1
|
Silva ML, Osório NS, Saraiva M. Immunoinformatics Predictions on Variable Mycobacterium tuberculosis Lineage 6 T Cell Epitopes and HLA Interactions in West Africa. Microorganisms 2025; 13:1032. [PMID: 40431205 PMCID: PMC12114075 DOI: 10.3390/microorganisms13051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a global health challenge. The human-adapted TB-causing bacteria are distributed into ten lineages with distinct global distributions and clinical outcomes. Mtb lineages 4 (L4) and L6 are good prototypes of these differences, because L4 is globally prevalent, whereas L6 is geographically restricted to West Africa and associated with slower disease progression. Given the fundamental role of T cells for the control of TB, we questioned whether Mtb L4 or L6 antigens and HLA interactions would be disrupted in West African hosts. Here, we selected variable and validated antigens and demonstrate their expression during in vivo Mtb L4 or L6 infections. We then compared the predicted number of IFN-γ-inducing and HLA high-binding-affinity peptides in Mtb ancestral, L4, or L6 proteins, considering HLA alleles of high or low frequency in West Africa. Our immunoinformatics approach predicts that non-synonymous substitutions of high variance in Mtb L6 strains diminish binding affinities to HLA alleles prevalent in West African populations, suggesting specific adaptations of these strains to their preferred hosts. Future functional studies will advance our knowledge on lineage-specific evolution and inform strategies to enhance TB control in endemic regions.
Collapse
Affiliation(s)
- Marta L. Silva
- i3S—Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal;
- Doctoral Program in Molecular and Cellular Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Nuno S. Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Margarida Saraiva
- i3S—Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal;
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Fernandes AI, Pinto AJ, Silvério D, Zedler U, Ferreira C, Duarte IF, Silvestre R, Dorhoi A, Saraiva M. Genetically Diverse Mycobacterium tuberculosis Isolates Manipulate Inflammasome and Interleukin 1β Secretion Independently of Macrophage Metabolic Rewiring. J Infect Dis 2025; 231:e671-e684. [PMID: 39570738 PMCID: PMC11998582 DOI: 10.1093/infdis/jiae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/19/2024] [Indexed: 04/17/2025] Open
Abstract
The diversity of Mycobacterium tuberculosis impacts the outcome of tuberculosis. We previously showed that M. tuberculosis isolates obtained from patients with severe disease induced low inflammasome activation and interleukin 1β (IL-1β) production by infected macrophages. Here we questioned whether this differential modulation of macrophages by M. tuberculosis isolates depended on distinct metabolic reprogramming. We found that the macrophage metabolic landscape was similar regardless of the infecting M. tuberculosis isolate. Paralleling single-Toll-like receptor (TLR) activated macrophages, glycolysis inhibition during infection impaired IL-1β secretion. However, departing from TLR -based models, in infected macrophages, IL-1β secretion was independent of mitochondrial metabolic changes and hypoxia-inducible factor 1α (HIF-1α). Additionally, we found an unappreciated impact of a host metabolic inhibitor on the pathogen, and show that inflammasome activation and IL-1β production by macrophages require metabolically active bacteria. Our study highlights the potential confounding effect of host metabolic inhibitors on the pathogen and uncoupling of M. tuberculosis-inflammasome modulation from the host metabolic reprogramming.
Collapse
Affiliation(s)
- Ana Isabel Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alexandre Jorge Pinto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ulrike Zedler
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Iola F Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Pfau DJ, Bryk R. High throughput screening assay for the identification of ATF4 and TFEB activating compounds. AUTOPHAGY REPORTS 2025; 4:2473765. [PMID: 40265045 PMCID: PMC11980509 DOI: 10.1080/27694127.2025.2473765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 04/24/2025]
Abstract
Macrophages act to defend against infection, but can fail to completely prevent bacterial replication and dissemination in an immunocompetent host. Recent studies have shown that activation of a host transcription factor, TFEB, a regulator of lysosomal biogenesis, could restrict intramacrophage replication of the human pathogen Mycobacterium tuberculosis and synergize with suboptimal levels of the antibiotic rifampin to reduce bacterial loads. Currently available small molecule TFEB activators lack selectivity and potency, but could be potentially useful in a variety of pathological conditions with suboptimal lysosomal activity. TFEB nuclear translocation and activation depend on its phosphorylation status which is controlled by multiple cellular pathways. We devised a whole cell, high throughput screening assay to identify small molecules that activate TFEB by establishing a stably transfected HEK293T reporter cell line for ATF4, a basic leucine zipper transcription factor induced by stress response and activated in parallel to TFEB. We optimized its use in vitro using compounds that target endoplasmic reticulum stress and intracellular calcium signaling. We report results from screening the commercially available LOPAC library and the Selleck Chemicals library modified to include only FDA-approved drugs and clinical research compounds. We identified twenty-one compounds across six clinical use categories that activate ATF4, and confirmed that two proteasome inhibitors promote TFEB activation. The results of this study provide an assay that could be used to screen for small molecules that activate ATF4 and TFEB and a potential list of compounds identified as activators of the ATF4 transcription factor in response to cellular stress.
Collapse
Affiliation(s)
- Daniel J. Pfau
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ruslana Bryk
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Krueger G, Faisal S, Dorhoi A. Microenvironments of tuberculous granuloma: advances and opportunities for therapy. Front Immunol 2025; 16:1575133. [PMID: 40196129 PMCID: PMC11973276 DOI: 10.3389/fimmu.2025.1575133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
The hallmark tissue lesions of tuberculosis (TB) are granulomas. These multicellular structures exhibit varying degrees of cellular complexity, are dynamic, and show considerable diversity within and between hosts. Categorization based on gross pathologic features, particularly caseation and necrosis, was historically coined prior to the identification of mycobacteria as the causative agent of TB. More recently, granuloma zonation based on immune cell composition, metabolite abundance, and physical characteristics has gained attention. With the advent of single-cell analyses, distinct microenvironments and cellular ecosystems within TB granulomas have been identified. We summarize the architecture of TB granulomas and highlight their cellular heterogeneity, including cell niches as well as physical factors such as oxygen gradients that modulate lesion fate. We discuss opportunities for therapy, highlighting new models and the power of in silico modeling to unravel granuloma features and trajectories. Understanding the relevance of the granuloma microenvironment to disease pathophysiology will facilitate the development of more effective interventions, such as host-directed therapies for TB.
Collapse
Affiliation(s)
- Gesa Krueger
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Shah Faisal
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Liu XY, Li DN, Shi K, Li JM, Zong Y, Diao NC, Zeng FL, Du R. Mycobacterium tuberculosis Rv3435c gene regulates inflammatory cytokines and is involved in lung injury and mycobacterial survival in mice. Microb Pathog 2025; 199:107247. [PMID: 39756525 DOI: 10.1016/j.micpath.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Mycobacterium tuberculosis enters the body through the respiratory tract, produces and releases virulence proteins through a variety of mechanisms, regulates the host immune mechanism through a variety of ways, and then survives in the body for a long time. These depend on virulence genes encoded by Mycobacterium tuberculosis. Previous studies found that the Rv3435c gene of Mycobacterium tuberculosis is highly conserved in pathogenic mycobacterium, but not conserved in non-pathogenic mycobacterium, which may be a potential virulence gene, and inhibit the secretion of inflammatory factors in RAW264.7 cells and inhibit cell apoptosis. Based on previous studies, the function of Rv3435c gene in mice was studied by infecting mice with recombinant strains. In vivo infection experiments showed that overexpression of Rv3435c significantly promoted the survival of Ms in the lung. Ms-pMV361-Rv3435c specifically inhibits the secretion of inflammatory cytokines, including TNF-α, IL-6, IL-1β, IL-12, and IFN-γ. Rv3435c can inhibit lung cell apoptosis and cause pathological damage to lung. Therefore, Rv3435c enhances the survival of mycobacterium in mice and promotes the pathogenicity and spread of Mycobacterium tuberculosis by inhibiting the production of cytokines.
Collapse
Affiliation(s)
- Xin-Yue Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dan-Ni Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China
| | - Jian-Ming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China
| | - Nai-Chao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China
| | - Fan-Li Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China; The Ministry of Education Key Laboratory of Animal Production and the Product Quality and Safety, Changchun, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; Jilin Province Sika Deer Efficient Breeding and Product Development Technology Engineering Research Center, Changchun, China; The Ministry of Education Key Laboratory of Animal Production and the Product Quality and Safety, Changchun, China.
| |
Collapse
|
6
|
Mvubu NE, Govender D, Pillay M. Comparative Transcriptomics Reveal Differential Expression of Coding and Non-Coding RNAs in Clinical Strains of Mycobacterium tuberculosis. Int J Mol Sci 2024; 26:217. [PMID: 39796078 PMCID: PMC11720245 DOI: 10.3390/ijms26010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Coding and non-coding RNAs (ncRNAs) are potential novel markers that can be exploited for TB diagnostics in the fight against Mycobacterium tuberculosis. The current study investigated the mechanisms of transcript regulation and ncRNA signatures through Total RNA Seq and small (smRNA) RNA Seq followed by Bioinformatics analysis in Beijing and F15/LAM4/KZN (KZN) clinical strains compared to the laboratory strain. Total RNA Seq revealed differential regulation of RNA transcripts in Beijing (n = 1095) and KZN (n = 856) strains compared to the laboratory H37Rv strain. The KZN vs. H37Rv coding transcripts uniquely enriched fatty acids, steroid degradation, fructose, and mannose metabolism as well as a bacterial secretion system. In contrast, Tuberculosis and biosynthesis of siderophores KEGG pathways were enriched by the Beijing vs. H37Rv-specific transcripts. Novel sense and antisense ncRNAs, as well as the expression of these transcripts, were observed, and these targeted RNA transcripts are involved in cell wall synthesis and bacterial metabolism in a strain-specific manner. RNA transcripts identified in the current study offer insights into gene regulation of transcripts involved in the growth and metabolism of the clinically relevant KZN and Beijing strains compared to the laboratory H37Rv strain and thus can be exploited in the fight against Tuberculosis.
