1
|
Goetz H, Zhang R, Wang X, Tian XJ. Resource competition-driven bistability and stochastic switching amplify gene expression noise. PLoS Comput Biol 2025; 21:e1012931. [PMID: 40267175 PMCID: PMC12052209 DOI: 10.1371/journal.pcbi.1012931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 05/05/2025] [Accepted: 03/04/2025] [Indexed: 04/25/2025] Open
Abstract
Although the impact of resource competition on the deterministic behavior of synthetic gene circuits has been studied, its effects on gene expression noise remain obscure. In this work, we systematically analyze the role of resource competition in noise propagation within a genetic inhibition cascade circuit. We found that resource competition amplifies gene expression noise by introducing unexpected bistability and stochastic switching between the two stable states. This emergent bistability, driven by resource competition-mediated double negative feedback, allows one gene to dominate expression while suppressing the other in a "winner-takes-all" behavior. Our findings highlight the critical role of resource competition in shaping the noise dynamics and its propagation, underscoring the importance of considering these effects when designing and controlling synthetic circuits.
Collapse
Affiliation(s)
- Hanah Goetz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
2
|
Mainali P, Chua MSW, Tan DJ, Loo BLW, Ow DSW. Enhancing recombinant growth factor and serum protein production for cultivated meat manufacturing. Microb Cell Fact 2025; 24:41. [PMID: 39956904 PMCID: PMC11831813 DOI: 10.1186/s12934-025-02670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
The commercial growth factors (GFs) and serum proteins (SPs) contribute to the high cost associated with the serum-free media for cultivated meat production. Producing recombinant GFs and SPs in scale from microbial cell factories can reduce the cost of culture media. Escherichia coli is a frequently employed host in the expression recombinant GFs and SPs. This review explores critical strategies for cost reduction in GFs and SPs production, focusing on yield enhancement, product improvement, purification innovation, and process innovation. Firstly, the review discusses the use of fusion tags to increase the solubility and yield of GFs & SPs, highlighting various studies that have successfully employed these tags for yield enhancement. We then explore how tagging strategies can streamline and economize the purification process, further reducing production costs. Additionally, we address the challenge of low half-life in GFs and SPs and propose potential strategies that can enhance their stability. Furthermore, improvements in the E. coli chassis and cell engineering strategies are also described, with an emphasis on the key areas that can improve yield and identify areas for cost minimization. Finally, we discuss key bioprocessing areas which can facilitate easier scale-up, enhance yield, titer, and productivity, and ultimately lower long-term production costs. It is crucial to recognize that not all suggested approaches can be applied simultaneously, as their relevance varies with different GFs and SPs. However, integrating of multiple strategies is anticipated to yield a cumulative effect, significantly reducing production costs. This collective effort is expected to substantially decrease the price of cultivated meat, contributing to the broader goal of developing sustainable and affordable meat.
Collapse
Affiliation(s)
- Prashant Mainali
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Melvin Shen-Wei Chua
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Ding-Jie Tan
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Bernard Liat-Wen Loo
- Food, Chemical and Biotechnology, Singapore Institute of Technology, 10 Dover Dr, Singapore, 138683, Republic of Singapore
| | - Dave Siak-Wei Ow
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore.
| |
Collapse
|
3
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Chakravarty S, Zhang R, Tian XJ. Noise Reduction in Resource-Coupled Multi-Module Gene Circuits through Antithetic Feedback Control. PROCEEDINGS OF THE ... IEEE CONFERENCE ON DECISION & CONTROL. IEEE CONFERENCE ON DECISION & CONTROL 2024; 2024:5566-5571. [PMID: 40224377 PMCID: PMC11987709 DOI: 10.1109/cdc56724.2024.10886586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Gene circuits within the same host cell often experience coupling, stemming from the competition for limited resources during transcriptional and translational processes. This resource competition introduces an additional layer of noise to gene expression. Here we present three multi-module antithetic control strategies: negatively competitive regulation (NCR) controller, alongside local and global controllers, aimed at reducing the gene expression noise within the context of resource competition. Through stochastic simulations and fluctuation-dissipation theorem (FDT) analysis, our findings highlight the superior performance of the NCR antithetic controller in reducing noise levels. Our research provides an effective control strategy for attenuating resource-driven noise and offers insight into the development of robust gene circuits.
