1
|
Ramakrishna NB, Mohamad Sahari UB, Johmura Y, Ali NA, Alghamdi M, Bauer P, Khan S, Ordoñez N, Ferreira M, Pinto Basto J, Alkuraya FS, Faqeih EA, Mori M, Almontashiri NAM, Al Shamsi A, ElGhazali G, Abu Subieh H, Al Ojaimi M, El-Hattab AW, Said Al-Kindi SA, Alhashmi N, Alhabshan F, Al Saman A, Tfayli H, Arabi M, Khalifeh S, Taylor A, Alfadhel M, Jain R, Sinha S, Shenbagam S, Ramachandran R, Altunoğlu U, Jacob A, Thalange N, El Bejjani M, Perrin A, Shin JW, Al-Maawali A, Al-Shidhani A, Al-Futaisi A, Rabea F, Chekroun I, Almarri MA, Ohta T, Nakanishi M, Alsheikh-Ali A, Ali FR, Bertoli-Avella AM, Reversade B, Abou Tayoun A. FBXO22 deficiency defines a pleiotropic syndrome of growth restriction and multi-system anomalies associated with a unique epigenetic signature. Am J Hum Genet 2025; 112:1233-1246. [PMID: 40215970 DOI: 10.1016/j.ajhg.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/04/2025] Open
Abstract
FBXO22 encodes an F-box protein, which acts as a substrate-recognition component of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex. Despite its known roles in the post-translational ubiquitination and degradation of specific substrates, including histone demethylases, the impact of FBXO22 on human development remains unknown. Here, we characterize a pleiotropic syndrome with prominent prenatal onset growth restriction and notable neurodevelopmental delay across 16 cases from 14 families. Through exome and genome sequencing, we identify four distinct homozygous FBXO22 variants with loss-of-function effects segregating with the disease: three predicted to lead to premature translation termination due to frameshift effects and a single-amino-acid-deletion variant, which, we show, impacts protein stability in vitro. We confirm that affected primary fibroblasts with a frameshift mutation are bereft of endogenous FBXO22 and show increased levels of the known substrate histone H3K9 demethylase KDM4B. Accordingly, we delineate a unique epigenetic signature for this disease in peripheral blood via long-read sequencing. Altogether, we identify and demonstrate that FBXO22 deficiency leads to a pleiotropic syndrome in humans, encompassing growth restriction and neurodevelopmental delay, the pathogenesis of which may be explained by broad chromatin alterations.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Umar Bin Mohamad Sahari
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, Singapore 119260, Singapore
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Nur Ain Ali
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Malak Alghamdi
- Unit of Medical Genetics, Department of Pediatrics, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Ali Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Mari Mori
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA; Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia; Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Aisha Al Shamsi
- Paediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Gehad ElGhazali
- HQ Medical Operations Division, Union 71, Abu Dhabi, United Arab Emirates
| | - Hala Abu Subieh
- Maternal Fetal Medicine Department, Kanad Hospital, Al Ain, United Arab Emirates
| | - Mode Al Ojaimi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | - Fahad Alhabshan
- Department of Cardiac Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulaziz Al Saman
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hala Tfayli
- Pediatric Endocrinology and Diabetes, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
| | - Mariam Arabi
- Department of Pediatrics and Adolescent Medicine, Pediatric Cardiology Division, Children's Heart Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Simone Khalifeh
- Pediatric Neurology Division, American University of Beirut Medical Center, Beirut, Lebanon
| | - Alan Taylor
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Majid Alfadhel
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia; Medical Genomic Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ruchi Jain
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Shruti Sinha
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Shruti Shenbagam
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Umut Altunoğlu
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul 34010, Turkey
| | - Anju Jacob
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Nandu Thalange
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Mireille El Bejjani
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Arnaud Perrin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Jay W Shin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, Singapore 119260, Singapore
| | - Almundher Al-Maawali
- Child Health Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Azza Al-Shidhani
- Child Health Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amna Al-Futaisi
- Child Health Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fatma Rabea
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Ikram Chekroun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Mohamed A Almarri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Genome Center, Dubai Police GHQ, Dubai, United Arab Emirates
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | | | - Bruno Reversade
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul 34010, Turkey; NUS Cardiovascular-Metabolic Disease Translational Research Programme (CVMD-TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Laboratory of Human Genetics & Therapeutics, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Ahmad Abou Tayoun
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
| |
Collapse
|
2
|
Tran PL, Kim O, Hwangbo C, Kim HJ, Kim YM, Lee JH. SDCBP/Syntenin-1 stabilizes BACH1 by disassembling the SCF FBXO22-BACH1 complex in triple-negative breast cancer. EMBO J 2025:10.1038/s44318-025-00440-1. [PMID: 40263598 DOI: 10.1038/s44318-025-00440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
BACH1 is a redox-sensitive transcription factor facilitating tumor progression in triple-negative breast cancer (TNBC). However, the molecular mechanisms regulating BACH1 function in TNBC remain unclear. In this study, we demonstrate that SDCBP, a tandem-PDZ-domain protein, stabilizes BACH1 by disassembling the Skp1-Cullin1-FBXO22 (SCFFBXO22)-BACH1 complex via a heme/heme-oxygenase-1-independent manner in TNBC cells. Our data revealed that SDCBP and BACH1 expression show a significant positive correlation in TNBC cells and TNBC patients tumor tissues. Mechanistically, SDCBP via its PDZ1 domain disassembles the SCFFBXO22-BACH1 complex via its PDZ1 domain, thereby preventing BACH1 K48-linked polyubiquitination and proteasomal degradation. Knocking down SDCBP induces BACH1 degradation and downregulates expressions of BACH1-induced metastatic genes, thereby suppressing tumor progression in mice bearing TNBC tumors. Moreover, depleting SDCBP leads to upregulation of BACH1-repressed electron transport chain (ETC) genes, such as NDUFA4 and COX6B2, and increases mitochondrial activity, enhancing anti-tumor efficacy of metformin against TNBC both in vitro and in vivo. These data demonstrate a novel alternative mechanism for BACH1 stabilization mediated by SDCBP, implicating the SDCBP-BACH1 axis as a potential target for enhancing ETC inhibitor efficacy in TNBC combinational therapy.
Collapse
Affiliation(s)
- Phi-Long Tran
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Okhwa Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Four), Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Hyo-Jin Kim
- Division of Applied Life Science (BK21 Four), Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
3
|
Lu XF, Zhang HW, Chang X, Guo YZ. F-box protein 22: A prognostic biomarker for colon cancer associated with immune infiltration and chemotherapy resistance. World J Gastrointest Oncol 2025; 17:102913. [PMID: 40235877 PMCID: PMC11995338 DOI: 10.4251/wjgo.v17.i4.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Colon cancer represents a significant malignant neoplasm within the digestive system, characterized by a high incidence rate and substantial disease burden. The F-box protein 22 (FBXO22) plays a role in forming a specific type of ubiquitin ligase subunit, which is expressed abnormally in various malignant neoplasms and shows a notable relationship with prognosis in patients with cancer. Nevertheless, the function of FBXO22 in the context of colon cancer remains inadequately elucidated. AIM To explore the role of FBXO22 in colon cancer by examining FBXO22 expression patterns and analyzing how the protein affects the prognosis in patients who have undergone surgery. METHODS Samples of cancerous and nearby normal tissues from patients with colon cancer were gathered, along with pertinent clinical data. Expression levels of the FBXO22 gene in both cancerous and paracancerous tissues were assessed through immunohistochemistry. The median H score served as a criterion for categorizing FBXO22 gene expression into high and low levels in cancerous tissues, and the relationship between these expression levels and various pathologic characteristics of patients, such as age, sex, and clinical stage, was analyzed. Colon cancer cell lines HCT116 and DLD-1 were used and divided into three groups: A blank control group, a negative control group, and a si-FBXO22 group. FBXO22 gene mRNA and protein expression were measured 24 hours post-transfection using real-time fluorescence quantitative polymerase chain reaction and western blotting. The proliferation capabilities of the cells in each group were assessed using the Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, while cellular migration and invasion abilities were evaluated using scratch healing and Transwell assays. Various online platforms, including the Timer Immune Estimation Resource, were used to analyze pan-cancer expression, promoter methylation levels, and mutation frequencies of the FBXO22 gene in colon cancer patients. Additionally, the correlation between FBXO22 gene expression, patient prognosis, immune cell infiltration, and the expression of immune molecules in the colon cancer microenvironment was investigated. The relationship between FBXO22 gene expression and chemotherapy resistance, along with the potential mechanisms of action of the FBXO22 gene, were analyzed using The Cancer Genome Atlas dataset and the Genomics of Drug Sensitivity in Cancer drug training set via R software. RESULTS Compared with normal colonic tissues, the FBXO22 gene was highly expressed in colon cancer tissues. Post-operative patients with colon cancer elevated FBXO22 reduced survival and exhibited resistance to various chemotherapeutic agents. FBXO22 expression suppresses the infiltration of anti-tumor immune cells. In vitro, FBXO22 knockdown inhibited the proliferation and migration of colon cancer cells. CONCLUSION The FBXO22 gene is a biomarker of poor prognosis in patients with colon cancer and has potential as a target for immunotherapy and overcoming chemotherapy resistance.
Collapse
Affiliation(s)
- Xiao-Fei Lu
- Department of Clinical Medicine, Hebei University of Engineering, Handan 056002, Hebei Province, China
| | - Hong-Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| | - Xiao Chang
- Department of Gastroenterology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| | - Yong-Ze Guo
- Department of Gastroenterology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei Province, China
| |
Collapse
|
4
|
Ashitomi H, Nakagawa T, Nakagawa M, Hosoi T. Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders. Biomedicines 2025; 13:810. [PMID: 40299365 PMCID: PMC12024872 DOI: 10.3390/biomedicines13040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Ubiquitination is a dynamic and tightly regulated post-translational modification essential for modulating protein stability, trafficking, and function to preserve cellular homeostasis. This process is orchestrated through a hierarchical enzymatic cascade involving three key enzymes: the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, and the E3 ubiquitin ligase. The final step of ubiquitination is catalyzed by the E3 ubiquitin ligase, which facilitates the transfer of ubiquitin from the E2 enzyme to the substrate, thereby dictating which proteins undergo ubiquitination. Emerging evidence underscores the critical roles of ubiquitin ligases in neurodevelopment, regulating fundamental processes such as neuronal polarization, axonal outgrowth, synaptogenesis, and synaptic function. Mutations in genes encoding ubiquitin ligases and the consequent dysregulation of these pathways have been increasingly implicated in a spectrum of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder. This review synthesizes current knowledge on the molecular mechanisms underlying neurodevelopment regulated by Cullin-RING ubiquitin ligases-the largest subclass of ubiquitin ligases-and their involvement in the pathophysiology of neurodevelopmental disorders. A deeper understanding of these mechanisms holds significant promise for informing novel therapeutic strategies, ultimately advancing clinical outcomes for individuals affected by neurodevelopmental disorders.