Collapse
Affiliation(s)
- Nontobeko Eunice Mvubu
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Divenita Govender
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Manormoney Pillay
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
7
|
Malmsheimer S, Daher W, Tasrini Y, Hamela C, Aguilera-Correa JJ, Chalut C, Hatfull GF, Kremer L. Trehalose polyphleates participate in Mycobacterium abscessus fitness and pathogenesis. mBio 2024; 15:e0297024. [PMID: 39475242 PMCID: PMC11633156 DOI: 10.1128/mbio.02970-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 12/12/2024] Open
Abstract
Mycobacteria produce a large repertoire of surface-exposed lipids with major biological functions. Among these lipids, trehalose polyphleates (TPPs) are instrumental in the infection of Mycobacterium abscessus by the therapeutic phage BPs. However, while the biosynthesis and transport of TPPs across the membrane by MmpL10 have been reported, the role of TPPs in host infection remains enigmatic. Here, we addressed whether the loss of TPPs influences interactions with macrophages and the virulence of M. abscessus. As anticipated, the deletion of mmpL10 in smooth (S) and rough (R) variants of M. abscessus abrogated TPP production, which was rescued upon gene complementation. Importantly, infection of human THP-1 cells with the mmpL10 mutants was associated with decreased intramacrophage survival and a reduced proportion of infected cells. The rough mmpL10 mutant showed an impaired capacity to block phagosomal acidification and was unable to co-localize with Galectin-3, a marker of phagosomal membrane damage. This suggests that TPPs participate, directly or indirectly, in phagolysosomal fusion and in phagosomal membrane damage to establish cytosolic communication. The TPP defect that affects the fitness and virulence of M. abscessus was further demonstrated in zebrafish embryos using a rough clinical strain resistant to phage BPs and harboring a frameshift mutation in mmpL10. Infection with this strain was correlated with a slight decrease in embryo survival and a reduced bacterial burden as compared to the corresponding parental and complemented derivatives. Together, these results indicate that TPPs are important surface lipids contributing to the pathogenicity of M. abscessus.IMPORTANCETrehalose polyphleates (TPPs) are complex lipids associated with the mycobacterial cell surface and were identified 50 years ago. While the TPP biosynthetic pathway has been described recently, the role of these lipids in the biology of mycobacteria remains yet to be established. The wide distribution of TPPs across mycobacterial species suggests that they may exhibit important functions in these actinobacteria. Here, we demonstrate that Mycobacterium abscessus, an emerging multidrug-resistant pathogen that causes severe lung diseases in cystic fibrosis patients, requires TPPs for survival in macrophages and virulence in a zebrafish model of infection. These findings support the importance of this underexplored family of lipids in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Silke Malmsheimer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
8
|
Liu R, Zhang F, Li S, Liu Q, Pang Y, Li L. Regulation of ROS metabolism in macrophage via xanthine oxidase is associated with disease progression in pulmonary tuberculosis. Metabolomics 2024; 20:127. [PMID: 39520502 DOI: 10.1007/s11306-024-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Pulmonary tuberculosis (PTB) exacerbation can lead to respiratory failure, multi-organ failure, and symptoms related to central nervous system diseases. The purpose of this study is to screen biomarkers and metabolic pathways that can predict the progression of PTB, and to verify the role of the metabolic enzyme xanthine oxidase (XO) in the progression of PTB. METHODS To explore the biomarkers and mechanisms underlying the progression of PTB, plasma metabolomics sequencing was conducted on patients with severe PTB, non-severe PTB, and healthy individuals. Screening differential metabolites and metabolic pathways that can predict the progression of PTB, and verifying the function and mechanism of action of XO through experiments. RESULTS The purine metabolism, sphingolipid metabolism, and amino acid metabolism between the three groups differ. In patients with severe PTB, the levels of xanthosine and hypoxanthine are increased, while the levels of D-tryptophan, dihydroceramide and uric acid are decreased. Inhibition of XO activity has been observed to reduce the levels of tumor necrosis factor (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), as well as to suppress the production of reactive oxygen species (ROS) and the activation of the NF-κB pathway, while also promoting the growth of MTB within cells. CONCLUSION D-tryptophan, xanthosine, and dihydroceramide can be utilized as biomarkers for progression of PTB, assisting in the evaluation of disease progression, and XO stands out as a potential therapeutic target for impeding the progression of PTB.
Collapse
Affiliation(s)
- Ruichao Liu
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Fuzhen Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Qiuyue Liu
- Department of Intensive Care Unit, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
| | - Liang Li
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China.
| |
Collapse
|
9
|
Jiang Z, Zhen J, Abulikena Y, Gao C, Huang L, Huang T, Xie J. Mycobacterium tuberculosis VII secretion system effector molecule Rv2347c blocks the maturation of phagosomes and activates the STING/TBK1 signaling pathway to inhibit cell autophagy. Microbiol Spectr 2024; 12:e0118824. [PMID: 39313213 PMCID: PMC11537087 DOI: 10.1128/spectrum.01188-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
The VII secretion system is the main channel for Mycobacterium tuberculosis (MTB) to secrete virulence proteins. The ESAT-like proteins EsxA/B and EsxW/V in the RD region of its genome have been used as targets for vaccine antigens. However, the function of EsxO/P has not been explored, although it was predicted to potentially induce Th1 cell responses as a vaccine development target. In this study, the VII secretion system effector molecule Rv2347c was heterologously expressed in Mycobacterium smegmatis and found to inhibit the expression of the early marker RAB5 of phagosomes, thus preventing the maturation process of phagosomes toward lysosomes, and activated the host cytoplasmic sensing pathway. It inhibited autophagy and activated IFNβ transcription through the STING/TBK1 pathway promoting the host's survival. Therefore, Rv2347c plays an important role in the pathogenesis of MTB with the potential to be utilized as a new target for tuberculosis vaccine development. IMPORTANCE We found that the ESAT-like protein Rv2347c (EsxP) can inhibit the maturation of phagosomes, leading to mycobacterium escape from phagosomes into the cytoplasm, which triggers the host's cytoplasmic sensing pathway STING/TBK1, inhibiting autophagy and upregulating IFNβ transcription, which contributes to the survival of mycobacterium in the host cell. We also found that Rv2347c was able to activate host immunity by activating NF-κB via STING and promoting the transcription of downstream pro-inflammatory factors. Meanwhile, the host also produces IL-1β to repair phagosome maturation arrest via the STING-mediated non-NF-κB pathway.
Collapse
Affiliation(s)
- Zhiyong Jiang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuerigu Abulikena
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Chaoyun Gao
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Lingxi Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Tingting Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Auld SC, Barczak AK, Bishai W, Coussens AK, Dewi IMW, Mitini-Nkhoma SC, Muefong C, Naidoo T, Pooran A, Stek C, Steyn AJC, Tezera L, Walker NF. Pathogenesis of Post-Tuberculosis Lung Disease: Defining Knowledge Gaps and Research Priorities at the Second International Post-Tuberculosis Symposium. Am J Respir Crit Care Med 2024; 210:979-993. [PMID: 39141569 PMCID: PMC11531093 DOI: 10.1164/rccm.202402-0374so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
Post-tuberculosis (post-TB) lung disease is increasingly recognized as a major contributor to the global burden of chronic lung disease, with recent estimates indicating that over half of TB survivors have impaired lung function after successful completion of TB treatment. However, the pathologic mechanisms that contribute to post-TB lung disease are not well understood, thus limiting the development of therapeutic interventions to improve long-term outcomes after TB. This report summarizes the work of the Pathogenesis and Risk Factors Committee for the Second International Post-Tuberculosis Symposium, which took place in Stellenbosch, South Africa, in April 2023. The committee first identified six areas with high translational potential: 1) tissue matrix destruction, including the role of matrix metalloproteinase dysregulation and neutrophil activity; 2) fibroblasts and profibrotic activity; 3) granuloma fate and cell death pathways; 4) mycobacterial factors, including pathogen burden; 5) animal models; and 6) the impact of key clinical risk factors, including HIV, diabetes, smoking, malnutrition, and alcohol. We share the key findings from a literature review of those areas, highlighting knowledge gaps and areas where further research is needed.
Collapse
Affiliation(s)
- Sara C. Auld
- Departments of Medicine, Epidemiology, and Global Health, Emory University School of Medicine and Rollins School of Public Health, Atlanta, Georgia
| | - Amy K. Barczak
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - William Bishai
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Intan M. W. Dewi
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, and
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Caleb Muefong
- Department of Microbiology, University of Chicago, Chicago, Illinois
| | - Threnesan Naidoo
- Department of Forensic & Legal Medicine and
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Eastern Cape, South Africa
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, and
- University of Cape Town Lung Institute and Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Cari Stek
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liku Tezera
- National Institute for Health and Care Research Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Naomi F. Walker
- Department of Clinical Sciences and Centre for Tuberculosis Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; and
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
11
|
Malik AA, Shariq M, Sheikh JA, Fayaz H, Srivastava G, Thakuri D, Ahuja Y, Ali S, Alam A, Ehtesham NZ, Hasnain SE. Regulation of Type I Interferon and Autophagy in Immunity against Mycobacterium Tuberculosis: Role of CGAS and STING1. Adv Biol (Weinh) 2024; 8:e2400174. [PMID: 38977406 DOI: 10.1002/adbi.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is a significant intracellular pathogen responsible for numerous infectious disease-related deaths worldwide. It uses ESX-1 T7SS to damage phagosomes and to enter the cytosol of host cells after phagocytosis. During infection, M. tb and host mitochondria release dsDNA, which activates the CGAS-STING1 pathway. This pathway leads to the production of type I interferons and proinflammatory cytokines and activates autophagy, which targets and degrades bacteria within autophagosomes. However, the role of type I IFNs in immunity against M. tb is controversial. While previous research has suggested a protective role, recent findings from cgas-sting1 knockout mouse studies have contradicted this. Additionally, a study using knockout mice and non-human primate models uncovered a new mechanism by which neutrophils recruited to lung infections form neutrophil extracellular traps. Activating plasmacytoid dendritic cells causes them to produce type I IFNs, which interfere with the function of interstitial macrophages and increase the likelihood of tuberculosis. Notably, M. tb uses its virulence proteins to disrupt the CGAS-STING1 signaling pathway leading to enhanced pathogenesis. Investigating the CGAS-STING1 pathway can help develop new ways to fight tuberculosis.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, 110029, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Haleema Fayaz
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Gauri Srivastava
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Deeksha Thakuri
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Saquib Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, 110 016, India
| |
Collapse
|
12
|
Li J, Dou Y. Mycobacterium tuberculosis protein Rv2652c enhances intracellular survival by inhibiting host immune responses. Immun Inflamm Dis 2024; 12:e70012. [PMID: 39240051 PMCID: PMC11378267 DOI: 10.1002/iid3.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUNDS Mycobacterium tuberculosis (Mtb), the pathogen responsible for tuberculosis, secretes a multitude of proteins that modulate the host's immune response to ensure its own persistence. The region of difference (RD) genes encoding proteins play key roles in TB immunity and pathogenesis. Nevertheless, the roles of the majority of RD-encoded proteins remain to be elucidated. OBJECTS To elucidate the role of Rv2652c located in RD13 in Mtb on bacterial growth, bacterial survival, and host immune response. METHODS We constructed the strain MS_Rv2652c which over-expresses Mtb RD-encoding protein Rv2652c in M. smegmatis (MS), and compared it with the wild strain in the bacterial growth, bacterial survival, virulence of Rv2652c, and determined the effect of MS_Rv2652c on host immune response in macrophages. RESULTS Rv2652c protein is located at cell wall of MS_Rv2652c strain and also an integral component of the Mtb H37Rv cell wall. Rv2652c can enhance the resistance of recombinant MS to various stressors. Moreover, Rv2652c inhibits host proinflammatory responses via modulation of the NF-κB pathway, thereby promoting Mtb survival in vitro and in vivo. CONCLUSION Our data suggest that cell wall protein Rv2652c plays an important role in creating a favorable environment for bacterial survival by modulating host signals and could be established as a potential TB drug target.
