1
|
Liu Z, Wang S, Wang W, Lv R, Sun C. Necroptosis in obesity: a complex cell death event. Apoptosis 2025; 30:466-487. [PMID: 39702812 DOI: 10.1007/s10495-024-02055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Obesity is an exceedingly prevalent and frequent health issue in today's society. Fat deposition is accompanied by low-grade inflammation in fat tissue and throughout the body, leading to metabolic disorders that ultimately promote the onset of obesity-related diseases. The development of obesity is accompanied by cell death events such as apoptosis as well as pyroptosis, however, the role of necroptosis in obesity has been widely reported in recent years. Necroptosis, a mode of cell death distinct from apoptosis and necrosis, is associated with developing many inflammatory conditions and their associated diseases. It also exhibits modulation of apoptosis and pyroptosis. It is morphologically similar to necroptosis, characterized by the inhibition of caspase-8, the formation of membrane pores, and the subsequent rupture of the plasma membrane. This paper focuses on the key pathways and molecules of necroptosis, exploring its connections with apoptosis and pyroptosis, and its implications in obesity. This paper posits that the modulation of necroptosis-related targets may represent a novel potential therapeutic avenue for the prevention and treatment of obesity-induced systemic inflammatory responses, and provides a synopsis of potential molecular targets that may prove beneficial in obesity-associated inflammatory diseases.
Collapse
Affiliation(s)
- Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Simeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wentao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Gao Q, Xu Y, Galluzzi M, Xing Q, Geng J. Enhanced Cancer Cell Specificity Through Combined Blue Light Therapy and Starvation Strategies. Adv Biol (Weinh) 2025; 9:e2400264. [PMID: 39617743 DOI: 10.1002/adbi.202400264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/22/2024] [Indexed: 02/18/2025]
Abstract
In this study, the effectiveness of combining short-term starvation (STS or fasting) is investigated with blue light illumination therapy in delaying the progression of various types of cancer, including osteosarcoma, cervical, breast, liver carcinoma, and melanoma cancer in animal models. Moreover, the comparative analysis between cancerous (including HeLa, 143B, MDA-MB-231, and HepG2) and normal cell lines (including NCM460, HEKa, and L-O2), highlights the selectivity of the treatment's cytotoxic effects, favoring cancer cells while largely sparing normal cells. In HeLa cancer cells, treatment with the STS and blue light illumination combination resulted in increased phosphorylation of JNK and p38, which led to the activation of downstream signalling substrates, such as p53 and H2AX. This activation induced mitochondrial and nuclear damage, ultimately leading to tumor cell death. The combination treatment also caused metabolic disorders in tumor cells, which interfered with biomolecule availability and selectively induced lethal effects in tumor cells. Therefore, the combination treatment can be an effective strategy for eliminating cancer.
Collapse
Affiliation(s)
- Quan Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Youwei Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Massimiliano Galluzzi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qi Xing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
3
|
Stinson JA, Sheen A, Lax BM, Yang GN, Duhamel L, Santollani L, Fink E, Palmeri J, Wittrup KD. Tumor Integrin-Targeted Glucose Oxidase Enzyme Promotes ROS-Mediated Cell Death that Combines with Interferon Alpha Therapy for Tumor Control. Mol Cancer Ther 2025; 24:118-130. [PMID: 39382078 PMCID: PMC11695183 DOI: 10.1158/1535-7163.mct-24-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/14/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Although heightened intratumoral levels of reactive oxygen species (ROS) are typically associated with a suppressive tumor microenvironment, under certain conditions ROS contribute to tumor elimination. Treatment approaches, including some chemotherapy and radiation protocols, increase cancer cell ROS levels that influence their mechanism of cell death and subsequent recognition by the immune system. Furthermore, activated myeloid cells rapidly generate ROS upon encounter with pathogens or infected cells to eliminate disease, and recently, this effector function has been noted in cancer contexts as well. Collectively, ROS-induced cancer cell death may help initiate adaptive antitumor immune responses that could synergize with current approved immunotherapies, for improved control of solid tumors. In this work, we explore the use of glucose oxidase, an enzyme which produces hydrogen peroxide, a type of ROS, to therapeutically mimic the endogenous oxidative burst from myeloid cells to promote antigen generation within the tumor microenvironment. We engineer the enzyme to target pan-tumor-expressed integrins both as a tumor-agnostic therapeutic approach and as a strategy to prolong local enzyme activity following intratumoral administration. We found the targeted enzyme potently induced cancer cell death and enhanced cross-presentation by dendritic cells in vitro and further combined with interferon alpha for long-term tumor control in murine MC38 tumors in vivo. Optimizing the single-dose administration of this enzyme overcomes limitations with immunogenicity noted for other prooxidant enzyme approaches. Overall, our results suggest ROS-induced cell death can be harnessed for tumor control and highlight the potential use of designed enzyme therapies alongside immunotherapy against cancer.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brianna M. Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Grace N. Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joseph Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
4
|
Santos de Macedo BG, Albuquerque de Melo M, Pereira-Martins DA, Machado-Neto JA, Traina F. An updated outlook on autophagy mechanism and how it supports acute myeloid leukemia maintenance. Biochim Biophys Acta Rev Cancer 2024; 1879:189214. [PMID: 39515545 DOI: 10.1016/j.bbcan.2024.189214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The gradual acquisition of genetic and epigenetic disturbances bestows malignant traits upon hematopoietic stem cells, subverting them into a founder and reservoir cell for de novo acute myeloid leukemia (AML) known as leukemic stem cells (LSC). Beyond its molecular heterogeneity, AML is also characterized by rewiring biological processes to support its onset and maintenance. LSC were observed to inherently and actively trigger mitochondrial turnover through selective autophagic removal such that impairing the process led to cell differentiation at the expense of its stemness. This review provides a current take on autophagy regulation mechanisms according to the current molecular characterization of the process; describes autophagy as a drug resistance mechanism, and a pivotal mechanism whereby LSC harmonize their strong reliance on mitochondrial respiration to obtain energy, and their necessity for lower internal oxidative stress to avoid exhaustion. Therefore, targeting autophagy presents a promising strategy to promote long-term remissions in AML.
Collapse
Affiliation(s)
- Brunno Gilberto Santos de Macedo
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Manuela Albuquerque de Melo
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - João Agostinho Machado-Neto
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Pharmacology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Fabiola Traina
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
Baek S, Chang JW, Yoo SM, Choo J, Jung S, Nah J, Jung YK. TMEM9 activates Rab9-dependent alternative autophagy through interaction with Beclin1. Cell Mol Life Sci 2024; 81:322. [PMID: 39078420 PMCID: PMC11335249 DOI: 10.1007/s00018-024-05366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024]
Abstract
Transmembrane protein 9 (TMEM9) is a transmembrane protein that regulates lysosomal acidification by interacting with the v-type ATPase complex. However, the role of TMEM9 in the lysosome-dependent autophagy machinery has yet to be identified. In this study, we demonstrate that the lysosomal protein TMEM9, which is involved in vesicle acidification, regulates Rab9-dependent alternative autophagy through its interaction with Beclin1. The cytosolic domain of TMEM9 interacts with Beclin1 via its Bcl-2-binding domain. This interaction between TMEM9 and Beclin1 dissociates Bcl-2, an autophagy-inhibiting partner, from Beclin1, thereby activating LC3-independent and Rab9-dependent alternative autophagy. Late endosomal and lysosomal TMEM9 apparently colocalizes with Rab9 but not with LC3. Furthermore, we show that multiple glycosylation of TMEM9, essential for lysosomal localization, is essential for its interaction with Beclin1 and the activation of Rab9-dependent alternative autophagy. These findings reveal that TMEM9 recruits and activates the Beclin1 complex at the site of Rab9-dependent autophagosome to induce alternative autophagy.
Collapse
Affiliation(s)
- Sohyeon Baek
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jae-Woong Chang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seung-Min Yoo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - JeongRim Choo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sunmin Jung
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jihoon Nah
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, South Korea.
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, South Korea.
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
7
|
Wahyudianingsih R, Sanjaya A, Jonathan T, Pranggono EH, Achmad D, Hernowo BS. Chemotherapy's effects on autophagy in the treatment of Hodgkin's lymphoma: a scoping review. Discov Oncol 2024; 15:269. [PMID: 38976168 PMCID: PMC11231119 DOI: 10.1007/s12672-024-01142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Classical Hodgkin Lymphomas (HL) are a unique malignant growth with an excellent initial prognosis. However, 10-30% of patients will still relapse after remission. One primary cellular function that has been the focus of tumor progression is autophagy. This process can preserve cellular homeostasis under stressful conditions. Several studies have shown that autophagy may play a role in developing HL. Therefore, this review aimed to explore chemotherapy's effect on autophagy in HL, and the effects of autophagy on HL. METHODS A scoping review in line with the published PRISMA extension for scoping reviews (PRISMA-ScR) was conducted. A literature search was conducted on the MEDLINE database and the Cochrane Central Register of Controlled Trials (CENTRAL). All results were retrieved and screened, and the resulting articles were synthesized narratively. RESULTS The results showed that some cancer chemotherapy also induces autophagic flux. Although the data on HL is limited, since the mechanisms of action of these drugs are similar, we can infer a similar relationship. However, this increased autophagy activity may reflect a mechanism for increasing tumor growth or a cellular compensation to inhibit its growth. Although evidence supports both views, we argued that autophagy allowed cancer cells to resist cell death, mainly due to DNA damage caused by cytotoxic drugs. CONCLUSION Autophagy reflects the cell's adaptation to survive and explains why chemotherapy generally induces autophagy functions. However, further research on autophagy inhibition is needed as it presents a viable treatment strategy, especially against drug-resistant populations that may arise from HL chemotherapy regimens.
