1
|
Chaubey M, Gao H, Lavine CL, Seaman MS, Chen B, Chou JJ. Specific Interactions between HIV-1 Env Cytoplasmic Tail and Gag Matrix Domain Probed by NMR. J Am Chem Soc 2025; 147:17561-17565. [PMID: 40365918 DOI: 10.1021/jacs.5c04597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
HIV-1 envelope glycoprotein (Env) is a transmembrane protein that mediates membrane fusion during viral entry. Incorporation of a sufficient number of Envs during viral assembly is critical for viral infectivity. It has long been suggested that the interaction between Env and the matrix domain (MA) of the Gag polyprotein plays an important role in recruiting Envs to the site of viral assembly on the plasma membrane, but direct biochemical and structural evidence is lacking for such an interaction in the context of a membrane-like environment. Here, we report specific structural contacts between the cytoplasmic tail (CT) of the trimeric HIV-1 Env in bicelles and the trimeric MA. Using a combination of measurements of NMR chemical shift perturbation, intermolecular paramagnetic relaxation enhancements, and microscale thermophoresis, we found that, in DMPC-DHPC bicelles that mimic a lipid bilayer, the trimeric baseplate formed by the CT specifically interacted with the trimeric MA via mostly electrostatic interactions involving acidic residues of the CT and positively charged patches of the MA. Nonconservative substitution of these previously unrecognized acidic residues in Env resulted in drastically reduced viral infectivity. Our findings, together with early genetic and biochemical studies, indicate that specific interactions between the CT of Env and MA play a structural role during HIV-1 assembly.
Collapse
Affiliation(s)
- Manish Chaubey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hailong Gao
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, Massachusetts 02115, United States
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
| | - Bing Chen
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Molecular Medicine, Boston Children's Hospital, 3 Blackfan Street, Boston, Massachusetts 02115, United States
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Alfadhli A, Barklis RL, Tafesse FG, Barklis E. Analysis of Factors That Regulate HIV-1 Fusion in Reverse. Viruses 2025; 17:472. [PMID: 40284914 PMCID: PMC12030895 DOI: 10.3390/v17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Based on observations that HIV-1 envelope (Env) proteins on the surfaces of cells have the capacity to fuse with neighboring cells or enveloped viruses that express CD4 receptors and CXCR4 co-receptors, we tested factors that affect the capacities of lentiviral vectors pseudotyped with CD4 and CXCR4 variants to infect Env-expressing cells. The process, which we refer to as fusion in reverse, involves the binding and activation of cellular Env proteins to fuse membranes with lentiviruses carrying CD4 and CXCR4 proteins. We have found that infection via fusion in reverse depends on cell surface Env levels, is inhibitable by an HIV-1-specific fusion inhibitor, and preferentially requires lentiviral pseudotyping with a glycosylphosphatidylinositol (GPI)-anchored CD4 variant and a cytoplasmic tail-truncated CXCR4 protein. We have demonstrated that latently HIV-1-infected cells can be specifically infected using this mechanism, and that activation of latently infected cells increases infection efficiency. The fusion in reverse approach allowed us to characterize how alteration of CD4 plus CXCR4 lipid membranes affected Env protein activities. In particular, we found that perturbation of membrane cholesterol levels did not affect Env activity. In contrast, viruses assembled in cells deficient for long-chain sphingolipids showed increased infectivities, while viruses that incorporated a lipid scramblase were non-infectious. Our results yield new insights into factors that influence envelope protein functions.
Collapse
Affiliation(s)
| | | | | | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; (A.A.); (R.L.B.); (F.G.T.)
| |
Collapse
|
3
|
Busch H, Yasir Ateeque M, Taube F, Wiegand T, Corzilius B, Künze G. Probing Biomolecular Interactions with Paramagnetic Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2025; 26:e202400903. [PMID: 39803829 PMCID: PMC11907393 DOI: 10.1002/cbic.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Indexed: 03/15/2025]
Abstract
Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems. Paramagnetic NMR, in particular, provides long-range structural restraints, easily exceeding distances over 25 Å, making it ideal for studying large protein complexes. Advances in chemical tools for introducing paramagnetic tags into proteins, combined with progress in electron paramagnetic resonance (EPR) spectroscopy, have enhanced the method's utility. This perspective article discusses paramagnetic NMR approaches for analyzing biomolecular complexes in solution and in the solid state, emphasizing quantities like pseudocontact shifts, residual dipolar couplings, and paramagnetic relaxation enhancements. Additionally, dynamic nuclear polarization offers a promising method to amplify NMR signals of large complexes, even in complex environments. The integration of AlphaFold protein structure prediction with paramagnetic NMR holds great potential for advancing our understanding of biomolecular interactions.
Collapse
Affiliation(s)
- Hannah Busch
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | | | - Florian Taube
- Institute of Chemistry, Department Life, Light & MatterUniversity of RostockAlbert-Einstein-Str. 2718059RostockGermany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mühlheim/RuhrGermany
| | - Björn Corzilius
- Institute of Chemistry, Department Life, Light & MatterUniversity of RostockAlbert-Einstein-Str. 2718059RostockGermany
| | - Georg Künze
- Institute for Drug DiscoveryUniversity of LeipzigBrüderstr. 3404103LeipzigGermany
| |
Collapse
|
4
|
Alfadhli A, Barklis RL, Tafesse FG, Barklis E. ANALYSIS OF FACTORS THAT REGULATE HIV-1 FUSION IN REVERSE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642481. [PMID: 40161791 PMCID: PMC11952479 DOI: 10.1101/2025.03.10.642481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Based on observations that HIV-1 envelope (Env) proteins on the surfaces of cells have the capacity to fuse with neighboring cells or enveloped viruses that express CD4 receptors and CXCR4 co-receptors, we tested factors that affect the capacities of lentiviral vectors pseudotyped with CD4 and CXCR4 variants to infect Env-expressing cells. The process, which we refer to as fusion in reverse, involves the binding and activation of cellular Env proteins to fuse membranes with lentiviruses carrying CD4 and CXCR4 proteins. We have found that infection via fusion in reverse depends on cell surface Env levels, is inhibitable by an HIV-1-specific fusion inhibitor, and preferentially requires lentiviral pseudotyping with a glycosylphosphatidylinositol (GPI) anchored CD4 variant, and a cytoplasmic tail-truncated CXCR4 protein. We have demonstrated that latently HIV-1-infected cells can be specifically infected using this mechanism, and that activation of latently infected cells increases infection efficiency. The fusion in reverse approach allowed us to characterize how alteration of CD4 plus CXCR4 lipid membranes affected Env protein activities. In particular, we found that perturbation of membrane cholesterol levels did not affect Env activity. In contrast, viruses assembled in cells deficient for long chain sphingolipids showed increased infectivities, while viruses that incorporated a lipid scramblase were non-infectious. Our results yield new insights as to factors that influence envelope protein functions.
