions including inflammatory bowel disease (IBD), metabolic disorders, cancer, and neurodegenerative diseases. The review concludes by assessing the advantages and limitations of engineered bacteria in the context of disease management.
Collapse
Affiliation(s)
- Zhaowei Luo
- School of Huankui Academy, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Zhanghua Qi
- School of Huankui Academy, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Jie Luo
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
30
|
Baghdasaryan O, Contreras-Llano LE, Khan S, Wang A, Hu CMJ, Tan C. Fabrication of cyborg bacterial cells as living cell-material hybrids using intracellular hydrogelation. Nat Protoc 2024; 19:3613-3639. [PMID: 39174659 PMCID: PMC11776454 DOI: 10.1038/s41596-024-01035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/11/2024] [Indexed: 08/24/2024]
Abstract
The production of living therapeutics, cell-based delivery of drugs and gene-editing tools and the manufacturing of bio-commodities all share a common concept: they use either a synthetic or a living cell chassis to achieve their primary engineering or therapeutic goal. Live-cell chassis face limitations inherent to their auto-replicative nature and the complexity of the cellular context. This limitation highlights the need for a new chassis combining the engineering simplicity of synthetic materials and the functionalities of natural cells. Here, we describe a protocol to assemble a synthetic polymeric network inside bacterial cells, rendering them incapable of cell division and allowing them to resist environmental stressors such as high pH, hydrogen peroxide and cell-wall-targeting antibiotics that would otherwise kill unmodified bacteria. This cellular bioengineering protocol details how bacteria can be transformed into single-lifespan devices that are resistant to environmental stressors and possess programable functionality. We designate the modified bacteria as cyborg bacterial cells. This protocol expands the synthetic biology toolset, conferring precise control over living cells and creating a versatile cell chassis for biotechnology, biomedical engineering and living therapeutics. The protocol, including the preparation of gelation reagents and chassis strain, can be completed in 4 d. The implementation of the protocol requires expertise in microbiology techniques, hydrogel chemistry, fluorescence microscopy and flow cytometry. Further functionalization of the cyborg bacterial cells and adaptation of the protocol requires skills ranging from synthetic genetic circuit engineering to hydrogel polymerization chemistries.
Collapse
Affiliation(s)
| | - Luis E Contreras-Llano
- Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Shahid Khan
- Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Aijun Wang
- Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan.
| | - Cheemeng Tan
- Biomedical Engineering, University of California Davis, Davis, CA, USA.
| |
Collapse
|
31
|
Dey S, Seyfert CE, Fink-Straube C, Kany AM, Müller R, Sankaran S. Thermo-amplifier circuit in probiotic E. coli for stringently temperature-controlled release of a novel antibiotic. J Biol Eng 2024; 18:66. [PMID: 39533331 PMCID: PMC11559228 DOI: 10.1186/s13036-024-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Peptide drugs have seen rapid advancement in biopharmaceutical development, with over 80 candidates approved globally. Despite their therapeutic potential, the clinical translation of peptide drugs is hampered by challenges in production yields and stability. Engineered bacterial therapeutics is a unique approach being explored to overcome these issues by using bacteria to produce and deliver therapeutic compounds at the body site of use. A key advantage of this technology is the possibility to control drug delivery within the body in real time using genetic switches. However, the performance of such genetic switches suffers when used to control drugs that require post-translational modifications or are toxic to the host. In this study, these challenges were experienced when attempting to establish a thermal switch for the production of a ribosomally synthesized and post-translationally modified peptide antibiotic, darobactin, in probiotic E. coli. These challenges were overcome by developing a thermo-amplifier circuit that combined the thermal switch with a T7 RNA Polymerase. Due to the orthogonality of the Polymerase, this strategy overcame limitations imposed by the host transcriptional machinery. This circuit enabled production of pathogen-inhibitory levels of darobactin at 40 °C while maintaining leakiness below the detection limit at 37 °C. Furthermore, the thermo-amplifier circuit sustained gene expression beyond the thermal induction duration such that with only 2 h of induction, the bacteria were able to produce pathogen-inhibitory levels of darobactin. This performance was maintained even in physiologically relevant simulated conditions of the intestines that include bile salts and low nutrient levels.