Collapse
Affiliation(s)
- Roro Wahyudianingsih
- Postgraduate Program of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Ardo Sanjaya
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia.
| | - Timothy Jonathan
- Undergraduate Program in Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Emmy Hermiyanti Pranggono
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Dimyati Achmad
- Department of Oncological Surgery, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Bethy Suryawathy Hernowo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| |
Collapse
|
8
|
Liu M, Duan Y, Dong J, Zhang K, Jin X, Gao M, Jia H, Chen J, Liu M, Wei M, Zhong X. Early signs of neurodegenerative diseases: Possible mechanisms and targets for Golgi stress. Biomed Pharmacother 2024; 175:116646. [PMID: 38692058 DOI: 10.1016/j.biopha.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shayang, Liaoning 110005, China
| | - Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Kaisong Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, Liaoning 110167, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
9
|
Zhou Y, Xiang Y, Liu S, Li C, Dong J, Kong X, Ji X, Cheng X, Zhang L. RIPK3 signaling and its role in regulated cell death and diseases. Cell Death Discov 2024; 10:200. [PMID: 38684668 PMCID: PMC11059363 DOI: 10.1038/s41420-024-01957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3), a member of the receptor-interacting protein kinase (RIPK) family with serine/threonine protein kinase activity, interacts with RIPK1 to generate necrosomes, which trigger caspase-independent programmed necrosis. As a vital component of necrosomes, RIPK3 plays an indispensable role in necroptosis, which is crucial for human life and health. In addition, RIPK3 participates in the pathological process of several infections, aseptic inflammatory diseases, and tumors (including tumor-promoting and -suppressive activities) by regulating autophagy, cell proliferation, and the metabolism and production of chemokines/cytokines. This review summarizes the recent research progress of the regulators of the RIPK3 signaling pathway and discusses the potential role of RIPK3/necroptosis in the aetiopathogenesis of various diseases. An in-depth understanding of the mechanisms and functions of RIPK3 may facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Pathology, the Second People's Hospital of Jiaozuo; The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, 454000, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Yaxuan Xiang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Sijie Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Chenyao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Jiaheng Dong
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangrui Kong
- Wushu College, Henan University, Kaifeng, 475004, China
| | - Xinying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
10
|
Hasegawa T, Noguchi S, Nakashima M, Miyai M, Goto M, Matsumoto Y, Torii S, Honda S, Shimizu S. Alternative autophagy dampens UVB-induced NLRP3 inflammasome activation in human keratinocytes. J Biol Chem 2024; 300:107173. [PMID: 38499149 PMCID: PMC11002869 DOI: 10.1016/j.jbc.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Sunlight exposure results in an inflammatory reaction of the skin commonly known as sunburn, which increases skin cancer risk. In particular, the ultraviolet B (UVB) component of sunlight induces inflammasome activation in keratinocytes to instigate the cutaneous inflammatory responses. Here, we explore the intracellular machinery that maintains skin homeostasis by suppressing UVB-induced inflammasome activation in human keratinocytes. We found that pharmacological inhibition of autophagy promoted UVB-induced NLRP3 inflammasome activation. Unexpectedly, however, gene silencing of Atg5 or Atg7, which are critical for conventional autophagy, had no effect, whereas gene silencing of Beclin1, which is essential not only for conventional autophagy but also for Atg5/Atg7-independent alternative autophagy, promoted UVB-induced inflammasome activation, indicating an involvement of alternative autophagy. We found that damaged mitochondria were highly accumulated in UVB-irradiated keratinocytes when alternative autophagy was inhibited, and they appear to be recognized by NLRP3. Overall, our findings indicate that alternative autophagy, rather than conventional autophagy, suppresses UVB-induced NLRP3 inflammasome activation through the clearance of damaged mitochondria in human keratinocytes and illustrate a previously unknown involvement of alternative autophagy in inflammation. Alternative autophagy may be a new therapeutic target for sunburn and associated cutaneous disorders.
Collapse
Affiliation(s)
| | - Saori Noguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Makiko Goto
- Shiseido Global Innovation Center, Yokohama, Japan
| | | | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Li X, Li G, Cui S, Hou Y, Li Z, Yan Z, Huang T, Zhao T, Su H, Zhou B, Zhang J, Ao R, Zhao H, Qiu Y, Liu Z, Xie J. Arsenic disturbs neural tube closure involving AMPK/PKB-mTORC1-mediated autophagy in mice. Food Chem Toxicol 2024; 186:114538. [PMID: 38387523 DOI: 10.1016/j.fct.2024.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Arsenic exposure is a significant risk factor for folate-resistant neural tube defects (NTDs), but the potential mechanism is unclear. In this study, a mouse model of arsenic-induced NTDs was established to investigate how arsenic affects early neurogenesis leading to malformations. The results showed that in utero exposure to arsenic caused a decline in the normal embryos, an elevated embryo resorption, and a higher incidence of malformed embryos. Cranial and spinal deformities were the main malformation phenotypes observed. Meanwhile, arsenic-induced NTDs were accompanied by an oxidant/antioxidant imbalance manifested by elevated levels of reactive oxygen species (ROS) and decreased antioxidant activities. In addition, changes in the expression of autophagy-related genes and proteins (ULK1, Atg5, LC3B, p62) as well as an increase in autophagosomes were observed in arsenic-induced aberrant brain vesicles. Also, the components of the upstream pathway regulating autophagy (AMPK, PKB, mTOR, Raptor) were altered accordingly after arsenic exposure. Collectively, our findings propose a mechanism for arsenic-induced NTDs involving AMPK/PKB-mTORC1-mediated autophagy. Blocking autophagic cell death due to excessive autophagy provides a novel strategy for the prevention of folate-resistant NTDs, especially for arsenic-exposed populations.
Collapse
Affiliation(s)
- Xiujuan Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Gexuan Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Cui
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Hou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Zelin Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziyi Yan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingjuan Huang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Taoran Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Hongkai Su
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Bingrui Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
12
|
Xue VW, Liu S, Sun Q, Ning J, Li H, Wang W, Sayed S, Zhao X, Fu L, Lu D. CK1δ/ε inhibition induces ULK1-mediated autophagy in tumorigenesis. Transl Oncol 2024; 40:101863. [PMID: 38185060 PMCID: PMC10808987 DOI: 10.1016/j.tranon.2023.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION Autophagy is an important mechanism of cell homeostasis maintenance. As essential serine/threonine-protein kinases, casein kinase I family members affect tumorigenesis by regulating a variety of cellular progression. However, the mechanism by which they regulate autophagy remains unclear. MATERIALS AND METHODS We silenced CK1δ/ε in cancer cells and observed cell morphology, the expression of autophagy-related genes, and its impact on cancer cell growth and viability. By inhibiting CK1δ/ε-induced upregulation of autophagy genes, we profiled the regulatory mechanism of CK1δ/ε on autophagy and cancer cell growth. The impact of CK1δ/ε inhibition on tumor cell growth was also assessed in vivo. RESULTS Here, we found that CK1δ/ε played an important role in ULK1-mediated autophagy regulation in both lung cancer and melanoma cells. Mechanically, silencing CK1δ/ε increased ULK1 expression with enhanced autophagic flux and suppressed cancer cell proliferation, while ULK1 knockdown blocked the activation of autophagy caused by CK1δ/ε inhibition. By silencing CK1δ/ε in syngeneic mouse model bearing LLC1 murine lung cancer cells in vivo, we observed tumor growth suppression mediated by CK1δ/ε inhibition. CONCLUSION Our results provide evidence for the role of CK1δ/ε in the regulation of tumorigenesis via the ULK1-mediated autophagy, and also suggest the impact of CK1δ/ε inhibition on tumor growth and its significance as a potential therapeutic target.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518060, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Shanshan Liu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518060, China
| | - Qi Sun
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518060, China
| | - Jiong Ning
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518060, China; Center for Molecular Biomedicine, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Huan Li
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518060, China
| | - Weilan Wang
- Center for Healthy Longevity, National University of Singapore, Singapore
| | - Sapna Sayed
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518060, China
| | - Xibao Zhao
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518060, China
| | - Li Fu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518060, China.
| | - Desheng Lu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518060, China.
| |
Collapse
|
13
|
Sakurai HT, Arakawa S, Yamaguchi H, Torii S, Honda S, Shimizu S. An Overview of Golgi Membrane-Associated Degradation (GOMED) and Its Detection Methods. Cells 2023; 12:2817. [PMID: 38132137 PMCID: PMC10741765 DOI: 10.3390/cells12242817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy is a cellular mechanism that utilizes lysosomes to degrade its own components and is performed using Atg5 and other molecules originating from the endoplasmic reticulum membrane. On the other hand, we identified an alternative type of autophagy, namely, Golgi membrane-associated degradation (GOMED), which also utilizes lysosomes to degrade its own components, but does not use Atg5 originating from the Golgi membranes. The GOMED pathway involves Ulk1, Wipi3, Rab9, and other molecules, and plays crucial roles in a wide range of biological phenomena, such as the regulation of insulin secretion and neuronal maintenance. We here describe the overview of GOMED, methods to detect autophagy and GOMED, and to distinguish GOMED from autophagy.