Collapse
Affiliation(s)
- Jihong Li
- Yichang Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Immunological DiseasesThe Second People's Hospital of China Three Gorges UniversityYichangChina
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyChina Three Gorges UniversityYichangChina
| | - Yafeng Dou
- Yichang Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Immunological DiseasesThe Second People's Hospital of China Three Gorges UniversityYichangChina
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyChina Three Gorges UniversityYichangChina
- Department of LaboratoryThe Second People's Hospital of China Three Gorges UniversityYichangChina
| |
Collapse
|
13
|
Mishra A, Khan A, Singh VK, Glyde E, Saikolappan S, Garnica O, Das K, Veerapandian R, Dhandayuthapani S, Jagannath C. The ΔfbpAΔsapM candidate vaccine derived from Mycobacterium tuberculosis H37Rv is markedly immunogenic in macrophages and induces robust immunity to tuberculosis in mice. Front Immunol 2024; 15:1321657. [PMID: 38975346 PMCID: PMC11224292 DOI: 10.3389/fimmu.2024.1321657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, with approximately 1.5 million deaths per year. The Bacillus Calmette-Guérin (BCG) vaccine against TB is used in infants but shows variable protection. Here, we introduce a novel approach using a double gene knockout mutant (DKO) from wild-type Mycobacterium tuberculosis (Mtb) targeting fbpA and sapM genes. DKO exhibited enhanced anti-TB gene expression in mouse antigen-presenting cells, activating autophagy and inflammasomes. This heightened immune response improved ex vivo antigen presentation to T cells. Subcutaneous vaccination with DKO led to increased protection against TB in wild-type C57Bl/6 mice, surpassing the protection observed in caspase 1/11-deficient C57Bl/6 mice and highlighting the critical role of inflammasomes in TB protection. The DKO vaccine also generated stronger and longer-lasting protection than the BCG vaccine in C57Bl/6 mice, expanding both CD62L-CCR7-CD44+/-CD127+ effector T cells and CD62L+CCR7+/-CD44+CD127+ central memory T cells. These immune responses correlated with a substantial ≥ 1.7-log10 reduction in Mtb lung burden. The DKO vaccine represents a promising new approach for TB immunization that mediates protection through autophagy and inflammasome pathways.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Vipul Kumar Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Emily Glyde
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Sankaralingam Saikolappan
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Omar Garnica
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Kishore Das
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Raja Veerapandian
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Subramanian Dhandayuthapani
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Nosik M, Ryzhov K, Kudryavtseva AV, Kuimova U, Kravtchenko A, Sobkin A, Zverev V, Svitich O. Decreased IL-1 β Secretion as a Potential Predictor of Tuberculosis Recurrence in Individuals Diagnosed with HIV. Biomedicines 2024; 12:954. [PMID: 38790916 PMCID: PMC11117744 DOI: 10.3390/biomedicines12050954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Background: The mechanisms of the formation of immunological competence against tuberculosis (TB), and especially those associated with HIV co-infection, remain poorly understood. However, there is an urgent need for risk recurrence predictive biomarkers, as well as for predictors of successful treatment outcomes. The goal of the study was to identify possible immunological markers of TB recurrence in individuals with HIV/TB co-infection. Methods: The plasma levels of IFN-γ, TNF-α, IL-10, and IL-1β (cytokines which play important roles in the immune activation and protection against Mycobacterium tuberculosis) were measured using ELISA EIA-BEST kits. The cytokine concentrations were determined using a standard curve obtained with the standards provided by the manufacturer of each kit. Results: A total of 211 individuals were enrolled in the study as follows: 62 patients with HIV/TB co-infection, 52 with HIV monoinfection, 52 with TB monoinfection, and 45 healthy donors. Out of the 62 patients with HIV/TB, 75.8% (47) of patients were newly diagnosed with HIV and TB, and 24.2% (15) displayed recurrent TB and were newly diagnosed with HIV. Decreased levels of IFN-γ, TNF-α, and IL-10 were observed in patients with HIV/TB when compared with HIV and TB patients. However, there was no difference in IFN-γ, TNF-α, or IL-10 secretion between both HIV/TB groups. At the same time, an almost 4-fold decrease in Il-1β levels was detected in the HIV/TB group with TB recurrence when compared with the HIV/TB group (p = 0.0001); a 2.8-fold decrease when compared with HIV patients (p = 0.001); and a 2.2-fold decrease with newly diagnosed TB patients (p = 0.001). Conclusions: Significantly decreased Il-1β levels in HIV/TB patients' cohort with secondary TB indicate that this cytokine can be a potential biomarker of TB recurrence.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Konstantin Ryzhov
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Asya V. Kudryavtseva
- La Facultad de Ciencias Médicas, Universidad Bernardo O’Higgings-Escuela de Medicina, Santiago 8370993, Chile;
| | - Ulyana Kuimova
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia; (U.K.); (A.K.)
| | - Alexey Kravtchenko
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia; (U.K.); (A.K.)
| | - Alexandr Sobkin
- G.A. Zaharyan Moscow Tuberculosis Clinic, Department for Treatment of TB Patients with HIV, 125466 Moscow, Russia;
| | - Vitaly Zverev
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| |
Collapse
|
15
|
Olivença F, Pires D, Silveiro C, Gama B, Holtreman F, Anes E, Catalão MJ. Ethambutol and meropenem/clavulanate synergy promotes enhanced extracellular and intracellular killing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0158623. [PMID: 38411952 PMCID: PMC10989012 DOI: 10.1128/aac.01586-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/27/2024] [Indexed: 02/28/2024] Open
Abstract
Increasing evidence supports the repositioning of beta-lactams for tuberculosis (TB) therapy, but further research on their interaction with conventional anti-TB agents is still warranted. Moreover, the complex cell envelope of Mycobacterium tuberculosis (Mtb) may pose an additional obstacle to beta-lactam diffusion. In this context, we aimed to identify synergies between beta-lactams and anti-TB drugs ethambutol (EMB) and isoniazid (INH) by assessing antimicrobial effects, intracellular activity, and immune responses. Checkerboard assays with H37Rv and eight clinical isolates, including four drug-resistant strains, exposed that only treatments containing EMB and beta-lactams achieved synergistic effects. Meanwhile, the standard EMB and INH association failed to produce any synergy. In Mtb-infected THP-1 macrophages, combinations of EMB with increasing meropenem (MEM) concentrations consistently displayed superior killing activities over the individual antibiotics. Flow cytometry with BODIPY FL vancomycin, which binds directly to the peptidoglycan (PG), confirmed an increased exposure of this layer after co-treatment. This was reinforced by the high IL-1β secretion levels found in infected macrophages after incubation with MEM concentrations above 5 mg/L, indicating an exposure of the host innate response sensors to pathogen-associated molecular patterns in the PG. Our findings show that the proposed impaired access of beta-lactams to periplasmic transpeptidases is counteracted by concomitant administration with EMB. The efficiency of this combination may be attributed to the synchronized inhibition of arabinogalactan and PG synthesis, two key cell wall components. Given that beta-lactams exhibit a time-dependent bactericidal activity, a more effective pathogen recognition and killing prompted by this association may be highly beneficial to optimize TB regimens containing carbapenems.IMPORTANCEAddressing drug-resistant tuberculosis with existing therapies is challenging and the treatment success rate is lower when compared to drug-susceptible infection. This study demonstrates that pairing beta-lactams with ethambutol (EMB) significantly improves their efficacy against Mycobacterium tuberculosis (Mtb). The presence of EMB enhances beta-lactam access through the cell wall, which may translate into a prolonged contact between the drug and its targets at a concentration that effectively kills the pathogen. Importantly, we showed that the effects of the EMB and meropenem (MEM)/clavulanate combination were maintained intracellularly. These results are of high significance considering that the time above the minimum inhibitory concentration is the main determinant of beta-lactam efficacy. Moreover, a correlation was established between incubation with higher MEM concentrations during macrophage infection and increased IL-1β secretion. This finding unveils a previously overlooked aspect of carbapenem repurposing against tuberculosis, as certain Mtb strains suppress the secretion of this key pro-inflammatory cytokine to evade host surveillance.
Collapse
Affiliation(s)
- Francisco Olivença
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - David Pires
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Centre for Interdisciplinary Research in Health, Lisbon, Portugal
| | - Cátia Silveiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Bianca Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico Holtreman
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Elsa Anes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Schorey JS, Vecchio J, McManus WR, Ongalo J, Webber K. Activation of host nucleic acid sensors by Mycobacterium: good for us or good for them? Crit Rev Microbiol 2024; 50:224-240. [PMID: 38153209 PMCID: PMC10985831 DOI: 10.1080/1040841x.2023.2294904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Although the importance of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sensors in controlling viral infection is well established, their role in promoting an effective immune response to pathogens other than viruses is less clear. This is particularly true for infections with mycobacteria, as studies point to both protective and detrimental roles for activation of nucleic acid sensors in controlling a mycobacterial infection. Some of the contradiction likely stems from the use of different model systems and different mycobacterial species/strains as well as from which nucleic acid sensors were studied and what downstream effectors were evaluated. In this review, we will describe the different nucleic acid sensors that have been studied in the context of mycobacterial infections, and how the different studies compare. We conclude with a section on how nucleic acid sensor agonists have been used therapeutically and what further information is needed to enhance their potential as therapeutic agents.
Collapse
Affiliation(s)
- Jeffery S. Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joseph Vecchio
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - William R. McManus
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joshua Ongalo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Kylie Webber
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
17
|
Xu T, Wang C, Li M, Wei J, He Z, Qian Z, Wang X, Wang H. Mycobacterium tuberculosis PE_PGRS45 (Rv2615c) Promotes Recombinant Mycobacteria Intracellular Survival via Regulation of Innate Immunity, and Inhibition of Cell Apoptosis. J Microbiol 2024; 62:49-62. [PMID: 38337112 DOI: 10.1007/s12275-023-00101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
Tuberculosis (TB), a bacterial infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), is a significant global public health problem. Mycobacterium tuberculosis expresses a unique family of PE_PGRS proteins that have been implicated in pathogenesis. Despite numerous studies, the functions of most PE_PGRS proteins in the pathogenesis of mycobacterium infections remain unclear. PE_PGRS45 (Rv2615c) is only found in pathogenic mycobacteria. In this study, we successfully constructed a recombinant Mycobacterium smegmatis (M. smegmatis) strain which heterologously expresses the PE_PGRS45 protein. We found that overexpression of this cell wall-associated protein enhanced bacterial viability under stress in vitro and cell survival in macrophages. MS_PE_PGRS45 decreased the secretion of pro-inflammatory cytokines such as IL-1β, IL-6, IL-12p40, and TNF-α. We also found that MS_PE_PGRS45 increased the expression of the anti-inflammatory cytokine IL-10 and altered macrophage-mediated immune responses. Furthermore, PE_PGRS45 enhanced the survival rate of M. smegmatis in macrophages by inhibiting cell apoptosis. Collectively, our findings show that PE_PGRS45 is a virulent factor actively involved in the interaction with the host macrophage.
Collapse
Affiliation(s)
- Tao Xu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Chutong Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Minying Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Jing Wei
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Zixuan He
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Zhongqing Qian
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, Bengbu, 233030, People's Republic of China.
| |
Collapse
|
18
|
Zhen L, Chen Y, Gao J, Li B, Jia Y. MicroRNA-99b Regulates Bacillus Calmette-Guerin-Infected Immature Dendritic Cell-Induced CD4+ T Cell Differentiation by Targeting mTOR Signaling. Crit Rev Immunol 2024; 44:35-47. [PMID: 38305335 DOI: 10.1615/critrevimmunol.2023050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
This study aimed to elucidate the mechanisms by which microRNA-99b (miR-99b) regulates CD4+ T cell differentiation induced by Bacillus Calmette-Guerin (BCG)-infected immature dendritic cells (imDCs). Levels of miR-99b, interferon-gamma (IFN-γ), Foxp3, interleukin (IL)-10, IL-17, IL-23, and ROR-γt were assessed. Effects of miR-99b inhibition and mechanistic target of rapamycin (mTOR) agonist on Th17/Treg cell ratio and cytokine levels (IL-6, IL-17, IL-23) were studied. Expression of mTOR, S6K1, and 4E-BP1 related to miR-99b was analyzed. BCG-infected imDCs led to CD4+ T cell differentiation and altered levels of IFN-γ, Foxp3, IL-10, miR-99b, IL-17, IL-23, and ROR-γt. Inhibition of miR-99b increased the Th17/Treg cell ratio in CD4+ T cells co-cultured with BCG-infected imDCs, and this effect was further enhanced by the mTOR agonist. Additionally, the miR-99b inhibitor elevated the levels of IL-6, IL-17, and IL-23 when CD4+ T cells were co-cultured with BCG-infected imDCs, and the mTOR agonist further amplified this increase. Notably, miR-99b negatively regulated mTOR signaling, as the miR-99b inhibitor upregulated the expression levels of mTOR, S6K1, and 4E-BP1 while decreasing miR-99b. It was concluded that miR-99b modulates CD4+ T cell differentiation via mTOR pathway in response to BCG-infected im-DCs. Inhibiting miR-99b affects Th17/Treg ratio and pro-inflammatory cytokines, potentially impacting tuberculosis immunotherapies.