Collapse
Affiliation(s)
- Sourik Dey
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Carsten E Seyfert
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Brunswick, Germany
| | - Claudia Fink-Straube
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Brunswick, Germany
| | - Rolf Müller
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Brunswick, Germany
| | - Shrikrishnan Sankaran
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
32
|
Yeh YH, Kelly VW, Rahman Pour R, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. Nat Commun 2024; 15:9741. [PMID: 39528443 PMCID: PMC11554821 DOI: 10.1038/s41467-024-53845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Bacteroides species are abundant, prevalent, and stable members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering Bacteroides as in situ bio-factories, however, requires efficient protein secretion tools, which are currently lacking. Here, we systematically investigate methods to enable heterologous protein secretion in Bacteroides. We identify a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterize signal peptide sequence features, post-secretion extracellular fate, and the size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we develop a strong, self-contained, inducible expression circuit. Finally, we validate the functionality of our secretion carriers in vivo in a mouse model. This toolkit promises to enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Chan Zuckerberg Biohub, Chicago, IL, USA
| | - Vince W Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Perlumi, Berkeley, CA, USA
| | - Shannon J Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Chan Zuckerberg Biohub, Chicago, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
33
|
Knödlseder N, Fábrega MJ, Santos-Moreno J, Manils J, Toloza L, Marín Vilar M, Fernández C, Broadbent K, Maruotti J, Lemenager H, Carolis C, Zouboulis CC, Soler C, Lood R, Brüggemann H, Güell M. Delivery of a sebum modulator by an engineered skin microbe in mice. Nat Biotechnol 2024; 42:1661-1666. [PMID: 38195987 DOI: 10.1038/s41587-023-02072-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024]
Abstract
Microorganisms can be equipped with synthetic genetic programs for the production of targeted therapeutic molecules. Cutibacterium acnes is the most abundant commensal of the human skin, making it an attractive chassis to create skin-delivered therapeutics. Here, we report the engineering of this bacterium to produce and secrete the therapeutic molecule neutrophil gelatinase-associated lipocalin, in vivo, for the modulation of cutaneous sebum production.
Collapse
Affiliation(s)
- Nastassia Knödlseder
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - María-José Fábrega
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Santos-Moreno
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Manils
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Toloza
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Marín Vilar
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Fernández
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Katrina Broadbent
- Protein Technologies Facility, Center of Genomic Regulation, Barcelona, Spain
| | | | | | - Carlo Carolis
- Protein Technologies Facility, Center of Genomic Regulation, Barcelona, Spain
| | - Christos C Zouboulis
- Hochschulklinik für Dermatologie, Venerologie und Allergologie, Immunologisches Zentrum; Städtisches Klinikum Dessau; and Medizinische Hochschule Brandenburg Theodor Fontane und Fakultät für Gesundheitswissenschaften Brandenburg, Dessau-Roßlau, Germany
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Rolf Lood
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
34
|
Kokkinias K, Pruneski K, Wrighton K, Kelp N. Examination of public perceptions of microbes and microbiomes in the United States reveals insights for science communication. PLoS One 2024; 19:e0312427. [PMID: 39432547 PMCID: PMC11493282 DOI: 10.1371/journal.pone.0312427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Within a changing research and media landscape, misconceptions and misinformation about microorganisms and microbiomes can arise, necessitating improvements in science communication practices through insights in public perceptions of the microbial world. Yet, little is known about public perceptions of microorganisms and microbiomes, making it difficult to develop tailored messaging. Here we perform an inductive thematic analysis with interviews and surveys from thirty adults across the United States to identify key factors to enhance microbial science communication efforts. Together, our results underscore the importance of 1) recognizing the existing and desired future knowledge of an audience, 2) aligning with broader socio-scientific issues that resonate with people in relevant channels using social networks, 3) fostering collaboration between microbiologists, social scientists, and communicators to improve messaging, and 4) appealing to people's values and emotions to establish meaningful connections. This study concludes that non-microbial interests, such as an interest in health and wellness, may lead to acquisition of microbial knowledge and that people want scientists to share microbial messages preferably on platforms like social media. Additionally, we identified confusion about microbial terms and a desire to understand human-centric benefits of microorganisms and microbiomes. We suggest that microbiologists partner with science communicators to develop microbial messaging, capitalizing on connections to non-microbial interests and appealing to people's microbial worldview.