Collapse
Affiliation(s)
- Hajime Tajima Sakurai
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Himeji 678-1205, Hyogo, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Hirofumi Yamaguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (H.T.S.); (S.A.); (H.Y.); (S.T.); (S.H.)
| |
Collapse
|
14
|
Titus AS, Sung EA, Zablocki D, Sadoshima J. Mitophagy for cardioprotection. Basic Res Cardiol 2023; 118:42. [PMID: 37798455 PMCID: PMC10556134 DOI: 10.1007/s00395-023-01009-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
Collapse
Affiliation(s)
- Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
15
|
Kim HG, Ro MH, Lee M. Atg5 knockout induces alternative autophagy via the downregulation of Akt expression. Toxicol Res 2023; 39:637-647. [PMID: 37779593 PMCID: PMC10541375 DOI: 10.1007/s43188-023-00191-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Autophagy play contradictory roles in cellular transformation. We previously found that the knockout (KO) of autophagy-related 5 (Atg5), which is essential for autophagy, leads to the malignant transformation of NIH 3T3 cells. In this study, we explored the mechanism by which autophagy contributes to this malignant transformation using two transformed cell lines, Atg5 KO and Ras-NIH 3T3. Monomeric red fluorescent protein-green fluorescent protein-light chain 3 reporter and Cyto-ID staining revealed that Ras-NIH 3T3 cells exhibited higher basal autophagy activity than NIH 3T3 cells. Additionally, transformed cells, regardless of their Atg5 KO status, were more sensitive to autophagy inhibitors (SBI-0206965, chloroquine, and obatoclax) than the untransformed NIH 3T3 cells, suggesting that the transformed cells are more autophagy-dependent than the normal cells. Loss of Atg5 improved the cell viability and mobility, especially in Ras-NIH 3T3 cells. Furthermore, we discovered that autophagy was alternatively induced in a Rab9-dependent manner in Ras-NIH 3T3 and NIH 3T3/Atg5 KO cells. In particular, Atg5 KO cells showed reduced mTOR-mediated phosphorylation of Akt (pAkt S473), indicating the mTOR-independent occurrence of alternative autophagy in Atg5 KO cells. Therefore, our study provides evidence that alternative autophagy may contribute to tumorigenesis in cells with an impaired Atg5-dependent autophagy pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00191-3.
Collapse
Affiliation(s)
- Hye-Gyo Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Republic of Korea
| | - Myeong-Han Ro
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Republic of Korea
| | - Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-Ro, Yeonsu-Gu, Incheon, 22012 Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
16
|
Torii S, Arakawa S, Sato S, Ishikawa K, Taniguchi D, Sakurai HT, Honda S, Hiraoka Y, Ono M, Akamatsu W, Hattori N, Shimizu S. Involvement of casein kinase 1 epsilon/delta (Csnk1e/d) in the pathogenesis of familial Parkinson's disease caused by CHCHD2. EMBO Mol Med 2023; 15:e17451. [PMID: 37578019 PMCID: PMC10493588 DOI: 10.15252/emmm.202317451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that results from the loss of dopaminergic neurons. Mutations in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) gene cause a familial form of PD with α-Synuclein aggregation, and we here identified the pathogenesis of the T61I mutation, the most common disease-causing mutation of CHCHD2. In Neuro2a cells, CHCHD2 is in mitochondria, whereas the T61I mutant (CHCHD2T61I ) is mislocalized in the cytosol. CHCHD2T61l then recruits casein kinase 1 epsilon/delta (Csnk1e/d), which phosphorylates neurofilament and α-Synuclein, forming cytosolic aggresomes. In vivo, both Chchd2T61I knock-in and transgenic mice display neurodegenerative phenotypes and aggresomes containing Chchd2T61I , Csnk1e/d, phospho-α-Synuclein, and phospho-neurofilament in their dopaminergic neurons. Similar aggresomes were observed in a postmortem PD patient brain and dopaminergic neurons generated from patient-derived iPS cells. Importantly, a Csnk1e/d inhibitor substantially suppressed the phosphorylation of neurofilament and α-Synuclein. The Csnk1e/d inhibitor also suppressed the cellular damage in CHCHD2T61I -expressing Neuro2a cells and dopaminergic neurons generated from patient-derived iPS cells and improved the neurodegenerative phenotypes of Chchd2T61I mutant mice. These results indicate that Csnk1e/d is involved in the pathogenesis of PD caused by the CHCHD2T61I mutation.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Pathological Cell Biology, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shigeto Sato
- Department of Neurology, School of MedicineJuntendo UniversityTokyoJapan
| | - Kei‐ichi Ishikawa
- Department of Neurology, School of MedicineJuntendo UniversityTokyoJapan
- Center for Genomic and Regenerative Medicine, School of MedicineJuntendo UniversityTokyoJapan
| | - Daisuke Taniguchi
- Department of Neurology, School of MedicineJuntendo UniversityTokyoJapan
| | - Hajime Tajima Sakurai
- Department of Pathological Cell Biology, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Yuuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
- Laboratory of Genome Editing for Biomedical Research, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Masaya Ono
- Department of Clinical ProteomicsNational Cancer Center Research InstituteTokyoJapan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, School of MedicineJuntendo UniversityTokyoJapan
| | - Nobutaka Hattori
- Department of Neurology, School of MedicineJuntendo UniversityTokyoJapan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
17
|
Wei H, Liu S, Wang T, Li Y, Liu K, Guo Q, Li L. FNDC5 inhibits autophagy of bone marrow mesenchymal stem cells and promotes their survival after transplantation by downregulating Sp1. Cell Death Discov 2023; 9:336. [PMID: 37673870 PMCID: PMC10482879 DOI: 10.1038/s41420-023-01634-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Regenerative therapy based on mesenchymal stem cells (MSCs) has great promise to achieve functional recovery in cerebral infarction patients. However, the survival rate of transplanted MSCs is extremely low because of destructive autophagy caused by the harsh ischemic microenvironment in cerebral infarct tissue. The mechanism by which fibronectin type III domain protein 5 (FNDC5) regulates autophagy of transplanted bone marrow-MSCs (BMSCs) following ischemic injury needs to be elucidated. In this study, we confirmed that FNDC5 promotes the survival of transplanted BMSCs in a rat cerebral infarction model. Furthermore, bioinformatic analysis and verification experiments revealed the transcription factor, Sp1, to be a key mediator of autophagy regulation by FNDC5. FNDC5 significantly inhibited BMSC autophagy by down-regulating Sp1 and the autophagy-related Sp1-target gene, ULK2. Transplanted BMSCs overexpressing FNDC5 (BMSCs-OE-FNDC5) promoted neurovascular proliferation and alleviated ischemic brain injury in cerebral infarct model rats. However, the increased survival and enhanced neuroprotective effect of transplanted BMSCs-OE-FNDC5 were reversed by simultaneous overexpression of Sp1. Our data indicate a role for FNDC5 in BMSC survival and reveal a novel mechanism of transcription regulation through Sp1 for the autophagy-related gene ULK2. Modulation of FNDC5 may promote survival capacity and improve the therapeutic effect of BMSCs in various tissues following ischemia.