Collapse
|
5
|
King HAD, Brammer D, Lewitus E, Fennessey CM, Manalang KM, Shrader HR, Andrew S, Kuri P, Lind M, Pham P, Sanders-Buell E, Bai H, Mason R, Song K, McCarthy E, Helmold Hait S, Todd JP, Pegu A, Foulds KE, Lifson JD, Keele BF, Rolland M, Roederer M, Bolton DL. SIV monoclonal antibody administration spanning treatment interruption in macaques delays viral rebound and selects escape variants. Proc Natl Acad Sci U S A 2025; 122:e2404767122. [PMID: 39883843 PMCID: PMC11804569 DOI: 10.1073/pnas.2404767122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
HIV-1 envelope broadly neutralizing antibodies represent a promising component of HIV-1 cure strategies. To evaluate the therapeutic efficacy of combination monoclonal antibodies (mAbs) in a rigorous nonhuman primate model, we tested different combinations of simian immunodeficiency virus (SIV) neutralizing mAbs in SIVmac251-infected rhesus macaques. Antiretroviral therapy-suppressed animals received anti-SIV mAbs targeting multiple Env epitopes spanning analytical treatment interruption (ATI) in 3 groups (n = 7 each): i) no mAb; ii) 4-mAb combination; and iii) 2-mAb combination. Each mAb was administered at 15 mg/kg, and both mAb-treated groups received ITS103.01, a highly potent CD4-binding site targeting antibody. mAb treatment delayed viral rebound, lowered rebound viremia setpoint and viral diversity, and extended animal lifespan. Compared to controls, for which viremia rebounded 2 wk following ATI, mAb infusion delayed rebound for both groups (P = 0.0003). Animals that received the 4-mAb regimen rebounded 3 to 6 wk post-ATI while the 2-mAb regimen rebounded 5 to 22 wk post-ATI. Envelope escape mutations emerged in rebound virus of mAb-treated animals that abrogated neutralization by ITS103.01, the most potent in the cocktail. These data demonstrate in vivo antiviral activity of SIV mAbs in the context of ATI via immune pressure dominated by the most potent mAb and highlight their potential in adjunctive therapeutic studies.
Collapse
Affiliation(s)
- Hannah A. D. King
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Daniel Brammer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Eric Lewitus
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Kimberly M. Manalang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Hannah R. Shrader
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shayne Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Phillip Kuri
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Matthew Lind
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Phuc Pham
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Hongjun Bai
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kaimei Song
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Sabrina Helmold Hait
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Morgane Rolland
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Diane L. Bolton
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| |
Collapse
|
6
|
Lall S, Balaram P, Mathew MK, Gosavi S. Sequence of the SARS-CoV-2 Spike Transmembrane Domain Encodes Conformational Dynamics. J Phys Chem B 2025; 129:194-209. [PMID: 39692154 DOI: 10.1021/acs.jpcb.4c05270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The homotrimeric SARS-CoV-2 spike protein enables viral infection by undergoing a large conformational transition, which facilitates the fusion of the viral envelope with the host cell membrane. The spike protein is anchored to the SARS-CoV-2 envelope by its transmembrane domain (TMD), composed of three TM helices, each contributed by one of the protomers of spike. Although the TMD is known to be important for viral fusion, whether it is a passive anchor of the spike or actively promotes fusion remains unknown. Specifically, it is unclear if the TMD and its dynamics facilitate the prefusion to postfusion conformational transition of the spike. Here, we computationally study the dynamics and self-assembly of the SARS-CoV-2 spike TMD in homogeneous POPC and cholesterol containing membranes. Atomistic simulations of a long TM helix-containing protomer segment show that the membrane-embedded segment bobs, tilts and gains and loses helicity, locally thinning the membrane. Coarse-grained multimerization simulations using representative TM helix structures from the atomistic simulations exhibit diverse trimer populations whose architecture depends on the structure of the TM helix protomer. While a symmetric conformation reflects the symmetry of the resting spike, an asymmetric TMD conformation could promote membrane fusion through the stabilization of a fusion intermediate. Together, our simulations demonstrate that the sequence and length of the SARS-CoV-2 spike TM segment make it inherently dynamic, that trimerization does not abrogate these dynamics and that the various observed TMD conformations may enable viral fusion.
Collapse
Affiliation(s)
- Sahil Lall
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - M K Mathew
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
7
|
Alfadhli A, Romanaggi C, Barklis RL, Barklis E. Second site reversion of HIV-1 envelope protein baseplate mutations maps to the matrix protein. J Virol 2024; 98:e0174223. [PMID: 38193694 PMCID: PMC10878238 DOI: 10.1128/jvi.01742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells. The suppressor mutation was dependent on the CT to exert its activity and did not appear to affect Env protein traffic or fusion functions in restrictive cells. Instead, the suppressor mutation increased Env incorporation into virions 3-fold and virus infectivity in single-round infections 10-fold. We also found that a previously described suppressor of Env-incorporation defects that stabilizes the formation of MA trimers was ineffective at rescuing Env baseplate mutations. Our results support an interpretation in which changes at MA residue 34 induce conformational changes that stabilize MA lattice trimer-trimer interactions and/or direct MA-CT associations.IMPORTANCEHow HIV-1 Env trimers assemble into virus particles remains incompletely understood. In restrictive cells, viral incorporation of Env is dependent on the Env CT and on the MA protein, which assembles lattices composed of hexamers of trimers in immature and mature viruses. Recent evidence indicates that CT assembles trimeric baseplate structures that require membrane-proximal residues to interface with trimeric transmembrane domains and C-terminal helices in the CT. We found that mutations of these membrane-proximal residues impaired replication in restrictive cells. This defect was countered by a MA mutation that does not localize to any obvious interprotein regions but was only inefficiently suppressed by a MA mutation that stabilizes MA trimers and has been shown to suppress other CT-dependent Env defects. Our results suggest that efficient suppression of baseplate mutations involves stabilization of MA inter-trimer contacts and/or direct MA-CT associations. These observations shed new light on how Env assembles into virions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
8
|
Jin H, Liu D, Ni Y, Wang H, Long D. Quantitative Ensemble Interpretation of Membrane Paramagnetic Relaxation Enhancement (mPRE) for Studying Membrane-Associated Intrinsically Disordered Proteins. J Am Chem Soc 2024; 146:791-800. [PMID: 38146836 DOI: 10.1021/jacs.3c10847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
An understanding of the functional role played by a membrane-associated intrinsically disordered protein (IDP) requires characterization of its heterogeneous conformations as well as its poses relative to the membranes, which is of great interest but technically challenging. Here, we explore the membrane paramagnetic relaxation enhancement (mPRE) for constructing ensembles of IDPs that dynamically associate with membrane mimetics incorporating spin-labeled lipids. To accurately interpret the mPRE Γ2 rates, both the dynamics of IDPs and spin probe molecules are taken into account, with the latter described by a weighted three-dimensional (3D) grid model built based on all-atom simulations. The IDP internal conformations, orientations, and immersion depths in lipid bilayers are comprehensively optimized in the Γ2-based ensemble modeling. Our approach is tested and validated on the example of POPG bicelle-bound disordered cytoplasmic domain of CD3ε (CD3εCD), a component of the T-cell receptor (TCR) complex. The mPRE-derived CD3εCD ensemble provides new insights into the IDP-membrane fuzzy association, in particular for the tyrosine-based signaling motif that plays a critical role in TCR signaling. The comparative analysis of the ensembles for wild-type CD3εCD and mutants that mimic the mono- and dual-phosphorylation effects suggests a delicate membrane regulatory mechanism for activation and inhibition of the TCR activity.