Collapse
Affiliation(s)
- Libo Zhen
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Yuanyuan Chen
- Tuberculosis Laboratory, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Juwei Gao
- Department of Oncology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310061, China
| | - Boying Li
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Yangmin Jia
- Department of Occupational Medicine, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| |
Collapse
|
19
|
Ocampo JC, Alzate JF, Barrera LF, Baena A. Tuberculosis Severity Predictive Model Using Mtb Variants and Serum Biomarkers in a Colombian Cohort of APTB Patients. Biomedicines 2023; 11:3110. [PMID: 38137331 PMCID: PMC10740695 DOI: 10.3390/biomedicines11123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (Mtb) that primarily affects the lungs. The severity of active pulmonary TB (APTB) is an important determinant of transmission, morbidity, mortality, disease experience, and treatment outcomes. Several publications have shown a high prevalence of disabling complications in individuals who have had severe APTB. Furthermore, certain strains of Mtb were associated with more severe disease outcomes. The use of biomarkers to predict severe APTB patients who are candidates for host-directed therapies, due to the high risk of developing post-tuberculous lung disease (PTLD), has not yet been implemented in the management of TB patients. We followed 108 individuals with APTB for 6 months using clinical tools, flow cytometry, and whole-genome sequencing (WGS). The median age of the study population was 26.5 years, and the frequency of women was 53.7%. In this study, we aimed to identify biomarkers that could help us to recognize individuals with APTB and improve our understanding of the immunopathology in these individuals. In this study, we conducted a follow-up on the treatment progress of 121 cases of APTB. The follow-up process commenced at the time of diagnosis (T0), continued with a control visit at 2 months (T2), and culminated in an exit appointment at 6 months following the completion of medical treatment (T6). People classified with severe APTB showed significantly higher levels of IL-6 (14.7 pg/mL; p < 0.05) compared to those with mild APTB (7.7 pg/mL) at T0. The AUCs for the ROC curves and the Matthews correlation coefficient values (MCC) demonstrate correlations ranging from moderate to very strong. We conducted WGS on 88 clinical isolates of Mtb, and our analysis revealed a total of 325 genes with insertions and deletions (Indels) within their coding regions when compared to the Mtb H37Rv reference genome. The pattern of association was found between serum levels of CHIT1 and the presence of Indels in Mtb isolates from patients with severe APTB. A key finding in our study was the high levels of CHIT1 in severe APTB patients. We identified a biomarker profile (IL-6, IFN-γ, IL-33, and CHIT1) that allows us to identify individuals with severe APTB, as well as the identification of a panel of polymorphisms (125) in clinical isolates of Mtb from individuals with severe APTB. Integrating these findings into a predictive model of severity would show promise for the management of APTB patients in the future, to guide host-directed therapy and reduce the prevalence of PTLD.
Collapse
Affiliation(s)
- Juan C. Ocampo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Universidad de Antioquia (UdeA), Medellín 050010, Colombia; (J.C.O.); (L.F.B.)
| | - Juan F. Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín 050010, Colombia;
- Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín 050010, Colombia
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Universidad de Antioquia (UdeA), Medellín 050010, Colombia; (J.C.O.); (L.F.B.)
- Instituto de Investigaciones Médicas, Universidad de Antioquia (UdeA), Medellín 050010, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Universidad de Antioquia (UdeA), Medellín 050010, Colombia; (J.C.O.); (L.F.B.)
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín 050010, Colombia;
| |
Collapse
|
20
|
Zhao D, Song YH, Li D, Zhang R, Xu JB, Shi K, Li JM, Leng X, Zong Y, Zeng FL, Gong QL, Du R. Mycobacterium tuberculosis Rv3435c regulates inflammatory cytokines and promotes the intracellular survival of recombinant Mycobacteria. Acta Trop 2023; 246:106974. [PMID: 37355194 DOI: 10.1016/j.actatropica.2023.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/14/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Mycobacterium tuberculosis is a pathogenic bacterium that is parasitic in macrophages and show high adaptation to the host's immune response. It can also trigger a complex immune response in the host. This relies on proteins encoded by a series of M. tuberculosis-encoded virulence genes. We found that the M. tuberculosis Rv3435c gene is highly conserved among pathogenic mycobacteria, and might be a virulence gene. To explore the gene function of Rv3435c, we used Mycobacterium smegmatis to construct a recombinant mycobacterium expressing Rv3435c heterologously. The results that Rv3435c is a cell wall-related protein that changes bacterial and colony morphology, inhibits the growth rate of recombinant mycobacteria, and enhances their resistance to various stresses. We also found that the fatty acid levels of the recombinant strain changed. Simultaneously, Rv3435c can inhibit the expression and secretion of inflammatory factors and host cell apoptosis, and enhance the survival of recombinant bacteria in macrophages. Experimental data indicated that Rv3435c might play an important role in Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Dan Zhao
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Ginseng and Antler Products Testing Center of the Ministry of Agricultural PRC, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Yu-Hao Song
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Dong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Rui Zhang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Jin-Biao Xu
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Ying Zong
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China
| | - Fan-Li Zeng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China.
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China.
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, P.R. China.
| |
Collapse
|
21
|
Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int J Mol Sci 2023; 24:13261. [PMID: 37686061 PMCID: PMC10487556 DOI: 10.3390/ijms241713261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Tuberculosis (TB) remains an important public health problem and one of the leading causes of death. Individuals with latent tuberculosis infection (LTBI) have an increased risk of developing active TB. The problem of the diagnosis of the various stages of TB and the identification of infected patients in the early stages has not yet been solved. The existing tests (the tuberculin skin test and the interferon-gamma release assay) are useful to distinguish between active and latent infections. But these tests cannot be used to predict the development of active TB in individuals with LTBI. The purpose of this review was to analyze the extant data of the interaction of M. tuberculosis with immune cells and identify molecular predictive markers and markers of the early stages of TB. An analysis of more than 90 sources from the literature allowed us to determine various subpopulations of immune cells involved in the pathogenesis of TB, namely, macrophages, dendritic cells, B lymphocytes, T helper cells, cytotoxic T lymphocytes, and NK cells. The key molecular markers of the immune response to M. tuberculosis are cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, IL-22b, IFNɣ, TNFa, and TGFß), matrix metalloproteinases (MMP-1, MMP-3, and MMP-9), and their inhibitors (TIMP-1, TIMP-2, TIMP-3, and TIMP-4). It is supposed that these molecules could be used as biomarkers to characterize different stages of TB infection, to evaluate the effectiveness of its treatment, and as targets of pharmacotherapy.
Collapse
Affiliation(s)
- Anastasiia Diatlova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Anastasia Lavrova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Dmitrii Medvedev
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Alexandr Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 St. Petersburg, Russia
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Piotr Yablonskiy
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| |
Collapse
|
22
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Zhang J, Wang MG, Xiang X, He JQ. Association between a single nucleotide polymorphism of the IL23R gene and tuberculosis in a Chinese Han population: a case‒control study. BMC Pulm Med 2023; 23:265. [PMID: 37464360 DOI: 10.1186/s12890-023-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Severe tuberculosis constitutes a significant menace to human safety and well-being, with a considerable mortality rate. The severity of tuberculosis can be impacted by genetic variations in host genes, particularly single nucleotide polymorphisms (SNPs). METHODS A case‒control study was undertaken, encompassing a cohort of 1137 tuberculosis patients (558 with severe tuberculosis and 579 with mild tuberculosis), alongside 581 healthy controls within the age range of fifteen to forty-five years. Whole blood DNA was extracted from all participants, and three tag polymorphisms (rs1884444, rs7518660, rs7539625) of the IL23R gene were selectively identified and genotyped. RESULTS No significant correlation was observed between the IL23R gene polymorphisms (rs1884444, rs7518660, and rs7539625) and tuberculosis. Upon comparing the tuberculosis group with the healthy control group, the mild tuberculosis group with the healthy control group, and the severe tuberculosis group with the healthy control group, the obtained P-values were> 0.05. However, in the comparison between severe tuberculosis and mild tuberculosis, the presence of rs1884444 G alleles exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex (ORa: 1.199, 95% CI: 1.009-1.424; Pa=0.039, respectively). In subgroup analysis, after accounting for confounding factors, including age and sex, rs1884444 G alleles continued to demonstrate a significantly heightened risk of severe tuberculosis. Nonetheless, the comparison between the multisystemic tuberculosis group and the mild tuberculosis group was no significant difference. Notably, rs1884444 of the IL23R gene exhibited a noteworthy association with the risk of severe tuberculosis in the comparison between severe tuberculosis and mild tuberculosis before and after adjusting for age and sex (ORa: 1.301, 95% CI: 1.030-1.643; Pa=0.027, respectively). Furthermore, the presence of the rs1884444 G allele exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex in the comparison between tuberculous meningitis and mild tuberculosis (ORa: 1.646, 95% CI: 1.100-2.461; Pa=0.015, respectively). CONCLUSIONS The present study suggests that there is no significant association between IL23R gene polymorphism and tuberculosis susceptibility in the Chinese Han population. However, it does indicate a potential link between IL23R polymorphism and an increased risk of developing severe tuberculosis.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
- Intensive Care Unit, Deyang People's Hospital, No 173, North Taishan Road, Deyang, 618000, Sichuan Province, People's Republic of China
| | - Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xi Xiang
- West China School of Nursing, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
24
|
Vargas R, Luna MJ, Freschi L, Marin M, Froom R, Murphy KC, Campbell EA, Ioerger TR, Sassetti CM, Farhat MR. Phase variation as a major mechanism of adaptation in Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 2023; 120:e2301394120. [PMID: 37399390 PMCID: PMC10334774 DOI: 10.1073/pnas.2301394120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
Phase variation induced by insertions and deletions (INDELs) in genomic homopolymeric tracts (HT) can silence and regulate genes in pathogenic bacteria, but this process is not characterized in MTBC (Mycobacterium tuberculosis complex) adaptation. We leverage 31,428 diverse clinical isolates to identify genomic regions including phase-variants under positive selection. Of 87,651 INDEL events that emerge repeatedly across the phylogeny, 12.4% are phase-variants within HTs (0.02% of the genome by length). We estimated the in-vitro frameshift rate in a neutral HT at 100× the neutral substitution rate at [Formula: see text] frameshifts/HT/year. Using neutral evolution simulations, we identified 4,098 substitutions and 45 phase-variants to be putatively adaptive to MTBC (P < 0.002). We experimentally confirm that a putatively adaptive phase-variant alters the expression of espA, a critical mediator of ESX-1-dependent virulence. Our evidence supports the hypothesis that phase variation in the ESX-1 system of MTBC can act as a toggle between antigenicity and survival in the host.
Collapse
Affiliation(s)
- Roger Vargas
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA02115
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Michael J. Luna
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Maximillian Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY10065
| | - Kenan C. Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX77843
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Maha Reda Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA02114
| |
Collapse
|
25
|
Maceiras AR, Silvério D, Gonçalves R, Cardoso MS, Saraiva M. Infection with hypervirulent Mycobacterium tuberculosis triggers emergency myelopoiesis but not trained immunity. Front Immunol 2023; 14:1211404. [PMID: 37383236 PMCID: PMC10296772 DOI: 10.3389/fimmu.2023.1211404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction During infection, bone marrow (BM) hematopoiesis is reprogrammed toward myeloid cell production, a mechanism named emergency myelopoiesis. In addition to replenishing myeloid cells, emergency myelopoiesis has been linked to trained immunity, a process that allows enhanced innate immune responses to secondary challenges. Although hematopoietic alterations during tuberculosis (TB) have been described and Mycobacterium tuberculosis may colonize the BM, studies using the mouse model of infection and the laboratory reference strain M. tuberculosis H37Rv have demonstrated limited emergency myelopoiesis and trained immunity. Methods To further address this issue, we aerosol- infected C57BL/6 mice with high doses of the hypervirulent M. tuberculosis isolate HN878 and monitored alterations to the BM. This experimental model better resembles the human blood immune signature of TB. Results and discussion We found increased frequencies of lineage-Sca-1+cKit+ (LSK) cells and the granulocyte/macrophage progenitor (GMP) population. At the mature cell level, we observed an increase of monocytes and neutrophils in the blood and lung, likely reflecting the increased BM myeloid output. Monocytes or monocyte-derived macrophages recovered from the BM of M. tuberculosis HN878-infected mice did not show signs of trained immunity, suggesting an uncoupling of emergency myelopoiesis and trained immunity in the BM. Surprisingly, M. tuberculosis HN878-induced emergency myelopoiesis was not fully dependent on IFNγ, as mice lacking this cytokine and infected under the same conditions as wild-type mice still presented BM alterations. These data expand our understanding of the immune response to M. tuberculosis and raise awareness of pathogen strain-imposed differences to host responses.