Collapse
Affiliation(s)
- Huan Wei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- Department of Neurology, Yan'an Hospital of Kunming City; The Affiliated Yan'an Hospital of Kunming Medical University, Kunming, China
| | - Shuaiye Liu
- Department of Cardiovascular Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tingting Wang
- Department of Geriatrics, Yan'an Hospital of Kunming City; The Affiliated Yan'an Hospital of Kunming Medical University, Kunming, China
| | - Yanping Li
- Department of Neurology, Yan'an Hospital of Kunming City; The Affiliated Yan'an Hospital of Kunming Medical University, Kunming, China
| | - Kangmei Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qunying Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ling Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| |
Collapse
|
18
|
Sakurai HT, Iwashita H, Arakawa S, Yikelamu A, Kusaba M, Kofuji S, Nishina H, Ishiyama M, Ueno Y, Shimizu S. Development of small fluorescent probes for the analysis of autophagy kinetics. iScience 2023; 26:107218. [PMID: 37456828 PMCID: PMC10339198 DOI: 10.1016/j.isci.2023.107218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Autophagy is a dynamic process that degrades subcellular constituents, and its activity is measured by autophagic flux. The tandem proteins RFP-GFP-LC3 and GFP-LC3-RFP-LC3ΔG, which enable the visualization of autophagic vacuoles of different stages by differences in their fluorescent color, are useful tools to monitor autophagic flux, but they require plasmid transfection. In this study, we hence aimed to develop a new method to monitor autophagic flux using small cell-permeable fluorescent probes. We previously developed two green-fluorescent probes, DALGreen and DAPGreen, which detect autolysosomes and multistep autophagic vacuoles, respectively. We here developed a red-fluorescent autophagic probe, named DAPRed, which recognizes various autophagic vacuoles. By the combinatorial use of these green- and red-fluorescent probes, we were able to readily detect autophagic flux. Furthermore, these probes were useful not only for the visualization of canonical autophagy but also for alternative autophagy. DAPRed was also applicable for the detection of autophagy in living organisms.
Collapse
Affiliation(s)
- Hajime Tajima Sakurai
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1205, Japan
| | - Hidefumi Iwashita
- Dojindo Laboratories, Tabaru 2025-5, Mashiki-machi, Kumamoto 861-2202, Japan
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-Ku, Fukuoka 814-0180, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Alifu Yikelamu
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mizuki Kusaba
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Kofuji
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Munetaka Ishiyama
- Dojindo Laboratories, Tabaru 2025-5, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Yuichiro Ueno
- Dojindo Laboratories, Tabaru 2025-5, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
19
|
Zhang X, Wu J, Liu Q, Li X, Yang Y, Wu L, Wu X, Zhao Y, Ren J. RIPK3-MLKL necroptotic signalling amplifies STING pathway and exacerbates lethal sepsis. Clin Transl Med 2023; 13:e1334. [PMID: 37475188 PMCID: PMC10359592 DOI: 10.1002/ctm2.1334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUNDS The stimulator of interferon genes (STING) is an important driver in various inflammatory diseases. METHODS AND RESULTS Here, we have demonstrated that inhibition of RIPK3 and MLKL dampens STING signaling, indicating that necroptosis may be involved in sustaining STING signaling. Furthermore, RIPK3 knockout in HT-29 cells significantly suppressed STING signaling. Mechanistically, RIPK3 inhibits autophagic flux during STING activation. RIPK3 knockout inhibits STING signaling by intensifying STING autophagy. In contrast, MLKL regulates the STING pathway bidirectionally. MLKL deficiency enhances STING signaling, whereas suppression of MLKL-mediated pore formation restricts STING signaling. Mechanistically, upon abrogating the pro-necroptotic activity of MLKL, MLKL bound to activated STING is secreted to the extracellular space, where it restricts TBK1 and IRF3 recruitment. Targeting necroptotic signaling ameliorates STING activation during DMXAA-induced intestinal injury and sepsis. CONCLUSIONS These findings elucidate molecular mechanisms linking necroptosis to the STING pathway, and suggest a potential benefit of therapeutic targeting of necroptosis in STING-driven inflammatory diseases.
Collapse
Affiliation(s)
- Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jie Wu
- Research Center of Surgery, BenQ Medical Centerthe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Qinjie Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yiyu Yang
- Research Institute of General Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Lei Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yun Zhao
- Research Center of Surgery, BenQ Medical Centerthe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
20
|
Hao X, Sun J, Zhong L, Baudry M, Bi X. UBE3A deficiency-induced autophagy is associated with activation of AMPK-ULK1 and p53 pathways. Exp Neurol 2023; 363:114358. [PMID: 36849003 PMCID: PMC10073344 DOI: 10.1016/j.expneurol.2023.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Angelman Syndrome (AS) is a neurodevelopmental disorder caused by deficiency of the maternally expressed UBE3A gene. The UBE3A proteins functions both as an E3 ligase in the ubiquitin-proteasome system (UPS), and as a transcriptional co-activator for steroid hormone receptors. Here we investigated the effects of UBE3A deficiency on autophagy in the cerebellum of AS mice and in COS1 cells. Numbers and size of LC3- and LAMP2-immunopositive puncta were increased in cerebellar Purkinje cells of AS mice, as compared to wildtype mice. Western blot analysis showed an increase in the conversion of LC3I to LC3II in AS mice, as expected from increased autophagy. Levels of active AMPK and of one of its substrates, ULK1, a factor involved in autophagy initiation, were also increased. Colocalization of LC3 with LAMP2 was increased and p62 levels were decreased, indicating an increase in autophagy flux. UBE3A deficiency was also associated with reduced levels of phosphorylated p53 in the cytosol and increased levels in nuclei, which favors autophagy induction. UBE3A siRNA knockdown in COS-1 cells resulted in increased size and intensity of LC3-immunopositive puncta and increased the LC3 II/I ratio, as compared to control siRNA-treated cells, confirming the results found in the cerebellum of AS mice. These results indicate that UBE3A deficiency enhances autophagic activity through activation of the AMPK-ULK1 pathway and alterations in p53.
Collapse
Affiliation(s)
- Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Li Zhong
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
21
|
Bub T, Hargest V, Tan S, Smith M, Vazquez-Pagan A, Flerlage T, Brigleb PH, Meliopoulos V, Lindenbach B, Cortez V, Crawford JC, Schultz-Cherry S. Astrovirus replication is dependent on induction of double membrane vesicles through a PI3K-dependent, LC3-independent pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536492. [PMID: 37090568 PMCID: PMC10120637 DOI: 10.1101/2023.04.11.536492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Human astrovirus is a positive sense, single stranded RNA virus. Astrovirus infection causes gastrointestinal symptoms and can lead to encephalitis in immunocompromised patients. Positive strand RNA viruses typically utilize host intracellular membranes to form replication organelles, which are potential antiviral targets. Many of these replication organelles are double membrane vesicles (DMVs). Here we show that astrovirus infection leads to an increase in DMV formation, and this process is replication-dependent. Our data suggest that astrovirus infection induces rearrangement of endoplasmic reticulum fragments, which may become the origin for DMV formation. Transcriptional data suggested that formation of DMVs during astrovirus infection requires some early components of the autophagy machinery. Results indicate that the upstream class III phosphatidylinositol 3-kinase (PI3K) complex, but not LC3 conjugation machinery, is utilized in DMV formation. Inhibition of the PI3K complex leads to significant reduction in viral replication and release from cells. Elucidating the role of autophagy machinery in DMV formation during astrovirus infection reveals a potential target for therapeutic intervention for immunocompromised patients. Importance These studies provide critical new evidence that astrovirus replication requires formation of double membrane vesicles, which utilize class III PI3K, but not LC3 conjugation autophagy machinery for biogenesis. These results are consistent with replication mechanisms for other positive sense RNA viruses. This suggests that targeting PI3K could be a promising therapeutic option for not only astrovirus, but other positive sense RNA virus infections.
Collapse
|
22
|
Nah J. The Role of Alternative Mitophagy in Heart Disease. Int J Mol Sci 2023; 24:ijms24076362. [PMID: 37047336 PMCID: PMC10094432 DOI: 10.3390/ijms24076362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy is essential for maintaining cellular homeostasis through bulk degradation of subcellular constituents, including misfolded proteins and dysfunctional organelles. It is generally governed by the proteins Atg5 and Atg7, which are critical regulators of the conventional autophagy pathway. However, recent studies have identified an alternative Atg5/Atg7-independent pathway, i.e., Ulk1- and Rab9-mediated alternative autophagy. More intensive studies have identified its essential role in stress-induced mitochondrial autophagy, also known as mitophagy. Alternative mitophagy plays pathophysiological roles in heart diseases such as myocardial ischemia and pressure overload. Here, this review discusses the established and emerging mechanisms of alternative autophagy/mitophagy that can be applied in therapeutic interventions for heart disorders.