Collapse
Affiliation(s)
- Honoka Ashitomi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| | - Tadashi Nakagawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube 755-8505, Japan
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Ube 755-8611, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| |
Collapse
|
5
|
Hu Z, Tang M, Huang Y, Cai B, Sun X, Chen G, Huang A, Li X, Shah AR, Jiang L, Li Q, Xu X, Lu W, Mao Z, Wan X. SIRT7 facilitates endometrial cancer progression by regulating PTEN stability in an estrogen-dependent manner. Nat Commun 2025; 16:2989. [PMID: 40148340 PMCID: PMC11950185 DOI: 10.1038/s41467-025-58317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
The prognosis of metastatic endometrial carcinoma (EC), one of the most common gynecological malignancies worldwide, remains poor, and the underlying driver of metastases is poorly understood. Dysregulation in estrogen-related signaling and inactivation of tumor suppressor PTEN are two essential risk factors of EC. However, whether and how they are interconnected during EC development remains unclear. Here, we demonstrate that the deacetylase SIRT7 is upregulated in EC patients and mouse models, facilitating EC progression in vitro and in vivo. Mechanistically, in an estrogen-dependent fashion, SIRT7 mediates PTEN deacetylation at K260, promoting PTEN ubiquitination by the E3 ligase NEDD4L, accelerating PTEN degradation and, consequently, expediting EC metastasis. Additionally, SIRT7 expression strongly correlates with poor survival in EC patients with wild-type PTEN, though no significant correlation is observed in PTEN mutation patients. These results lay the foundation for the study of targeting estrogen-SIRT7-PTEN axis, to restore PTEN abundance, offering potential avenues for EC therapy.
Collapse
Affiliation(s)
- Zhiyi Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yujia Huang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bailian Cai
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ao Huang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmacy, Changsha Medical University, Changsha, China
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ab Rauf Shah
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghong Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen Lu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Zhang Y, Qing J, Li Y, Gao X, Lu D, Wang Y, Gu L, Zhang H, Li Z, Wang X, Zhou Y, Zhang P. PRMT7-Mediated PTEN Activation Enhances Bone Regeneration in Female Mice. Int J Mol Sci 2025; 26:2981. [PMID: 40243588 PMCID: PMC11988880 DOI: 10.3390/ijms26072981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Epigenetic regulation provides new insights into the mechanisms of osteogenic differentiation and identifies potential targets for treating bone-related diseases. However, the specific regulatory networks and mechanisms involved still need further investigation. In this study, we identify PRMT7 as a novel epigenetic regulator of mesenchymal stem cells (MSCs) osteogenic commitment. Conditional knockout of Prmt7 in mice reveals a significant impairment in osteogenesis and bone regeneration, specifically in females, affecting both femurs and mandibles, with no noticeable effect in males. Mechanistically, PRMT7 modulates MSCs osteogenic differentiation by activating PTEN. Specifically, PRMT7 enhances PTEN transcription by increasing H3R2me1 levels at the PTEN promoter. Additionally, PRMT7 interacts with the PTEN protein and stabilizes nuclear PTEN, revealing an unprecedented pathway. Notably, overexpression of PTEN alleviates the osteogenic deficits observed in Prmt7-deficient mice. This research establishes PRMT7 as a potential therapeutic target for promoting bone formation/regeneration and offers novel molecular insights into the PRMT7-PTEN regulatory axis, underscoring its significance in bone biology and regenerative medicine.
Collapse
Affiliation(s)
- Yingfei Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Jia Qing
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yang Li
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Xin Gao
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yiyang Wang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Lanxin Gu
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Hui Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Zechuan Li
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Xu Wang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
7
|
Wang C, Zhang G, Jiang Y, Bao G, Li C. UBE2S, downregulated by miR-152-3p, facilitates prostate cancer progression through the PTEN-mediated AKT/mTOR pathway. Hum Mol Genet 2025; 34:523-532. [PMID: 39807632 DOI: 10.1093/hmg/ddaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVES In recent years, the incidence and mortality rates of prostate cancer (PCa) have still not been significantly reduced and the mechanisms of tumor onset and progression are still not fully understood. The pathogenic mechanisms and upstream regulation of UBE2S expression in prostate cancer have not been elucidated. METHODS Here, we performed bioinformatic analysis of public databases to reveal the expression of UBE2S in PCa and its association with Gleason score, tumor staging, biochemical recurrence, and survival. Subsequently, the effect of UBE2S on the proliferation and invasive capacity of PCa cells was explored. Next, miR-152-3p was identified to bind to the 3'-UTR of UBE2S mRNA and down-regulated in PCa through luciferase reporter assays. Dual immunofluorescence assay and co-immunoprecipitation assays were performed to verify the regulatory role of UBE2S on PTEN. Finally, the molecular mechanism of UBE2S regulation of PCa progression was further confirmed by rescue experiments and in vivo nude mouse subcutaneous transplantation tumor experiments. RESULTS UBE2S expression was upregulated in PCa and correlated with patient Gleason score, TNM stage, biochemical recurrence, and disease-free survival. miR-152-3p regulated UBE2S expression in PCa by binding to the UBE2S mRNA 3'-UTR. Mechanistically, UBE2S combines with PTEN and ubiquitinates it, leading to PTEN degradation and ultimately promoting PCa progression via the AKT/mTOR signaling pathway. CONCLUSIONS UBE2S, down-regulated by miR-152-3p, plays an important role in the onset and progression of PCa through the PTEN-mediated Akt/mTOR pathway and may become a new diagnostic marker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Chunhui Wang
- Departments of Urology, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
- Urology Research Center, Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| | - Gang Zhang
- Departments of Urology, Yan Tai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Binzhou, China
| | - Ying Jiang
- Medical Reproductive Center, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| | - Guochang Bao
- Departments of Urology, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
- Urology Research Center, Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| | - Chunsheng Li
- Departments of Urology, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
- Urology Research Center, Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| |
Collapse
|
8
|
Zhang H, Lu L, Yi C, Jiang T, Lu Y, Yang X, Zhong K, Zhou J, Li J, Xie G, Chen Z, Jiang Z, Asadikaram G, Peng Y, Zhou D, Wang H. BRD4 regulates m 6A of ESPL1 mRNA via interaction with ALKBH5 to modulate breast cancer progression. Acta Pharm Sin B 2025; 15:1552-1570. [PMID: 40370540 PMCID: PMC12069253 DOI: 10.1016/j.apsb.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 05/16/2025] Open
Abstract
The interaction between m6A-methylated RNA and chromatin modification remains largely unknown. We found that targeted inhibition of bromodomain-containing protein 4 (BRD4) by siRNA or its inhibitor (JQ1) significantly decreases mRNA m6A levels and suppresses the malignancy of breast cancer (BC) cells via increased expression of demethylase AlkB homolog 5 (ALKBH5). Mechanistically, inhibition of BRD4 increases the mRNA stability of ALKBH5 via enhanced binding between its 3' untranslated regions (3'UTRs) with RNA-binding protein RALY. Further, BRD4 serves as a scaffold for ubiquitin enzymes tripartite motif containing-21 (TRIM21) and ALKBH5, resulting in the ubiquitination and degradation of ALKBH5 protein. JQ1-increased ALKBH5 then demethylates mRNA of extra spindle pole bodies like 1 (ESPL1) and reduces binding between ESPL1 mRNA and m6A reader insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3), leading to decay of ESPL1 mRNA. Animal and clinical studies confirm a critical role of BRD4/ALKBH5/ESPL1 pathway in BC progression. Further, our study sheds light on the crosstalks between histone modification and RNA methylation.
Collapse
Affiliation(s)
- Haisheng Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Linlin Lu
- Institute of Medical Sciences, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Cheng Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Yunqing Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianyuan Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ke Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiexin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoyou Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zongpei Jiang
- Department of Nephrology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Medical University Campus, Kerman 7616914115, Iran
| | - Yanxi Peng
- School of Public Health, Xiangnan University, Chenzhou 423000, China
| | - Dan Zhou
- Department of Breast Surgery, the First People's Hospital of Foshan, Foshan 528100, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery; State Key Laboratory of Anti-Infective Drug Discovery and Development; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Lei Z, Luo Y, Fu Q, Lu J, Wang C, Zhang L, Zhang Z. Ribosomal protein L6 suppresses hepatocellular carcinoma by modulating FBXO22-mediated p53 degradation. Cell Signal 2025; 127:111612. [PMID: 39842528 DOI: 10.1016/j.cellsig.2025.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The ribosomal protein L6 (RPL6) is significant in the progression of different cancer types. However, its precise role in hepatocellular carcinoma (HCC) remains unclear. This research demonstrated that the expression levels of RPL6 are notably decreased in HCC tissues. The decreased expression of RPL6 is strongly linked to tumor size, the presence of vascular invasion, and a worse prognosis. Functional experiments revealed that the expression of RPL6 impedes the proliferation of HCC cells and the advancement of xenograft tumors. Mechanistically, we found that RPL6 binds to and is degraded by the E3 ubiquitin ligase FBXO22, thereby inhibiting the polyubiquitination and subsequent degradation of p53 by FBXO22. The enhanced activity of p53 further contributes to cell growth inhibition. In contrast, the levels of p53 decreased significantly following RPL6 depletion, indicating that RPL6 is essential for the stabilization of p53. In summary, RPL6 inhibits the proliferation of HCC cells via the FBXO22/p53 signaling pathway, suggesting its potential as a biomarker and a therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhen Lei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832008, PR China
| | - Yiming Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China
| | - Junli Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China
| | - Chao Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China
| | - Long Zhang
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Afffliated to Nanchang University), Ganzhou 341000, PR China.
| | - Zhiwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
10
|
Ganesan IP, Kiyokawa H. A Perspective on Therapeutic Targeting Against Ubiquitin Ligases to Stabilize Tumor Suppressor Proteins. Cancers (Basel) 2025; 17:626. [PMID: 40002221 PMCID: PMC11853300 DOI: 10.3390/cancers17040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The loss of functions of tumor suppressor (TS) genes plays a key role in not only tumor initiation but also tumor progression leading to poor prognosis. While therapeutic inhibition of oncogene-encoded kinases has shown clinical success, restoring TS functions remains challenging due to conceptual and technical limitations. E3 ubiquitin ligases that ubiquitinate TS proteins for accelerated degradation in cancers emerge as promising therapeutic targets. Unlike proteasomal inhibitors with a broad spectrum, inhibitors of an E3 ligase would offer superior selectivity and efficacy in enhancing expression of its substrate TS proteins as far as the TS proteins retain wild-type structures. Recent advances in developing E3 inhibitors, including MDM2 inhibitors, highlight their potential and ultimately guide the framework to establish E3 inhibition as effective strategies to treat specific types of cancers. This review explores E3 ligases that negatively regulate bona fide TS proteins, the developmental status of E3 inhibitors, and their promise and pitfalls as therapeutic agents for anti-cancer precision medicine.