Collapse
Affiliation(s)
- Ana Raquel Maceiras
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Rute Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Marcos S. Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Sadee W, Cheeseman IH, Papp A, Pietrzak M, Seweryn M, Zhou X, Lin S, Williams AM, Wewers MD, Curry HM, Zhang H, Cai H, Kunsevi-Kilola C, Tshivhula H, Walzl G, Restrepo BI, Kleynhans L, Ronacher K, Wang Y, Arnett E, Azad AK, Schlesinger LS. Human alveolar macrophage response to Mycobacterium tuberculosis: immune characteristics underlying large inter-individual variability. RESEARCH SQUARE 2023:rs.3.rs-2986649. [PMID: 37333188 PMCID: PMC10275041 DOI: 10.21203/rs.3.rs-2986649/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Mycobacterium tuberculosis (M.tb), the causative bacterium of tuberculosis (TB), establishes residence and grows in human alveolar macrophages (AMs). Inter-individual variation in M.tb-human AM interactions can indicate TB risk and the efficacy of therapies and vaccines; however, we currently lack an understanding of the gene and protein expression programs that dictate this variation in the lungs. Results Herein, we systematically analyze interactions of a virulent M.tb strain H37Rv with freshly isolated human AMs from 28 healthy adult donors, measuring host RNA expression and secreted candidate proteins associated with TB pathogenesis over 72h. A large set of genes possessing highly variable inter-individual expression levels are differentially expressed in response to M.tb infection. Eigengene modules link M.tb growth rate with host transcriptional and protein profiles at 24 and 72h. Systems analysis of differential RNA and protein expression identifies a robust network with IL1B, STAT1, and IDO1 as hub genes associated with M.tb growth. RNA time profiles document stimulation towards an M1-type macrophage gene expression followed by emergence of an M2-type profile. Finally, we replicate these results in a cohort from a TB-endemic region, finding a substantial portion of significant differentially expressed genes overlapping between studies. Conclusions We observe large inter-individual differences in bacterial uptake and growth, with tenfold variation in M.tb load by 72h.The fine-scale resolution of this work enables the identification of genes and gene networks associated with early M.tb growth dynamics in defined donor clusters, an important step in developing potential biological indicators of individual susceptibility to M.tb infection and response to therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hong Cai
- University of Texas at San Antonio
| | | | | | | | - Blanca I Restrepo
- University of Texas Rio Grande Valley, South Texas Diabetes and Obesity Institute
| | | | | | | | | | | | | |
Collapse
|
27
|
Exploration of Lipid Metabolism Alterations in Children with Active Tuberculosis Using UHPLC-MS/MS. J Immunol Res 2023; 2023:8111355. [PMID: 36815950 PMCID: PMC9936505 DOI: 10.1155/2023/8111355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 02/11/2023] Open
Abstract
Metabolic profiling using nonsputum samples has demonstrated excellent performance in diagnosing infectious diseases. But little is known about the lipid metabolism alternation in children with tuberculosis (TB). Therefore, the study was performed to explore lipid metabolic changes caused by Mycobacterium tuberculosis infection and identify specific lipids as diagnostic biomarkers in children with TB using UHPLC-MS/MS. Plasma samples obtained from 70 active TB children, 21 non-TB infectious disease children, and 21 healthy controls were analyzed by a partial least-squares discriminant analysis model in the training set, and 12 metabolites were identified that can separate children with TB from non-TB controls. In the independent testing cohort with 49 subjects, three of the markers, PC (15:0/17:1), PC (17:1/18:2), and PE (18:1/20:3), presented with high diagnostic values. The areas under the curve of the three metabolites were 0.904, 0.833, and 0.895, respectively. The levels of the altered lipid metabolites were found to be associated with the severity of the TB disease. Taken together, plasma lipid metabolites are potentially useful for diagnosis of active TB in children and would provide insights into the pathogenesis of the disease.
Collapse
|
28
|
Farzand R, Haigh RD, Monk P, Haldar P, Patel H, Pareek M, Verma R, Barer MR, Woltmann G, Ahyow L, Jagatia H, Decker J, Mukamolova GV, Cooper AM, Garton NJ, O’Hare HM. A Persistent Tuberculosis Outbreak in the UK Is Characterized by Hydrophobic fadB4-Deficient Mycobacterium tuberculosis That Replicates Rapidly in Macrophages. mBio 2022; 13:e0265622. [PMID: 36374090 PMCID: PMC9765663 DOI: 10.1128/mbio.02656-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genetic diversity of Mycobacterium tuberculosis can influence disease severity and transmissibility. To better understand how this diversity influences individuals and communities, we phenotyped M. tuberculosis that was causing a persistent outbreak in the East Midlands, United Kingdom. Compared to nonoutbreak isolates, bacilli had higher lipid contents and more hydrophobic cell surfaces. In macrophage infection models, the bacteria increased more rapidly, provoked the enhanced accumulation of macrophage lipid droplets and enhanced the secretion of IL-1β. Natural deletions in fadB4, nrdB, and plcC distinguished the outbreak isolates from other lineage 3 isolates in the region. fadB4 is annotated with a putative role in cell envelope biosynthesis, so the loss of this gene has the potential to alter the interactions of bacteria with immune cells. Reintroduction of fadB4 to the outbreak strain led to a phenotype that more closely resembled those of nonoutbreak strains. The improved understanding of the microbiological characteristics and the corresponding genetic polymorphisms that associate with outbreaks have the potential to inform tuberculosis control. IMPORTANCE Tuberculosis (TB) killed 1.5 million people in 2020 and affects every country. The extent to which the natural genetic diversity of Mycobacterium tuberculosis influences disease manifestation at both the individual and epidemiological levels remains poorly understood. Insights into how pathogen polymorphisms affect patterns of TB have the potential to translate into clinical and public health practice. Two distinct lineage 3 strains isolated from local TB outbreaks, one of which (CH) was rapidly terminated and the other of which (Lro) persistently transmitted for over a decade, provided us with an opportunity to study these issues. We compared genome sequences, microbiological characteristics, and early immune responses that were evoked upon infection. Our results indicate that the natural lack of fadB4 in the Lro strain contributes to its unique features.
Collapse
Affiliation(s)
- Robeena Farzand
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Richard D. Haigh
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Philip Monk
- Public Health England, Department of Health and Social Care in England, Government Agency, East Midlands, UK
| | - Pranabashis Haldar
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Hemu Patel
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
- University Hospitals Leicester NHS Trust, University of Leicestergrid.9918.9, Leicester, UK
| | - Manish Pareek
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
- University Hospitals Leicester NHS Trust, University of Leicestergrid.9918.9, Leicester, UK
| | - Raman Verma
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
- University Hospitals Leicester NHS Trust, University of Leicestergrid.9918.9, Leicester, UK
| | - Michael R. Barer
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Gerrit Woltmann
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
- University Hospitals Leicester NHS Trust, University of Leicestergrid.9918.9, Leicester, UK
| | - Lauren Ahyow
- National TB Unit, UK Health Security Agency, Government Agency, London, UK
| | - Heena Jagatia
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Jonathan Decker
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Galina V. Mukamolova
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Andrea M. Cooper
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Natalie J. Garton
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Helen M. O’Hare
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| |
Collapse
|
29
|
Parbhoo T, Schurz H, Mouton JM, Sampson SL. Persistence of Mycobacterium tuberculosis in response to infection burden and host-induced stressors. Front Cell Infect Microbiol 2022; 12:981827. [PMID: 36530432 PMCID: PMC9755487 DOI: 10.3389/fcimb.2022.981827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction As infection with Mycobacterium tuberculosis progresses, the bacilli experience various degrees of host stressors in the macrophage phagosome such as low pH, nutrient deprivation, or exposure to toxic agents, which promotes cell-to-cell phenotypic variation. This includes a physiologically viable but non- or slowly replicating persister subpopulation, which is characterised by a loss of growth on solid media, while remaining metabolically active. Persisters additionally evade the host immune response and macrophage antimicrobial processes by adapting their metabolic pathways to maintain survival and persistence in the host. Methods A flow cytometry-based dual-fluorescent replication reporter assay, termed fluorescence dilution, provided a culture-independent method to characterize the single-cell replication dynamics of M. tuberculosis persisters following macrophage infection. Fluorescence dilution in combination with reference counting beads and a metabolic esterase reactive probe, calcein violet AM, provided an effective approach to enumerate and characterize the phenotypic heterogeneity within M. tuberculosis following macrophage infection. Results Persister formation appeared dependent on the initial infection burden and intracellular bacterial burden. However, inhibition of phagocytosis by cytochalasin D treatment resulted in a significantly higher median percentage of persisters compared to inhibition of phagosome acidification by bafilomycin A1 treatment. Discussion Our results suggest that different host factors differentially impact the intracellular bacterial burden, adaptive mechanisms and entry into persistence in macrophages.
Collapse
|
30
|
Genestet C, Refrégier G, Hodille E, Zein-Eddine R, Le Meur A, Hak F, Barbry A, Westeel E, Berland JL, Engelmann A, Verdier I, Lina G, Ader F, Dray S, Jacob L, Massol F, Venner S, Dumitrescu O. Mycobacterium tuberculosis genetic features associated with pulmonary tuberculosis severity. Int J Infect Dis 2022; 125:74-83. [PMID: 36273524 DOI: 10.1016/j.ijid.2022.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Mycobacterium tuberculosis (Mtb) infections result in a wide spectrum of clinical presentations but without proven Mtb genetic determinants. Herein, we hypothesized that the genetic features of Mtb clinical isolates, such as specific polymorphisms or microdiversity, may be linked to tuberculosis (TB) severity. METHODS A total of 234 patients with pulmonary TB (including 193 drug-susceptible and 14 monoresistant cases diagnosed between 2017 and 2020 and 27 multidrug-resistant cases diagnosed between 2010 and 2020) were stratified according to TB disease severity, and Mtb genetic features were explored using whole genome sequencing, including heterologous single-nucleotide polymorphism (SNP), calling to explore microdiversity. Finally, we performed a structural equation modeling analysis to relate TB severity to Mtb genetic features. RESULTS The clinical isolates from patients with mild TB carried mutations in genes associated with host-pathogen interaction, whereas those from patients with moderate/severe TB carried mutations associated with regulatory mechanisms. Genome-wide association study identified an SNP in the promoter of the gene coding for the virulence regulator espR, statistically associated with moderate/severe disease. Structural equation modeling and model comparisons indicated that TB severity was associated with the detection of Mtb microdiversity within clinical isolates and to the espR SNP. CONCLUSION Taken together, these results provide a new insight to better understand TB pathophysiology and could provide a new prognosis tool for pulmonary TB severity.