Collapse
Affiliation(s)
- Jihoon Nah
- Department of Biochemistry, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
23
|
Zhang L, Cui T, Wang X. The Interplay Between Autophagy and Regulated Necrosis. Antioxid Redox Signal 2023; 38:550-580. [PMID: 36053716 PMCID: PMC10025850 DOI: 10.1089/ars.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
Significance: Autophagy is critical to cellular homeostasis. Emergence of the concept of regulated necrosis, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial membrane-permeability transition (MPT)-derived necrosis, has revolutionized the research into necrosis. Both altered autophagy and regulated necrosis contribute to major human diseases. Recent studies reveal an intricate interplay between autophagy and regulated necrosis. Understanding the interplay at the molecular level will provide new insights into the pathophysiology of related diseases. Recent Advances: Among the three forms of autophagy, macroautophagy is better studied for its crosstalk with regulated necrosis. Macroautophagy seemingly can either antagonize or promote regulated necrosis, depending upon the form of regulated necrosis, the type of cells or stimuli, and other cellular contexts. This review will critically analyze recent advances in the molecular mechanisms governing the intricate dialogues between macroautophagy and main forms of regulated necrosis. Critical Issues: The dual roles of autophagy, either pro-survival or pro-death characteristics, intricate the mechanistic relationship between autophagy and regulated necrosis at molecular level in various pathological conditions. Meanwhile, key components of regulated necrosis are also involved in the regulation of autophagy, which further complicates the interrelationship. Future Directions: Resolving the controversies over causation between altered autophagy and a specific form of regulated necrosis requires approaches that are more definitive, where rigorous evaluation of autophagic flux and the development of more reliable and specific methods to quantify each form of necrosis will be essential. The relationship between chaperone-mediated autophagy or microautophagy and regulated necrosis remains largely unstudied. Antioxid. Redox Signal. 38, 550-580.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| |
Collapse
|
24
|
Sakurai HT, Arakawa S, Noguchi S, Shimizu S. FLIP-based autophagy-detecting technique reveals closed autophagic compartments. Sci Rep 2022; 12:22452. [PMID: 36575188 PMCID: PMC9794774 DOI: 10.1038/s41598-022-26430-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Autophagy results in the degradation of cytosolic components via two major membrane deformations. First, the isolation membrane sequesters components from the cytosol and forms autophagosomes, by which open structures become closed compartments. Second, the outer membrane of the autophagosomes fuses with lysosomes to degrade the inner membrane and its contents. The efficiency of the latter degradation process, namely autophagic flux, can be easily evaluated using lysosomal inhibitors, whereas the dynamics of the former process is difficult to analyze because of the challenges in identifying closed compartments of autophagy (autophagosomes and autolysosomes). To resolve this problem, we here developed a method to detect closed autophagic compartments by applying the FLIP technique, and named it FLIP-based Autophagy Detection (FLAD). This technique visualizes closed autophagic compartments and enables differentiation of open autophagic structures and closed autophagic compartments in live cells. In addition, FLAD analysis detects not only starvation-induced canonical autophagy but also genotoxic stress-induced alternative autophagy. By the combinational use of FLAD and LC3, we were able to distinguish the structures of canonical autophagy from those of alternative autophagy in a single cell.
Collapse
Affiliation(s)
- Hajime Tajima Sakurai
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Satoko Arakawa
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Saori Noguchi
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Shigeomi Shimizu
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| |
Collapse
|
25
|
The role of autophagic cell death in cardiac disease. J Mol Cell Cardiol 2022; 173:16-24. [PMID: 36084743 DOI: 10.1016/j.yjmcc.2022.08.362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 01/06/2023]
Abstract
Cardiomyocytes undergo various forms of cell death during heart disease such as myocardial infarction and heart failure. Understanding the mechanisms of cell death in cardiomyocytes is one of the most fundamental issues in the treatment of heart failure. Among the several kinds of cell death mechanisms, this review will focus on autophagy-related cardiomyocyte cell death. Although autophagy plays an essential role in mediating cellular quality control mechanisms for cell survival, dysregulation of autophagy can cause cell death, referred to as autophagy-dependent cell death or type II programmed cell death. The recent discovery of autosis as a modality of autophagy-dependent cell death with unique morphological and biochemical features has allowed us to broaden our understanding of the mechanistic role of autophagy in cell death. Here, we discuss autophagy-dependent cardiomyocyte cell death, including autosis, in pathophysiological conditions of the heart.
Collapse
|
26
|
Noguchi S, Shimizu S. Molecular mechanisms and biological roles of GOMED. FEBS J 2022; 289:7213-7220. [PMID: 34787961 DOI: 10.1111/febs.16281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023]
Abstract
We previously discovered an autophagy-like proteolysis mechanism that uses the Golgi membrane, namely, Golgi membrane-associated degradation (GOMED). Morphologically, GOMED resembles canonical autophagy, but the two mechanisms have different cellular functions, as they degrade different substrates and use different membrane sources. Furthermore, although the molecules involved partially overlap, the core molecules are completely different. GOMED preferentially degrades Golgi-trafficking proteins, including insulin granules in pancreatic β-cells and ceruloplasmin in neurons, and is involved in a wide variety of physiological events.
Collapse
Affiliation(s)
- Saori Noguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
27
|
Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med 2022; 54:1695-1704. [PMID: 36224345 PMCID: PMC9636380 DOI: 10.1038/s12276-022-00868-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Receptor-interacting protein kinase-3 (RIPK3, or RIP3) is an essential protein in the "programmed" and "regulated" cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, and the findings of many reports have suggested that necroptosis is highly significant in health and human disease. This significance is largely because necroptosis is distinguished from other modes of cell death, especially apoptosis, in that it is highly proinflammatory given that cell membrane integrity is lost, triggering the activation of the immune system and inflammation. Here, we discuss the roles of RIPK3 in cell signaling, along with its role in necroptosis and various pathways that trigger RIPK3 activation and cell death. Lastly, we consider pathological situations in which RIPK3/necroptosis may play a role.
Collapse
|
28
|
Nah J, Shirakabe A, Mukai R, Zhai P, Sung EA, Ivessa A, Mizushima W, Nakada Y, Saito T, Hu C, Jung YK, Sadoshima J. Ulk1-dependent alternative mitophagy plays a protective role during pressure overload in the heart. Cardiovasc Res 2022; 118:2638-2651. [PMID: 35018428 PMCID: PMC10144728 DOI: 10.1093/cvr/cvac003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Well-controlled mitochondrial homeostasis, including a mitochondria-specific form of autophagy (hereafter referred to as mitophagy), is essential for maintaining cardiac function. The molecular mechanism mediating mitophagy during pressure overload (PO) is poorly understood. We have shown previously that mitophagy in the heart is mediated primarily by Atg5/Atg7-independent mechanisms, including Unc-51-like kinase 1 (Ulk1)-dependent alternative mitophagy, during myocardial ischaemia. Here, we investigated the role of alternative mitophagy in the heart during PO-induced hypertrophy. METHODS AND RESULTS Mitophagy was observed in the heart in response to transverse aortic constriction (TAC), peaking at 3-5 days. Whereas mitophagy is transiently up-regulated by TAC through an Atg7-dependent mechanism in the heart, peaking at 1 day, it is also activated more strongly and with a delayed time course through an Ulk1-dependent mechanism. TAC induced more severe cardiac dysfunction, hypertrophy, and fibrosis in ulk1 cardiac-specific knock-out (cKO) mice than in wild-type mice. Delayed activation of mitophagy was characterized by the co-localization of Rab9 dots and mitochondria and phosphorylation of Rab9 at Ser179, major features of alternative mitophagy. Furthermore, TAC-induced decreases in the mitochondrial aspect ratio were abolished and the irregularity of mitochondrial cristae was exacerbated, suggesting that mitochondrial quality control mechanisms are impaired in ulk1 cKO mice in response to TAC. TAT-Beclin 1 activates mitophagy even in Ulk1-deficient conditions. TAT-Beclin 1 treatment rescued mitochondrial dysfunction and cardiac dysfunction in ulk1 cKO mice during PO. CONCLUSION Ulk1-mediated alternative mitophagy is a major mechanism mediating mitophagy in response to PO and plays an important role in mediating mitochondrial quality control mechanisms and protecting the heart against cardiac dysfunction.
Collapse
Affiliation(s)
- Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Akihiro Shirakabe
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Nippon Medical School, Chiba Hokusoh Hospital, Chiba, Japan
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Eun Ah Sung
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Wataru Mizushima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yasuki Nakada
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Toshiro Saito
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yong Keun Jung
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
29
|
Function and regulation of ULK1: From physiology to pathology. Gene 2022; 840:146772. [PMID: 35905845 DOI: 10.1016/j.gene.2022.146772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
Abstract
The expression of ULK1, a core protein of autophagy, is closely related to autophagic activity. Numerous studies have shown that pathological abnormal expression of ULK1 is associated with various human diseases such as neurological disorders, infections, cardiovascular diseases, liver diseases and cancers. In addition, new advances in the regulation of ULK1 have been identified. Furthermore, targeting ULK1 as a therapeutic strategy for diseases is gaining attention as new corresponding activators or inhibitors are being developed. In this review, we describe the structure and regulation of ULK1 as well as the current targeted activators and inhibitors. Moreover, we highlight the pathological disorders of ULK1 expression and its critical role in human diseases.