Collapse
Affiliation(s)
- Suchana Chakravarty
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Ma Z, Jiang M, Liu C, Wang E, Bai Y, Yuan MM, Shi S, Zhou J, Ding J, Xie Y, Zhang H, Yang Y, Shen R, Crowther TW, Zhang J, Liang Y. Quinolone-mediated metabolic cross-feeding develops aluminium tolerance in soil microbial consortia. Nat Commun 2024; 15:10148. [PMID: 39578460 PMCID: PMC11584702 DOI: 10.1038/s41467-024-54616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Aluminium (Al)-tolerant beneficial bacteria confer resistance to Al toxicity to crops in widely distributed acidic soils. However, the mechanism by which microbial consortia maintain Al tolerance under acid and Al toxicity stress remains unknown. Here, we demonstrate that a soil bacterial consortium composed of Rhodococcus erythropolis and Pseudomonas aeruginosa exhibit greater Al tolerance than either bacterium alone. P. aeruginosa releases the quorum sensing molecule 2-heptyl-1H-quinolin-4-one (HHQ), which is efficiently degraded by R. erythropolis. This degradation reduces population density limitations and further enhances the metabolic activity of P. aeruginosa under Al stress. Moreover, R. erythropolis converts HHQ into tryptophan, promoting the synthesis of peptidoglycan, a key component for cell wall stability, thereby improving the Al tolerance of R. erythropolis. This study reveals a metabolic cross-feeding mechanism that maintains microbial Al tolerance, offering insights for designing synthetic microbial consortia to sustain food security and sustainable agriculture in acidic soil regions.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Meitong Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyang Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Yang Bai
- School of Life Sciences, Peking University, Beijing, China
| | - Mengting Maggie Yuan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Shengjing Shi
- AgResearch Ltd, Lincoln Science Centre, Lincoln, New Zealand
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Jixian Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yimei Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Environmental Science and Engineering, Changzhou University, Changzhou, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH, Zurich, Switzerland
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Costello A, Peterson AA, Lanster DL, Li Z, Carver GD, Badran AH. Efficient genetic code expansion without host genome modifications. Nat Biotechnol 2024:10.1038/s41587-024-02385-y. [PMID: 39261591 DOI: 10.1038/s41587-024-02385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Supplementing translation with noncanonical amino acids (ncAAs) can yield protein sequences with new-to-nature functions but existing ncAA incorporation strategies suffer from low efficiency and context dependence. We uncover codon usage as a previously unrecognized contributor to efficient genetic code expansion using non-native codons. Relying only on conventional Escherichia coli strains with native ribosomes, we develop a plasmid-based codon compression strategy that minimizes context dependence and improves ncAA incorporation at quadruplet codons. We confirm that this strategy is compatible with all known genetic code expansion resources, which allowed us to identify 12 mutually orthogonal transfer RNA (tRNA)-synthetase pairs. Enabled by these findings, we evolved and optimized five tRNA-synthetase pairs to incorporate a broad repertoire of ncAAs at orthogonal quadruplet codons. Lastly, we extend these resources to an in vivo biosynthesis platform that can readily create >100 new-to-nature peptide macrocycles bearing up to three unique ncAAs. Our approach will accelerate innovations in multiplexed genetic code expansion and the discovery of chemically diverse biomolecules.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander A Peterson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - David L Lanster
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Zhiyi Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Gavriela D Carver
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ahmed H Badran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Stone A, Youssef A, Rijal S, Zhang R, Tian XJ. Context-dependent redesign of robust synthetic gene circuits. Trends Biotechnol 2024; 42:895-909. [PMID: 38320912 PMCID: PMC11223972 DOI: 10.1016/j.tibtech.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Cells provide dynamic platforms for executing exogenous genetic programs in synthetic biology, resulting in highly context-dependent circuit performance. Recent years have seen an increasing interest in understanding the intricacies of circuit-host relationships, their influence on the synthetic bioengineering workflow, and in devising strategies to alleviate undesired effects. We provide an overview of how emerging circuit-host interactions, such as growth feedback and resource competition, impact both deterministic and stochastic circuit behaviors. We also emphasize control strategies for mitigating these unwanted effects. This review summarizes the latest advances and the current state of host-aware and resource-aware design of synthetic gene circuits.
Collapse
Affiliation(s)
- Austin Stone
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Abdelrahaman Youssef
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Sadikshya Rijal
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Rong Zhang
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Xiao-Jun Tian
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
8
|
Ishida S, Ngo PHT, Gundlach A, Ellington A. Engineering Ribosomal Machinery for Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:7712-7730. [PMID: 38829723 DOI: 10.1021/acs.chemrev.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.
Collapse
Affiliation(s)
- Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arno Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Chakravarty S, Zhang R, Tian XJ. Noise Reduction in Resource-Coupled Multi-Module Gene Circuits through Antithetic Feedback Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595570. [PMID: 38826454 PMCID: PMC11142251 DOI: 10.1101/2024.05.24.595570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gene circuits within the same host cell often experience coupling, stemming from the competition for limited resources during transcriptional and translational processes. This resource competition introduces an additional layer of noise to gene expression. Here we present three multi-module antithetic control strategies: negatively competitive regulation (NCR) controller, alongside local and global controllers, aimed at reducing the gene expression noise within the context of resource competition. Through stochastic simulations and fluctuation-dissipation theorem (FDT) analysis, our findings highlight the superior performance of the NCR antithetic controller in reducing noise levels. Our research provides an effective control strategy for attenuating resource-driven noise and offers insight into the development of robust gene circuits.
Collapse
Affiliation(s)
- Suchana Chakravarty
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
10
|
Moon S, Saboe A, Smanski MJ. Using design of experiments to guide genetic optimization of engineered metabolic pathways. J Ind Microbiol Biotechnol 2024; 51:kuae010. [PMID: 38490746 PMCID: PMC10981448 DOI: 10.1093/jimb/kuae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/14/2024] [Indexed: 03/17/2024]
Abstract
Design of experiments (DoE) is a term used to describe the application of statistical approaches to interrogate the impact of many variables on the performance of a multivariate system. It is commonly used for process optimization in fields such as chemical engineering and material science. Recent advances in the ability to quantitatively control the expression of genes in biological systems open up the possibility to apply DoE for genetic optimization. In this review targeted to genetic and metabolic engineers, we introduce several approaches in DoE at a high level and describe instances wherein these were applied to interrogate or optimize engineered genetic systems. We discuss the challenges of applying DoE and propose strategies to mitigate these challenges. ONE-SENTENCE SUMMARY This is a review of literature related to applying Design of Experiments for genetic optimization.