Collapse
Affiliation(s)
- Katherine Kokkinias
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Katherine Pruneski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kelly Wrighton
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nicole Kelp
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
35
|
Galvan S, Teixeira AP, Fussenegger M. Enhancing cell-based therapies with synthetic gene circuits responsive to molecular stimuli. Biotechnol Bioeng 2024; 121:2987-3000. [PMID: 38867466 DOI: 10.1002/bit.28770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Synthetic biology aims to contribute to the development of next-generation patient-specific cell-based therapies for chronic diseases especially through the construction of sophisticated synthetic gene switches to enhance the safety and spatiotemporal controllability of engineered cells. Indeed, switches that sense and process specific cues, which may be either externally administered triggers or endogenous disease-associated molecules, have emerged as powerful tools for programming and fine-tuning therapeutic outputs. Living engineered cells, often referred to as designer cells, incorporating such switches are delivered to patients either as encapsulated cell implants or by infusion, as in the case of the clinically approved CAR-T cell therapies. Here, we review recent developments in synthetic gene switches responsive to molecular stimuli, spanning regulatory mechanisms acting at the transcriptional, translational, and posttranslational levels. We also discuss current challenges facing clinical translation of cell-based therapies employing these devices.
Collapse
Affiliation(s)
- Silvia Galvan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Lakshmana Senthil S. A comprehensive review to assess the potential, health benefits and complications of fucoidan for developing as functional ingredient and nutraceutical. Int J Biol Macromol 2024; 277:134226. [PMID: 39074709 DOI: 10.1016/j.ijbiomac.2024.134226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Polysaccharides from seaweeds or macroalgae are garnering significant interest from pharmaceutical and food industries due to their bioactivities and promising therapeutic effects. Among the diverse agal polysaccharides, fucoidan is a well-documented and stands out as a well-researched sulphated heteropolysaccharide found in brown seaweeds. It primarily consists of l-fucose and sulfate ester groups, along with other monosaccharides like xylose, mannose, uronic acid, rhamnose, arabinose, and galactose. Recent scientific investigations have unveiled the formidable inhibitory prowess of fucoidan against SARS-CoV-2, offering a promising avenue for therapeutic intervention in our current landscape. Moreover, fucoidan has demonstrated remarkable abilities in safeguarding the gastrointestinal tract, regulating angiogenesis, mitigating metabolic syndrome, and fortifying bone health. Despite the abundance of studies underscoring fucoidan's potential as a vital component sourced from nature, its exploitation remains constrained by inherent limitations. Thus, the primary objective of this article is to furnish a comprehensive discourse on the structural attributes, health-enhancing properties, safety parameters, and potential toxicity associated with fucoidan. Furthermore, the discourse extends to elucidating the practical applications and developmental prospects of fucoidan as a cornerstone in the realm of functional foods and nutraceuticals.