Collapse
Affiliation(s)
- Hong Jin
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yu Ni
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Lerner G, Ding L, Spearman P. Tryptophan-based motifs in the LLP3 region of the HIV-1 envelope glycoprotein cytoplasmic tail direct trafficking to the endosomal recycling compartment and mediate particle incorporation. J Virol 2023; 97:e0063123. [PMID: 37796124 PMCID: PMC10617417 DOI: 10.1128/jvi.00631-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE The HIV-1 envelope glycoprotein (Env) is an essential component of the virus and has an exceedingly long cytoplasmic tail (CT). Previous studies have suggested that trafficking signals in the CT interact with host factors to regulate the incorporation of Env into particles. One particular area of interest is termed lentiviral lytic peptide 3 (LLP3), as small deletions in this region have been shown to disrupt Env incorporation. In this study, we identify a small region within LLP3 that regulates how Env associates with cellular recycling compartments. Mutants that reduced or eliminated Env from the recycling compartment also reduced Env incorporation into particles. These findings emphasize the importance of two tryptophan motifs in LLP3 for the incorporation of Env into particles and provide additional support for the idea that the CT interacts with host recycling pathways to determine particle incorporation.
Collapse
Affiliation(s)
- Grigoriy Lerner
- Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lingmei Ding
- Infectious Diseases, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul Spearman
- Infectious Diseases, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Gu X, Liu D, Yu Y, Wang H, Long D. Quantitative Paramagnetic NMR-Based Analysis of Protein Orientational Dynamics on Membranes: Dissecting the KRas4B-Membrane Interactions. J Am Chem Soc 2023; 145:10295-10303. [PMID: 37116086 DOI: 10.1021/jacs.3c01597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Peripheral membrane proteins can adopt distinct orientations on the surfaces of lipid bilayers that are often short-lived and challenging to characterize by conventional experimental methods. Here we describe a robust approach for mapping protein orientational landscapes through quantitative interpretation of paramagnetic relaxation enhancement (PRE) data arising from membrane mimetics with spin-labeled lipids. Theoretical analysis, followed by experimental verification, reveals insights into the distinct properties of the PRE observables that are generally distorted in the case of stably membrane-anchored proteins. To suppress the artifacts, we demonstrate that undistorted Γ2 values can be obtained via transient membrane anchoring, based on which a computational framework is established for deriving accurate orientational ensembles obeying Boltzmann statistics. Application of the approach to KRas4B, a classical peripheral membrane protein whose orientations are critical for its functions and drug design, reveals four distinct orientational states that are close but not identical to those reported previously. Similar orientations are also found for a truncated KRas4B without the hypervariable region (HVR) that can sample a broader range of orientations, suggesting a confinement role of the HVR geometrically prohibiting severe tilting. Comparison of the KRas4B Γ2 rates measured using nanodiscs containing different types of anionic lipids reveals identical Γ2 patterns for the G-domain but different ones for the HVR, indicating only the latter is able to selectively interact with anionic lipids.
Collapse
Affiliation(s)
- Xue Gu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yongkui Yu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Lerner G, Ding L, Spearman P. Tryptophan-based motifs in the LLP3 Region of the HIV-1 envelope glycoprotein cytoplasmic tail direct trafficking to the endosomal recycling compartment and mediate particle incorporation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538708. [PMID: 37162911 PMCID: PMC10168361 DOI: 10.1101/2023.04.28.538708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The HIV-1 envelope glycoprotein complex (Env) is incorporated into developing particles at the plasma membrane (PM). The cytoplasmic tail (CT) of Env is known to play an essential role in particle incorporation, while the exact mechanisms underlying this function of the CT remain uncertain. Upon reaching the PM, trafficking signals in the CT interact with host cell endocytic machinery, directing Env into endosomal compartments within the cell. Prior studies have suggested that Env must traffic through the endosomal recycling compartment (ERC) in order for Env to return to the plasma membrane (PM) site of particle assembly. Expression of a truncated form of the ERC-resident trafficking adaptor Rab11-Family Interacting Proteins C (FIP1C) resulted in CT-dependent sequestration of Env in the condensed ERC, preventing recycling of Env to the PM. In this work, the motifs within the CT responsible for ERC localization of Env were systematically mapped. A small deletion encompassing the N-terminal portion of LLP3 eliminated ERC localization. Site-directed mutagenesis identified two tryptophan-based motifs (WE 790-791 and WW 796-797 ) within the N-terminus of LLP3 that were essential for ERC localization of Env. Mutant viruses bearing substitutions in these motifs were deficient in Env incorporation, with a corresponding loss of particle infectivity and a significant defect in replication in a spreading infection assay. These results identify two tryptophan-based motifs at the N-terminal portion of LLP3 that mediate ERC localization and Env incorporation, providing additional supporting evidence for the importance of cellular recycling pathways in HIV-1 particle assembly. IMPORTANCE The HIV-1 envelope glycoprotein (Env) is an essential component of the virus, and has an exceedingly long cytoplasmic tail (CT). Previous studies have suggested that trafficking signals in the CT interact with host factors to regulate the incorporation of Env into particles. One particular area of interest is termed lentiviral lytic peptide 3 (LLP3), as small deletions in this region have been shown to disrupt Env incorporation. In this study, we identify a small region within LLP3 that regulates how Env associates with cellular recycling compartments. Mutants that reduced or eliminated Env from the recycling compartment also reduced Env incorporation into particles. These findings emphasize the importance of two tryptophan motifs in LLP3 to the incorporation of Env into particles, and provide additional support for the idea that the CT interacts with host recycling pathways to determine particle incorporation.