Collapse
Affiliation(s)
- Charlotte Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France.
| | - Guislaine Refrégier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Elisabeth Hodille
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France
| | - Rima Zein-Eddine
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France; Laboratory of Optics and Biosciences, CNRS-INSERM-Ecole Polytechnique, Île-de-France, Palaiseau, France
| | - Adrien Le Meur
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Fiona Hak
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Alexia Barbry
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France
| | - Emilie Westeel
- Fondation Mérieux, Emerging Pathogens Laboratory, Rhône-Alpes, Lyon, France
| | - Jean-Luc Berland
- Fondation Mérieux, Emerging Pathogens Laboratory, Rhône-Alpes, Lyon, France
| | - Astrid Engelmann
- Centre Hospitalier Fleyriat, Rhône-Alpes, Bourg-en-Bresse, France
| | - Isabelle Verdier
- Centre Hospitalier Fleyriat, Rhône-Alpes, Bourg-en-Bresse, France
| | - Gérard Lina
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France; Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Rhône-Alpes, Lyon, France
| | - Florence Ader
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Service des Maladies infectieuses et tropicales, Rhône-Alpes, Lyon, France
| | - Stéphane Dray
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - Laurent Jacob
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - François Massol
- UMR 8198 Evo-Eco-Paleo, SPICI Group, University of Lille, Hauts-de-France, Lille, France; CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, Hauts-de-France, Lille, France
| | - Samuel Venner
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - Oana Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France; Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Rhône-Alpes, Lyon, France
| | | |
Collapse
|
31
|
Geraldes I, Fernandes M, Fraga AG, Osório NS. The impact of single-cell genomics on the field of mycobacterial infection. Front Microbiol 2022; 13:989464. [PMID: 36246265 PMCID: PMC9562642 DOI: 10.3389/fmicb.2022.989464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Genome sequencing projects of humans and other organisms reinforced that the complexity of biological systems is largely attributed to the tight regulation of gene expression at the epigenome and RNA levels. As a consequence, plenty of technological developments arose to increase the sequencing resolution to the cell dimension creating the single-cell genomics research field. Single-cell RNA sequencing (scRNA-seq) is leading the advances in this topic and comprises a vast array of different methodologies. scRNA-seq and its variants are more and more used in life science and biomedical research since they provide unbiased transcriptomic sequencing of large populations of individual cells. These methods go beyond the previous “bulk” methodologies and sculpt the biological understanding of cellular heterogeneity and dynamic transcriptomic states of cellular populations in immunology, oncology, and developmental biology fields. Despite the large burden caused by mycobacterial infections, advances in this field obtained via single-cell genomics had been comparatively modest. Nonetheless, seminal research publications using single-cell transcriptomics to study host cells infected by mycobacteria have become recently available. Here, we review these works summarizing the most impactful findings and emphasizing the different and recent single-cell methodologies used, potential issues, and problems. In addition, we aim at providing insights into current research gaps and potential future developments related to the use of single-cell genomics to study mycobacterial infection.
Collapse
Affiliation(s)
- Inês Geraldes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga, Portugal
| | - Mónica Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga, Portugal
| | - Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga, Portugal
| | - Nuno S. Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Nuno S. Osório
| |
Collapse
|
32
|
Majid Jameel Y, Kassem Khalil Z. Relation between Serological Findings and Expression of IL-1β and IL-6 genes in Patients Infected with Mycobacterium Tuberculosis in Iraq. ARCHIVES OF RAZI INSTITUTE 2022; 77:1497-1502. [PMID: 36883148 PMCID: PMC9985782 DOI: 10.22092/ari.2022.357620.2073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/30/2022] [Indexed: 03/09/2023]
Abstract
Mycobacterium Tuberculosis (TB) is one of the serious bacterial infections that cause diseases and may lead to death. In this study, 178 individuals were examined for TB infection at Baghdad TB center during the period from 15th January to 1st October 2021. Out of 178 participants, 73 were shown to be positive for TB infection, while 105 showed negative results. According to the results, there was no significant variation between infected males and females with TB in comparison to the control group (P>0.05). The results showed that the mean age of the patients for both males and females was in the range of 2-65 years. Additionally, there were significant differences in patients with TB compared to the control group in terms of the weight loss of 8.82 ± 6.75 Kg, red blood cell (RBC) count (3.43 ± 0.56) × 106/μl, white blood cell (WBC) count (3.12 ± 1.57) × 106/μl, platelet count (1.03 ± 0.56) × 106/μl, and hemoglobin level (6.66 ± 1.34) g/dl. A total of 30 TB patients and 50 normal individuals were genotyped to detect the IL-1β rs 114534 gene. The polymerase chain reaction (PCR) was used for exon amplification in region 5 of the ILB1 gene in the TB patients by using specific primers. The finding showed that there was an amplified product of 249bp located in chromosome 2q13-14. A total of 30 TB patients and 50 normal individuals were also genotyped to detect the IL-6 rs 1800795 gene. The PCR was used for amplification of the IL-6 gene in TB patients by using specific primers. The finding showed that there was an amplified product of 431 bp located in chromosome 7p15-p2. The expression of the ILB1 gene was investigated in TB patients and healthy controls by using qPT-PCR. Results showed that there was a high Ct value for patients and controls with a high Ct value of templates, preoperational to the total ribonucleic acid (RNA) concentration and gene expression. The expression of the IL-6 gene was investigated in TB patients and healthy controls by using qPT-PCR. Our findings revealed a high Ct value for patients and controls with a high Ct value of templates, preoperational to the total RNA concentration and gene expression.
Collapse
Affiliation(s)
- Y Majid Jameel
- Department of Optometry, Medical-Technical Institute, Al-Mansour Middle Technical University, Baghdad, Iraq
| | - Z Kassem Khalil
- Department of Optometry, Medical-Technical Institute, Al-Mansour Middle Technical University, Baghdad, Iraq
| |
Collapse
|
33
|
Moreira JD, Iakhiaev A, Vankayalapati R, Jung BG, Samten B. Histone Deacetylase-2 Controls IL-1β Production through the Regulation of NLRP3 Expression and Activation in Tuberculosis Infection. iScience 2022; 25:104799. [PMID: 35982796 PMCID: PMC9379586 DOI: 10.1016/j.isci.2022.104799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylases (HDACs) are critical immune regulators. However, their roles in interleukin-1β (IL-1β) production remain unclear. By screening 11 zinc-dependent HDACs with chemical inhibitors, we found that HDAC1 inhibitor, 4-(dimethylamino)-N-[6-(hydroxyamino)-6-oxohexyl]-benzamide (DHOB), enhanced IL-1β production by macrophage and dendritic cells upon TLR4 stimulation or Mycobacterium tuberculosis infection through IL-1β maturation via elevated NLRP3 expression, increased cleaved caspase-1, and enhanced ASC oligomerization. DHOB rescued defective IL-1β production by dendritic cells infected with M. tuberculosis with ESAT-6 deletion, a virulence factor shown to activate NLRP3 inflammasome. DHOB increased IL-1β production and NLRP3 expression in a tuberculosis mouse model. Although DHOB inhibited HDAC activities of both HDAC1 and HDAC2 by direct binding, knockdown of HDAC2, but not HDAC1, increased IL-1β production and NLRP3 expression in M. tuberculosis-infected macrophages. These data suggest that HDAC2, but not HDAC1, controls IL-1β production through NLRP3 inflammasome activation, a mechanism with a significance in chronic inflammatory diseases including tuberculosis. HDAC1 inhibitor, DHOB, increased IL-1β production via NLRP3 inflammasome activation DHOB suppressed deacetylase activities of both HDAC1 and HDAC2 by direct interaction Deletion of HDAC2, but not HDAC1, increased IL-β production by increased NLRP3 expression DHOB increased IL-1β and NLRP3 expression in a mouse model of TB infection
Collapse
Affiliation(s)
- Jôsimar Dornelas Moreira
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Alexei Iakhiaev
- Division of Natural & Computational Sciences, Texas College, 2404 North Grand Avenue, Tyler, TX 75702, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Buka Samten
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Corresponding author
| |
Collapse
|
34
|
Origin and Global Expansion of Mycobacterium tuberculosis Complex Lineage 3. Genes (Basel) 2022; 13:genes13060990. [PMID: 35741753 PMCID: PMC9222951 DOI: 10.3390/genes13060990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tuberculosis still causes 1.5 million deaths annually and is mainly caused by Mycobacterium tuberculosis complex strains belonging to three evolutionary modern lineages (Lineages 2–4). While Lineage 2 and Lineage 4 virtually conquered the world, Lineage 3 is particularly successful in Northern and Eastern Africa, as well as in Southern Asia, the suspected evolutionary origin of these strains. Here, we sought to understand how Lineage 3 strains came to the African continent. To this end, we performed routine genotyping to characterize over 2500 clinical isolates from 38 countries. We then selected a representative collection of 373 isolates for a whole-genome analysis and a modeling approach to infer the geographic origin of different sublineages. In fact, the origin of Lineage 3 could be located in India, and we found evidence for independent introductions of four distinct sublineages into North/East Africa, in line with known ancient exchanges and migrations between both world regions. Our study illustrates that the evolutionary history of humans and their pathogens are closely connected and further provides a systematic understanding of the genomic diversity of Lineage 3, which could be important for the development of new tuberculosis vaccines or new therapeutics. Abstract Mycobacterium tuberculosis complex (MTBC) Lineage 3 (L3) strains are abundant in world regions with the highest tuberculosis burden. To investigate the population structure and the global diversity of this major lineage, we analyzed a dataset comprising 2682 L3 strains from 38 countries over 5 continents, by employing 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats genotyping (MIRU-VNTR) and drug susceptibility testing. We further combined whole-genome sequencing (WGS) and phylogeographic analysis for 373 strains representing the global L3 genetic diversity. Ancestral state reconstruction confirmed that the origin of L3 strains is located in Southern Asia and further revealed multiple independent introduction events into North-East and East Africa. This study provides a systematic understanding of the global diversity of L3 strains and reports phylogenetic variations that could inform clinical trials which evaluate the effectivity of new drugs/regimens or vaccine candidates.
Collapse
|
35
|
Mohammed KAS, Khudhair GS, Al-Rabeai DB. Prevalence and Drug Resistance Pattern of Mycobacterium tuberculosis Isolated from Tuberculosis Patients in Basra, Iraq. Pol J Microbiol 2022; 71:205-215. [PMID: 35675816 PMCID: PMC9252138 DOI: 10.33073/pjm-2022-018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/12/2022] [Indexed: 12/03/2022] Open
Abstract
Drug-resistant Mycobacterium tuberculosis (DR-MTB) is a major health threat to human beings. This study aimed to evaluate the prevalence and drug resistance profile of MTB. Data were collected from 2,296 newly diagnosed, and 246 retreated tuberculosis (TB) patients who attended the Advisory Clinic for Chest Diseases and Respiratory in Basra province from January 2016 to December 2020. Both new diagnostic and retreated TB cases showed that DR-MTB cases were significantly higher at age 15–34 years, pulmonary TB, and urban residents but with no significant difference regarding gender. The drugs resistance was significantly higher among the retreated cases compared with the new diagnostic patients (20.3% vs. 2.4%, p < 0.0001), with the percentage of the resistance to first-line drugs in primary and secondary cases including isoniazid (1% and 17.1%), rifampicin (0.78% and 15.8%), ethambutol (0.56% and 8.5%), streptomycin (1.3% and 9.75%). Notice that the most common drug resistance was against streptomycin with 1.3% in new patients and against isoniazid (17.1%) in retreated patients. The rate of total drug-resistant TB, multi-drug resistant TB, mono-drug resistant TB, and rifampicin-resistant TB among new tuberculosis cases increased in this period from 2.2 to 6.7%, 0.17 to 1.6%, 0.85 to 4%, and 0.17 to 4%, with a percentage change of 204.54, 841.17, 370.58, 22.5%, respectively. The rates of poly drug-resistant TB and ethambutol-resistant-TB dropped in this period by 15.96%, and 0.7%, with a decrease from 1.19 to 1% and from 1 to 0.3%, respectively. Similarly, the increase of drug-resistant TB among secondary cases has also occurred. In conclusion, the temporal trend showed an increase in the rate of drug resistance of M. tuberculosis since 2016, with a predominant multi-drug-resistant TB and isoniazid-resistant TB. ![]()
Collapse
Affiliation(s)
- Khairallah A S Mohammed
- Department of Medical Lab Technology, College of Health and Medical Technology, Southern Technical University, Basra, Iraq
| | - Ghorob S Khudhair
- Department of Medical Lab Technology, College of Health and Medical Technology, Southern Technical University, Basra, Iraq
| | | |
Collapse
|
36
|
Hortle E, Tran VL, Wright K, Fontaine AR, Pinello N, O'Rourke MB, Wong JJL, Hansbro PM, Britton WJ, Oehlers SH. OXSR1 inhibits inflammasome activation by limiting potassium efflux during mycobacterial infection. Life Sci Alliance 2022; 5:5/9/e202201476. [PMID: 35545295 PMCID: PMC9107790 DOI: 10.26508/lsa.202201476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Mycobacteria up-regulate host kinase OXSR1 preventing potassium efflux and inflammasome activation. Depletion or inhibition of OXSR1 potentiates inflammasome activation and decreases bacterial burden. Pathogenic mycobacteria inhibit inflammasome activation to establish infection. Although it is known that potassium efflux is a trigger for inflammasome activation, the interaction between mycobacterial infection, potassium efflux, and inflammasome activation has not been investigated. Here, we use Mycobacterium marinum infection of zebrafish embryos and Mycobacterium tuberculosis infection of THP-1 cells to demonstrate that pathogenic mycobacteria up-regulate the host WNK signalling pathway kinases SPAK and OXSR1 which control intracellular potassium balance. We show that genetic depletion or inhibition of OXSR1 decreases bacterial burden and intracellular potassium levels. The protective effects of OXSR1 depletion are at least partially mediated by NLRP3 inflammasome activation, caspase-mediated release of IL-1β, and downstream activation of protective TNF-α. The elucidation of this druggable pathway to potentiate inflammasome activation provides a new avenue for the development of host-directed therapies against intracellular infections.