Collapse
Affiliation(s)
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
11
|
Wang J, Yang R, Wang F, Zhang J, Dong Y, Wang J, Yu M, Xu Y, Liu L, Cheng Y, Zhang C, Yang Y, Yang W, Wang J, Chen G, Huang Y, Tian Y, Jian R, Ni B, Wu W, Ruan Y. CRISPR-Cas9 screening identifies the role of FER as a tumor suppressor. J Pathol 2025; 265:158-171. [PMID: 39648412 DOI: 10.1002/path.6374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 12/10/2024]
Abstract
It is important to systematically identify tumor suppressor genes (TSGs) to improve our understanding of tumorigenesis and develop strategies for early diagnosis and mitigating disease progression. In the present study, we used an in vivo genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) screen and identified FPS/FES-related (FER) as a TSG. Single-cell RNA sequencing (scRNA-seq) revealed that normal cells with low FER expression exhibited elevated malignant transformation potential and stemness properties. FER knockout promoted the tumorigenic transformation, characterized by high colony-forming efficiency and suspension growth ability, acquired tumorigenicity in vivo, increased metabolic activity, dedifferentiation properties, and immune evasion. Moreover, analysis revealed that low FER expression tumors share molecular phenotypes with FER knockout cells, suggesting the consistent role of FER in tumor initiation and progression. Taken together, our findings not only provide insights into the essential role of FER as a tumor suppressor in tumor initiation and progression but also highlight its potential as a target for future clinical diagnosis. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jiaqi Wang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Ran Yang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- Department of Pathophysiology, College of High Altitude Military Medicine, Chongqing, PR China
| | - Fengsheng Wang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Junlei Zhang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Yutong Dong
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- Army Health Service Training Base, Chongqing, PR China
| | - Jiangjun Wang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- Clinical Laboratory and Department of Pathology, The 72nd Army Hospital of the People's Liberation Army, Zhejiang, PR China
| | - Meng Yu
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- 927th Hospital of Joint Logistics Support Force, Yunnan, PR China
| | - Yixiao Xu
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- The 83rd Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China
| | - Lianlian Liu
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Yuda Cheng
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Chen Zhang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Yi Yang
- Army Medical University, Chongqing, PR China
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Chongqing, PR China
| | - Wubin Yang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- Department of Pathophysiology, College of High Altitude Military Medicine, Chongqing, PR China
| | - Jiali Wang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Guangxing Chen
- Army Medical University, Chongqing, PR China
- Department of Joint Surgery, The First Affiliated Hospital, Chongqing, PR China
| | - Yi Huang
- Army Medical University, Chongqing, PR China
- Biomedical Analysis Center, Chongqing, PR China
| | - Yanping Tian
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Rui Jian
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Bing Ni
- Army Medical University, Chongqing, PR China
- Department of Pathophysiology, College of High Altitude Military Medicine, Chongqing, PR China
| | - Wei Wu
- Army Medical University, Chongqing, PR China
- Thoracic Surgery Department, Southwest Hospital, The First Affiliated Hospital, Chongqing, PR China
| | - Yan Ruan
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| |
Collapse
|
12
|
Lei Z, Luo Y, Lu J, Fu Q, Wang C, Chen Q, Zhang Z, Zhang L. FBXO22 promotes HCC angiogenesis and metastasis via RPS5/AKT/HIF-1α/VEGF-A signaling axis. Cancer Gene Ther 2025; 32:198-213. [PMID: 39809956 PMCID: PMC11839479 DOI: 10.1038/s41417-024-00861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
The gene F-box only protein 22 (FBXO22) has been discovered to promote the development of liver cancer tumors. Nevertheless, there remains considerable ambiguity regarding the involvement of FBXO22 in the processes of angiogenesis and metastasis in hepatocellular carcinoma (HCC). Our study has confirmed a significant upregulation of FBXO22 expression in both HCC samples and cellular models. The increased level of FBXO22 correlates strongly with the number of tumors, presence of vascular invasion, and poor prognosis. Experimental investigations have shown that FBXO22 significantly enhances angiogenesis and metastasis of HCC both in vitro and in vivo. Mechanistically, FBXO22 interacts with and ubiquitinates 40S ribosomal protein S5 (RPS5) on Lys85, thereby promoting its K48-linked ubiquitin-mediated degradation in the cytoplasm. Following a decrease in the expression of RPS5, activation of downstream PI3K/AKT signaling pathway occurs, leading to elevated levels of HIF-1α and vascular endothelial growth factor A (VEGF-A). Our study has shown that FBXO22 facilitates HCC angiogenesis and metastasis via the RPS5/AKT/HIF-1α/VEGF-A signaling axis. Notably, inhibition of FBXO22 enhances the efficacy of Lenvatinib both in vitro and in vivo. Therefore, FBXO22 may present itself as a potential target for therapeutic intervention in the treatment of HCC.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/blood supply
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/blood supply
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- F-Box Proteins/metabolism
- F-Box Proteins/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Signal Transduction
- Mice
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Neoplasm Metastasis
- Cell Line, Tumor
- Male
- Mice, Nude
- Female
- Gene Expression Regulation, Neoplastic
- Angiogenesis
- Receptors, Cytoplasmic and Nuclear
Collapse
Affiliation(s)
- Zhen Lei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Yiming Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Junli Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Chao Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Qian Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Zhiwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Long Zhang
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, People's Republic of China.
| |
Collapse
|
13
|
Wang W, Liu X, Zhao L, Jiang K, Yu Z, Yang R, Zhou W, Cui J, Liang T. FBXW7 in gastrointestinal cancers: from molecular mechanisms to therapeutic prospects. Front Pharmacol 2024; 15:1505027. [PMID: 39749199 PMCID: PMC11694028 DOI: 10.3389/fphar.2024.1505027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
F-box and WD repeat domain-containing 7 (FBXW7), formerly known as hCdc4, hAGO Fbw7, or SEL10, plays a specific recognition function in SCF-type E3 ubiquitin ligases. FBXW7 is a well-established cancer suppressor gene that specifically controls proteasomal degradation and destruction of many key oncogenic substrates. The FBXW7 gene is frequently abnormal in human malignancies especially in gastrointestinal cancers. Accumulating evidence reveals that mutations and deletions of FBXW7 are participating in the occurrence, progression and treatment resistance of human gastrointestinal cancers. Considering the current therapeutic challenges faced by gastrointestinal cancers, elucidating the biological function and molecular mechanism of FBXW7 can provide new perspectives and references for future personalized treatment strategies. In this review, we elucidate the key molecular mechanisms by which FBXW7 and its substrates are involved in gastrointestinal cancers. Furthermore, we discuss the consequences of FBXW7 loss or dysfunction in tumor progression and underscore its potential as a prognostic and therapeutic biomarker. Lastly, we propose potential therapeutic strategies targeting FBXW7 to guide the precision treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Basu AA, Zhang C, Riha IA, Magassa A, Campos MA, Caldwell AG, Ko F, Zhang X. A CRISPR activation screen identifies FBXO22 supporting targeted protein degradation. Nat Chem Biol 2024; 20:1608-1616. [PMID: 38965383 PMCID: PMC11581908 DOI: 10.1038/s41589-024-01655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/26/2024] [Indexed: 07/06/2024]
Abstract
Targeted protein degradation (TPD) represents a potent chemical biology paradigm that leverages the cellular degradation machinery to pharmacologically eliminate specific proteins of interest. Although multiple E3 ligases have been discovered to facilitate TPD, there exists a compelling requirement to diversify the pool of E3 ligases available for such applications. Here we describe a clustered regularly interspaced short palindromic repeats (CRISPR)-based transcriptional activation screen focused on human E3 ligases, with the goal of identifying E3 ligases that can facilitate heterobifunctional compound-mediated target degradation. Through this approach, we identified a candidate proteolysis-targeting chimera (PROTAC), 22-SLF, that induces the degradation of FK506-binding protein 12 when the transcription of FBXO22 gene is activated. Subsequent mechanistic investigations revealed that 22-SLF interacts with C227 and/or C228 in F-box protein 22 (FBXO22) to achieve target degradation. Lastly, we demonstrated the versatility of FBXO22-based PROTACs by effectively degrading additional endogenous proteins, including bromodomain-containing protein 4 and the echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion protein.
Collapse
Affiliation(s)
- Ananya A Basu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Chenlu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Isabella A Riha
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Assa Magassa
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Miguel A Campos
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Alana G Caldwell
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Felicia Ko
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Center for Human Immunobiology, Northwestern University, Chicago, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
15
|
Nie DY, Tabor JR, Li J, Kutera M, St-Germain J, Hanley RP, Wolf E, Paulakonis E, Kenney TMG, Duan S, Shrestha S, Owens DDG, Maitland MER, Pon A, Szewczyk M, Lamberto AJ, Menes M, Li F, Penn LZ, Barsyte-Lovejoy D, Brown NG, Barsotti AM, Stamford AW, Collins JL, Wilson DJ, Raught B, Licht JD, James LI, Arrowsmith CH. Recruitment of FBXO22 for targeted degradation of NSD2. Nat Chem Biol 2024; 20:1597-1607. [PMID: 38965384 PMCID: PMC11581931 DOI: 10.1038/s41589-024-01660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain-of-function mutation p.E1099K, resulting in growth suppression, apoptosis and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 to recruit the SCFFBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCFFBXO22. Overall, we present a potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a new FBXO22-recruitment strategy for TPD.
Collapse
Affiliation(s)
- David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John R Tabor
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jianping Li
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Kutera
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ronan P Hanley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- C4 Therapeutics, Watertown, MA, USA
| | - Esther Wolf
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Ethan Paulakonis
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Tristan M G Kenney
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shili Duan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Suman Shrestha
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dominic D G Owens
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Amphista Therapeutics, Cambridge, UK
| | | | - Ailing Pon
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael Menes
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas G Brown
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony M Barsotti
- Deerfield Discovery and Development, Deerfield Management, New York, NY, USA
| | - Andrew W Stamford
- Deerfield Discovery and Development, Deerfield Management, New York, NY, USA
| | - Jon L Collins
- Office of the Vice Chancellor for Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan D Licht
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Li M, Chen X, Qu P, Shao Z, Shi L, Quan H, Zhao X, Xu J, Shi L, Chen S, Zheng J, Pan ZQ, Bai J. FBXO22 inhibits colitis and colorectal carcinogenesis by regulating the degradation of the S2448-phosphorylated form of mTOR. Proc Natl Acad Sci U S A 2024; 121:e2402035121. [PMID: 39485803 PMCID: PMC11551398 DOI: 10.1073/pnas.2402035121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a considerable threat to human health with a significant risk for colorectal cancer (CRC). However, currently, both the molecular pathogenesis and therapeutic treatment of IBD remain limited. In this report, using both systemic and intestinal epithelium-specific gene knockout mouse models, we demonstrate that FBXO22, a substrate receptor within the SKP1-Cullin 1-F-box family of E3 ubiquitin ligases, plays an inhibitory role in the Azoxymethane/Dextran Sodium Sulfate-induced colorectal inflammatory responses and CRC. FBXO22 targets the serine 2448-phosphorylated form of mammalian mechanistic target of rapamycin (pS2448-mTOR) for ubiquitin-dependent degradation. This proteolytic targeting effect is established based on multiple lines of evidence including the results of colon tissue immunoblots, analysis of cultured cells with altered abundance of FBXO22 by depletion or overexpression, comparison of protein decay rate, effects on mTOR substrates S6K1 and 4E-BP1, analysis of protein-protein interactions, phosphor-peptide binding and competition, as well as reconstituted and cellular ubiquitination. Finally, we have shown that mTOR inhibitor rapamycin (RAPA) was able to alleviate the effects of fbxo22 deletion on colorectal inflammatory response and CRC. These RAPA effects are correlated with the ability of RAPA to inhibit pS2448-mTOR, pS6K1, and p4E-BP1. Collectively, our data support a suppressive role for FBXO22 in colorectal inflammation signaling and CRC initiation by targeting pS2448-mTOR for degradation.