Collapse
|
37
|
Juang DS, Wightman WE, Lozano GL, Juang TD, Barkal LJ, Yu J, Garavito MF, Hurley A, Venturelli OS, Handelsman J, Beebe DJ. Microbial community interactions on a chip. Proc Natl Acad Sci U S A 2024; 121:e2403510121. [PMID: 39288179 PMCID: PMC11441501 DOI: 10.1073/pnas.2403510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Multispecies microbial communities drive most ecosystems on Earth. Chemical and biological interactions within these communities can affect the survival of individual members and the entire community. However, the prohibitively high number of possible interactions within a microbial community has made the characterization of factors that influence community development challenging. Here, we report a Microbial Community Interaction (µCI) device to advance the systematic study of chemical and biological interactions within a microbial community. The µCI creates a combinatorial landscape made up of an array of triangular wells interconnected with circular wells, which each contains either a different chemical or microbial strain, generating chemical gradients and revealing biological interactions. Bacillus cereus UW85 containing green fluorescent protein provided the "target" readout in the triangular wells, and antibiotics or microorganisms in adjacent circular wells are designated the "variables." The µCI device revealed that gentamicin and vancomycin are antagonistic to each other in inhibiting the target B. cereus UW85, displaying weaker inhibitory activity when used in combination than alone. We identified three-member communities constructed with isolates from the plant rhizosphere that increased or decreased the growth of B. cereus. The µCI device enables both strain-level and community-level insight. The scalable geometric design of the µCI device enables experiments with high combinatorial efficiency, thereby providing a simple, scalable platform for systematic interrogation of three-factor interactions that influence microorganisms in solitary or community life.
Collapse
Affiliation(s)
- Duane S. Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Wren E. Wightman
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Gabriel L. Lozano
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - Terry D. Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Layla J. Barkal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Jiaquan Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Manuel F. Garavito
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - Amanda Hurley
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI53706
| | - Jo Handelsman
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53706
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53706
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI53705
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
38
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Van den Berghe L, Masschelein J, Pinheiro VB. From competition to cure: the development of live biotherapeutic products for anticancer therapy in the iGEM competition. Front Bioeng Biotechnol 2024; 12:1447176. [PMID: 39351063 PMCID: PMC11439766 DOI: 10.3389/fbioe.2024.1447176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a leading cause of mortality globally, often diagnosed at advanced stages with metastases already present, complicating treatment efficacy. Traditional treatments like chemotherapy and radiotherapy face challenges such as lack of specificity and drug resistance. The hallmarks of cancer, as defined by Hanahan and Weinberg, describe tumors as complex entities capable of evolving traits that promote malignancy, including sustained proliferation, resistance to cell death, and metastasis. Emerging research highlights the significant role of the microbiome in cancer development and treatment, influencing tumor progression and immune responses. This review explores the potential of live biotherapeutic products (LBPs) for cancer diagnosis and therapy, focusing on projects from the International Genetically Engineered Machines (iGEM) competition that aim to innovate LBPs for cancer treatment. Analyzing 77 projects from 2022, we highlight the progress and ongoing challenges within this research field.
Collapse
Affiliation(s)
- Luka Van den Berghe
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Joleen Masschelein
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Vitor B Pinheiro
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Xiao S, Mu M, Feng C, Pan S, Chen N. The application of bacteria-nanomaterial hybrids in antitumor therapy. J Nanobiotechnology 2024; 22:536. [PMID: 39227831 PMCID: PMC11373302 DOI: 10.1186/s12951-024-02793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Adverse effects and multidrug resistance remain significant obstacles in conventional cancer therapy. Nanomedicines, with their intrinsic properties such as nano-sized dimensions and tunable surface characteristics, have the potential to mitigate the side effects of traditional cancer treatments. While nanomaterials have been widely applied in cancer treatment, challenges such as low targeting efficiency and poor tumor penetration persist. Recent research has shown that anaerobic bacteria exhibit high selectivity for primary tumors and metastatic cancers, offering good safety and superior tumor penetration capabilities. This suggests that combining nanomaterials with bacteria could complement their respective limitations, opening vast potential applications in cancer therapy. The use of bacteria in combination with nanomaterials for anticancer treatments, including chemotherapy, radiotherapy, and photothermal/photodynamic therapy, has contributed to the rapid development of the field of bacterial oncology treatments. This review explores the mechanisms of bacterial tumor targeting and summarizes strategies for synthesizing bacterial-nanomaterial and their application in cancer therapy. The combination of bacterial-nanomaterial hybrids with modern therapeutic approaches represents a promising avenue for future cancer treatment research, with the potential to improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Susu Xiao