Collapse
Affiliation(s)
- Elinor Hortle
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia .,The University of Sydney, Discipline of Infectious Diseases and Immunology and Sydney Institute for Infectious Diseases, Camperdown, Australia.,Centre for Inflammation and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Vi Lt Tran
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Kathryn Wright
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Angela Rm Fontaine
- Centenary Imaging and Sydney Cytometry at the Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, Australia.,The University of Sydney, Faculty of Medicine and Health, Camperdown, Australia
| | - Matthew B O'Rourke
- Centre for Inflammation and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, Australia.,The University of Sydney, Faculty of Medicine and Health, Camperdown, Australia
| | - Philip M Hansbro
- Centre for Inflammation and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Warwick J Britton
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia.,Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia .,The University of Sydney, Discipline of Infectious Diseases and Immunology and Sydney Institute for Infectious Diseases, Camperdown, Australia.,A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
37
|
Chiner-Oms Á, López MG, Moreno-Molina M, Furió V, Comas I. Gene evolutionary trajectories in Mycobacterium tuberculosis reveal temporal signs of selection. Proc Natl Acad Sci U S A 2022; 119:e2113600119. [PMID: 35452305 PMCID: PMC9173582 DOI: 10.1073/pnas.2113600119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Genetic differences between different Mycobacterium tuberculosis complex (MTBC) strains determine their ability to transmit within different host populations, their latency times, and their drug resistance profiles. Said differences usually emerge through de novo mutations and are maintained or discarded by the balance of evolutionary forces. Using a dataset of ∼5,000 strains representing global MTBC diversity, we determined the past and present selective forces that have shaped the current variability observed in the pathogen population. We identified regions that have evolved under changing types of selection since the time of the MTBC common ancestor. Our approach highlighted striking differences in the genome regions relevant for host–pathogen interaction and, in particular, suggested an adaptive role for the sensor protein of two-component systems. In addition, we applied our approach to successfully identify potential determinants of resistance to drugs administered as second-line tuberculosis treatments.
Collapse
Affiliation(s)
- Álvaro Chiner-Oms
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
| | - Mariana G. López
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
| | | | - Victoria Furió
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
- CIBER en Epidemiología y Salud Pública, Valencia, Spain
| |
Collapse
|
38
|
Rastogi S, Briken V. Interaction of Mycobacteria With Host Cell Inflammasomes. Front Immunol 2022; 13:791136. [PMID: 35237260 PMCID: PMC8882646 DOI: 10.3389/fimmu.2022.791136] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The inflammasome complex is important for host defense against intracellular bacterial infections. Mycobacterium tuberculosis (Mtb) is a facultative intracellular bacterium which is able to survive in infected macrophages. Here we discuss how the host cell inflammasomes sense Mtb and other related mycobacterial species. Furthermore, we describe the molecular mechanisms of NLRP3 inflammasome sensing of Mtb which involve the type VII secretion system ESX-1, cell surface lipids (TDM/TDB), secreted effector proteins (LpqH, PPE13, EST12, EsxA) and double-stranded RNA acting on the priming and/or activation steps of inflammasome activation. In contrast, Mtb also mediates inhibition of the NLRP3 inflammasome by limiting exposure of cell surface ligands via its hydrolase, Hip1, by inhibiting the host cell cathepsin G protease via the secreted Mtb effector Rv3364c and finally, by limiting intracellular triggers (K+ and Cl- efflux and cytosolic reactive oxygen species production) via its serine/threonine kinase PknF. In addition, Mtb inhibits the AIM2 inflammasome activation via an unknown mechanism. Overall, there is good evidence for a tug-of-war between Mtb trying to limit inflammasome activation and the host cell trying to sense Mtb and activate the inflammasome. The detailed molecular mechanisms and the importance of inflammasome activation for virulence of Mtb or host susceptibility have not been fully investigated.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
39
|
Smith CM, Baker RE, Proulx MK, Mishra BB, Long JE, Park SW, Lee HN, Kiritsy MC, Bellerose MM, Olive AJ, Murphy KC, Papavinasasundaram K, Boehm FJ, Reames CJ, Meade RK, Hampton BK, Linnertz CL, Shaw GD, Hock P, Bell TA, Ehrt S, Schnappinger D, Pardo-Manuel de Villena F, Ferris MT, Ioerger TR, Sassetti CM. Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice. eLife 2022; 11:74419. [PMID: 35112666 PMCID: PMC8846590 DOI: 10.7554/elife.74419] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
The outcome of an encounter with Mycobacterium tuberculosis (Mtb) depends on the pathogen’s ability to adapt to the variable immune pressures exerted by the host. Understanding this interplay has proven difficult, largely because experimentally tractable animal models do not recapitulate the heterogeneity of tuberculosis disease. We leveraged the genetically diverse Collaborative Cross (CC) mouse panel in conjunction with a library of Mtb mutants to create a resource for associating bacterial genetic requirements with host genetics and immunity. We report that CC strains vary dramatically in their susceptibility to infection and produce qualitatively distinct immune states. Global analysis of Mtb transposon mutant fitness (TnSeq) across the CC panel revealed that many virulence pathways are only required in specific host microenvironments, identifying a large fraction of the pathogen’s genome that has been maintained to ensure fitness in a diverse population. Both immunological and bacterial traits can be associated with genetic variants distributed across the mouse genome, making the CC a unique population for identifying specific host-pathogen genetic interactions that influence pathogenesis.
Collapse
Affiliation(s)
- Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Megan K Proulx
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Bibhuti B Mishra
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Jarukit E Long
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | - Michael C Kiritsy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Michelle M Bellerose
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Andrew J Olive
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
| | - Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Frederick J Boehm
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Charlotte J Reames
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Rachel K Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Morrisville, United States
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Timothy A Bell
- Department of Genetics,, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | | | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, United States
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
40
|
Liu N, Pang X, Zhang H, Ji P. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Front Immunol 2022; 12:814709. [PMID: 35095914 PMCID: PMC8793285 DOI: 10.3389/fimmu.2021.814709] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS), along with the adaptor stimulator of interferon genes (STING), are crucial components of the innate immune system, and their study has become a research hotspot in recent years. Many biochemical and structural studies that have collectively elucidated the mechanism of activation of the cGAS-STING pathway with atomic resolution have provided insights into the roles of the cGAS-STING pathway in innate immunity and clues to the origin and evolution of the modern cGAS-STING signaling pathway. The cGAS-STING pathway has been identified to protect the host against viral infection. After detecting viral dsDNA, cGAS synthesizes a second messenger to activate STING, eliciting antiviral immune responses by promoting the expression of interferons (IFNs) and hundreds of IFN-stimulated genes (ISGs). Recently, the cGAS-STING pathway has also been found to be involved in response to bacterial infections, including bacterial pneumonia, melioidosis, tuberculosis, and sepsis. However, compared with its functions in viral infection, the cGAS-STING signaling pathway in bacterial infection is more complex and diverse since the protective and detrimental effects of type I IFN (IFN-I) on the host depend on the bacterial species and infection mode. Besides, STING activation can also affect infection prognosis through other mechanisms in different bacterial infections, independent of the IFN-I response. Interestingly, the core protein components of the mammalian cGAS-STING signaling pathway have been found in the bacterial defense system, suggesting that this widespread signaling pathway may have originated in bacteria. Here, we review recent findings related to the structures of major molecules involved in the cGAS-STING pathway and the effects of the cGAS-STING pathway in various bacterial infections and bacterial immunity, which may pave the way for the development of new antibacterial drugs that specifically kill bacteria without harmful effects on the host.
Collapse
Affiliation(s)
- Nanxin Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Pellegrini JM, Tateosian NL, Morelli MP, García VE. Shedding Light on Autophagy During Human Tuberculosis. A Long Way to Go. Front Cell Infect Microbiol 2022; 11:820095. [PMID: 35071056 PMCID: PMC8769280 DOI: 10.3389/fcimb.2021.820095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Immunity against Mycobacterium tuberculosis (Mtb) is highly complex, and the outcome of the infection depends on the role of several immune mediators with particular temporal dynamics on the host microenvironment. Autophagy is a central homeostatic mechanism that plays a role on immunity against intracellular pathogens, including Mtb. Enhanced autophagy in macrophages mediates elimination of intracellular Mtb through lytic and antimicrobial properties only found in autolysosomes. Additionally, it has been demonstrated that standard anti-tuberculosis chemotherapy depends on host autophagy to coordinate successful antimicrobial responses to mycobacteria. Notably, autophagy constitutes an anti-inflammatory mechanism that protects against endomembrane damage triggered by several endogenous components or infectious agents and precludes excessive inflammation. It has also been reported that autophagy can be modulated by cytokines and other immunological signals. Most of the studies on autophagy as a defense mechanism against Mycobacterium have been performed using murine models or human cell lines. However, very limited information exists about the autophagic response in cells from tuberculosis patients. Herein, we review studies that face the autophagy process in tuberculosis patients as a component of the immune response of the human host against an intracellular microorganism such as Mtb. Interestingly, these findings might contribute to recognize new targets for the development of novel therapeutic tools to combat Mtb. Actually, either as a potential successful vaccine or a complementary immunotherapy, efforts are needed to further elucidate the role of autophagy during the immune response of the human host, which will allow to achieve protective and therapeutic benefits in human tuberculosis.