Collapse
Affiliation(s)
- Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Xuan Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Pengfei Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Lei Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Haoyu Quan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Xue Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Jian Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Luling Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing211166, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY10029-6574
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| |
Collapse
|
17
|
Wu Z, Xie L, Yuan P, Chu Y, Peng H. WDR68 stimulates cellular proliferation via activating ribosome biogenesis in 293T cells. Neoplasia 2024; 56:101033. [PMID: 39067242 PMCID: PMC11372390 DOI: 10.1016/j.neo.2024.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
WDR68, a conserved WD40 repeat-containing protein, interacts with E1A and is involved in the E1A-induced cell proliferation and oncogenic transformation, but the intrinsic molecular mechanisms of this process remain to be elucidated. Here, we demonstrate that WDR68 promotes the proliferation of 293T cells by interacting with a series of ribosome biogenesis-regulating proteins. Gene Set Enrichment Analysis (GSEA) of RNA-seq data also revealed that the ribosome biogenesis-associated gene signatures could be the most significantly enriched in the WDR68 expression groups. In accordance, 293T cells are more sensitive to the ribosome biogenesis inhibitors than 293 cells. Taken together, our results indicated that WDR68 could promote cell proliferation through the activation of ribosome biogenesis in the 293T cell context. This provides new insights into the understanding of the function of WDR68 and the molecular characterisation of 293T tool cells.
Collapse
Affiliation(s)
- Zhaoxia Wu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Lanfeng Xie
- Department of Infectious Disease, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ping Yuan
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yimin Chu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Haixia Peng
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
18
|
Zhao L, An Y, Zhao N, Gao H, Zhang W, Gong Z, Liu X, Zhao B, Liang Z, Tang C, Zhang L, Zhang Y, Zhao Q. Spatially resolved profiling of protein conformation and interactions by biocompatible chemical cross-linking in living cells. Nat Commun 2024; 15:8331. [PMID: 39333085 PMCID: PMC11436894 DOI: 10.1038/s41467-024-52558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Unlocking the intricacies of protein structures and interactions within the dynamic landscape of subcellular organelles presents a significant challenge. To address this, we introduce SPACX, a method for spatially resolved protein complex profiling via biocompatible chemical cross(x)-linking with subcellular isolation, designed to monitor protein conformation, interactions, and translocation in living cells. By rapidly capturing protein complexes in their native physiological state and efficiently enriching cross-linked peptides, SPACX allows comprehensive analysis of the protein interactome within living cells. Leveraging structure refinement with cross-linking restraints, we identify subcellular-specific conformation heterogeneity of PTEN, revealing dynamic differences in its dual specificity domains between the nucleus and cytoplasm. Furthermore, by discerning conformational disparities, we identify 83 cytoplasm-exclusive and 109 nucleus-exclusive PTEN-interacting proteins, each associated with distinct biological functions. Upon induction of ubiquitin-proteasome system stress, we observe dynamic alterations in PTEN assembly and its interacting partners during translocation. These changes, including the identification of components and interaction sites, are characterized using the SPACX approach. Notably, SPACX enables identification of unique interacting proteins specific to PTEN isoforms, including PTEN and PTEN-Long, through the determination of sequence-specific cross-linking interfaces. These findings underscore the potential of SPACX to elucidate the functional diversity of proteins within distinct subcellular sociology.
Collapse
Affiliation(s)
- Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Beijing, China
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| |
Collapse
|
19
|
Zhou Y, Feng W, Yang C, Wei X, Fan L, Wu Y, Gao X, Shen X, Zhang Z, Zhao J. E3 ubiquitin ligase FBXO22 inhibits SARS-CoV-2 replication via promoting proteasome-dependent degradation of NSP5. J Med Virol 2024; 96:e29891. [PMID: 39223933 DOI: 10.1002/jmv.29891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The ubiquitin-proteasome system is frequently employed to degrade viral proteins, thereby inhibiting viral replication and pathogenicity. Through an analysis of the degradation kinetics of all the SARS-CoV-2 proteins, our study revealed rapid degradation of several proteins, particularly NSP5. Additionally, we identified FBXO22, an E3 ubiquitin ligase, as the primary regulator of NSP5 ubiquitination. Moreover, we validated the interaction between FBXO22 and NSP5, demonstrating that FBXO22-mediated ubiquitination of NSP5 facilitated its recognition by the proteasome, leading to subsequent degradation. Specifically, FBXO22 catalyzed the formation of K48-linked polyubiquitin chains on NSP5 at lysine residues 5 and 90. Knockdown of FBXO22 resulted in decreased NSP5 ubiquitination levels, increased stability, and enhanced ability to evade the host innate immune response. Notably, the protein level of FBXO22 were negatively correlated with SARS-CoV-2 load, highlighting its importance in inhibiting viral replication. This study elucidates the molecular mechanism by which FBXO22 mediates the degradation of NSP5 and underscores its critical role in limiting viral replication. The identification of FBXO22 as a regulator of NSP5 stability provides new insights and potential avenues for targeting NSP5 in antiviral strategies.
Collapse
Affiliation(s)
- Yuzheng Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wei Feng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chuwei Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lujie Fan
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yezi Wu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaotong Shen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Juanjuan Zhao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
20
|
Zhang H, Bai Y, Li J, Chen T, Shang G. FBXO22 promotes osteosarcoma progression via regulation of FOXO1 for ubiquitination and degradation. J Cell Mol Med 2024; 28:e70021. [PMID: 39153212 PMCID: PMC11330286 DOI: 10.1111/jcmm.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Accumulating evidence has demonstrated that F-box protein 22 (FBXO22) participates in tumour development and progression in various types of human malignancies. However, the functions and detailed molecular mechanisms of FBXO22 in osteosarcoma tumorigenesis and progression remain elusive. In this study, we aimed to determine the effects of FBXO22 on the cell proliferation, migration and invasion of osteosarcoma cells using cell counting kit-8 and Matrigel Transwell approaches. Moreover, we explored the molecular mechanisms by which FBXO22 mediated oncogenesis and progression in osteosarcoma via Western blotting, immunoprecipitation and ubiquitination. We found that FBXO22 depletion inhibited the proliferation, migration and invasion of osteosarcoma cells, whereas FBXO22 overexpression increased the proliferation and motility of osteosarcoma cells. Mechanistically, FBXO22 promoted the ubiquitination and degradation of FoxO1 in osteosarcoma cells. FBXO22 depletion reduced cell proliferation and motility via regulation of FoxO1. Taken together, our findings provide new insight into FBXO22-induced osteosarcoma tumorigenesis. The inhibition of FBXO22 could be a promising strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- He Zhang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yang Bai
- Department of NursingShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiatong Li
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ting Chen
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanning Shang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
21
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
22
|
Li X, He W, Chen X, Zhang Y, Zhang J, Liu F, Li J, Zhao D, Xia P, Ma W, Wu T, Wang H, Yuan Y. TRIM45 facilitates NASH-progressed HCC by promoting fatty acid synthesis via catalyzing FABP5 ubiquitylation. Oncogene 2024; 43:2063-2077. [PMID: 38755308 DOI: 10.1038/s41388-024-03056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is rapidly surpassing viral hepatitis as the primary cause of hepatocellular carcinoma (HCC). However, understanding of NASH-progressed HCC remains poor, which might impede HCC diagnosis and therapy. In this study, we aim to identify shared transcriptional changes between NASH and HCC, of which we focused on E3 ligase TRIM45. We found TRIM45 exacerbates HCC cells proliferation and metastasis in vitro and in vivo. Further transcriptome analysis revealed TRIM45 predominantly affects fatty acid metabolism and oleic acid restored impaired proliferation and metastasis of TRIM45-deficient HCC cells. IP-tandem mass spectrum and FABP5 depriving experiment indicated that TRIM45 enhance fatty acid synthesis depending on FABP5 presence. Interestingly, we found TRIM45 directly added K33-type and K63-type poly-ubiquitin chains to FABP5 NLS domain, which ultimately promoted FABP5 nuclear translocation. Nuclear FABP5 interacted with PPARγ to facilitate downstream lipid synthesis gene expression. We observed TRIM45 accelerated NASH-to-HCC transition and exacerbated both NASH and NASH-HCC with the enhanced fatty acid production in vivo. Moreover, high concentration of fatty acid increased TRIM45 expression. The established mechanism was substantiated by gene expression correlation in TCGA-LIHC. Collectively, our research revealed a common lipid reprograming process in NASH and HCC and identified the cyclical amplification of the TRIM45-FABP5-PPARγ-fatty acid axis. This signaling pathway offers potential therapeutic targets for therapeutic intervention in NASH and NASH-progressed HCC.
Collapse
Affiliation(s)
- Xiaomian Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Wenzhi He
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Yangwenqing Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Jia Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Fusheng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Jinghua Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Dongli Zhao
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Peng Xia
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Tiangen Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China.
| | - Haitao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
23
|
Xin B, Chen H, Zhu Z, Guan Q, Bai G, Yang C, Zou W, Gao X, Li L, Liu T. FBXO22 is a potential therapeutic target for recurrent chondrosarcoma. J Bone Oncol 2024; 46:100605. [PMID: 38742151 PMCID: PMC11089373 DOI: 10.1016/j.jbo.2024.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Chondrosarcoma (CHS) is a malignant bone tumor with insensitivity to both radiotherapy and chemotherapy, and a high recurrence rate. However, the latent mechanism of recurrent CHS (Re-CHS) remains elusive. Here, we discovered that FBXO22 was highly expressed in clinical samples of Re-CHS. FBXO22 played a significant role in various cancers. However, the role of FBXO22 in Re-CHS remained unclear. Our research demonstrated that suppressing FBXO22 abated the proliferation and migration of CHS cells and facilitated their apoptosis. In addition, suppressing FBXO22 raised the expression of PD-L1 in Re-CHS. All these findings provide new evidence for using FBXO22 and PD-L1 as combined targets to prevent and treat Re-CHS, which may prove to be a novel strategy for immunotherapy of CHS, especially Re-CHS.
Collapse
Affiliation(s)
- Baoquan Xin
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200003, China
| | - Hui Chen
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhi Zhu
- Department of Pathology, Changzheng Hospital, Navy Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Qiujing Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guangjian Bai
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200003, China
| | - Cheng Yang
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - WeiWei Zou
- Department of Medical Imaging, Changzheng Hospital, Navy Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Xin Gao
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Lei Li
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200241, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tielong Liu
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| |
Collapse
|
24
|
Xie W, Wang J, Tian S, Zhao H, Cao L, Liang Z, Yang J, Zhao Y, Wang B, Jiang F, Ma J. RNF126-mediated ubiquitination of FSP1 affects its subcellular localization and ferroptosis. Oncogene 2024; 43:1463-1475. [PMID: 38514855 DOI: 10.1038/s41388-024-02949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/23/2024]
Abstract
Medulloblastoma (MB) is a prevalent malignant brain tumor among children, which can be classified into four primary molecular subgroups. Group 3 MB (G3-MB) is known to be highly aggressive and associated with a poor prognosis, necessitating the development of novel and effective therapeutic interventions. Ferroptosis, a regulated form of cell death induced by lipid peroxidation, has been identified as a natural tumor suppression mechanism in various cancers. Nevertheless, the potential role of ferroptosis in the treatment of G3-MB remains unexplored. In this study, we demonstrate that RNF126 acts as an anti-ferroptotic gene by interacting with ferroptosis suppressor protein 1 (FSP1, also known as AIFM2) and ubiquitinating FSP1 at the 4KR-2 sites. Additionally, the deletion of RNF126 reduces the subcellular localization of FSP1 in the plasma membrane, resulting in an increase in the CoQ/CoQH2 ratio in G3-MB. The RNF126-FSP1-CoQ10 pathway plays a pivotal role in suppressing phospholipid peroxidation and ferroptosis both in vivo and in vitro. Clinically, RNF126 exhibited elevated expression in G3-MB and its overexpression was significantly associated with reduced patient survival. Our findings indicate that RNF126 regulates G3-MB sensitivity to ferroptosis by ubiquitinating FSP1, which provides new evidence for the potential G3-MB therapy.