Collapse
Affiliation(s)
- Grigoriy Lerner
- Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lingmei Ding
- Infectious Diseases, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| | - Paul Spearman
- Infectious Diseases, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH
| |
Collapse
|
12
|
Mangukia TA, Santos JRL, Sun W, Cesarz D, Ortíz Hidalgo CD, Marcet-Palacios M. Validation of HIV-1 MA Shell Structural Arrangements and Env Protein Interactions Predict a Role of the MA Shell in Viral Maturation. Viruses 2023; 15:v15040893. [PMID: 37112873 PMCID: PMC10144363 DOI: 10.3390/v15040893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The molecular structure of the type 1 human immunodeficiency virus (HIV-1) is tightly linked to the mechanism of viral entry. The spike envelope (Env) glycoproteins and their interaction with the underlying matrix (MA) shell have emerged as key components of the entry mechanism. Microscopy evidence suggests that the MA shell does not span the entire inner lipid surface of the virus, producing a region of the virus that completely lacks an MA shell. Interestingly, evidence also suggests that Env proteins cluster during viral maturation and, thus, it is likely that this event takes place in the region of the virus that lacks an MA shell. We have previously called this part of the virus a fusion hub to highlight its importance during viral entry. While the structure of the MA shell is in contention due to the unaddressed inconsistencies between its reported hexagonal arrangement and the physical plausibility of such a structure, it is possible that a limited number of MA hexagons could form. In this study, we measured the size of the fusion hub by analysing the cryo-EM maps of eight HIV-1 particles and measured the size of the MA shell gap to be 66.3 nm ± 15.0 nm. We also validated the feasibility of the hexagonal MA shell arrangement in six reported structures and determined the plausible components of these structures that do not violate geometrical limitations. We also examined the cytosolic domain of Env proteins and discovered a possible interaction between adjacent Env proteins that could explain the stability of cluster formation. We present an updated HIV-1 model and postulate novel roles of the MA shell and Env structure.
Collapse
Affiliation(s)
- Tarana A. Mangukia
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Joy Ramielle L. Santos
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Weijie Sun
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Dominik Cesarz
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | | - Marcelo Marcet-Palacios
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Biological Sciences Technology, Laboratory Research and Biotechnology, Northern Alberta Institute of Technology, Edmonton, AB T5G 2R1, Canada
- Correspondence:
| |
Collapse
|
13
|
Du G, Zhao L, Zheng Y, Belfetmi A, Cai T, Xu B, Heyninck K, Van Den Heede K, Buyse MA, Fontana P, Bowman M, Lin LL, Wu H, Chou JJ. Autoinhibitory structure of preligand association state implicates a new strategy to attain effective DR5 receptor activation. Cell Res 2023; 33:131-146. [PMID: 36604598 PMCID: PMC9892523 DOI: 10.1038/s41422-022-00755-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/15/2022] [Indexed: 01/07/2023] Open
Abstract
Members of the tumor necrosis factor receptor superfamily (TNFRSF) are important therapeutic targets that can be activated to induce death of cancer cells or stimulate proliferation of immune cells. Although it has long been implicated that these receptors assemble preligand associated states that are required for dominant interference in human disease, such states have so far eluded structural characterization. Here, we find that the ectodomain of death receptor 5 (DR5-ECD), a representative member of TNFRSF, can specifically self-associate when anchored to lipid bilayer, and we report this self-association structure determined by nuclear magnetic resonance (NMR). Unexpectedly, two non-overlapping interaction interfaces are identified that could propagate to higher-order clusters. Structure-guided mutagenesis indicates that the observed preligand association structure is represented on DR5-expressing cells. The DR5 preligand association serves an autoinhibitory role as single-domain antibodies (sdAbs) that partially dissociate the preligand cluster can sensitize the receptor to its ligand TRAIL and even induce substantial receptor signaling in the absence of TRAIL. Unlike most agonistic antibodies that require multivalent binding to aggregate receptors for activation, these agonistic sdAbs are monovalent and act specifically on an oligomeric, autoinhibitory configuration of the receptor. Our data indicate that receptors such as DR5 can form structurally defined preclusters incompatible with signaling and that true agonists should disrupt the preligand cluster while converting it to signaling-productive cluster. This mechanism enhances our understanding of a long-standing question in TNFRSF signaling and suggests a new opportunity for developing agonistic molecules by targeting receptor preligand clustering.
Collapse
Affiliation(s)
- Gang Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Linlin Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yumei Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anissa Belfetmi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tiantian Cai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Boying Xu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | | | | | - Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Michael Bowman
- Checkpoint Immunology, Immunology & Inflammation, Sanofi, Cambridge, MA, USA
| | - Lih-Ling Lin
- Checkpoint Immunology, Immunology & Inflammation, Sanofi, Cambridge, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - James Jeiwen Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Alfadhli A, Romanaggi C, Barklis RL, Barklis E. Analysis of HIV-1 envelope cytoplasmic tail effects on viral replication. Virology 2023; 579:54-66. [PMID: 36603533 PMCID: PMC10003682 DOI: 10.1016/j.virol.2022.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Trimers of the HIV-1 envelope (Env) protein perform receptor binding and virus-cell fusion functions during the virus life cycle. The cytoplasmic tail (CT) of Env forms an unusual baseplate structure, and is palmitoylated, rich in arginines, carries trafficking motifs, binds cholesterol, and interacts with host proteins. To dissect CT activities, we examined a panel of Env variants, including CT truncations, mutations, and an extension. We found that whereas all variants could replicate in permissive cells, viruses with CT truncations or baseplate mutations were defective in restrictive cells. We also identified a determinant in HIV-1 amphotericin sensitivity, and characterized variants that escape amphotericin inhibition via viral protease-mediated CT cleavage. Results additionally showed that full-length, his tagged Env can oligomerize and be co-assembled with CT truncations that delete portions of the baseplate, host protein binding sites, and trafficking signals. Our observations illuminate novel aspects of HIV-1 CT structure, interactions, and functions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA.