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Mu
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenqian Feng
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shulin Pan
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nianyong Chen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
41
|
Li M, Liu N, Zhu J, Wu Y, Niu L, Liu Y, Chen L, Bai B, Miao Y, Yang Y, Chen Q. Engineered probiotics with sustained release of interleukin-2 for the treatment of inflammatory bowel disease after oral delivery. Biomaterials 2024; 309:122584. [PMID: 38735180 DOI: 10.1016/j.biomaterials.2024.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a kind of auto-immune disease characterized by disrupted intestinal barrier and mucosal epithelium, imbalanced gut microbiome and deregulated immune responses. Therefore, the restoration of immune equilibrium and gut microbiota could potentially serve as a hopeful approach for treating IBD. Herein, the oral probiotic Escherichia coli Nissle 1917 (ECN) was genetically engineered to express secretable interleukin-2 (IL-2), a kind of immunomodulatory agent, for the treatment of IBD. In our design, probiotic itself has the ability to regulate the gut microenvironment and IL-2 at low dose could selectively promote the generation of regulatory T cells to elicit tolerogenic immune responses. To improve the bioavailability of ECN expressing IL-2 (ECN-IL2) in the gastrointestinal tract, enteric coating Eudragit L100-55 was used to coat ECN-IL2, achieving significantly enhanced accumulation of engineered probiotics in the intestine. More importantly, L100-55 coated ECN-IL2 could effectively activated Treg cells to regulate innate immune responses and gut microbiota, thereby relieve inflammation and repair the colon epithelial barrier in dextran sodium sulfate (DSS) induced IBD. Therefore, genetically and chemically modified probiotics with excellent biocompatibility and efficiency in regulating intestinal microflora and intestinal inflammation show great potential for IBD treatment in the future.
Collapse
Affiliation(s)
- Maoyi Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Nanhui Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jiafei Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yumin Wu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Le Niu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yi Liu
- Department of Thoracic Surgery Shanghai Pulmonary Hospital School of Medicine Tong ji University, Shanghai, 200433, China
| | - Linfu Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Boxiong Bai
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yu Miao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yang Yang
- Department of Thoracic Surgery Shanghai Pulmonary Hospital School of Medicine Tong ji University, Shanghai, 200433, China
| | - Qian Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
| |
Collapse
|
42
|
Xu M, Feng G, Fang J. Microcapsules based on biological macromolecules for intestinal health: A review. Int J Biol Macromol 2024; 276:133956. [PMID: 39029830 DOI: 10.1016/j.ijbiomac.2024.133956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intestinal dysfunction is becoming increasingly associated with neurological and endocrine issues, raising concerns about its impact on world health. With the introduction of several breakthrough technologies for detecting and treating intestinal illnesses, significant progress has been made in the previous few years. On the other hand, traditional intrusive diagnostic techniques are expensive and time-consuming. Furthermore, the efficacy of conventional drugs (not capsules) is reduced since they are more likely to degrade before reaching their target. In this context, microcapsules based on different types of biological macromolecules have been used to encapsulate active drugs and sensors to track intestinal ailments and address these issues. Several biomacromolecules/biomaterials (natural protein, alginate, chitosan, cellulose and RNA etc.) are widely used for make microcapsules for intestinal diseases, and can significantly improve the therapeutic effect and reduce adverse reactions. This article systematically summarizes microencapsulated based on biomacromolecules material for intestinal health control and efficacy enhancement. It also discusses the application and mechanism research of microencapsulated biomacromolecules drugs in reducing intestinal inflammation, in addition to covering the preparation techniques of microencapsulated drug delivery systems used for intestinal health. Microcapsule delivery systems' limits and potential applications for intestinal disease diagnosis, treatment, and surveillance were highlighted.