Collapse
Affiliation(s)
- Seonyun Moon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St Paul, MN 55108, USA
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Anna Saboe
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St Paul, MN 55108, USA
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
11
|
Tijaro-Bulla S, Nyandwi SP, Cui H. Physiological and engineered tRNA aminoacylation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1789. [PMID: 37042417 DOI: 10.1002/wrna.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Aminoacyl-tRNA synthetases form the protein family that controls the interpretation of the genetic code, with tRNA aminoacylation being the key chemical step during which an amino acid is assigned to a corresponding sequence of nucleic acids. In consequence, aminoacyl-tRNA synthetases have been studied in their physiological context, in disease states, and as tools for synthetic biology to enable the expansion of the genetic code. Here, we review the fundamentals of aminoacyl-tRNA synthetase biology and classification, with a focus on mammalian cytoplasmic enzymes. We compile evidence that the localization of aminoacyl-tRNA synthetases can be critical in health and disease. In addition, we discuss evidence from synthetic biology which made use of the importance of subcellular localization for efficient manipulation of the protein synthesis machinery. This article is categorized under: RNA Processing Translation > Translation Regulation RNA Processing > tRNA Processing RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
| | | | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Chen JP, Gong JS, Su C, Li H, Xu ZH, Shi JS. Improving the soluble expression of difficult-to-express proteins in prokaryotic expression system via protein engineering and synthetic biology strategies. Metab Eng 2023; 78:99-114. [PMID: 37244368 DOI: 10.1016/j.ymben.2023.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Solubility and folding stability are key concerns for difficult-to-express proteins (DEPs) restricted by amino acid sequences and superarchitecture, resolved by the precise distribution of amino acids and molecular interactions as well as the assistance of the expression system. Therefore, an increasing number of tools are available to achieve efficient expression of DEPs, including directed evolution, solubilization partners, chaperones, and affluent expression hosts, among others. Furthermore, genome editing tools, such as transposons and CRISPR Cas9/dCas9, have been developed and expanded to construct engineered expression hosts capable of efficient expression ability of soluble proteins. Accounting for the accumulated knowledge of the pivotal factors in the solubility and folding stability of proteins, this review focuses on advanced technologies and tools of protein engineering, protein quality control systems, and the redesign of expression platforms in prokaryotic expression systems, as well as advances of the cell-free expression technologies for membrane proteins production.
Collapse
Affiliation(s)
- Jin-Ping Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China.
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| |
Collapse
|
13
|
Radford F, Rinehart J, Isaacs FJ. Mapping the in vivo fitness landscape of a tethered ribosome. SCIENCE ADVANCES 2023; 9:eade8934. [PMID: 37115918 PMCID: PMC10146877 DOI: 10.1126/sciadv.ade8934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fitness landscapes are models of the sequence space of a genetic element that map how each sequence corresponds to its activity and can be used to guide laboratory evolution. The ribosome is a macromolecular machine that is essential for protein synthesis in all organisms. Because of the prevalence of dominant lethal mutations, a comprehensive fitness landscape of the ribosomal peptidyl transfer center (PTC) has not yet been attained. Here, we develop a method to functionally map an orthogonal tethered ribosome (oRiboT), which permits complete mutagenesis of nucleotides located in the PTC and the resulting epistatic interactions. We found that most nucleotides studied showed flexibility to mutation, and identified epistatic interactions between them, which compensate for deleterious mutations. This work provides a basis for a deeper understanding of ribosome function and malleability and could be used to inform design of engineered ribosomes with applications to synthesize next-generation biomaterials and therapeutics.
Collapse
Affiliation(s)
- Felix Radford
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Farren J. Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Corresponding author.
| |
Collapse
|
14
|
Nissley A, Penev P, Watson Z, Banfield J, Cate JD. Rare ribosomal RNA sequences from archaea stabilize the bacterial ribosome. Nucleic Acids Res 2023; 51:1880-1894. [PMID: 36660825 PMCID: PMC9976906 DOI: 10.1093/nar/gkac1273] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
The ribosome serves as the universally conserved translator of the genetic code into proteins and supports life across diverse temperatures ranging from below freezing to above 120°C. Ribosomes are capable of functioning across this wide range of temperatures even though the catalytic site for peptide bond formation, the peptidyl transferase center, is nearly universally conserved. Here we find that Thermoproteota, a phylum of thermophilic Archaea, substitute cytidine for uridine at large subunit rRNA positions 2554 and 2555 (Escherichia coli numbering) in the A loop, immediately adjacent to the binding site for the 3'-end of A-site tRNA. We show by cryo-EM that E. coli ribosomes with uridine to cytidine mutations at these positions retain the proper fold and post-transcriptional modification of the A loop. Additionally, these mutations do not affect cellular growth, protect the large ribosomal subunit from thermal denaturation, and increase the mutational robustness of nucleotides in the peptidyl transferase center. This work identifies sequence variation across archaeal ribosomes in the peptidyl transferase center that likely confers stabilization of the ribosome at high temperatures and develops a stable mutant bacterial ribosome that can act as a scaffold for future ribosome engineering efforts.