Collapse
Affiliation(s)
- Wanqun Xie
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuaiwei Tian
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Zhao
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangliang Cao
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuangzhuang Liang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhao
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baocheng Wang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jiang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Zhou P, Meng X, Nie Z, Wang H, Wang K, Du A, Lei Y. PTEN: an emerging target in rheumatoid arthritis? Cell Commun Signal 2024; 22:246. [PMID: 38671436 PMCID: PMC11046879 DOI: 10.1186/s12964-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a critical tumor suppressor protein that regulates various biological processes such as cell proliferation, apoptosis, and inflammatory responses by controlling the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PI3K/AKT) signaling pathway. PTEN plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Loss of PTEN may contribute to survival, proliferation, and pro-inflammatory cytokine release of fibroblast-like synoviocytes (FLS). Also, persistent PI3K signaling increases myeloid cells' osteoclastic potential, enhancing localized bone destruction. Recent studies have shown that the expression of PTEN protein in the synovial lining of RA patients with aggressive FLS is minimal. Experimental upregulation of PTEN protein expression could reduce the damage caused by RA. Nonetheless, a complete comprehension of aberrant PTEN drives RA progression and its interactions with other crucial molecules remains elusive. This review is dedicated to promoting a thorough understanding of the signaling mechanisms of aberrant PTEN in RA and aims to furnish pertinent theoretical support for forthcoming endeavors in both basic and clinical research within this domain.
Collapse
Affiliation(s)
- Pan Zhou
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Xingwen Meng
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Zhimin Nie
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Hua Wang
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China
| | - Kaijun Wang
- Nanjing Tongshifeng Hospital, Nanjing, Jiangsu Province, China
| | - Aihua Du
- Zhengzhou Gout and Rheumatology Hospital, Zhengzhou, Henan Province, China
| | - Yu Lei
- Chengdu Rheumatology Hospital, Chengdu, Sichuan Province, China.
| |
Collapse
|
26
|
Shen Z, Dong T, Yong H, Deng C, Chen C, Chen X, Chen M, Chu S, Zheng J, Li Z, Bai J. FBXO22 promotes glioblastoma malignant progression by mediating VHL ubiquitination and degradation. Cell Death Discov 2024; 10:151. [PMID: 38519492 PMCID: PMC10959977 DOI: 10.1038/s41420-024-01919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor. Despite comprehensive treatment with traditional surgery, radiotherapy, and chemotherapy, the median survival rate is <14.6% and the 5-year survival rate is only 5%. FBXO22, a substrate receptor of the SCF ubiquitin ligases, has been reported to play a promoting role in melanoma, liver cancer, cervical cancer, and other cancers. However, the function of FBXO22 in GBM has not been reported. In the present study, we demonstrate that FBXO22 is highly expressed in glioma and is positively correlated with worse pathological features and shorter survival of GBM patients. We revealed that FBXO22 promotes GBM cell proliferation, angiogenesis, migration, and tumorigenesis in vitro and in vivo. In terms of mechanism, we reveal that FBXO22 decreases VHL expression by directly mediating VHL ubiquitination degradation, which ultimately increases HIF-1α and VEGFA expression. In addition, our data confirm that there are positive correlations among FBXO22, HIF-1α, and VEGFA expression, and there is a negative correlation between FBXO22 and VHL protein expression in glioma patients. Our study strongly indicates that FBXO22 is a promising diagnostic marker and therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Zhigang Shen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Dong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Chuyin Deng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Changxiu Chen
- Department of Pediatrics, the Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miaolei Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Laboratory of Tumor Epigenetics, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
27
|
Cui Z, Cong M, Yin S, Li Y, Ye Y, Liu X, Tang J. Role of protein degradation systems in colorectal cancer. Cell Death Discov 2024; 10:141. [PMID: 38485957 PMCID: PMC10940631 DOI: 10.1038/s41420-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/18/2024] Open
Abstract
Protein degradation is essential for maintaining protein homeostasis. The ubiquitin‒proteasome system (UPS) and autophagy-lysosome system are the two primary pathways responsible for protein degradation and directly related to cell survival. In malignant tumors, the UPS plays a critical role in managing the excessive protein load caused by cancer cells hyperproliferation. In this review, we provide a comprehensive overview of the dual roles played by the UPS and autolysosome system in colorectal cancer (CRC), elucidating their impact on the initiation and progression of this disease while also highlighting their compensatory relationship. Simultaneously targeting both protein degradation pathways offers new promise for enhancing treatment efficacy against CRC. Additionally, apoptosis is closely linked to ubiquitination and autophagy, and caspases degrade proteins. A thorough comprehension of the interplay between various protein degradation pathways is highly important for clarifying the mechanism underlying the onset and progression of CRC.
Collapse
Affiliation(s)
- Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, 024000, China
| | - Yuqi Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Yuguang Ye
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Liu
- Cardiovascular Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, China.
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
28
|
Li T, Huang M, Sun N, Hua X, Chen R, Xie Q, Huang S, Du M, Zhao Y, Lin Q, Xu J, Han X, Zhao Y, Tian Z, Zhang Y, Chen W, Shen X, Huang C. Tumorigenesis of basal muscle invasive bladder cancer was mediated by PTEN protein degradation resulting from SNHG1 upregulation. J Exp Clin Cancer Res 2024; 43:50. [PMID: 38365726 PMCID: PMC10874020 DOI: 10.1186/s13046-024-02966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Phosphatase and tensin homolog deleted on chromosome ten (PTEN) serves as a powerful tumor suppressor, and has been found to be downregulated in human bladder cancer (BC) tissues. Despite this observation, the mechanisms contributing to PTEN's downregulation have remained elusive. METHODS We established targeted genes' knockdown or overexpressed cell lines to explore the mechanism how it drove the malignant transformation of urothelial cells or promoted anchorageindependent growth of human basal muscle invasive BC (BMIBC) cells. The mice model was used to validate the conclusion in vivo. The important findings were also extended to human studies. RESULTS In this study, we discovered that mice exposed to N-butyl-N-(4-hydroxybu-tyl)nitrosamine (BBN), a specific bladder chemical carcinogen, exhibited primary BMIBC accompanied by a pronounced reduction in PTEN protein expression in vivo. Utilizing a lncRNA deep sequencing high-throughput platform, along with gain- and loss-of-function analyses, we identified small nucleolar RNA host gene 1 (SNHG1) as a critical lncRNA that might drive the formation of primary BMIBCs in BBN-treated mice. Cell culture results further demonstrated that BBN exposure significantly induced SNHG1 in normal human bladder urothelial cell UROtsa. Notably, the ectopic expression of SNHG1 alone was sufficient to induce malignant transformation in human urothelial cells, while SNHG1 knockdown effectively inhibited anchorage-independent growth of human BMIBCs. Our detailed investigation revealed that SNHG1 overexpression led to PTEN protein degradation through its direct interaction with HUR. This interaction reduced HUR binding to ubiquitin-specific peptidase 8 (USP8) mRNA, causing degradation of USP8 mRNA and a subsequent decrease in USP8 protein expression. The downregulation of USP8, in turn, increased PTEN polyubiquitination and degradation, culminating in cell malignant transformation and BMIBC anchorageindependent growth. In vivo studies confirmed the downregulation of PTEN and USP8, as well as their positive correlations in both BBN-treated mouse bladder urothelium and tumor tissues of bladder cancer in nude mice. CONCLUSIONS Our findings, for the first time, demonstrate that overexpressed SNHG1 competes with USP8 for binding to HUR. This competition attenuates USP8 mRNA stability and protein expression, leading to PTEN protein degradation, consequently, this process drives urothelial cell malignant transformation and fosters BMIBC growth and primary BMIBC formation.
Collapse
Affiliation(s)
- Tengda Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Maowen Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruifan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shirui Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mengxiang Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yazhen Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoyun Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
29
|
Ge MK, Zhang C, Zhang N, He P, Cai HY, Li S, Wu S, Chu XL, Zhang YX, Ma HM, Xia L, Yang S, Yu JX, Yao SY, Zhou XL, Su B, Chen GQ, Shen SM. The tRNA-GCN2-FBXO22-axis-mediated mTOR ubiquitination senses amino acid insufficiency. Cell Metab 2023; 35:2216-2230.e8. [PMID: 37979583 DOI: 10.1016/j.cmet.2023.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) monitors cellular amino acid changes for function, but the molecular mediators of this process remain to be fully defined. Here, we report that depletion of cellular amino acids, either alone or in combination, leads to the ubiquitination of mTOR, which inhibits mTORC1 kinase activity by preventing substrate recruitment. Mechanistically, amino acid depletion causes accumulation of uncharged tRNAs, thereby stimulating GCN2 to phosphorylate FBXO22, which in turn accrues in the cytoplasm and ubiquitinates mTOR at Lys2066 in a K27-linked manner. Accordingly, mutation of mTOR Lys2066 abolished mTOR ubiquitination in response to amino acid depletion, rendering mTOR insensitive to amino acid starvation both in vitro and in vivo. Collectively, these data reveal a novel mechanism of amino acid sensing by mTORC1 via a previously unknown GCN2-FBXO22-mTOR pathway that is uniquely controlled by uncharged tRNAs.
Collapse
Affiliation(s)
- Meng-Kai Ge
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Cheng Zhang
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Ping He
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Hai-Yan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Song Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, SJTU-SM, Shanghai 200025, China
| | - Shuai Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Xi-Li Chu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Yu-Xue Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Hong-Ming Ma
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Li Xia
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shuo Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Jian-Xiu Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shi-Ying Yao
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, SJTU-SM, Shanghai 200025, China.
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Hainan Academy of Medical Sciences, Hainan Medical University, Hainan 571199, China.
| | - Shao-Ming Shen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China.
| |
Collapse
|
30
|
Coxon M, Dennis MA, Dananberg A, Collins C, Wilson H, Meekma J, Savenkova M, Ng D, Osbron C, Mertz T, Goodman A, Duttke S, Maciejowski J, Roberts S. An impaired ubiquitin-proteasome system increases APOBEC3A abundance. NAR Cancer 2023; 5:zcad058. [PMID: 38155930 PMCID: PMC10753533 DOI: 10.1093/narcan/zcad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Apolipoprotein B messenger RNA (mRNA) editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases cause genetic instability during cancer development. Elevated APOBEC3A (A3A) levels result in APOBEC signature mutations; however, mechanisms regulating A3A abundance in breast cancer are unknown. Here, we show that dysregulating the ubiquitin-proteasome system with proteasome inhibitors, including Food and Drug Administration-approved anticancer drugs, increased A3A abundance in breast cancer and multiple myeloma cell lines. Unexpectedly, elevated A3A occurs via an ∼100-fold increase in A3A mRNA levels, indicating that proteasome inhibition triggers a transcriptional response as opposed to or in addition to blocking A3A degradation. This transcriptional regulation is mediated in part through FBXO22, a protein that functions in SKP1-cullin-F-box ubiquitin ligase complexes and becomes dysregulated during carcinogenesis. Proteasome inhibitors increased cellular cytidine deaminase activity, decreased cellular proliferation and increased genomic DNA damage in an A3A-dependent manner. Our findings suggest that proteasome dysfunction, either acquired during cancer development or induced therapeutically, could increase A3A-induced genetic heterogeneity and thereby influence therapeutic responses in patients.