Collapse
Affiliation(s)
- Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| |
Collapse
|
43
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
44
|
Munkler LP, Mohamed ET, Vazquez-Uribe R, Visby Nissen V, Rugbjerg P, Worberg A, Woodley JM, Feist AM, Sommer MOA. Genetic heterogeneity of engineered Escherichia coli Nissle 1917 strains during scale-up simulation. Metab Eng 2024; 85:159-166. [PMID: 39111565 DOI: 10.1016/j.ymben.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Advanced microbiome therapeutics have emerged as a powerful approach for the treatment of numerous diseases. While the genetic instability of genetically engineered microorganisms is a well-known challenge in the scale-up of biomanufacturing processes, it has not yet been investigated for advanced microbiome therapeutics. Here, the evolution of engineered Escherichia coli Nissle 1917 strains producing Interleukin 2 and Aldafermin were investigated in two strain backgrounds with and without the three error-prone DNA polymerases polB, dinB, and umuDC, which contribute to the mutation rate of the host strain. Whole genome short-read sequencing revealed the genetic instability of the pMUT-based production plasmid after serial passaging for approximately 150 generations using an automated platform for high-throughput microbial evolution in five independent lineages for six distinct strains. While a reduction of the number of mutations of 12%-43% could be observed after the deletion of the error-prone DNA polymerases, the interruption of production-relevant genes could not be prevented, highlighting the need for additional strategies to improve the stability of advanced microbiome therapeutics.
Collapse
Affiliation(s)
- Lara P Munkler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Elsayed T Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Vlaams Instituut voor Biotechnologie, Center for Microbiology, Leuven, Belgium
| | - Victoria Visby Nissen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | - Andreas Worberg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
45
|
Ionescu E, Nagler CR. Hit me baby one more time…with microbial IPA. Immunity 2024; 57:1728-1730. [PMID: 39142273 DOI: 10.1016/j.immuni.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
The immune system is imprinted by gut microbes in early life. In this issue of Immunity, Perdijk et al. show that dysregulation of airway epithelial function by neonatal antibiotic treatment can be reversed by supplementation with a depleted microbial metabolite.
Collapse
Affiliation(s)
- Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Department of Pathology, Division of Biological Sciences, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Öhnstedt E, Doñas C, Parv K, Pang Y, Lofton Tomenius H, Carrasco López M, Gannavarapu VR, Choi J, Ovezik M, Frank P, Jorvid M, Roos S, Vågesjö E, Phillipson M. Oral administration of CXCL12-expressing Limosilactobacillus reuteri improves colitis by local immunomodulatory actions in preclinical models. Am J Physiol Gastrointest Liver Physiol 2024; 327:G140-G153. [PMID: 38780469 DOI: 10.1152/ajpgi.00022.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Treatments of colitis, inflammation of the intestine, rely on induction of immune suppression associated with systemic adverse events, including recurrent infections. This treatment strategy is specifically problematic in the increasing population of patients with cancer with immune checkpoint inhibitor (ICI)-induced colitis, as immune suppression also interferes with the ICI-treatment response. Thus, there is a need for local-acting treatments that reduce inflammation and enhance intestinal healing. Here, we investigated the effect and safety of bacterial delivery of short-lived immunomodulating chemokines to the inflamed intestine in mice with colitis. Colitis was induced by dextran sulfate sodium (DSS) alone or in combination with ICI (anti-PD1 and anti-CTLA-4), and Limosilactobacillus reuteri R2LC (L. reuteri R2LC) genetically modified to express the chemokine CXCL12-1α (R2LC_CXCL12, emilimogene sigulactibac) was given perorally. In addition, the pharmacology and safety of the formulated drug candidate, ILP100-Oral, were evaluated in rabbits. Peroral CXCL12-producing L. reuteri R2LC significantly improved colitis symptoms already after 2 days in mice with overt DSS and ICI-induced colitis, which in benchmarking experiments was demonstrated to be superior to treatments with anti-TNF-α, anti-α4β7, and corticosteroids. The mechanism of action involved chemokine delivery to Peyer's patches (PPs), confirmed by local CXCR4 signaling, and increased numbers of colonic, regulatory immune cells expressing IL-10 and TGF-β1. No systemic exposure or engraftment could be detected in mice, and product feasibility, pharmacology, and safety were confirmed in rabbits. In conclusion, peroral CXCL12-producing L. reuteri R2LC efficiently ameliorates colitis, enhances mucosal healing, and has a favorable safety profile.NEW & NOTEWORTHY Colitis symptoms are efficiently reduced by peroral administration of probiotic bacteria genetically modified to deliver CXCL12 locally to the inflamed intestine in several mouse models.