Collapse
Affiliation(s)
- Amos J Nissley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Petar I Penev
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zoe L Watson
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Environmental Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jamie H D Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Sisila V, Indhu M, Radhakrishnan J, Ayyadurai N. Building biomaterials through genetic code expansion. Trends Biotechnol 2023; 41:165-183. [PMID: 35908989 DOI: 10.1016/j.tibtech.2022.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 01/24/2023]
Abstract
Genetic code expansion (GCE) enables directed incorporation of noncoded amino acids (NCAAs) and unnatural amino acids (UNAAs) into the active core that confers dedicated structure and function to engineered proteins. Many protein biomaterials are tandem repeats that intrinsically include NCAAs generated through post-translational modifications (PTMs) to execute assigned functions. Conventional genetic engineering approaches using prokaryotic systems have limited ability to biosynthesize functionally active biomaterials with NCAAs/UNAAs. Codon suppression and reassignment introduce NCAAs/UNAAs globally, allowing engineered proteins to be redesigned to mimic natural matrix-cell interactions for tissue engineering. Expanding the genetic code enables the engineering of biomaterials with catechols - growth factor mimetics that modulate cell-matrix interactions - thereby facilitating tissue-specific expression of genes and proteins. This method of protein engineering shows promise in achieving tissue-informed, tissue-compliant tunable biomaterials.
Collapse
Affiliation(s)
- Valappil Sisila
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohan Indhu
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Janani Radhakrishnan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
16
|
Kofman C, Watkins AM, Kim D, Willi JA, Wooldredge A, Karim A, Das R, Jewett MC. Computationally-guided design and selection of high performing ribosomal active site mutants. Nucleic Acids Res 2022; 50:13143-13154. [PMID: 36484094 PMCID: PMC9825160 DOI: 10.1093/nar/gkac1036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 12/14/2022] Open
Abstract
Understanding how modifications to the ribosome affect function has implications for studying ribosome biogenesis, building minimal cells, and repurposing ribosomes for synthetic biology. However, efforts to design sequence-modified ribosomes have been limited because point mutations in the ribosomal RNA (rRNA), especially in the catalytic active site (peptidyl transferase center; PTC), are often functionally detrimental. Moreover, methods for directed evolution of rRNA are constrained by practical considerations (e.g. library size). Here, to address these limitations, we developed a computational rRNA design approach for screening guided libraries of mutant ribosomes. Our method includes in silico library design and selection using a Rosetta stepwise Monte Carlo method (SWM), library construction and in vitro testing of combined ribosomal assembly and translation activity, and functional characterization in vivo. As a model, we apply our method to making modified ribosomes with mutant PTCs. We engineer ribosomes with as many as 30 mutations in their PTCs, highlighting previously unidentified epistatic interactions, and show that SWM helps identify sequences with beneficial phenotypes as compared to random library sequences. We further demonstrate that some variants improve cell growth in vivo, relative to wild type ribosomes. We anticipate that SWM design and selection may serve as a powerful tool for rRNA engineering.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Prescient Design, Genentech, South San Francisco, CA 94080, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Inceptive Nucleics, Inc., Palo Alto, CA 94304, USA
| | - Jessica A Willi
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Alexandra C Wooldredge
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Gowland S, Jewett MC. Mobile Translation Systems Generate Genomically Engineered Escherichia coli Cells with Improved Growth Phenotypes. ACS Synth Biol 2022; 11:2969-2978. [PMID: 35951371 PMCID: PMC9990117 DOI: 10.1021/acssynbio.2c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cellular translation is responsible for the synthesis of proteins, a highly diverse class of macromolecules that form the basis of biological function. In Escherichia coli, harnessing and engineering of the biomolecular components of translation, such as ribosomes, transfer RNAs (tRNAs), and aminoacyl-tRNA synthetases, has led to both biotechnology products and an expanded genetic code. However, the engineering potential of molecular translation is hampered by the limited capabilities for rapidly sampling the large genomic space necessary to evolve well-coordinated synthetic translation networks inside cells. To address this limitation, we developed a genome engineering method inspired by the action of mobile genetic elements termed mobilization. Mobilization utilizes the stochastic action of the recombinase flippase (FLP) to generate up to ∼400 million genomic insertions, deletions, or rearrangements at flippase recognition target sites per milliliter of culture per OD in living E. coli cells. As a model, we applied our approach to evolve faster-growing E. coli strains living exclusively off genomically expressed tethered ribosomes. In an iterative "pulse-passaging scheme," we generated genomic libraries of cells via induction of FLP recombinase (pulse) followed by passaging the population without induction of FLP to enrich the resulting population for cells with higher fitness. We observed large structural genomic diversity across these cells, with the fastest growing strains exhibiting a 71% increase in growth rate compared to the ancestral strain. We anticipate that both these strains and the mobilization method will be useful tools for synthetic biology efforts to engineer translation systems.
Collapse
Affiliation(s)
- Samuel Gowland
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
18
|
Three-dimensional structure-guided evolution of a ribosome with tethered subunits. Nat Chem Biol 2022; 18:990-998. [PMID: 35836020 PMCID: PMC9815830 DOI: 10.1038/s41589-022-01064-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2022] [Indexed: 01/11/2023]
Abstract
RNA-based macromolecular machines, such as the ribosome, have functional parts reliant on structural interactions spanning sequence-distant regions. These features limit evolutionary exploration of mutant libraries and confound three-dimensional structure-guided design. To address these challenges, we describe Evolink (evolution and linkage), a method that enables high-throughput evolution of sequence-distant regions in large macromolecular machines, and library design guided by computational RNA modeling to enable exploration of structurally stable designs. Using Evolink, we evolved a tethered ribosome with a 58% increased activity in orthogonal protein translation and a 97% improvement in doubling times in SQ171 cells compared to a previously developed tethered ribosome, and reveal new permissible sequences in a pair of ribosomal helices with previously explored biological function. The Evolink approach may enable enhanced engineering of macromolecular machines for new and improved functions for synthetic biology.