| |
Collapse
|
15
|
Carter EP, Ang CG, Chaiken IM. Peptide Triazole Inhibitors of HIV-1: Hijackers of Env Metastability. Curr Protein Pept Sci 2023; 24:59-77. [PMID: 35692162 PMCID: PMC11660822 DOI: 10.2174/1389203723666220610120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
With 1.5 million new infections and 690,000 AIDS-related deaths globally each year, HIV- 1 remains a pathogen of significant public health concern. Although a wide array of effective antiretroviral drugs have been discovered, these largely target intracellular stages of the viral infectious cycle, and inhibitors that act at or before the point of viral entry still require further advancement. A unique class of HIV-1 entry inhibitors, called peptide triazoles (PTs), has been developed, which irreversibly inactivates Env trimers by exploiting the protein structure's innate metastable nature. PTs, and a related group of inhibitors called peptide triazole thiols (PTTs), are peptide compounds that dually engage the CD4 receptor and coreceptor binding sites of Env's gp120 subunit. This triggers dramatic conformational rearrangements of Env, including the shedding of gp120 (PTs and PTTs) and lytic transformation of the gp41 subunit to a post-fusion-like arrangement (PTTs). Due to the nature of their dual receptor site engagement, PT/PTT-induced conformational changes may elucidate mechanisms behind the native fusion program of Env trimers following receptor and coreceptor engagement, including the role of thiols in fusion. In addition to inactivating Env, PTT-induced structural transformation enhances the exposure of important and conserved neutralizable regions of gp41, such as the membrane proximal external region (MPER). PTT-transformed Env could present an intriguing potential vaccine immunogen prototype. In this review, we discuss the origins of the PT class of peptide inhibitors, our current understanding of PT/PTT-induced structural perturbations and viral inhibition, and prospects for using these antagonists for investigating Env structural mechanisms and for vaccine development.
Collapse
Affiliation(s)
- Erik P. Carter
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Charles G. Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Viral and Host Factors Regulating HIV-1 Envelope Protein Trafficking and Particle Incorporation. Viruses 2022; 14:v14081729. [PMID: 36016351 PMCID: PMC9415270 DOI: 10.3390/v14081729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) is an essential structural component of the virus, serving as the receptor-binding protein and principal neutralizing determinant. Env trimers are incorporated into developing particles at the plasma membrane of infected cells. Incorporation of HIV-1 Env into particles in T cells and macrophages is regulated by the long Env cytoplasmic tail (CT) and the matrix region of Gag. The CT incorporates motifs that interact with cellular factors involved in endosomal trafficking. Env follows an unusual pathway to arrive at the site of particle assembly, first traversing the secretory pathway to the plasma membrane (PM), then undergoing endocytosis, followed by directed sorting to the site of particle assembly on the PM. Many aspects of Env trafficking remain to be defined, including the sequential events that occur following endocytosis, leading to productive recycling and particle incorporation. This review focuses on the host factors and pathways involved in Env trafficking, and discusses leading models of Env incorporation into particles.
Collapse
|
17
|
Coleman KK, Tay DJW, Tan KS, Ong SWX, Than TS, Koh MH, Chin YQ, Nasir H, Mak TM, Chu JJH, Milton DK, Chow VTK, Tambyah PA, Chen M, Tham KW. Viral Load of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Respiratory Aerosols Emitted by Patients With Coronavirus Disease 2019 (COVID-19) While Breathing, Talking, and Singing. Clin Infect Dis 2022; 74:1722-1728. [PMID: 34358292 DOI: 10.1101/2021.07.15.21260561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) superspreading events suggest that aerosols play an important role in driving the coronavirus disease 2019 (COVID-19) pandemic. To better understand how airborne SARS-CoV-2 transmission occurs, we sought to determine viral loads within coarse (>5 μm) and fine (≤5 μm) respiratory aerosols produced when breathing, talking, and singing. METHODS Using a G-II exhaled breath collector, we measured viral RNA in coarse and fine respiratory aerosols emitted by COVID-19 patients during 30 minutes of breathing, 15 minutes of talking, and 15 minutes of singing. RESULTS Thirteen participants (59%) emitted detectable levels of SARS-CoV-2 RNA in respiratory aerosols, including 3 asymptomatic and 1 presymptomatic patient. Viral loads ranged from 63-5821 N gene copies per expiratory activity per participant, with high person-to-person variation. Patients earlier in illness were more likely to emit detectable RNA. Two participants, sampled on day 3 of illness, accounted for 52% of total viral load. Overall, 94% of SARS-CoV-2 RNA copies were emitted by talking and singing. Interestingly, 7 participants emitted more virus from talking than singing. Overall, fine aerosols constituted 85% of the viral load detected in our study. Virus cultures were negative. CONCLUSIONS Fine aerosols produced by talking and singing contain more SARS-CoV-2 copies than coarse aerosols and may play a significant role in SARS-CoV-2 transmission. Exposure to fine aerosols, especially indoors, should be mitigated. Isolating viable SARS-CoV-2 from respiratory aerosol samples remains challenging; whether this can be more easily accomplished for emerging SARS-CoV-2 variants is an urgent enquiry necessitating larger-scale studies.
Collapse
Affiliation(s)
- Kristen K Coleman
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Douglas Jie Wen Tay
- Department of the Built Environment, National University of Singapore, Singapore
| | - Kai Sen Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Sean Wei Xiang Ong
- National Centre for Infectious Diseases, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - The Son Than
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of the Built Environment, National University of Singapore, Singapore
| | - Ming Hui Koh
- Department of the Built Environment, National University of Singapore, Singapore
| | - Yi Qing Chin
- National Centre for Infectious Diseases, Singapore
| | - Haziq Nasir
- Division of Infectious Diseases, Department of Medicine, National University Health System, National University of Singapore, Singapore
| | - Tze Minn Mak
- National Centre for Infectious Diseases, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Donald K Milton
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Vincent T K Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Paul Anantharajah Tambyah
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Division of Infectious Diseases, Department of Medicine, National University Health System, National University of Singapore, Singapore
| | - Mark Chen
- National Centre for Infectious Diseases, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Kwok Wai Tham
- Department of the Built Environment, National University of Singapore, Singapore
| |
Collapse
|
18
|
Safari M, Jayaraman B, Zommer H, Yang S, Smith C, Fernandes JD, Frankel AD. Functional and structural segregation of overlapping helices in HIV-1. eLife 2022; 11:e72482. [PMID: 35511220 PMCID: PMC9119678 DOI: 10.7554/elife.72482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Overlapping coding regions balance selective forces between multiple genes. One possible division of nucleotide sequence is that the predominant selective force on a particular nucleotide can be attributed to just one gene. While this arrangement has been observed in regions in which one gene is structured and the other is disordered, we sought to explore how overlapping genes balance constraints when both protein products are structured over the same sequence. We use a combination of sequence analysis, functional assays, and selection experiments to examine an overlapped region in HIV-1 that encodes helical regions in both Env and Rev. We find that functional segregation occurs even in this overlap, with each protein spacing its functional residues in a manner that allows a mutable non-binding face of one helix to encode important functional residues on a charged face in the other helix. Additionally, our experiments reveal novel and critical functional residues in Env and have implications for the therapeutic targeting of HIV-1.