Collapse
Affiliation(s)
- Margo Coxon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Madeline A Dennis
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher D Collins
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Hannah E Wilson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Jordyn Meekma
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Marina I Savenkova
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Daniel Ng
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Chelsea A Osbron
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Tony M Mertz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Alan G Goodman
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
31
|
Li K, Xia Y, He J, Wang J, Li J, Ye M, Jin X. The SUMOylation and ubiquitination crosstalk in cancer. J Cancer Res Clin Oncol 2023; 149:16123-16146. [PMID: 37640846 DOI: 10.1007/s00432-023-05310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The cancer occurrence and progression are largely affected by the post-translational modifications (PTMs) of proteins. Currently, it has been shown that the relationship between ubiquitination and SUMOylation is highly complex and interactive. SUMOylation affects the process of ubiquitination and degradation of substrates. Contrarily, SUMOylation-related proteins are also regulated by the ubiquitination process thus altering their protein levels or activity. Emerging evidence suggests that the abnormal regulation between this crosstalk may lead to tumorigenesis. PURPOSE In this review, we have discussed the study of the relationship between ubiquitination and SUMOylation, as well as the possibility of a corresponding application in tumor therapy. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION The interaction between ubiquitination and SUMOylation is crucial for the occurrence and development of cancer. A greater understanding of the crosstalk of SUMOylation and ubiquitination may be more conducive to the development of more selective and effective SUMOylation inhibitors, as well as a promotion of synergy with other tumor treatment strategies.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yongming Xia
- Department of Oncology, Yuyao People's Hospital of Zhejiang, Yuyao, 315400, Zhejiang, China
| | - Jian He
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jie Wang
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jingyun Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
32
|
Gao F, Wang C, Bai X, Ji J, Huang X. ELK4 Promotes Cell Cycle Progression and Stem Cell-like Characteristics in HPV-associated Cervical Cancer by Regulating the FBXO22/PTEN Axis. Balkan Med J 2023; 40:409-414. [PMID: 37519006 PMCID: PMC10613738 DOI: 10.4274/balkanmedj.galenos.2023.2023-4-66] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Background Cervical cancer (CC) is a prevalent gynecological carcinoma, and patients infected with human papillomavirus (HPV) have a higher morbidity rate. Aims To explore the effects of ETS-like transcription factor 4 (ELK4) in patients with HPV+ CC. Study design In vitro cell lines and human-sample study. Methods The ELK4 levels in human tissue (65 HPV+ CC tissue and 25 HPV− normal cervical tissue) and cell lines (human cervical epithelial immortalized cell line H8 and CC cell lines HeLa [HPV18], CaSki [HPV16], and SiHa [HPV−]) were quantified using qRT-PCR and western blot assay. ELK4 knockdown transfection was effective and confirmed by western blotting. The MTT and EDU assays were used to evaluate cell viability and proliferation, respectively. Flow cytometry was used to detect the CC cell cycle stage. Stem cell markers, such as cluster of differentiation 133 (CD133), CD44, and aldehyde dehydrogenase 1, and the cervicospheres formed were measured. ChIP-qPCR and luciferase activity experiments were used to assess the bond between ELK4 and F-box protein 22 (FBXO22). Results ELK4 was highly expressed in the HPV+ CC tissue. CC cells with ELK4 knockdown had lower viability and proliferation than the control cells. ELK4 knockdown blocked the progression of the cell cycle from G1 to S phase. ELK4 knockdown suppressed the stem cell-like characteristics of the HPV+ CC cells. ELK4 bonded with the FBXO22 promoter, inhibiting the levels of phosphatase and tensin homolog (PTEN). Conclusion ELK4 facilitated cell cycle progression and stem cell-like characteristics by regulating the FBXO22/PTEN axis. Thus, ELK4 could be a potential therapeutic target to arrest the progress of HPV-associated CC.
Collapse
Affiliation(s)
- Fuxian Gao
- Department of Gynecology, Cangzhou People’s Hospital, Cangzhou, China
| | - Chunxiao Wang
- Department of Gynecology, Cangzhou People’s Hospital, Cangzhou, China
| | - Xue Bai
- Department of Gynecology, Cangzhou People’s Hospital, Cangzhou, China
| | - Jianghai Ji
- Department of Gynecology, Cangzhou People’s Hospital, Cangzhou, China
| | - Xinrui Huang
- Department of Gynecology, Cangzhou People’s Hospital, Cangzhou, China
| |
Collapse
|
33
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics 2023; 30:193-215. [PMID: 37663132 PMCID: PMC10471515 DOI: 10.1016/j.omto.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518000, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong 516000, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| |
Collapse
|
34
|
Basu AA, Zhang C, Riha IA, Magassa A, Ko F, Zhang X. A CRISPR activation screen identifies FBXO22 as an E3 ligase supporting targeted protein degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557708. [PMID: 37745578 PMCID: PMC10515933 DOI: 10.1101/2023.09.15.557708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Targeted protein degradation (TPD) represents a potent chemical biology paradigm that leverages the cellular degradation machinery to pharmacologically eliminate specific proteins of interest. Although multiple E3 ligases have been discovered to facilitate TPD, there exists a compelling requirement to diversify the pool of E3 ligases available for such applications. This expansion will broaden the scope of potential protein targets, accommodating those with varying subcellular localizations and expression patterns. In this study, we describe a CRISPR-based transcriptional activation screen focused on human E3 ligases, with the goal of identifying E3 ligases that can facilitate heterobifunctional compound-mediated target degradation. This approach allows us to address the limitations associated with investigating candidate degrader molecules in specific cell lines that either lack or have low levels of the desired E3 ligases. Through this approach, we identified a candidate proteolysis-targeting chimera (PROTAC), 22-SLF, that induces the degradation of FKBP12 when the FBXO22 gene transcription is activated. 22-SLF induced the degradation of endogenous FKBP12 in a FBXO22-dependent manner across multiple cancer cell lines. Subsequent mechanistic investigations revealed that 22-SLF interacts with C227 and/or C228 in FBXO22 to achieve the target degradation. Finally, we demonstrated the versatility of FBXO22-based PROTACs by effectively degrading another endogenous protein BRD4. This study uncovers FBXO22 as an E3 ligase capable of supporting ligand-induced protein degradation through electrophilic PROTACs. The platform we have developed can readily be applied to elucidate protein degradation pathways by identifying E3 ligases that facilitate either small molecule-induced or endogenous protein degradation.
Collapse
|
35
|
Chakraborty S, Karmakar S, Basu M, Kal S, Ghosh MK. The E3 ubiquitin ligase CHIP drives monoubiquitylation-mediated nuclear import of the tumor suppressor PTEN. J Cell Sci 2023; 136:jcs260950. [PMID: 37676120 DOI: 10.1242/jcs.260950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Monoubiquitylation is a principal mechanism driving nuclear translocation of the protein PTEN (phosphatase and tensin homolog deleted on chromosome ten). In this study, we describe a novel mechanism wherein the protein CHIP (C-terminus of Hsc70-interacting protein) mediates PTEN monoubiquitylation, leading to its nuclear import. Western blot analysis revealed a rise in both nuclear and total cellular PTEN levels under monoubiquitylation-promoting conditions, an effect that was abrogated by silencing CHIP expression. We established time-point kinetics of CHIP-mediated nuclear translocation of PTEN using immunocytochemistry and identified a role of karyopherin α1 (KPNA1) in facilitating nuclear transport of monoubiquitylated PTEN. We further established a direct interaction between CHIP and PTEN inside the nucleus, with CHIP participating in either polyubiquitylation or monoubiquitylation of nuclear PTEN. Finally, we showed that oxidative stress enhanced CHIP-mediated nuclear import of PTEN, which resulted in increased apoptosis, and decreased cell viability and proliferation, whereas CHIP knockdown counteracted these effects. To the best of our knowledge, this is the first report elucidating non-canonical roles for CHIP on PTEN, which we establish here as a nuclear interacting partner of CHIP.
Collapse
Affiliation(s)
- Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas 743372, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
36
|
Zhang Y, Li W, Guo S, Wu Z, Zhang L, Liu Y, Li X, Guo X, Cao J, Yang C, Wang Z. FBXO22 Mediates the NGF/TRKA Signaling Pathway in Bone Metastases in Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1248-1266. [PMID: 37301536 DOI: 10.1016/j.ajpath.2023.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Prostate cancer (PC) is a malignancy with high morbidity and mortality. Bone metastasis is the main driver of short survival time and difficulties in the treatment and prevention of PC. The goal of this study was to explore the biological function of E3 ubiquitin ligase F-box only protein 22 (FBXO22) in PC metastasis and its specific regulation mechanism. According to transcriptome sequencing, FBXO22 was overexpressed in PC tissues (versus adjacent tissues) and bone tissues (versus biopsied bone tissues without bone metastases). Fbxo22 down-regulation reduced bone metastases and macrophage M2 polarization in mice. FBXO22 was down-regulated in macrophages, and polarization was observed by flow cytometry. Macrophages were co-cultured with PC cells and osteoblasts to assess PC cell and osteoblast activity. FBXO22 knockdown restored osteoblast capacity. FBXO22 ubiquitinated and degraded Krüppel-like factor 4 (KLF4), which regulated the nerve growth factor (NGF)/tropomyosin receptor kinase A pathway by repressing NGF transcription. Silencing of KLF4 mitigated the metastasis-suppressing properties of FBXO22 knockdown, whereas NGF reversed the metastasis-suppressing properties of KLF4 in vitro and in vivo. Cumulatively, these data indicate that FBXO22 promotes PC cell activity and osteogenic lesions by stimulating macrophage M2 polarization. It also degrades KLF4 in macrophages and promotes NGF transcription, thereby activating the NGF/tropomyosin receptor kinase A pathway.
Collapse
Affiliation(s)
- Yuehua Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shenghu Guo
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zheng Wu
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya Liu
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xing Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaojin Guo
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Cao
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunwang Yang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
37
|
Li S, Shi L, Wang Y, Zhang L, Chu S, Li M, Bai J, Zhu W. FBXO22 inhibits proliferation and metastasis of cervical cancer cells by mediating ubiquitination-dependent degradation of GAK. Exp Cell Res 2023:113719. [PMID: 37442264 DOI: 10.1016/j.yexcr.2023.113719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Cervical cancer is one of the recognized malignant tumors of female reproductive system. At present, the research and development of biomarkers has attracted increasing attention, and the wide application of clinical cervical cancer screening strategies has significantly reduced its morbidity and mortality. A member of the F-box protein family, FBXO22, is involved in cell cycle, DNA damage repair and many other processes. Dysregulation of FBXO22 plays an important role in the occurrence and development of various tumors, including ovarian cancer, liver cancer and lung cancer. Nevertheless, the effect of FBXO22 in cervical cancer needs further investigation. We found that FBXO22 inhibited cervical cancer cell proliferation, migration and invasion. The results of proteomics studies suggested FBXO22 appears to target the Cyclin G Associated Kinase (GAK) for degradation. The combined results of analysis of cultured cells with altered abundance of FBXO22 by depletion or over-expression in the presence or absence of proteasomal inhibitor, comparison of protein decay rate, as well as cellular ubiquitination, support a hypothesis that FBXO22 mediates the ubiquitin-dependent degradation of GAK. Taken together, our data suggest that FBXO22 has a protective role in cervical cancer.