Collapse
|
19
|
Perez JG, Carlson ED, Weisser O, Kofman C, Seki K, Des Soye BJ, Karim AS, Jewett MC. Improving genomically recoded Escherichia coli to produce proteins containing non-canonical amino acids. Biotechnol J 2022; 17:e2100330. [PMID: 34894206 DOI: 10.1002/biot.202100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
A genomically recoded Escherichia coli strain that lacks all amber codons and release factor 1 (C321.∆A) enables efficient genetic encoding of chemically diverse non-canonical amino acids (ncAAs) into proteins. While C321.∆A has opened new opportunities in chemical and synthetic biology, this strain has not been optimized for protein production, limiting its utility in widespread industrial and academic applications. To address this limitation, the construction of a series of genomically recoded organisms that are optimized for cellular protein production is described. It is demonstrated that the functional deactivation of nucleases (e.g., rne, endA) and proteases (e.g., lon) increases production of wild-type superfolder green fluorescent protein (sfGFP) and sfGFP containing two ncAAs up to ≈5-fold. Additionally, a genomic IPTG-inducible T7 RNA polymerase (T7RNAP) cassette into these strains is introduced. Using an optimized platform, the ability to introduce two identical N6 -(propargyloxycarbonyl)-L -Lysine residues site specifically into sfGFP with a 17-fold improvement in production relative to the parent strain is demonstrated. The authors envision that their library of organisms will provide the community with multiple options for increased expression of proteins with new and diverse chemistries.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Erik D Carlson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Oliver Weisser
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Benjamin J Des Soye
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
20
|
Goetz H, Stone A, Zhang R, Lai Y, Tian X. Double-edged role of resource competition in gene expression noise and control. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100050. [PMID: 35989723 PMCID: PMC9390979 DOI: 10.1002/ggn2.202100050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/08/2022] [Indexed: 04/30/2023]
Abstract
Despite extensive investigation demonstrating that resource competition can significantly alter the deterministic behaviors of synthetic gene circuits, it remains unclear how resource competition contributes to the gene expression noise and how this noise can be controlled. Utilizing a two-gene circuit as a prototypical system, we uncover a surprising double-edged role of resource competition in gene expression noise: competition decreases noise through introducing a resource constraint but generates its own type of noise which we name as "resource competitive noise." Utilization of orthogonal resources enables retainment of the noise reduction conferred by resource constraint while removing the added resource competitive noise. The noise reduction effects are studied using three negative feedback types: negatively competitive regulation (NCR), local, and global controllers, each having four placement architectures in the protein biosynthesis pathway (mRNA or protein inhibition on transcription or translation). Our results show that both local and NCR controllers with mRNA-mediated inhibition are efficacious at reducing noise, with NCR controllers demonstrating a superior noise-reduction capability. We also find that combining feedback controllers with orthogonal resources can improve the local controllers. This work provides deep insights into the origin of stochasticity in gene circuits with resource competition and guidance for developing effective noise control strategies.
Collapse
Affiliation(s)
- Hanah Goetz
- School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeAZ85287USA
| | - Austin Stone
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| | - Rong Zhang
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| | - Ying‐Cheng Lai
- School of Electrical, Computer and Energy EngineeringArizona State UniversityTempeAZ85287USA
- Department of PhysicsArizona State UniversityTempeAZ85287USA
| | - Xiao‐Jun Tian
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| |
Collapse
|
21
|
Radford F, Elliott SD, Schepartz A, Isaacs FJ. Targeted editing and evolution of engineered ribosomes in vivo by filtered editing. Nat Commun 2022; 13:180. [PMID: 35013328 PMCID: PMC8748908 DOI: 10.1038/s41467-021-27836-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Genome editing technologies introduce targeted chromosomal modifications in organisms yet are constrained by the inability to selectively modify repetitive genetic elements. Here we describe filtered editing, a genome editing method that embeds group 1 self-splicing introns into repetitive genetic elements to construct unique genetic addresses that can be selectively modified. We introduce intron-containing ribosomes into the E. coli genome and perform targeted modifications of these ribosomes using CRISPR/Cas9 and multiplex automated genome engineering. Self-splicing of introns post-transcription yields scarless RNA molecules, generating a complex library of targeted combinatorial variants. We use filtered editing to co-evolve the 16S rRNA to tune the ribosome's translational efficiency and the 23S rRNA to isolate antibiotic-resistant ribosome variants without interfering with native translation. This work sets the stage to engineer mutant ribosomes that polymerize abiological monomers with diverse chemistries and expands the scope of genome engineering for precise editing and evolution of repetitive DNA sequences.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- CRISPR-Cas Systems
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Exons
- Gene Editing/methods
- Genetic Engineering
- Genome, Bacterial
- Introns
- Mutagenesis, Site-Directed/methods
- Polymers/chemistry
- Protein Biosynthesis
- RNA Splicing
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Repetitive Sequences, Nucleic Acid
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Felix Radford
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Shane D Elliott
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
22
|
Abstract
Modern genome-scale methods that identify new genes, such as proteogenomics and ribosome profiling, have revealed, to the surprise of many, that overlap in genes, open reading frames and even coding sequences is widespread and functionally integrated into prokaryotic, eukaryotic and viral genomes. In parallel, the constraints that overlapping regions place on genome sequences and their evolution can be harnessed in bioengineering to build more robust synthetic strains and constructs. With a focus on overlapping protein-coding and RNA-coding genes, this Review examines their discovery, topology and biogenesis in the context of their genome biology. We highlight exciting new uses for sequence overlap to control translation, compress synthetic genetic constructs, and protect against mutation.