Collapse
|
30
|
Zhu J, Wang J, Chen YP, Qing T, Zhang P, Feng B. Quantitative proteomics and phosphoproteomics elucidate the molecular mechanism of nanostructured TiO 2-stimulated biofilm formation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128709. [PMID: 35325859 DOI: 10.1016/j.jhazmat.2022.128709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
With the increasing concerns regarding bacterial adaption to nanomaterials, it is critical to explore the main mechanism behind the adaptive morphogenesis of microorganisms. In this work, the biofilms formed from activated sludge exposed to 5 and 50 mg/L nTiO2 in the dark had increased biomass and selectively enriched pathogens. To further elaborate adaptive mechanism of biofilm formation induced by nTiO2, the protein response and protein phosphorylation modification of Escherichia coli K12 were determined using integrative systems biology analyses of proteomics and phosphoproteomics. Results identified that E. coli cultivated with nTiO2 considerably upregulated iron acquisition, and regulated protein phosphorylation states associated with of transcription and translation and biofilm formation relative to unexposed controls. Accordingly, bacteria increased siderophores and exopolysaccharide content (increased by about 57% and 231%, respectively), and enhanced resistance to transcriptional inhibitory antibiotics. Moreover, a dose of an iron chelator, i.e., deferoxamine mesylate salt, effectively retarded the biofilm development of bacteria exposed to 50 mg/L nTiO2. Overall, this work will provide a new insight for biofouling control, and contribute to an improved understanding of microbial adaption to nanomaterials.
Collapse
Affiliation(s)
- Jing Zhu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jingyu Wang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
31
|
Zhang W, Li J, Zhao N, Li P, Zhang W, Wang H, Tang B. Ratiometric fluorescence biosensor for imaging of protein phosphorylation levels in atherosclerosis mice. Anal Chim Acta 2022; 1208:339825. [PMID: 35525587 DOI: 10.1016/j.aca.2022.339825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 12/29/2022]
Abstract
Atherosclerosis (AS) is the main cause of coronary heart disease, cerebral infarction and peripheral vascular disease, which is an important disease threatening human health. Abnormal levels of protein phosphorylation are closely related to the occurrence and development of diseases. Herein, the ratiometric fluorescence nanosensor (PCN/W- B@BSA) was prepared by using metal-organic frameworks (PCN-224) and fluorescent nanocluster wool-balls, which was applied for ratiometric fluorescence imaging of protein phosphorylation level in the AS mice model. Specific recognition of phosphorylation sites was achieved via specific interaction between active center Zr(IV) and phosphate. Using the two-photon property of porphyrin, the background is significantly reduced, and the sensitivity of imaging analysis is improved by combining with ratio imaging. Bovine serum albumin (BSA) was used to modify the surface of the nanosensor to reduce the non-specific adsorption and improve the biocompatibility of the nanosensor. Finally, the fluorescence nanosensor was successfully apply to fluorescence imaging of protein phosphorylation level in AS mice model, and the results showed that the protein phosphorylation level in the AS mice model was lower than that of the normal mice. The present study provides suitable fluorescence tool for further revealing phosphorylation related signaling pathways and disease mechanisms.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China.
| | - Jin Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Na Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| |
Collapse
|
32
|
Feng H, Wang N, Zhang N, Liao HH. Alternative autophagy: mechanisms and roles in different diseases. Cell Commun Signal 2022; 20:43. [PMID: 35361231 PMCID: PMC8973741 DOI: 10.1186/s12964-022-00851-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
As an important mechanism to maintain cellular homeostasis, autophagy exerts critical functions via degrading misfolded proteins and damaged organelles. Recent years, alternative autophagy, a new type of autophagy has been revealed, which shares similar morphology with canonical autophagy but is independent of Atg5/Atg7. Investigations on different diseases showed the pivotal role of alternative autophagy during their physio-pathological processes, including heart diseases, neurodegenerative diseases, oncogenesis, inflammatory bowel disease (IBD), and bacterial infection. However, the studies are limited and the precise roles and mechanisms of alternative autophagy are far from clear. It is necessary to review current research on alternative autophagy and get some hint in order to provide new insight for further study. Video Abstract.
Collapse
Affiliation(s)
- Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Nian Wang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
33
|
Maintaining Golgi Homeostasis: A Balancing Act of Two Proteolytic Pathways. Cells 2022; 11:cells11050780. [PMID: 35269404 PMCID: PMC8909885 DOI: 10.3390/cells11050780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The Golgi apparatus is a central hub for cellular protein trafficking and signaling. Golgi structure and function is tightly coupled and undergoes dynamic changes in health and disease. A crucial requirement for maintaining Golgi homeostasis is the ability of the Golgi to target aberrant, misfolded, or otherwise unwanted proteins to degradation. Recent studies have revealed that the Golgi apparatus may degrade such proteins through autophagy, retrograde trafficking to the ER for ER-associated degradation (ERAD), and locally, through Golgi apparatus-related degradation (GARD). Here, we review recent discoveries in these mechanisms, highlighting the role of the Golgi in maintaining cellular homeostasis.
Collapse
|
34
|
Liu S, Joshi K, Denning MF, Zhang J. RIPK3 signaling and its role in the pathogenesis of cancers. Cell Mol Life Sci 2021; 78:7199-7217. [PMID: 34654937 PMCID: PMC9044760 DOI: 10.1007/s00018-021-03947-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
RIPK3 (receptor-interacting protein kinase 3) is a serine/threonine-protein kinase. As a key component of necrosomes, RIPK3 is an essential mediator of inflammatory factors (such as TNFα-tumor necrosis factor α) and infection-induced necroptosis, a programmed necrosis. In addition, RIPK3 signaling is also involved in the regulation of apoptosis, cytokine/chemokine production, mitochondrial metabolism, autophagy, and cell proliferation by interacting with and/or phosphorylating the critical regulators of the corresponding signaling pathways. Similar to apoptosis, RIPK3-signaling-mediated necroptosis is inactivated in most types of cancers, suggesting RIPK3 might play a critical suppressive role in the pathogenesis of cancers. However, in some inflammatory types of cancers, such as pancreatic cancers and colorectal cancers, RIPK3 signaling might promote cancer development by stimulating proliferation signaling in tumor cells and inducing an immunosuppressive response in the tumor environment. In this review, we summarize recent research progress in the regulators of RIPK3 signaling, and discuss the function of this pathway in the regulation of mixed lineage kinase domain-like (MLKL)-mediated necroptosis and MLKL-independent cellular behaviors. In addition, we deliberate the potential roles of RIPK3 signaling in the pathogenesis of different types of cancers and discuss the potential strategies for targeting this pathway in cancer therapy.
Collapse
Affiliation(s)
- Shanhui Liu
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
- Department of Pathology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
35
|
The Secrets of Alternative Autophagy. Cells 2021; 10:cells10113241. [PMID: 34831462 PMCID: PMC8623506 DOI: 10.3390/cells10113241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
For many years, it was thought that ATG5 and ATG7 played a pivotal role in autophagy, and that the knockdown of one of these genes would result in its inhibition. However, cells with ATG5 or ATG7 depletion still generate autophagic vacuoles with mainly trans-Golgi-originated isolation membranes and do not die. This indicates that autophagy can occur via ATG5/ATG7-independent alternative autophagy. Its molecular mechanism differs from that of the canonical pathway, including inter alia the phosphorylation of ULK1, and lack of LC3 modifications. As the alternative autophagy pathway has only recently been described, little is known of its precise role; however, a considerable body of evidence suggests that alternative autophagy participates in mitochondrion removal. This review summarizes the latest progress made in research on alternative autophagy and describes its possible molecular mechanism, roles and methods of detection, and possible modulators. There is a need for further research focused on types of autophagy, as this can elucidate the functioning of various cell types and the pathogenesis of human and animal diseases.
Collapse
|
36
|
Xiong R, Li N, Chen L, Wang W, Wang B, Jiang W, Geng Q. STING protects against cardiac dysfunction and remodelling by blocking autophagy. Cell Commun Signal 2021; 19:109. [PMID: 34749750 PMCID: PMC8576910 DOI: 10.1186/s12964-021-00793-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/09/2021] [Indexed: 12/17/2022] Open
Abstract
Background Heart failure, which is characterized by cardiac remodelling, is one of the most common chronic diseases in the aged. Stimulator of interferon genes (STING) acts as an indispensable molecule modulating immune response and inflammation in many diseases. However, the effects of STING on cardiomyopathy, especially cardiac remodelling are still largely unknown. This study was designed to investigate whether STING could affect cardiac remodelling and to explore the potential mechanisms. Methods In vivo, aortic binding (AB) surgery was performed to construct the mice model of cardiac remodelling. A DNA microinjection system was used to trigger STING overexpression in mice. The STING mRNA and protein expression levels in mice heart were measured, and the cardiac hypertrophy, fibrosis, inflammation and cardiac function were also evaluated. In vitro, cardiomyocytes stimulated by Ang II and cardiac fibroblasts stimulated by TGF-β to performed to further study effects of STING on cardiac hypertrophy and fibroblast. In terms of mechanisms, the level of autophagy was detected in mice challenged with AB. Rapamycin, a canonical autophagy inducer, intraperitoneal injected into mice to study possible potential pathway. Results In vivo, the STING mRNA and protein expression levels in mice heart challenged with AB for 6 weeks were significantly increased. STING overexpression significantly mitigated cardiac hypertrophy, fibrosis and inflammation, apart from improving cardiac function. In vitro, experiments further disclosed that STING overexpression in cardiomyocytes induced by Ang II significantly inhibited the level of cardiomyocyte cross-section area and the ANP mRNA. Meanwhile, TGF-β-induced the increase of α-SMA content and collagen synthesis in cardiac fibroblasts could be also blocked by STING overexpression. In terms of mechanisms, mice challenged with AB showed higher level of autophagy compared with the normal mice. However, STING overexpression could reverse the activation of autophagy triggered by AB. Rapamycin, a canonical autophagy inducer, offset the cardioprotective effects of STING in mice challenged with AB. Finally, further experiments unveiled that STING may inhibit autophagy by phosphorylating ULK1 on serine757. Conclusions STING may prevent cardiac remodelling induced by pressure overload by inhibiting autophagy, which could be a promising therapeutic target in heart failure. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00793-0.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyang Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
37
|
Lechado Terradas A, Zittlau KI, Macek B, Fraiberg M, Elazar Z, Kahle PJ. Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications. J Biol Chem 2021; 297:101339. [PMID: 34688664 PMCID: PMC8591368 DOI: 10.1016/j.jbc.2021.101339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g., oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases, the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1, which upon activation recruits the ubiquitin ligase parkin. Here, we review mechanisms of mitophagy with an emphasis on posttranslational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on posttranslational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and antiapoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.