Collapse
Affiliation(s)
| | - Nancy Liliana Tateosian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María Paula Morelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Verónica Edith García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
42
|
Protective Effect of Rifampicin Loaded by HPMA-PLA Nanopolymer on Macrophages Infected with Mycobacterium Tuberculosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5784283. [PMID: 35027942 PMCID: PMC8752210 DOI: 10.1155/2022/5784283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022]
Abstract
Purpose This research was designed to investigate the protective effect of rifampicin (RIF) loaded by N-(2-hydroxypropyl) methylacrylamide- (HPMA-) polylactic acid (PLA) nanopolymer on macrophages infected with Mycobacterium tuberculosis (MTB). Methods We first induced H37Rv to infect macrophages to build a cell model. Then, the HPMA-PLA nanopolymer loaded with RIF was prepared to treat MTB-infected macrophages. The macrophage activity was tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the nitric oxide (NO) in cells was measured through Griess reagent, and the bacterial activity of MTB was observed via the colony-forming unit (CFU) assay. The inflammation-related factors in cells were detected via the enzyme-linked immunosorbent assay (ELISA), the apoptosis of macrophages was examined via flow cytometry, and the expression of apoptosis-related proteins was determined by western blot (WB). Results HPMA-PLA had no obvious toxicity to macrophages. The expression of NO and inflammatory factors in macrophages infected with MTB increased significantly, but the apoptosis rate was not significantly different from that of uninfected cells. However, after treatment with HPMA-PLA-RIF or free RIF, the inflammatory reaction of infected cells was inhibited, the expression of NO was decreased, the apoptosis rate was increased, and the bacterial activity in cells was decreased, with statistically significant differences; moreover, HPMA-PLA-RIF was more effective than free RIF. Conclusions HPMA-PLA-RIF has a high protective effect on macrophages infected with MTB, with high safety. Its protective mechanism is at least partly through inhibiting the production of NO and inflammatory response, which can inhibit bacterial activity and induce cell apoptosis.
Collapse
|
43
|
Alvarez-Eraso KLF, Muñoz-Martínez LM, Alzate JF, Barrera LF, Baena A. Modulatory Impact of the sRNA Mcr11 in Two Clinical Isolates of Mycobacterium tuberculosis. Curr Microbiol 2022; 79:39. [PMID: 34982251 DOI: 10.1007/s00284-021-02733-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a successful pathogen causing tuberculosis (TB) disease in humans. It has been shown, that some circulating strains of Mtb in TB endemic populations, are more virulent and more transmissible than others, which may be related to their evolved adaptations to modulate the host immune responses. Underlying these adaptations to the stressful conditions, different genetic regulatory networks involved sRNAs that are mostly unknown for Mtb. We have previously shown that Mcr11 is one of the main sRNAs that determine transcriptomic differences among the Colombian clinical isolates UT127 and UT205 compared to the laboratory strain H37Rv. We found that the knock-down of mcr11 using CRISPRi has a major impact on phenotypic traits, especially in the clinical isolate UT205. Through the analysis of RNA-seq during the knock-down of mcr11 in UT205, we found a downregulation of genes mainly involved in lipid synthesis, lipid metabolism, ribosomal proteins, transport systems, respiratory and energy systems, membrane and cell wall components, intermediary metabolism, lipoproteins and virulence genes. One of the most interesting genes showing transcriptomic changes is OprA (encoded by the gene rv0516c), which has been involved in the K+ regulation. Overall, our data may suggest that one of the prominent roles of the sRNA Mcr11 is to regulate genes that control Mtb growth and osmoregulation.
Collapse
Affiliation(s)
| | | | - Juan F Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Medellín, Colombia
- Centro Nacional de Secuenciación Genómica-CNSG, Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Medellín, Colombia
- Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia.
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Medellín, Colombia.
- Sede de Investigación Universitaria-SIU, Medellín, Colombia.
| |
Collapse
|
44
|
Immunological role of cluster of differentiation 56 and cluster of differentiation 19 in patients infected with mycobacterium tuberculosis in Iraq. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Abstract
Interleukin-1 (IL-1) is a key player in the immune response to pathogens due to its role in promoting inflammation and recruiting immune cells to the site of infection. In tuberculosis (TB), tight regulation of IL-1 responses is critical to ensure host resistance to infection while preventing immune pathology. In the mouse model of Mycobacterium tuberculosis infection, both IL-1 absence and overproduction result in exacerbated disease and mortality. In humans, several polymorphisms in the IL1B gene have been associated with increased susceptibility to TB. Importantly, M. tuberculosis itself has evolved several strategies to manipulate and regulate host IL-1 responses for its own benefit. Given all this, IL-1 appears as a promising target for host-directed therapies in TB. However, for that to succeed, more detailed knowledge on the biology and mechanisms of action of IL-1 in vivo, together with a deep understanding of how host-M. tuberculosis interactions modulate IL-1, is required. Here, we discuss the most recent advances in the biology and therapeutic potential of IL-1 in TB as well as the outstanding questions that remain to be answered.
Collapse
|
46
|
The Neglected Contribution of Streptomycin to the Tuberculosis Drug Resistance Problem. Genes (Basel) 2021; 12:genes12122003. [PMID: 34946952 PMCID: PMC8701281 DOI: 10.3390/genes12122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
The airborne pathogen Mycobacterium tuberculosis is responsible for a present major public health problem worsened by the emergence of drug resistance. M. tuberculosis has acquired and developed streptomycin (STR) resistance mechanisms that have been maintained and transmitted in the population over the last decades. Indeed, STR resistant mutations are frequently identified across the main M. tuberculosis lineages that cause tuberculosis outbreaks worldwide. The spread of STR resistance is likely related to the low impact of the most frequent underlying mutations on the fitness of the bacteria. The withdrawal of STR from the first-line treatment of tuberculosis potentially lowered the importance of studying STR resistance. However, the prevalence of STR resistance remains very high, could be underestimated by current genotypic methods, and was found in outbreaks of multi-drug (MDR) and extensively drug (XDR) strains in different geographic regions. Therefore, the contribution of STR resistance to the problem of tuberculosis drug resistance should not be neglected. Here, we review the impact of STR resistance and detail well-known and novel candidate STR resistance mechanisms, genes, and mutations. In addition, we aim to provide insights into the possible role of STR resistance in the development of multi-drug resistant tuberculosis.
Collapse
|
47
|
Saha S, Hazra A, Ghatak D, Singh AV, Roy S, BoseDasgupta S. A Bumpy Ride of Mycobacterial Phagosome Maturation: Roleplay of Coronin1 Through Cofilin1 and cAMP. Front Immunol 2021; 12:687044. [PMID: 34630380 PMCID: PMC8495260 DOI: 10.3389/fimmu.2021.687044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Phagosome-lysosome fusion in innate immune cells like macrophages and neutrophils marshal an essential role in eliminating intracellular microorganisms. In microbe-challenged macrophages, phagosome-lysosome fusion occurs 4 to 6 h after the phagocytic uptake of the microbe. However, live pathogenic mycobacteria hinder the transfer of phagosomes to lysosomes, up to 20 h post-phagocytic uptake. This period is required to evade pro-inflammatory response and upregulate the acid-stress tolerant proteins. The exact sequence of events through which mycobacteria retards phagolysosome formation remains an enigma. The macrophage coat protein Coronin1(Cor1) is recruited and retained by mycobacteria on the phagosome membrane to retard its maturation by hindering the access of phagosome maturation factors. Mycobacteria-infected macrophages exhibit an increased cAMP level, and based on receptor stimulus, Cor1 expressing cells show a higher level of cAMP than non-Cor1 expressing cells. Here we have shown that infection of bone marrow-derived macrophages with H37Rv causes a Cor1 dependent rise of intracellular cAMP levels at the vicinity of the phagosomes. This increased cAMP fuels cytoskeletal protein Cofilin1 to depolymerize F-actin around the mycobacteria-containing phagosome. Owing to reduced F-actin levels, the movement of the phagosome toward the lysosomes is hindered, thus contributing to the retarded phagosome maturation process. Additionally, Cor1 mediated upregulation of Cofilin1 also contributes to the prevention of phagosomal acidification, which further aids in the retardation of phagosome maturation. Overall, our study provides first-hand information on Cor1 mediated retardation of phagosome maturation, which can be utilized in developing novel peptidomimetics as part of host-directed therapeutics against tuberculosis.
Collapse
Affiliation(s)
- Saradindu Saha
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arnab Hazra
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debika Ghatak
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ajay Vir Singh
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sadhana Roy
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Somdeb BoseDasgupta
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
48
|
Abo-Kadoum MA, Assad M, Uae M, Nzaou SAE, Gong Z, Moaaz A, Teweldebrhan S, Eltoukhy A, Xuefeng A, Chen Y, Xie J. Mycobacterium tuberculosis RKIP (Rv2140c) dephosphorylates ERK/NF-κB upstream signaling molecules to subvert macrophage innate immune response. INFECTION GENETICS AND EVOLUTION 2021; 94:105019. [PMID: 34333158 DOI: 10.1016/j.meegid.2021.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis (Mtb) survival and virulence largely reside on its ability to manipulate the host immune response. We have previously shown that M. tuberculosis Raf kinase inhibitor protein (RKIP) Rv2140c regulates diverse phosphorylation events in M. smegmatis. However, its role during infection is unknown. In this report, we show that Rv2140c can mimic the mammalian RKIP function. Rv2140c inhibit the activation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) via decreasing the phosphorylation capacity of upstream mediators MEK1, ERK1/2, and IKKα/β, thus leading to a reduction in pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. This effect can be reversed by RKIP inhibitor locostatin. Furthermore Rv2140c mediates apoptosis associated with activation of caspases cascades. This modulation enhances the intracellular survival of M. smegmatis within macrophage. We propose that Rv2140c is a multifunctional virulence factor and a promising novel anti-Tuberculosis drug target.
Collapse
Affiliation(s)
- M A Abo-Kadoum
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch 71524, Egypt
| | - Mohammed Assad
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China; Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University, Khartoum, Sudan
| | - Moure Uae
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Stech A E Nzaou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Asmaa Moaaz
- The state key laboratory of silkworm genome biology, Southwest University, Chongqing 400716, China
| | - Samson Teweldebrhan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Adel Eltoukhy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch 71524, Egypt; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ai Xuefeng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Dadong District, Shenyang City, Liaoning 110044, China.
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
49
|
Wu X, Wu Y, Zheng R, Tang F, Qin L, Lai D, Zhang L, Chen L, Yan B, Yang H, Wang Y, Li F, Zhang J, Wang F, Wang L, Cao Y, Ma M, Liu Z, Chen J, Huang X, Wang J, Jin R, Wang P, Sun Q, Sha W, Lyu L, Moura‐Alves P, Dorhoi A, Pei G, Zhang P, Chen J, Gao S, Randow F, Zeng G, Chen C, Ye X, Kaufmann SHE, Liu H, Ge B. Sensing of mycobacterial arabinogalactan by galectin-9 exacerbates mycobacterial infection. EMBO Rep 2021; 22:e51678. [PMID: 33987949 PMCID: PMC8256295 DOI: 10.15252/embr.202051678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor β-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.
Collapse
|
50
|
Gallant J, Heunis T, Beltran C, Schildermans K, Bruijns S, Mertens I, Bitter W, Sampson SL. PPE38-Secretion-Dependent Proteins of M. tuberculosis Alter NF-kB Signalling and Inflammatory Responses in Macrophages. Front Immunol 2021; 12:702359. [PMID: 34276695 PMCID: PMC8284050 DOI: 10.3389/fimmu.2021.702359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
It was previously shown that secretion of PE-PGRS and PPE-MPTR proteins is abolished in clinical M. tuberculosis isolates with a deletion in the ppe38-71 operon, which is associated with increased virulence. Here we investigate the proteins dependent on PPE38 for their secretion and their role in the innate immune response using temporal proteomics and protein turnover analysis in a macrophage infection model. A decreased pro-inflammatory response was observed in macrophages infected with PPE38-deficient M. tuberculosis CDC1551 as compared to wild type bacteria. We could show that dampening of the pro-inflammatory response is associated with activation of a RelB/p50 pathway, while the canonical inflammatory pathway is active during infection with wild type M. tuberculosis CDC1551. These results indicate a molecular mechanism by which M. tuberculosis PE/PPE proteins controlled by PPE38 have an effect on modulating macrophage responses through NF-kB signalling.
Collapse
Affiliation(s)
- James Gallant
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tiaan Heunis
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Caroline Beltran
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Sven Bruijns
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Samantha L. Sampson
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|