Collapse
|
23
|
Gurzeler LA, Ziegelmüller J, Mühlemann O, Karousis ED. Production of human translation-competent lysates using dual centrifugation. RNA Biol 2022; 19:78-88. [PMID: 34965175 PMCID: PMC8815625 DOI: 10.1080/15476286.2021.2014695] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Protein synthesis is a central process in gene expression and the development of efficient in vitro translation systems has been the focus of scientific efforts for decades. The production of translation-competent lysates originating from human cells or tissues remains challenging, mainly due to the variability of cell lysis conditions. Here we present a robust and fast method based on dual centrifugation that allows for detergent-free cell lysis under controlled mechanical forces. We optimized the lysate preparation to yield cytoplasm-enriched extracts from human cells that efficiently translate mRNAs in a cap-dependent as well as in an IRES-mediated way. Reduction of the phosphorylation state of eIF2α using recombinant GADD34 and 2-aminopurine considerably boosts the protein output, reinforcing the potential of this method to produce recombinant proteins from human lysates.
Collapse
Affiliation(s)
- Lukas-Adrian Gurzeler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jana Ziegelmüller
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Evangelos D. Karousis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
McBride CD, Del Vecchio D. Predicting Composition of Genetic Circuits with Resource Competition: Demand and Sensitivity. ACS Synth Biol 2021; 10:3330-3342. [PMID: 34780149 DOI: 10.1021/acssynbio.1c00281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design of genetic circuits typically relies on characterization of constituent modules in isolation to predict the behavior of modules' composition. However, it has been shown that the behavior of a genetic module changes when other modules are in the cell due to competition for shared resources. In order to engineer multimodule circuits that behave as intended, it is thus necessary to predict changes in the behavior of a genetic module when other modules load cellular resources. Here, we introduce two characteristics of circuit modules: the demand for cellular resources and the sensitivity to resource loading. When both are known for every genetic module in a circuit library, they can be used to predict any module's behavior upon addition of any other module to the cell. We develop an experimental approach to measure both characteristics for any circuit module using a resource sensor module. Using the measured resource demand and sensitivity for each module in a library, the outputs of the modules can be accurately predicted when they are inserted in the cell in arbitrary combinations. These resource competition characteristics may be used to inform the design of genetic circuits that perform as predicted despite resource competition.
Collapse
Affiliation(s)
- Cameron D. McBride
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, United States
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
25
|
Gyorgy A. Context-Dependent Stability and Robustness of Genetic Toggle Switches with Leaky Promoters. Life (Basel) 2021; 11:life11111150. [PMID: 34833026 PMCID: PMC8624834 DOI: 10.3390/life11111150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023] Open
Abstract
Multistable switches are ubiquitous building blocks in both systems and synthetic biology. Given their central role, it is thus imperative to understand how their fundamental properties depend not only on the tunable biophysical properties of the switches themselves, but also on their genetic context. To this end, we reveal in this article how these factors shape the essential characteristics of toggle switches implemented using leaky promoters such as their stability and robustness to noise, both at single-cell and population levels. In particular, our results expose the roles that competition for scarce transcriptional and translational resources, promoter leakiness, and cell-to-cell heterogeneity collectively play. For instance, the interplay between protein expression from leaky promoters and the associated cost of relying on shared cellular resources can give rise to tristable dynamics even in the absence of positive feedback. Similarly, we demonstrate that while promoter leakiness always acts against multistability, resource competition can be leveraged to counteract this undesirable phenomenon. Underpinned by a mechanistic model, our results thus enable the context-aware rational design of multistable genetic switches that are directly translatable to experimental considerations, and can be further leveraged during the synthesis of large-scale genetic systems using computer-aided biodesign automation platforms.
Collapse
Affiliation(s)
- Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
26
|
Liu F, Bratulić S, Costello A, Miettinen TP, Badran AH. Directed evolution of rRNA improves translation kinetics and recombinant protein yield. Nat Commun 2021; 12:5638. [PMID: 34561441 PMCID: PMC8463689 DOI: 10.1038/s41467-021-25852-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022] Open
Abstract
In bacteria, ribosome kinetics are considered rate-limiting for protein synthesis and cell growth. Enhanced ribosome kinetics may augment bacterial growth and biomanufacturing through improvements to overall protein yield, but whether this can be achieved by ribosome-specific modifications remains unknown. Here, we evolve 16S ribosomal RNAs (rRNAs) from Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae towards enhanced protein synthesis rates. We find that rRNA sequence origin significantly impacted evolutionary trajectory and generated rRNA mutants with augmented protein synthesis rates in both natural and engineered contexts, including the incorporation of noncanonical amino acids. Moreover, discovered consensus mutations can be ported onto phylogenetically divergent rRNAs, imparting improved translational activities. Finally, we show that increased translation rates in vivo coincide with only moderately reduced translational fidelity, but do not enhance bacterial population growth. Together, these findings provide a versatile platform for development of unnatural ribosomal functions in vivo.