Collapse
Affiliation(s)
- Maliheh Safari
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Henni Zommer
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Shumin Yang
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- School of Medicine, Tsinghua UniversityBeijingChina
| | - Cynthia Smith
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jason D Fernandes
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
19
|
Lerner G, Weaver N, Anokhin B, Spearman P. Advances in HIV-1 Assembly. Viruses 2022; 14:v14030478. [PMID: 35336885 PMCID: PMC8952333 DOI: 10.3390/v14030478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The assembly of HIV-1 particles is a concerted and dynamic process that takes place on the plasma membrane of infected cells. An abundance of recent discoveries has advanced our understanding of the complex sequence of events leading to HIV-1 particle assembly, budding, and release. Structural studies have illuminated key features of assembly and maturation, including the dramatic structural transition that occurs between the immature Gag lattice and the formation of the mature viral capsid core. The critical role of inositol hexakisphosphate (IP6) in the assembly of both the immature and mature Gag lattice has been elucidated. The structural basis for selective packaging of genomic RNA into virions has been revealed. This review will provide an overview of the HIV-1 assembly process, with a focus on recent advances in the field, and will point out areas where questions remain that can benefit from future investigation.
Collapse
|
20
|
Mangala Prasad V, Leaman DP, Lovendahl KN, Croft JT, Benhaim MA, Hodge EA, Zwick MB, Lee KK. Cryo-ET of Env on intact HIV virions reveals structural variation and positioning on the Gag lattice. Cell 2022; 185:641-653.e17. [PMID: 35123651 PMCID: PMC9000915 DOI: 10.1016/j.cell.2022.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 01/11/2023]
Abstract
HIV-1 Env mediates viral entry into host cells and is the sole target for neutralizing antibodies. However, Env structure and organization in its native virion context has eluded detailed characterization. Here, we used cryo-electron tomography to analyze Env in mature and immature HIV-1 particles. Immature particles showed distinct Env positioning relative to the underlying Gag lattice, providing insights into long-standing questions about Env incorporation. A 9.1-Å sub-tomogram-averaged reconstruction of virion-bound Env in conjunction with structural mass spectrometry revealed unexpected features, including a variable central core of the gp41 subunit, heterogeneous glycosylation between protomers, and a flexible stalk that allows Env tilting and variable exposure of neutralizing epitopes. Together, our results provide an integrative understanding of HIV assembly and structural variation in Env antigen presentation.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel P Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus N Lovendahl
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jacob T Croft
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mark A Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
21
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
22
|
Snetkov X, Haider T, Mesner D, Groves N, van Engelenburg SB, Jolly C. A Conserved Tryptophan in the Envelope Cytoplasmic Tail Regulates HIV-1 Assembly and Spread. Viruses 2022; 14:v14010129. [PMID: 35062333 PMCID: PMC8778169 DOI: 10.3390/v14010129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
The HIV-1 envelope (Env) is an essential determinant of viral infectivity, tropism and spread between T cells. Lentiviral Env contain an unusually long 150 amino acid cytoplasmic tail (EnvCT), but the function of the EnvCT and many conserved domains within it remain largely uncharacterised. Here, we identified a highly conserved tryptophan motif at position 757 (W757) in the LLP-2 alpha helix of the EnvCT as a key determinant for HIV-1 replication and spread between T cells. Alanine substitution at this position potently inhibited HIV-1 cell–cell spread (the dominant mode of HIV-1 dissemination) by preventing recruitment of Env and Gag to sites of cell–cell contact, inhibiting virological synapse (VS) formation and spreading infection. Single-molecule tracking and super-resolution imaging showed that mutation of W757 dysregulates Env diffusion in the plasma membrane and increases Env mobility. Further analysis of Env function revealed that W757 is also required for Env fusion and infectivity, which together with reduced VS formation, result in a potent defect in viral spread. Notably, W757 lies within a region of the EnvCT recently shown to act as a supporting baseplate for Env. Our data support a model in which W757 plays a key role in regulating Env biology, modulating its temporal and spatial recruitment to virus assembly sites and regulating the inherent fusogenicity of the Env ectodomain, thereby supporting efficient HIV-1 replication and spread.
Collapse
Affiliation(s)
- Xenia Snetkov
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Tafhima Haider
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Nicholas Groves
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO 80210, USA; (N.G.); (S.B.v.E.)
| | - Schuyler B. van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO 80210, USA; (N.G.); (S.B.v.E.)
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
- Correspondence:
| |
Collapse
|
23
|
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021; 179:113914. [PMID: 34363861 PMCID: PMC9418125 DOI: 10.1016/j.addr.2021.113914] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Strategies of improving vaccine targeting ability toward lymph nodes have been attracting considerable interest in recent years, though there are remaining delivery barriers based on the inherent properties of lymphatic systems and limited administration routes of vaccination. Recently, emerging vaccine delivery systems using various materials as carriers are widely developed to achieve efficient lymph node targeting and improve vaccine-triggered adaptive immune response. In this review, to further optimize the vaccine targeting ability for future research, the design principles of lymph node targeting vaccine delivery based on the anatomy of lymph nodes and vaccine administration routes are first summarized. Then different designs of lymph node targeting vaccine delivery systems, including vaccine delivery systems in clinical applications, are carefully surveyed. Also, the challenges and opportunities of current delivery systems for vaccines are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
24
|
Wang N, Ferhan AR, Yoon BK, Jackman JA, Cho NJ, Majima T. Chemical design principles of next-generation antiviral surface coatings. Chem Soc Rev 2021; 50:9741-9765. [PMID: 34259262 DOI: 10.1039/d1cs00317h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has accelerated efforts to develop high-performance antiviral surface coatings while highlighting the need to build a strong mechanistic understanding of the chemical design principles that underpin antiviral surface coatings. Herein, we critically summarize the latest efforts to develop antiviral surface coatings that exhibit virus-inactivating functions through disrupting lipid envelopes or protein capsids. Particular attention is focused on how cutting-edge advances in material science are being applied to engineer antiviral surface coatings with tailored molecular-level properties to inhibit membrane-enveloped and non-enveloped viruses. Key topics covered include surfaces functionalized with organic and inorganic compounds and nanoparticles to inhibit viruses, and self-cleaning surfaces that incorporate photocatalysts and triplet photosensitizers. Application examples to stop COVID-19 are also introduced and demonstrate how the integration of chemical design principles and advanced material fabrication strategies are leading to next-generation surface coatings that can help thwart viral pandemics and other infectious disease threats.