Collapse
Affiliation(s)
- Shanfeng Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Gynaecologic Oncology, Shanghai, China
| | - Lanxia Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
38
|
Yang Q, Liu HR, Yang S, Wei YS, Zhu XN, Zhi Z, Zhu D, Chen GQ, Yu Y. ANP32B suppresses B-cell acute lymphoblastic leukemia through activation of PU.1 in mice. Cancer Sci 2023. [PMID: 37137487 DOI: 10.1111/cas.15822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
ANP32B, a member of the acidic leucine-rich nuclear phosphoprotein 32 kDa (ANP32) family of proteins, is critical for normal development because its constitutive knockout mice are perinatal lethal. It is also shown that ANP32B acts as a tumor-promoting gene in some kinds of cancer such as breast cancer and chronic myelogenous leukemia. Herein, we observe that ANP32B is lowly expressed in B-cell acute lymphoblastic leukemia (B-ALL) patients, which correlates with poor prognosis. Furthermore, we utilized the N-myc or BCR-ABLp190 -induced B-ALL mouse model to investigate the role of ANP32B in B-ALL development. Intriguingly, conditional deletion of Anp32b in hematopoietic cells significantly promotes leukemogenesis in two B-ALL mouse models. Mechanistically, ANP32B interacts with purine rich box-1 (PU.1) and enhances the transcriptional activity of PU.1 in B-ALL cells. Overexpression of PU.1 dramatically suppresses B-ALL progression, and highly expressed PU.1 significantly reverses the accelerated leukemogenesis in Anp32b-deficient mice. Collectively, our findings identify ANP32B as a suppressor gene and provide novel insight into B-ALL pathogenesis.
Collapse
Affiliation(s)
- Qian Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hao-Ran Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Shuo Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Sheng Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiao-Na Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zhe Zhi
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Di Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yun Yu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
39
|
Qiu Q, Sun Y, Yang L, Li Q, Feng Y, Li M, Yin Y, Zheng L, Li N, Qiu H, Cui X, He W, Wang B, Pan C, Wang Z, Huang J, Sample KM, Li Z, Hu Y. TSPAN32 suppresses chronic myeloid leukemia pathogenesis and progression by stabilizing PTEN. Signal Transduct Target Ther 2023; 8:90. [PMID: 36854750 PMCID: PMC9974991 DOI: 10.1038/s41392-022-01290-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 12/02/2022] [Indexed: 03/02/2023] Open
Abstract
We report herein that TSPAN32 is a key node factor for Philadelphia (Ph+) leukemia pathogenesis. We found that TSPAN32 expression was repressed by BCR-ABL and ectopic TSPAN32 expression upon Imatinib treatment inhibited the proliferation of Ph+ cell lines. Tspan32 overexpression significantly prevented BCR-ABL induced leukemia progression in a murine model and impaired leukemia stem cell (LSC) proliferation. LSCs represent an obstacle for chronic myeloid leukemia (CML) elimination, which continually replenish leukemia cells and are associated with disease relapse. Therefore, the identification of essential targets that contribute to the survival and self-renewal of LSCs is important for novel curative CML. Mechanistically, TSPAN32 was shown to interact with PTEN, increased its protein level and caused a reduction in PI3K-AKT signaling activity. We also found that TSPAN32 was repressed by BCR-ABL via the suppression of an important transcription factor, TAL1. Ectopic expression of TAL1 significantly increased TSPAN32 mRNA and protein level, which indicated that BCR-ABL repressed TSPAN32 transcription by decreasing TAL1 expression. Overall, we identified a new signaling axis composed of "BCR-ABL-TAL1-TSPAN32-PTEN-PI3K-AKT". Our findings further complement the known mechanisms underlying the transformation potential of BCR-ABL in CML pathogenesis. This new signaling axis also provides a potential means to target PI3K-AKT for CML treatment.
Collapse
Affiliation(s)
- Qiang Qiu
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Yuanyuan Sun
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Qingqing Li
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Yunyu Feng
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Mengyuan Li
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Yuexia Yin
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Li Zheng
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Ning Li
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Huandi Qiu
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Xue Cui
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Wei He
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Bochuan Wang
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Cong Pan
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Juan Huang
- Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Klarke M Sample
- Institute of Life Science, eBond Pharmaceutical Technology Ltd., Chengdu, China
| | - Zhihui Li
- Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiguo Hu
- Department of Thyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China.
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
40
|
Wang H, Chen S, Kang W, Ding B, Cui S, Zhou L, Zhang N, Luo H, Wang M, Zhang F, Zhao Z, Guo Z, Wang C, Li L, Wang Z, Chen X, Wang Y. High dose isoleucine stabilizes nuclear PTEN to suppress the proliferation of lung cancer. Discov Oncol 2023; 14:25. [PMID: 36820928 PMCID: PMC9950318 DOI: 10.1007/s12672-023-00634-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
PURPOSE Cancer cells require a supply of amino acids, particularly essential amino acids such as branched-chain amino acids (BCAAs, i.e., valine, leucine, and isoleucine), to meet the increased nutrient demands of malignant tumors. The cell-autonomous and non-autonomous roles of altered BCAA supply have been implicated in cancer progression. The critical proteins involved in BCAA uptake, transport, metabolism, etc. serve as potential therapeutic biomarkers in human cancers. Here, we summarize the potential anti-tumor mechanism of BCAA by exploring the chain reaction triggered by increased BCAA supply in the tumor. METHOD A system-wide strategy was employed to provide a generic solution to establish the links between BCAA and cancer based on comprehensive omics, molecular experimentation, and data analysis. RESULTS BCAA over-supplementation (900 mg/kg) significantly inhibited tumor growth and reduced tumor burden, with isoleucine having the most pronounced effect. Surprisingly, isoleucine inhibited tumor growth independently of mTORC1 activation, a classical amino acid sensor. Exploratory transcriptome analysis revealed that Phosphatase and tensin homolog (PTEN) is the critical factor in the anti-tumor effect of isoleucine. By inhibiting PTEN ubiquitination, isoleucine can promote PTEN nuclear import and maintain PTEN nuclear stability. Interestingly, this process was regulated by isoleucine-tRNA ligase, cytoplasmic (IARS), a direct target of isoleucine. We demonstrated the enhanced interaction between IARS and PTEN in the presence of excess isoleucine. At the same time, IARS knockout leads to loss of isoleucine tumor suppressor ability. CONCLUSION Overall, our results provide insights into the regulation of the IARS-PTEN anti-tumor axis by isoleucine and reveal a unique therapeutic approach based on enhancing cellular isoleucine supply.
Collapse
Affiliation(s)
- Haiqing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Sen Chen
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, China
| | - Wenhui Kang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Bojiao Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Shulan Cui
- School of Traditional Chinese Medicine, Baoji Vocational Technology College, Baoji, 721000, Shaanxi, China
| | - Li Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Na Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Huiying Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Mingjuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Fan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Zezhou Zhao
- Collaborative Innovation Center of Qiyao in Mt. Qinling, Yangling, 712100, Shaanxi, China
| | - Zihu Guo
- College of Pharmacy, Heze University, Heze, 274015, Shandong, China
| | - Chao Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, Jiangsu, China
| | - Liang Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, Jiangsu, China
| | - Zhengzhong Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, 222002, Jiangsu, China
| | - Xuetong Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
41
|
Zhu XN, Wei YS, Yang Q, Liu HR, Zhi Z, Zhu D, Xia L, Hong DL, Yu Y, Chen GQ. FBXO22 promotes leukemogenesis by targeting BACH1 in MLL-rearranged acute myeloid leukemia. J Hematol Oncol 2023; 16:9. [PMID: 36774506 PMCID: PMC9922468 DOI: 10.1186/s13045-023-01400-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Selectively targeting leukemia stem cells (LSCs) is a promising approach in treating acute myeloid leukemia (AML), for which identification of such therapeutic targets is critical. Increasing lines of evidence indicate that FBXO22 plays a critical role in solid tumor development and therapy response. However, its potential roles in leukemogenesis remain largely unknown. METHODS We established a mixed lineage leukemia (MLL)-AF9-induced AML model with hematopoietic cell-specific FBXO22 knockout mice to elucidate the role of FBXO22 in AML progression and LSCs regulation, including self-renewal, cell cycle, apoptosis and survival analysis. Immunoprecipitation combined with liquid chromatography-tandem mass spectrometry analysis, Western blotting and rescue experiments were performed to study the mechanisms underlying the oncogenic role of FBXO22. RESULTS FBXO22 was highly expressed in AML, especially in MLL-rearranged (MLLr) AML. Upon FBXO22 knockdown, human MLLr leukemia cells presented markedly increased apoptosis. Although conditional deletion of Fbxo22 in hematopoietic cells did not significantly affect the function of hematopoietic stem cells, MLL-AF9-induced leukemogenesis was dramatically abrogated upon Fbxo22 deletion, together with remarkably reduced LSCs after serial transplantations. Mechanistically, FBXO22 promoted degradation of BACH1 in MLLr AML cells, and overexpression of BACH1 suppressed MLLr AML progression. In line with this, heterozygous deletion of BACH1 significantly reversed delayed leukemogenesis in Fbxo22-deficient mice. CONCLUSIONS FBXO22 promotes MLLr AML progression by targeting BACH1 and targeting FBXO22 might be an ideal strategy to eradicate LSCs without influencing normal hematopoiesis.
Collapse
Affiliation(s)
- Xiao-Na Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yu-Sheng Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Qian Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Hao-Ran Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Zhe Zhi
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Di Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Li Xia
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Deng-Li Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Yun Yu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China.
| |
Collapse
|
42
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
43
|
Schulze-Niemand E, Naumann M. The COP9 signalosome: A versatile regulatory hub of Cullin-RING ligases. Trends Biochem Sci 2023; 48:82-95. [PMID: 36041947 DOI: 10.1016/j.tibs.2022.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 12/27/2022]
Abstract
The COP9 signalosome (CSN) is a universal regulator of Cullin-RING ubiquitin ligases (CRLs) - a family of modular enzymes that control various cellular processes via timely degradation of key signaling proteins. The CSN, with its eight-subunit architecture, employs multisite binding of CRLs and inactivates CRLs by removing a small ubiquitin-like modifier named neural precursor cell-expressed, developmentally downregulated 8 (Nedd8). Besides the active site of the catalytic subunit CSN5, two allosteric sites are present in the CSN, one of which recognizes the substrate recognition module and the presence of CRL substrates, and the other of which can 'glue' the CSN-CRL complex by recruitment of inositol hexakisphosphate. In this review, we present recent findings on the versatile regulation of CSN-CRL complexes.