Collapse
Affiliation(s)
- Emelie Öhnstedt
- Ilya Pharma AB, Uppsala, Sweden
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | - Hava Lofton Tomenius
- Ilya Pharma AB, Uppsala, Sweden
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Venkata Ram Gannavarapu
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jacqueline Choi
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria Ovezik
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | - Stefan Roos
- Department of Molecular Sciences, Swedish University of Agriculture, Uppsala, Sweden
| | - Evelina Vågesjö
- Ilya Pharma AB, Uppsala, Sweden
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mia Phillipson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- The Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
47
|
Wang L, Wu Q, Lyu Q, Lu D, Guo L, Zhong C, Wang M, Liu C, An B, Xu H, Huo M. Genetically Designed Living Bacteria with Melanogenesis for Tumor-Specific Pigmentation and Therapeutic Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402709. [PMID: 38889334 PMCID: PMC11336949 DOI: 10.1002/advs.202402709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Visual observation and therapeutic intervention against tumors hold significant appeal for tumor treatment, particularly in meeting the demands of intraoperative navigation. From a clinical perspective, the naked-eye visualization of tumors provides a direct and convenient approach to identifying tumors and navigating during surgery. Nevertheless, there is an ongoing need to develop effective solutions in this frontier. Genetically engineered microorganisms are promising as living therapeutics for combatting malignant tumors, leveraging precise tumor targeting and versatile programmed functionalities. Here, genetically modified Escherichia coli (E. coli) MG1655 bacterial cells are introduced, called MelaBac cells, designed to express tyrosinase continuously. This bioengineered melanogenesis produces melanin capable of pigmenting both subcutaneous CT26 xenografts and chemically induced colorectal cancer (CRC). Additionally, MelaBac cells demonstrate the initiation of photonic hyperthermia therapy and immunotherapy against tumors, offering promising selective therapeutic interventions with high biocompatibility.
Collapse
Affiliation(s)
- Liying Wang
- Department of Medical UltrasoundShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji University301 Middle Yanchang Rd.Shanghai200072P. R. China
| | - Qi Wu
- Department of Medical UltrasoundShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji University301 Middle Yanchang Rd.Shanghai200072P. R. China
| | - Qi Lyu
- Department of UltrasoundZhongshan HospitalInstitute of Ultrasound in Medicine and EngineeringFudan UniversityShanghai200032P. R. China
| | - Dan Lu
- Department of UltrasoundZhongshan HospitalInstitute of Ultrasound in Medicine and EngineeringFudan UniversityShanghai200032P. R. China
| | - Lehang Guo
- Department of Medical UltrasoundShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji University301 Middle Yanchang Rd.Shanghai200072P. R. China
| | - Chao Zhong
- Center for Materials Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Min Wang
- Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Chang Liu
- Department of Medical UltrasoundShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji University301 Middle Yanchang Rd.Shanghai200072P. R. China
| | - Bolin An
- Center for Materials Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Huixiong Xu
- Department of UltrasoundZhongshan HospitalInstitute of Ultrasound in Medicine and EngineeringFudan UniversityShanghai200032P. R. China
| | - Minfeng Huo
- Department of Medical UltrasoundShanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji University301 Middle Yanchang Rd.Shanghai200072P. R. China
| |
Collapse
|
48
|
Dimopoulou C, Guerra PR, Mortensen MS, Kristensen KA, Pedersen M, Bahl MI, Sommer MAO, Licht TR, Laursen MF. Potential of using an engineered indole lactic acid producing Escherichia coli Nissle 1917 in a murine model of colitis. Sci Rep 2024; 14:17542. [PMID: 39080343 PMCID: PMC11289411 DOI: 10.1038/s41598-024-68412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