Collapse
Affiliation(s)
- Anna Lechado Terradas
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Milana Fraiberg
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
38
|
Mercer TJ, Ohashi Y, Boeing S, Jefferies HBJ, De Tito S, Flynn H, Tremel S, Zhang W, Wirth M, Frith D, Snijders AP, Williams RL, Tooze SA. Phosphoproteomic identification of ULK substrates reveals VPS15-dependent ULK/VPS34 interplay in the regulation of autophagy. EMBO J 2021; 40:e105985. [PMID: 34121209 PMCID: PMC8280838 DOI: 10.15252/embj.2020105985] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a process through which intracellular cargoes are catabolised inside lysosomes. It involves the formation of autophagosomes initiated by the serine/threonine kinase ULK and class III PI3 kinase VPS34 complexes. Here, unbiased phosphoproteomics screens in mouse embryonic fibroblasts deleted for Ulk1/2 reveal that ULK loss significantly alters the phosphoproteome, with novel high confidence substrates identified including VPS34 complex member VPS15 and AMPK complex subunit PRKAG2. We identify six ULK-dependent phosphorylation sites on VPS15, mutation of which reduces autophagosome formation in cells and VPS34 activity in vitro. Mutation of serine 861, the major VPS15 phosphosite, decreases both autophagy initiation and autophagic flux. Analysis of VPS15 knockout cells reveals two novel ULK-dependent phenotypes downstream of VPS15 removal that can be partially recapitulated by chronic VPS34 inhibition, starvation-independent accumulation of ULK substrates and kinase activity-regulated recruitment of autophagy proteins to ubiquitin-positive structures.
Collapse
Affiliation(s)
| | | | - Stefan Boeing
- Bioinformatics and BiostatisticsThe Francis Crick InstituteLondonUK
| | | | - Stefano De Tito
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
- Institute of Experimental Endocrinology and Oncology (IEOS)National Research CouncilNaplesItaly
| | - Helen Flynn
- Institute of Experimental Endocrinology and Oncology (IEOS)National Research CouncilNaplesItaly
| | | | - Wenxin Zhang
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Martina Wirth
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - David Frith
- ProteomicsThe Francis Crick InstituteLondonUK
| | | | | | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| |
Collapse
|
39
|
Peng K, Sun A, Zhu J, Gao J, Li Y, Shao G, Yang W, Lin Q. Restoration of the ATG5-dependent autophagy sensitizes DU145 prostate cancer cells to chemotherapeutic drugs. Oncol Lett 2021; 22:638. [PMID: 34386060 PMCID: PMC8298997 DOI: 10.3892/ol.2021.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/17/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy serves an important role in cancer cell survival and drug resistance. In the present study, the prostate cancer DU145 cell line was used, which lacks autophagy related 5 (ATG5) expression and is defective in induction of ATG5-dependent autophagy. The aim of the study was to examine the effects of the restoration of autophagy on cell proliferation and migration, and to assess the cytotoxicity caused by chemotherapeutic drugs, using microscopic, wound-healing, western blot and apoptotic assays. The restoration of the autophagic activity in DU145 cells by the overexpression of ATG5 enhanced the cell proliferation and migration rates. Notably, restoration of the ATG5-dependent autophagy in DU145 cells significantly increased the cytotoxic effects of the chemotherapeutic drugs, docetaxel and valproic acid, and the endoplasmic reticulum stress inducers, brefeldin A, tunicamycin and thapsigargin. The present study provides a novel perspective on the role of ATG5-dependent autophagy in drug resistance and chemotherapy.
Collapse
Affiliation(s)
- Ke Peng
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Aiqin Sun
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jun Zhu
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jinyi Gao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yanlin Li
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wannian Yang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
40
|
Lewno MT, Cui T, Wang X. Cullin Deneddylation Suppresses the Necroptotic Pathway in Cardiomyocytes. Front Physiol 2021; 12:690423. [PMID: 34262479 PMCID: PMC8273387 DOI: 10.3389/fphys.2021.690423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiomyocyte death in the form of apoptosis and necrosis represents a major cellular mechanism underlying cardiac pathogenesis. Recent advances in cell death research reveal that not all necrosis is accidental, but rather there are multiple forms of necrosis that are regulated. Necroptosis, the earliest identified regulated necrosis, is perhaps the most studied thus far, and potential links between necroptosis and Cullin-RING ligases (CRLs), the largest family of ubiquitin E3 ligases, have been postulated. Cullin neddylation activates the catalytic dynamic of CRLs; the reverse process, Cullin deneddylation, is performed by the COP9 signalosome holocomplex (CSN) that is formed by eight unique protein subunits, COPS1/CNS1 through COPS8/CNS8. As revealed by cardiomyocyte-restricted knockout of Cops8 (Cops8-cko) in mice, perturbation of Cullin deneddylation in cardiomyocytes impairs not only the functioning of the ubiquitin-proteasome system (UPS) but also the autophagic-lysosomal pathway (ALP). Similar cardiac abnormalities are also observed in Cops6-cko mice; and importantly, loss of the desmosome targeting of COPS6 is recently implicated as a pathogenic factor in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Cops8-cko causes massive cardiomyocyte death in the form of necrosis rather than apoptosis and rapidly leads to a progressive dilated cardiomyopathy phenotype as well as drastically shortened lifespan in mice. Even a moderate downregulation of Cullin deneddylation as seen in mice with Cops8 hypomorphism exacerbates cardiac proteotoxicity induced by overexpression of misfolded proteins. More recently, it was further demonstrated that cardiomyocyte necrosis caused by Cops8-cko belongs to necroptosis and is mediated by the RIPK1-RIPK3 pathway. This article reviews these recent advances and discusses the potential links between Cullin deneddylation and the necroptotic pathways in hopes of identifying potentially new therapeutic targets for the prevention of cardiomyocyte death.
Collapse
Affiliation(s)
- Megan T Lewno
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
41
|
Causes and consequences of DNA damage-induced autophagy. Matrix Biol 2021; 100-101:39-53. [DOI: 10.1016/j.matbio.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
|
42
|
Mo J, Xu Y, Zhu L, Wei W, Zhao J. A Cysteine-Mediated Synthesis of Red Phosphorus Nanosheets. Angew Chem Int Ed Engl 2021; 60:12524-12531. [PMID: 33599016 DOI: 10.1002/anie.202101486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Among phosphorus-based nanomaterials, layered black phosphorus and violet phosphorus have been actively explored in the past decade. However, methods for the synthesis of red phosphorus nanosheets (RPNSs) is lacking, even though red phosphorus (RP) is commercially available at low cost and has excellent chemical stability at room temperature. We report an efficient strategy for fabrication of RPNSs and doped RPNSs using cysteine as a reducing reagent. Data from in vitro and in vivo studies suggested that RPNSs can trigger production of reactive oxygen species, DNA damage, and subsequent autophagy-mediated cell death in a shape-dependent manner. Our findings provide a method for construction of layered RP nanomaterials and they present a unique mechanism for the application of phosphorus-based materials in nanomedicines.