Collapse
MESH Headings
- Base Sequence
- Directed Molecular Evolution/methods
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Kinetics
- Mass Spectrometry/methods
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- Protein Biosynthesis
- Proteome/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Recombinant Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Fan Liu
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
| | - Siniša Bratulić
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Alan Costello
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Ahmed H Badran
- The Broad Institute of MIT & Harvard University, Cambridge, MA, 02142, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
27
|
Structural basis for the tryptophan sensitivity of TnaC-mediated ribosome stalling. Nat Commun 2021; 12:5340. [PMID: 34504068 PMCID: PMC8429421 DOI: 10.1038/s41467-021-25663-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Free L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC-ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.
Collapse
|
28
|
Abstract
![]()
Since the establishment
of site-specific mutagenesis of single
amino acids to interrogate protein function in the 1970s, biochemists
have sought to tailor protein structure in the native cell environment.
Fine-tuning the chemical properties of proteins is an indispensable
way to address fundamental mechanistic questions. Unnatural amino
acids (UAAs) offer the possibility to expand beyond the 20 naturally
occurring amino acids in most species and install new and useful chemical
functions. Here, we review the literature about advances in UAA incorporation
technology from chemoenzymatic aminoacylation of modified tRNAs to in vitro translation systems to genetic encoding of UAAs
in the native cell environment and whole organisms. We discuss innovative
applications of the UAA technology to challenges in bioengineering
and medicine.
Collapse
Affiliation(s)
- Mia A Shandell
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, U.K
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Department of Systems Biology, Columbia University, New York, New York 10027, United States
| |
Collapse
|
29
|
Abstract
Over the past decade, harnessing the cellular protein synthesis machinery to incorporate non-canonical amino acids (ncAAs) into tailor-made peptides has significantly advanced many aspects of molecular science. More recently, groundbreaking progress in our ability to engineer this machinery for improved ncAA incorporation has led to significant enhancements of this powerful tool for biology and chemistry. By revealing the molecular basis for the poor or improved incorporation of ncAAs, mechanistic studies of ncAA incorporation by the protein synthesis machinery have tremendous potential for informing and directing such engineering efforts. In this chapter, we describe a set of complementary biochemical and single-molecule fluorescence assays that we have adapted for mechanistic studies of ncAA incorporation. Collectively, these assays provide data that can guide engineering of the protein synthesis machinery to expand the range of ncAAs that can be incorporated into peptides and increase the efficiency with which they can be incorporated, thereby enabling the full potential of ncAA mutagenesis technology to be realized.
Collapse
|
30
|
Kofman C, Lee J, Jewett MC. Engineering molecular translation systems. Cell Syst 2021; 12:593-607. [PMID: 34139167 DOI: 10.1016/j.cels.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Molecular translation systems provide a genetically encoded framework for protein synthesis, which is essential for all life. Engineering these systems to incorporate non-canonical amino acids (ncAAs) into peptides and proteins has opened many exciting opportunities in chemical and synthetic biology. Here, we review recent advances that are transforming our ability to engineer molecular translation systems. In cell-based systems, new processes to synthesize recoded genomes, tether ribosomal subunits, and engineer orthogonality with high-throughput workflows have emerged. In cell-free systems, adoption of flexizyme technology and cell-free ribosome synthesis and evolution platforms are expanding the limits of chemistry at the ribosome's RNA-based active site. Looking forward, innovations will deepen understanding of molecular translation and provide a path to polymers with previously unimaginable structures and functions.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Interdisplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
31
|
Sherman MW, Sandeep S, Contreras LM. The Tryptophan-Induced tnaC Ribosome Stalling Sequence Exposes High Amino Acid Cross-Talk That Can Be Mitigated by Removal of NusB for Higher Orthogonality. ACS Synth Biol 2021; 10:1024-1038. [PMID: 33835775 DOI: 10.1021/acssynbio.0c00547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A growing number of engineered synthetic circuits have employed biological parts coupling transcription and translation in bacterial systems to control downstream gene expression. One such example, the leader sequence of the tryptophanase (tna) operon, is a transcription-translation system commonly employed as an l-tryptophan inducible circuit controlled by ribosome stalling. While induction of the tna operon has been well-characterized in response to l-tryptophan, cross-talk of this modular component with other metabolites in the cell, such as other naturally occurring amino acids, has been less explored. In this study, we investigated the impact of natural metabolites and E. coli host factors on induction of the tna leader sequence. To do so, we constructed and biochemically validated an experimental assay using the tna operon leader sequence to assess differential regulation of transcription elongation and translation in response to l-tryptophan. Operon induction was then assessed following addition of each of the 20 naturally occurring amino acids to discover that several additional amino acids (e.g., l-alanine, l-cysteine, l-glycine, l-methionine, and l-threonine) also induce expression of the tna leader sequence. Following characterization of dose-dependent induction by l-cysteine relative to l-tryptophan, the effect on induction by single gene knockouts of protein factors associated with transcription and/or translation were interrogated. Our results implicate the endogenous cellular protein, NusB, as an important factor associated with induction of the operon by the alternative amino acids. As such, removal of the nusB gene from strains intended for tryptophan-sensing utilizing the tna leader region reduces amino acid cross-talk, resulting in enhanced orthogonal control of this commonly used synthetic system.