Collapse
Affiliation(s)
- Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
25
|
Koppisetti RK, Fulcher YG, Van Doren SR. Fusion Peptide of SARS-CoV-2 Spike Rearranges into a Wedge Inserted in Bilayered Micelles. J Am Chem Soc 2021; 143:13205-13211. [PMID: 34375093 PMCID: PMC8370118 DOI: 10.1021/jacs.1c05435] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/28/2022]
Abstract
The receptor binding and proteolysis of Spike of SARS-CoV-2 release its S2 subunit to rearrange and catalyze viral-cell fusion. This deploys the fusion peptide for insertion into the cell membranes targeted. We show that this fusion peptide transforms from intrinsic disorder in solution into a wedge-shaped structure inserted in bilayered micelles, according to chemical shifts, 15N NMR relaxation, and NOEs. The globular fold of three helices contrasts the open, extended forms of this region observed in the electron density of compact prefusion states. In the hydrophobic, narrow end of the wedge, helices 1 and 2 contact the fatty acyl chains of phospholipids, according to NOEs and proximity to a nitroxide spin label deep in the membrane mimic. The polar end of the wedge may engage and displace lipid head groups and bind Ca2+ ions for membrane fusion. Polar helix 3 protrudes from the bilayer where it might be accessible to antibodies.
Collapse
Affiliation(s)
| | - Yan G. Fulcher
- Dept. of Biochemistry, University of Missouri, Columbia, MO 65211 USA
| | - Steven R. Van Doren
- Dept. of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
26
|
Challenging the Existing Model of the Hexameric HIV-1 Gag Lattice and MA Shell Superstructure: Implications for Viral Entry. Viruses 2021; 13:v13081515. [PMID: 34452379 PMCID: PMC8402665 DOI: 10.3390/v13081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
Despite type 1 human immunodeficiency virus (HIV-1) being discovered in the early 1980s, significant knowledge gaps remain in our understanding of the superstructure of the HIV-1 matrix (MA) shell. Current viral assembly models assume that the MA shell originates via recruitment of group-specific antigen (Gag) polyproteins into a hexagonal lattice but fails to resolve and explain lattice overlapping that occurs when the membrane is folded into a spherical/ellipsoidal shape. It further fails to address how the shell recruits, interacts with and encompasses the viral spike envelope (Env) glycoproteins. These Env glycoproteins are crucial as they facilitate viral entry by interacting with receptors and coreceptors located on T-cells. In our previous publication, we proposed a six-lune hosohedral structure, snowflake-like model for the MA shell of HIV-1. In this article, we improve upon the six-lune hosohedral structure by incorporating into our algorithm the recruitment of complete Env glycoproteins. We generated the Env glycoprotein assembly using a combination of predetermined Env glycoprotein domains from X-ray crystallography, nuclear magnetic resonance (NMR), cryoelectron tomography, and three-dimensional prediction tools. Our novel MA shell model comprises 1028 MA trimers and 14 Env glycoproteins. Our model demonstrates the movement of Env glycoproteins in the interlunar spaces, with effective clustering at the fusion hub, where multiple Env complexes bind to T-cell receptors during the process of viral entry. Elucidating the HIV-1 MA shell structure and its interaction with the Env glycoproteins is a key step toward understanding the mechanism of HIV-1 entry.
Collapse
|
27
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
28
|
Lai YT. Small Molecule HIV-1 Attachment Inhibitors: Discovery, Mode of Action and Structural Basis of Inhibition. Viruses 2021; 13:v13050843. [PMID: 34066522 PMCID: PMC8148533 DOI: 10.3390/v13050843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Viral entry into host cells is a critical step in the viral life cycle. HIV-1 entry is mediated by the sole surface envelope glycoprotein Env and is initiated by the interaction between Env and the host receptor CD4. This interaction, referred to as the attachment step, has long been considered an attractive target for inhibitor discovery and development. Fostemsavir, recently approved by the FDA, represents the first-in-class drug in the attachment inhibitor class. This review focuses on the discovery of temsavir (the active compound of fostemsavir) and analogs, mechanistic studies that elucidated the mode of action, and structural studies that revealed atomic details of the interaction between HIV-1 Env and attachment inhibitors. Challenges associated with emerging resistance mutations to the attachment inhibitors and the development of next-generation attachment inhibitors are also highlighted.
Collapse
Affiliation(s)
- Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
HIV-1 Entry and Membrane Fusion Inhibitors. Viruses 2021; 13:v13050735. [PMID: 33922579 PMCID: PMC8146413 DOI: 10.3390/v13050735] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry.