Collapse
Affiliation(s)
- Jianbin Mo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yun Xu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Longqian Zhu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,School of Life Sciences, Nanjing University, Nanjing, China.,Shenzhen Research Institute, Nanjing University, Shenzhen, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,Shenzhen Research Institute, Nanjing University, Shenzhen, China
| |
Collapse
|
43
|
Mo J, Xu Y, Zhu L, Wei W, Zhao J. A Cysteine‐Mediated Synthesis of Red Phosphorus Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jianbin Mo
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing China
| | - Yun Xu
- School of Life Sciences Nanjing University Nanjing China
| | - Longqian Zhu
- School of Life Sciences Nanjing University Nanjing China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing China
- School of Life Sciences Nanjing University Nanjing China
- Shenzhen Research Institute Nanjing University Shenzhen China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing China
- Shenzhen Research Institute Nanjing University Shenzhen China
| |
Collapse
|
44
|
Lu PS, Xie LP, Kong XH, Xu Y, Sun SC. Podophyllotoxin Exposure Affects Organelle Distribution and Functions in Mouse Oocyte Meiosis. Front Cell Dev Biol 2021; 9:672590. [PMID: 34095142 PMCID: PMC8170041 DOI: 10.3389/fcell.2021.672590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Podophyllotoxin (POD) is one of the most characterized lignans that is commonly found in podophyllum, and its preparations and derivatives are widely used in clinical treatment due to strong antitumor and antivirus activities. POD has been reported for its neurotoxicity, liver toxicity, and potential reproductive toxicity. In the present study, we investigated the effects of POD on the organelles of mouse oocytes during meiosis. Our results showed that exposure to POD significantly reduced the developmental competence of mouse oocytes. Further analysis revealed that the endoplasmic reticulum (ER) failed to accumulate to the spindle periphery, suggesting that POD exposure might affect protein synthesis during oocyte meiotic maturation. Similarly, abnormal Golgi apparatus distribution was found after POD exposure, which could be confirmed by the aberrant localization of Rab11a-related vesicles, indicating that POD induced vesicle-based protein transport disorder. We also found the aberrant accumulation of lysosomes in the cytoplasm of POD-exposed oocytes, which implied that POD might lead to aberrant protein degradation. Moreover, the perinuclear distribution of mitochondria was also significantly disturbed, indicating the mitochondrial dysfunction after POD exposure. In all, our study illustrated that exposure to POD might disrupt protein synthesis, transport, degradation, and ATP production by its effects on the distribution and functions of organelles during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lan-Ping Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Han Kong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
45
|
Licheva M, Raman B, Kraft C, Reggiori F. Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy 2021; 18:104-123. [PMID: 33970777 PMCID: PMC8865292 DOI: 10.1080/15548627.2021.1909407] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells use post-translational modifications to diversify and dynamically coordinate the function and properties of protein networks within various cellular processes. For example, the process of autophagy strongly depends on the balanced action of kinases and phosphatases. Highly conserved from the budding yeast Saccharomyces cerevisiae to humans, autophagy is a tightly regulated self-degradation process that is crucial for survival, stress adaptation, maintenance of cellular and organismal homeostasis, and cell differentiation and development. Many studies have emphasized the importance of kinases and phosphatases in the regulation of autophagy and identified many of the core autophagy proteins as their direct targets. In this review, we summarize the current knowledge on kinases and phosphatases acting on the core autophagy machinery and discuss the relevance of phosphoregulation for the overall process of autophagy.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Babu Raman
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| |
Collapse
|
46
|
Autophagy-A Story of Bacteria Interfering with the Host Cell Degradation Machinery. Pathogens 2021; 10:pathogens10020110. [PMID: 33499114 PMCID: PMC7911818 DOI: 10.3390/pathogens10020110] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a highly conserved and fundamental cellular process to maintain cellular homeostasis through recycling of defective organelles or proteins. In a response to intracellular pathogens, autophagy further acts as an innate immune response mechanism to eliminate pathogens. This review will discuss recent findings on autophagy as a reaction to intracellular pathogens, such as Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Staphylococcus aureus, and pathogenic Escherichia coli. Interestingly, while some of these bacteria have developed methods to use autophagy for their own benefit within the cell, others have developed fascinating mechanisms to evade recognition, to subvert the autophagic pathway, or to escape from autophagy.
Collapse
|
47
|
Saito T, Hamano K, Sadoshima J. Molecular mechanisms and clinical implications of multiple forms of mitophagy in the heart. Cardiovasc Res 2020; 117:2730-2741. [PMID: 33331644 DOI: 10.1093/cvr/cvaa340] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria, the primary ATP-producing organelles, are highly abundant in cardiomyocytes. Mitochondrial function readily deteriorates in the presence of stress and, thus, maintenance of mitochondrial quality is essential for sustaining pump function in the heart. Cardiomyocytes under stress attempt to maintain mitochondrial quality primarily through dynamic changes in their morphology, namely fission and fusion, degradation, and biogenesis. Mitophagy, a mitochondria-specific form of autophagy, is a major mechanism of degradation. The level of mitophagy is altered in stress conditions, which, in turn, significantly affects mitochondrial function, cardiomyocyte survival, and death and cardiac function. Thus, mitophagy has been emerging as a promising target for treatment of cardiac conditions. To develop specific interventions, modulating the activity of mitophagy in the heart, understanding how mitochondria are degraded in a given condition is important. Increasing lines of evidence suggest that there are multiple mechanisms by which mitochondria are degraded through mitophagy in the heart. For example, in addition to the well-established mechanism commonly utilized by general autophagy, involving Atg7 and LC3, recent evidence suggests that an alternative mechanism, independent of Atg7 and LC3, also mediates mitophagy in the heart. Here, we describe molecular mechanisms through which mitochondria are degraded in the heart and discuss their functional significance. We also discuss molecular interventions to modulate the activity of mitophagy and their potential applications for cardiac conditions.
Collapse
Affiliation(s)
- Toshiro Saito
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, 185 South Orange Ave., MSB G609, Newark, NJ 07101, USA
| |
Collapse
|
48
|
Wipi3 is essential for alternative autophagy and its loss causes neurodegeneration. Nat Commun 2020; 11:5311. [PMID: 33082312 PMCID: PMC7576787 DOI: 10.1038/s41467-020-18892-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Alternative autophagy is an Atg5/Atg7-independent type of autophagy that contributes to various physiological events. We here identify Wipi3 as a molecule essential for alternative autophagy, but which plays minor roles in canonical autophagy. Wipi3 binds to Golgi membranes and is required for the generation of isolation membranes. We establish neuron-specific Wipi3-deficient mice, which show behavioral defects, mainly as a result of cerebellar neuronal loss. The accumulation of iron and ceruloplasmin is also found in the neuronal cells. These abnormalities are suppressed by the expression of Dram1, which is another crucial molecule for alternative autophagy. Although Atg7-deficient mice show similar phenotypes to Wipi3-deficient mice, electron microscopic analysis shows that they have completely different subcellular morphologies, including the morphology of organelles. Furthermore, most Atg7/Wipi3 double-deficient mice are embryonic lethal, indicating that Wipi3 functions to maintain neuronal cells via mechanisms different from those of canonical autophagy. Unlike canonical macroautophagy, alternative autophagy does not require the factors Atg5 and Atg7. Here, the authors show that Wipi3 is essential for alternative autophagy, but not for canonical autophagy, and that Wipi3 functions to maintain neuronal cells via mechanisms different from those of canonical autophagy.
Collapse
|
49
|
Torii S, Honda S, Murohashi M, Yamaguchi H, Shimizu S. Autophagy involvement in oncogenesis. Cancer Sci 2020; 111:3993-3999. [PMID: 32897597 PMCID: PMC7648016 DOI: 10.1111/cas.14646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/22/2020] [Indexed: 01/08/2023] Open
Abstract
Various clinical and experimental findings have revealed the causal relationship between autophagy failure and oncogenesis, and several mechanisms have been suggested to explain this relationship. We recently proposed two additional mechanisms: centrosome number dysregulation and the failure of autophagic cell death. Here, we detail the mechanical relationship between autophagy failure and oncogenesis.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Murohashi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirofumi Yamaguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
50
|
Wesch N, Kirkin V, Rogov VV. Atg8-Family Proteins-Structural Features and Molecular Interactions in Autophagy and Beyond. Cells 2020; 9:E2008. [PMID: 32882854 PMCID: PMC7564214 DOI: 10.3390/cells9092008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a common name for a number of catabolic processes, which keep the cellular homeostasis by removing damaged and dysfunctional intracellular components. Impairment or misbalance of autophagy can lead to various diseases, such as neurodegeneration, infection diseases, and cancer. A central axis of autophagy is formed along the interactions of autophagy modifiers (Atg8-family proteins) with a variety of their cellular counter partners. Besides autophagy, Atg8-proteins participate in many other pathways, among which membrane trafficking and neuronal signaling are the most known. Despite the fact that autophagy modifiers are well-studied, as the small globular proteins show similarity to ubiquitin on a structural level, the mechanism of their interactions are still not completely understood. A thorough analysis and classification of all known mechanisms of Atg8-protein interactions could shed light on their functioning and connect the pathways involving Atg8-proteins. In this review, we present our views of the key features of the Atg8-proteins and describe the basic principles of their recognition and binding by interaction partners. We discuss affinity and selectivity of their interactions as well as provide perspectives for discovery of new Atg8-interacting proteins and therapeutic approaches to tackle major human diseases.
Collapse
Affiliation(s)
- Nicole Wesch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Vladimir Kirkin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research London, Sutton SM2 5NG, UK;
| | - Vladimir V. Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany;
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|