Collapse
Affiliation(s)
- Mark W. Sherman
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Sanjna Sandeep
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78714, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78714, United States
| |
Collapse
|
32
|
Di Blasi R, Marbiah MM, Siciliano V, Polizzi K, Ceroni F. A call for caution in analysing mammalian co-transfection experiments and implications of resource competition in data misinterpretation. Nat Commun 2021; 12:2545. [PMID: 33953169 PMCID: PMC8099865 DOI: 10.1038/s41467-021-22795-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Transient transfections are routinely used in basic and synthetic biology studies to unravel pathway regulation and to probe and characterise circuit designs. As each experiment has a component of intrinsic variability, reporter gene expression is usually normalized with co-delivered genes that act as transfection controls. Recent reports in mammalian cells highlight how resource competition for gene expression leads to biases in data interpretation, with a direct impact on co-transfection experiments. Here we define the connection between resource competition and transient transfection experiments and discuss possible alternatives. Our aim is to raise awareness within the community and stimulate discussion to include such considerations in future experimental designs, for the development of better transfection controls.
Collapse
Affiliation(s)
- Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.,Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Masue M Marbiah
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.,Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Velia Siciliano
- Synthetic and Systems Biology lab for Biomedicine, Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples (ITA), Italy
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.,Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK. .,Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK.
| |
Collapse
|
33
|
Kosaka Y, Aoki W, Mori M, Aburaya S, Ohtani Y, Minakuchi H, Ueda M. Selected reaction monitoring for the quantification of Escherichia coli ribosomal proteins. PLoS One 2020; 15:e0236850. [PMID: 33315868 PMCID: PMC7735604 DOI: 10.1371/journal.pone.0236850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Ribosomes are the sophisticated machinery that is responsible for protein synthesis in a cell. Recently, quantitative mass spectrometry (qMS) have been successfully applied for understanding the dynamics of protein complexes. Here, we developed a highly specific and reproducible method to quantify all ribosomal proteins (r-proteins) by combining selected reaction monitoring (SRM) and isotope labeling. We optimized the SRM methods using purified ribosomes and Escherichia coli lysates and verified this approach as detecting 41 of the 54 r-proteins separately synthesized in E. coli S30 extracts. The SRM methods will enable us to utilize qMS as a highly specific analytical tool in the research of E. coli ribosomes, and this methodology have potential to accelerate the understanding of ribosome biogenesis, function, and the development of engineered ribosomes with additional functions.
Collapse
Affiliation(s)
- Yuishin Kosaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Kyoto Integrated Science & Technology Bio-Analysis Center, Kyoto, Japan
- * E-mail:
| | - Megumi Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shunsuke Aburaya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuta Ohtani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Kyoto Integrated Science & Technology Bio-Analysis Center, Kyoto, Japan
| |
Collapse
|
34
|
Abstract
The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.
Collapse
Affiliation(s)
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
35
|
Lee J, Schwarz KJ, Kim DS, Moore JS, Jewett MC. Ribosome-mediated polymerization of long chain carbon and cyclic amino acids into peptides in vitro. Nat Commun 2020; 11:4304. [PMID: 32855412 PMCID: PMC7452890 DOI: 10.1038/s41467-020-18001-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
Ribosome-mediated polymerization of backbone-extended monomers into polypeptides is challenging due to their poor compatibility with the translation apparatus, which evolved to use α-L-amino acids. Moreover, mechanisms to acylate (or charge) these monomers to transfer RNAs (tRNAs) to make aminoacyl-tRNA substrates is a bottleneck. Here, we rationally design non-canonical amino acid analogs with extended carbon chains (γ-, δ-, ε-, and ζ-) or cyclic structures (cyclobutane, cyclopentane, and cyclohexane) to improve tRNA charging. We then demonstrate site-specific incorporation of these non-canonical, backbone-extended monomers at the N- and C- terminus of peptides using wild-type and engineered ribosomes. This work expands the scope of ribosome-mediated polymerization, setting the stage for new medicines and materials. Backbone extended monomers are poorly compatible with the natural ribosomes, impeding their polymerization into polypeptides. Here the authors design non-canonical amino acid analogs with cyclic structures or extended carbon chains and used an engineered ribosome to improve tRNA-charging and incorporation into peptides.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Kevin J Schwarz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
36
|
Kostinski S, Reuveni S. Ribosome Composition Maximizes Cellular Growth Rates in E. coli. PHYSICAL REVIEW LETTERS 2020; 125:028103. [PMID: 32701325 DOI: 10.1103/physrevlett.125.028103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Bacterial ribosomes are composed of one-third protein and two-thirds RNA by mass. The predominance of RNA is often attributed to a primordial RNA world, but why exactly two-thirds remains a long-standing mystery. Here we present a quantitative analysis, based on the kinetics of ribosome self-replication, demonstrating that the 1∶2 protein-to-RNA mass ratio uniquely maximizes cellular growth rates in E. coli. A previously unrecognized growth law, and an invariant of bacterial growth, also follow from our analysis. The growth law reveals that the ratio between the number of ribosomes and the number of polymerases making ribosomal RNA is proportional to the cellular doubling time. The invariant is conserved across growth conditions and specifies how key microscopic parameters in the cell, such as transcription and translation rates, are coupled to cellular physiology. Quantitative predictions from the growth law and invariant are shown to be in excellent agreement with E. coli data despite having no fitting parameters. Our analysis can be readily extended to other bacteria once data become available.
Collapse
Affiliation(s)
- Sarah Kostinski
- School of Chemistry, Center for the Physics & Chemistry of Living Systems, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Shlomi Reuveni
- School of Chemistry, Center for the Physics & Chemistry of Living Systems, Tel Aviv University, 6997801 Tel Aviv, Israel
- Sackler Center for Computational Molecular & Materials Science, Ratner Institute for Single Molecule Chemistry, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|