Collapse
|
30
|
Piai A, Fu Q, Sharp AK, Bighi B, Brown AM, Chou JJ. NMR Model of the Entire Membrane-Interacting Region of the HIV-1 Fusion Protein and Its Perturbation of Membrane Morphology. J Am Chem Soc 2021; 143:6609-6615. [PMID: 33882664 DOI: 10.1021/jacs.1c01762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 envelope glycoprotein (Env) is a transmembrane protein that mediates membrane fusion and viral entry. The membrane-interacting regions of the Env, including the membrane-proximal external region (MPER), the transmembrane domain (TMD), and the cytoplasmic tail (CT), not only are essential for fusion and Env incorporation but also can strongly influence the antigenicity of the Env. Previous studies have incrementally revealed the structures of the MPER, the TMD, and the KS-LLP2 regions of the CT. Here, we determined the NMR structure of the full-length CT using a protein fragment comprising the TMD and the CT in bicelles that mimic a lipid bilayer, and by integrating the new NMR data and those acquired previously on other gp41 fragments, we derived a model of the entire membrane-interacting region of the Env. The structure shows that the CT forms a large trimeric baseplate around the TMD trimer, and by residing in the headgroup region of the lipid bilayer, the baseplate causes severe exclusion of lipid in the cytoleaflet of the bilayer. All-atom molecular dynamics simulations showed that the overall structure of the MPER-TMD-CT can be stable in a viral membrane and that a concerted movement of the KS-LLP2 region compensates for the lipid exclusion in order to maintain both structure and membrane integrity. Our structural and simulation results provide a framework for future research to manipulate the membrane structure to modulate the antigenicity of the Env for vaccine development and for mutagenesis studies for investigating membrane fusion and Env interaction with the matrix proteins.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Beatrice Bighi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
31
|
Nieto‐Garai JA, Arboleya A, Otaegi S, Chojnacki J, Casas J, Fabriàs G, Contreras F, Kräusslich H, Lorizate M. Cholesterol in the Viral Membrane is a Molecular Switch Governing HIV-1 Env Clustering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003468. [PMID: 33552873 PMCID: PMC7856888 DOI: 10.1002/advs.202003468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Indexed: 05/07/2023]
Abstract
HIV-1 entry requires the redistribution of envelope glycoproteins (Env) into a cluster and the presence of cholesterol (chol) in the viral membrane. However, the molecular mechanisms underlying the specific role of chol in infectivity and the driving force behind Env clustering remain unknown. Here, gp41 is demonstrated to directly interact with chol in the viral membrane via residues 751-854 in the cytoplasmic tail (CT751-854). Super-resolution stimulated emission depletion (STED) nanoscopy analysis of Env distribution further demonstrates that both truncation of gp41 CT751-854 and depletion of chol leads to dispersion of Env clusters in the viral membrane and inhibition of virus entry. This work reveals a direct interaction of gp41 CT with chol and indicates that this interaction is an important orchestrator of Env clustering.
Collapse
Affiliation(s)
- Jon Ander Nieto‐Garai
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Aroa Arboleya
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Sara Otaegi
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
| | | | - Josefina Casas
- Research Unit on BioActive Molecules. Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaCatalonia08034Spain
- Liver and Digestive Diseases Networking Biomedical Research Center (CIBEREHD) ISCIIMadrid28029Spain
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules. Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaCatalonia08034Spain
- Liver and Digestive Diseases Networking Biomedical Research Center (CIBEREHD) ISCIIMadrid28029Spain
| | - F‐Xabier Contreras
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
- IkerbasqueBasque Foundation for ScienceBilbao48013Spain
| | - Hans‐Georg Kräusslich
- Department of Infectious DiseasesVirologyUniversitätsklinikum HeidelbergHeidelberg69120Germany
| | - Maier Lorizate
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
| |
Collapse
|
32
|
Eastep GN, Ghanam RH, Green TJ, Saad JS. Structural characterization of HIV-1 matrix mutants implicated in envelope incorporation. J Biol Chem 2021; 296:100321. [PMID: 33485964 PMCID: PMC7952133 DOI: 10.1016/j.jbc.2021.100321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022] Open
Abstract
During the late phase of HIV-1 infection, viral Gag polyproteins are targeted to the plasma membrane (PM) for assembly. Gag localization at the PM is a prerequisite for the incorporation of the envelope protein (Env) into budding particles. Gag assembly and Env incorporation are mediated by the N-terminal myristoylated matrix (MA) domain of Gag. Nonconservative mutations in the trimer interface of MA (A45E, T70R, and L75G) were found to impair Env incorporation and infectivity, leading to the hypothesis that MA trimerization is an obligatory step for Env incorporation. Conversely, Env incorporation can be rescued by a compensatory mutation in the MA trimer interface (Q63R). The impact of these MA mutations on the structure and trimerization properties of MA is not known. In this study, we employed NMR spectroscopy, X-ray crystallography, and sedimentation techniques to characterize the structure and trimerization properties of HIV-1 MA A45E, Q63R, T70R, and L75G mutant proteins. NMR data revealed that these point mutations did not alter the overall structure and folding of MA but caused minor structural perturbations in the trimer interface. Analytical ultracentrifugation data indicated that mutations had a minimal effect on the MA monomer–trimer equilibrium. The high-resolution X-ray structure of the unmyristoylated MA Q63R protein revealed hydrogen bonding between the side chains of adjacent Arg-63 and Ser-67 on neighboring MA molecules, providing the first structural evidence for an additional intermolecular interaction in the trimer interface. These findings advance our knowledge of the interplay of MA trimerization and Env incorporation into HIV-1 particles.
Collapse
Affiliation(s)
- Gunnar N Eastep
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
33
|
Ranga V, Niemelä E, Tamirat MZ, Eriksson JE, Airenne TT, Johnson MS. Immunogenic SARS-CoV-2 Epitopes: In Silico Study Towards Better Understanding of COVID-19 Disease-Paving the Way for Vaccine Development. Vaccines (Basel) 2020; 8:E408. [PMID: 32717854 PMCID: PMC7564651 DOI: 10.3390/vaccines8030408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of the COVID-19 outbreak at the end of 2019, caused by the novel coronavirus SARS-CoV-2, has, to date, led to over 13.6 million infections and nearly 600,000 deaths. Consequently, there is an urgent need to better understand the molecular factors triggering immune defense against the virus and to develop countermeasures to hinder its spread. Using in silico analyses, we showed that human major histocompatibility complex (MHC) class I cell-surface molecules vary in their capacity for binding different SARS-CoV-2-derived epitopes, i.e., short sequences of 8-11 amino acids, and pinpointed five specific SARS-CoV-2 epitopes that are likely to be presented to cytotoxic T-cells and hence activate immune responses. The identified epitopes, each one of nine amino acids, have high sequence similarity to the equivalent epitopes of SARS-CoV virus, which are known to elicit an effective T cell response in vitro. Moreover, we give a structural explanation for the binding of SARS-CoV-2-epitopes to MHC molecules. Our data can help us to better understand the differences in outcomes of COVID-19 patients and may aid the development of vaccines against SARS-CoV-2 and possible future outbreaks of novel coronaviruses.
Collapse
Affiliation(s)
- Vipin Ranga
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (V.R.); (M.Z.T.); (T.T.A.)
| | - Erik Niemelä
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (E.N.); (J.E.E.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mahlet Z. Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (V.R.); (M.Z.T.); (T.T.A.)
| | - John E. Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (E.N.); (J.E.E.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Tomi T. Airenne
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (V.R.); (M.Z.T.); (T.T.A.)
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (V.R.); (M.Z.T.); (T.T.A.)
| |
Collapse
|