Collapse
Affiliation(s)
- Eric Schulze-Niemand
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
44
|
Ma J, Wu Y, Cheng S, Yang W, Zhong L, Li Q, Fang L. FBXO22 Accelerates Pancreatic Cancer Growth by Deactivation of the Hippo Pathway via Destabilizing LATS2. Dig Dis Sci 2022; 68:1913-1922. [PMID: 36515852 DOI: 10.1007/s10620-022-07780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dysregulation of ubiquitin ligases plays a crucial role in the development and progression of various human tumors. F-box only protein 22 (FBXO22), an F-box E3 ubiquitin ligase, has been reported to participate in diverse aspects of cancer progression. However, the clinical significance and biological function of FBXO22 in pancreatic cancer remain poorly understood. AIMS This study aimed to investigate the role of FBXO22 in promoting pancreatic cancer growth. METHODS FBXO22 expression was detected in pancreatic cancer and adjacent normal tissues using qRT-PCR, western blotting, and immunohistochemistry. Ectopic expression and knockdown of FBXO22 were performed to measure the impact on pancreatic cancer cells growth by CCK-8, colony formation, and tumorigenicity assay. Bioinformatics analysis uncovered the potential correlation between FBXO22 and various signaling pathways. Western blotting and immunoprecipitation were performed to identify FBXO22-interacting proteins. RESULTS We observed that FBXO22 was upregulated in samples obtained from patients with pancreatic cancer compared with its levels in the adjacent normal tissues, and an elevated FBXO22 level was obviously associated with poor prognosis among patients with pancreatic cancer. FBXO22 knockdown impaired pancreatic cancer cell growth both in vitro and in vivo, whereas FBXO22 overexpression accelerated pancreatic cancer cell growth. Furthermore, we found that FBXO22 contributed to pancreatic cancer cell growth by deactivating the Hippo pathway. Mechanistically, FBXO22 directly interacts with and destabilizes the large tumor suppressor 2 (LATS2), which is a critical regulator of the Hippo pathway. Blocking LATS2 leads to the loss of FBXO22-mediated oncogenic effect in pancreatic cancer. CONCLUSIONS These findings provide new insights into the upstream regulation of the Hippo pathway inactivation in pancreatic cancer growth and identify FBXO22 as a potential therapeutic target for this lethal malignant tumor.
Collapse
Affiliation(s)
- Jingsheng Ma
- Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Yajun Wu
- School of Medical Laboratory, Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Shibao Cheng
- Surgery of Hepatobiliary and Pancreatic, The Third Hospital of Nanchang, Nanchang, 330008, Jiangxi, China
| | - Wentao Yang
- Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Lin Zhong
- Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Qigen Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Lu Fang
- Surgery of Hepatobiliary and Pancreatic, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
45
|
Targeting PTEN Regulation by Post Translational Modifications. Cancers (Basel) 2022; 14:cancers14225613. [PMID: 36428706 PMCID: PMC9688753 DOI: 10.3390/cancers14225613] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphatidylinositol-3,4,5-triphosphate (PIP3) is a lipidic second messenger present at very low concentrations in resting normal cells. PIP3 levels, though, increase quickly and transiently after growth factor addition, upon activation of phosphatidylinositol 3-kinase (PI3-kinase). PIP3 is required for the activation of intracellular signaling pathways that induce cell proliferation, cell migration, and survival. Given the critical role of this second messenger for cellular responses, PIP3 levels must be tightly regulated. The lipid phosphatase PTEN (phosphatase and tensin-homolog in chromosome 10) is the phosphatase responsible for PIP3 dephosphorylation to PIP2. PTEN tumor suppressor is frequently inactivated in endometrium and prostate carcinomas, and also in glioblastoma, illustrating the contribution of elevated PIP3 levels for cancer development. PTEN biological activity can be modulated by heterozygous gene loss, gene mutation, and epigenetic or transcriptional alterations. In addition, PTEN can also be regulated by post-translational modifications. Acetylation, oxidation, phosphorylation, sumoylation, and ubiquitination can alter PTEN stability, cellular localization, or activity, highlighting the complexity of PTEN regulation. While current strategies to treat tumors exhibiting a deregulated PI3-kinase/PTEN axis have focused on PI3-kinase inhibition, a better understanding of PTEN post-translational modifications could provide new therapeutic strategies to restore PTEN action in PIP3-dependent tumors.
Collapse
|
46
|
Inhibition of the AKT/mTOR pathway negatively regulates PTEN expression via miRNAs. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1637-1647. [PMID: 36331296 PMCID: PMC9827858 DOI: 10.3724/abbs.2022159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PI3K/AKT/mTOR pathway plays important roles in cancer development, and the negative role of PTEN in the PI3K/AKT/mTOR pathway is well known, but whether PTEN can be inversely regulated by PI3K/AKT/mTOR has rarely been reported. Here we aim to investigate the potential regulatory relationship between PTEN and Akt/mTOR inhibition in MEFs. AKT1 E17K and TSC2 -/- MEFs were treated with the AKT inhibitor MK2206 and the mTOR inhibitors rapamycin and Torin2. Our results reveal that inhibition of AKT or mTOR suppresses PTEN expression in AKT1 E17K and TSC2 -/- MEFs, but the transcription, subcellular localization, eIF4E-dependent translational initiation or lysosome- and proteasome-mediated degradation of PTEN change little, as shown by the real time PCR, nucleus cytoplasm separation assay and immunofluorescence analysis. Moreover, mTOR suppression leads to augmentation of mouse PTEN-3'UTR-binding miRNAs, including miR-23a-3p, miR-23b-3p, miR-25-3p and miR-26a-5p, as shown by the dual luciferase reporter assay and miRNA array analysis, and miRNA inhibitors collaborately rescue the decline of PTEN level. Collectively, our findings confirm that inhibition of mTOR suppresses PTEN expression by upregulating miRNAs, provide a novel explanation for the limited efficacy of mTOR inhibitors in the treatment of mTOR activation-related tumors, and indicate that dual inhibition of mTOR and miRNA is a promising therapeutic strategy to overcome the resistance of mTOR-related cancer treatment.
Collapse
|
47
|
Lin M, Zhang J, Bouamar H, Wang Z, Sun LZ, Zhu X. Fbxo22 promotes cervical cancer progression via targeting p57 Kip2 for ubiquitination and degradation. Cell Death Dis 2022; 13:805. [PMID: 36127346 PMCID: PMC9489770 DOI: 10.1038/s41419-022-05248-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/23/2023]
Abstract
F-box only protein 22 (FBXO22) is a key subunit of the Skp1-Cullin 1-F-box protein (SCF) E3 ubiquitin ligase complex. Little is known regarding its biological function and underlying molecular mechanisms in regulating cervical cancer (CC) progression. In this study, we aim to explore the role and mechanism of FBXO22 in CC progression. The correlation between FBXO22 and clinicopathological characteristics of CC was analyzed by tissue microarray. MTT, colony formation, flow cytometry, Western blotting, qRT-PCR, protein half-life, co-immunoprecipitation, ubiquitination, and xenograft experiments were performed to assess the functions of FBXO22 and potential molecular mechanisms of FBXO22-mediated malignant progression in CC. The expression of FBXO22 protein in CC tissues was higher than that in adjacent non-tumor cervical tissues. Notably, high expression of FBXO22 was significantly associated with high histology grades, positive lymph node metastasis, and poor outcomes in CC patients. Functionally, ectopic expression of FBXO22 promoted cell viability in vitro and induced tumor growth in vivo, while knockdown of FBXO22 exhibited opposite effects. In addition, overexpression of FBXO22 promoted G1/S phase progression and inhibited apoptosis in CC cells. Mechanistically, FBXO22 physically interacted with the cyclin-dependent kinase inhibitor p57Kip2 and subsequently mediated its ubiquitination and proteasomal degradation leading to tumor progression. FBXO22 protein level was found negatively associated with p57Kip2 protein levels in patient CC samples. FBXO22 promotes CC progression partly through regulating the ubiquitination and proteasomal degradation of p57Kip2. Our study indicates that FBXO22 might be a novel prognostic biomarker and therapeutic target for CC.
Collapse
Affiliation(s)
- Min Lin
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianan Zhang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hakim Bouamar
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zhiwei Wang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Xueqiong Zhu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
48
|
Sun Y, Zhang H, Meng J, Guo F, Ren D, Wu H, Jin X. S-palmitoylation of PCSK9 induces sorafenib resistance in liver cancer by activating the PI3K/AKT pathway. Cell Rep 2022; 40:111194. [PMID: 35977495 DOI: 10.1016/j.celrep.2022.111194] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/10/2022] [Accepted: 07/20/2022] [Indexed: 11/03/2022] Open
Abstract
Sorafenib is currently the first-line treatment for advanced hepatocellular carcinoma (HCC). However, sorafenib resistance remains a significant challenge. Aberrant AKT signaling activation is a crucial mechanism driving sorafenib resistance in HCC. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a vital role in antitumor immune responses. In this study, we demonstrate that aberrant PCSK9 upregulation promotes cell proliferation and sorafenib resistance in HCC by inducing AKT-S473 phosphorylation. After palmitoylation at cysteine 600, the binding affinity between PCSK9 and tensin homolog (PTEN) is dramatically increased, inducing lysosome-mediated PTEN degradation and subsequent AKT activation. We identify zinc finger DHHC-type palmitoyltransferase 16 (ZDHHC16) as a palmitoyltransferase that promotes PCSK9 palmitoylation at cysteine 600. We also develop a biologically active PCSK9-derived peptide that competitively inhibits PCSK9 palmitoylation, suppressing AKT phosphorylation and augmenting the antitumor effects of sorafenib in HCC.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huan Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junpeng Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of General Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xin Jin
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
49
|
Gao F, Wang C, Ji J, Li W. FBXO22 promotes cell proliferation and inhibits autophagy in HPV-associated cervical cancer by inactivating the LKB1/AMPK pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Wang Z, Chen X, Zhou L, Zhao X, Ge C, Zhao F, Xie H, Chen T, Tian H, Li H, Li J. FBXO9 Mediates the Cancer-Promoting Effects of ZNF143 by Degrading FBXW7 and Facilitates Drug Resistance in Hepatocellular Carcinoma. Front Oncol 2022; 12:930220. [PMID: 35847937 PMCID: PMC9280481 DOI: 10.3389/fonc.2022.930220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
F-box proteins are critical for malignancy because they control the turnover of key proteins that govern multiple cellular processes. F-box protein 9 (FBXO9) belongs to the F-box protein family and exhibits oncogenic properties in hematological malignancies. However, the function and molecular mechanism of FBXO9 in hepatocellular carcinoma (HCC) remain unclear. Here, we report that FBXO9 was remarkably overexpressed in HCC. Loss- and gain-of-function experiments showed that FBXO9 facilitates HCC cell proliferation and metastasis both in vitro and in vivo. Mechanistically, as a direct upstream transcription factor, FBXO9 is regulated by zinc finger protein 143 (ZNF143) and accelerates tumor growth and metastasis by targeting the F-box and WD repeat domain containing 7 (FBXW7) for ubiquitination and degradation. Additionally, we found that with FBXO9 knockdown, HCC cells were more sensitive to treatment with lenvatinib and sorafenib. In summary, our results demonstrate that a ZNF143-FBXO9-FBXW7 signaling regulatory axis may be involved in tumor progression in HCC, and suggest that FBXO9 could be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lianer Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinge Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyang Xie
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Taoyang Chen
- Department of Pathology, Qi Dong Liver Cancer Institute, Qidong, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jinjun Li,
| |
Collapse
|