The gut microbiome is a significant factor in the pathophysiology of ulcerative colitis (UC), prompting investigations into the use of probiotic therapies to counter gastrointestinal inflammation. However, while much attention has been given to the therapeutic potential of microbes at the species and strain level, the discovery and application of their metabolic products may offer more precise and controlled solutions in battling disease. In this work, we examined the therapeutic potential of indole lactic acid (ILA) to alleviate inflammation in a murine model of colitis. A previously constructed ILA-producing Escherichia coli Nissle 1917 strain (EcN aldh) and its isogenic non-ILA producing counterpart (EcN) were studied in a murine model of Dextran Sodium Sulfate (DSS) induced colitis. The colitic animals suffered from severe colitic symptoms, with no differentiation between the groups in body weight loss and disease activity index. However, three days after cessation of DSS treatment the EcN aldh-treated mice showed signs of reduced intestinal inflammation, as manifested by lower concentrations of fecal lipocalin-2. Additionally, expression analysis of the inflamed tissue revealed distinct effects of the EcN aldh strain on proteins associated with intestinal health, such as TFF3, occludin and IL-1β expression. These results show no impact of EcN or EcN aldh on acute DSS-induced colitis, but suggest that in particular EcN aldh may assist recovery from intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
49
|
Rutter JW, Dekker L, Clare C, Slendebroek ZF, Owen KA, McDonald JAK, Nair SP, Fedorec AJH, Barnes CP. A bacteriocin expression platform for targeting pathogenic bacterial species. Nat Commun 2024; 15:6332. [PMID: 39068147 PMCID: PMC11283563 DOI: 10.1038/s41467-024-50591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Bacteriocins are antimicrobial peptides that are naturally produced by many bacteria. They hold great potential in the fight against antibiotic resistant bacteria, including ESKAPE pathogens. Engineered live biotherapeutic products (eLBPs) that secrete bacteriocins can be created to deliver targeted bacteriocin production. Here we develop a modular bacteriocin secretion platform that can be used to express and secrete multiple bacteriocins from non-pathogenic Escherichia coli host strains. As a proof of concept we create Enterocin A (EntA) and Enterocin B (EntB) secreting strains that show strong antimicrobial activity against Enterococcus faecalis and Enterococcus faecium in vitro, and characterise this activity in both solid culture and liquid co-culture. We then develop a Lotka-Volterra model that can be used to capture the interactions of these competitor strains. We show that simultaneous exposure to EntA and EntB can delay Enterococcus growth. Our system has the potential to be used as an eLBP to secrete additional bacteriocins for the targeted killing of pathogenic bacteria.
Collapse
Affiliation(s)
- Jack W Rutter
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Linda Dekker
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Chania Clare
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Zoe F Slendebroek
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Kimberley A Owen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Julie A K McDonald
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Sean P Nair
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
50
|
Kiaheyrati N, Babaei A, Ranji R, Bahadoran E, Taheri S, Farokhpour Z. Cancer therapy with the viral and bacterial pathogens: The past enemies can be considered the present allies. Life Sci 2024; 349:122734. [PMID: 38788973 DOI: 10.1016/j.lfs.2024.122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Cancer continues to be one of the leading causes of mortality worldwide despite significant advancements in cancer treatment. Many difficulties have arisen as a result of the detrimental consequences of chemotherapy and radiotherapy as a common cancer therapy, such as drug inability to penetrate deep tumor tissue, and also the drug resistance in tumor cells continues to be a major concern. These obstacles have increased the need for the development of new techniques that are more selective and effective against cancer cells. Bacterial-based therapies and the use of oncolytic viruses can suppress cancer in comparison to other cancer medications. The tumor microenvironment is susceptible to bacterial accumulation and proliferation, which can trigger immune responses against the tumor. Oncolytic viruses (OVs) have also gained considerable attention in recent years because of their potential capability to selectively target and induce apoptosis in cancer cells. This review aims to provide a comprehensive summary of the latest literature on the role of bacteria and viruses in cancer treatment, discusses the limitations and challenges, outlines various strategies, summarizes recent preclinical and clinical trials, and emphasizes the importance of optimizing current strategies for better clinical outcomes.
Collapse
Affiliation(s)
- Niloofar Kiaheyrati
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
| | - Reza Ranji
- Department of Genetics, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Farokhpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|