1
|
Zhao Y, Xie L, Liu B, Deng Y, Li P, Dai Y, Liu J, Yi C. Novel insight into the role of Src family kinases in hepatocellular carcinoma and therapeutic potential. Biochem Biophys Res Commun 2025; 772:151970. [PMID: 40414003 DOI: 10.1016/j.bbrc.2025.151970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
Hepatocellular carcinoma remains a highly aggressive malignancy, with the 5-year survival rate for advanced-stage patients persisting below 20 % despite progress in targeted therapies and immunotherapy. This clinical reality underscores the critical need for identifying novel therapeutic targets. Src family kinases (SFKs), critical regulators of cellular metabolism, coordinate regenerative repair through STAT3/ERK signaling in normal hepatic regeneration and preserve cellular polarity via FAK-mediated mechanisms following hepatic injury. Growing evidence suggests that dysregulation of SFKs expression and activity is closely associated with oxidative stress, inflammation-cancer transition, metabolic reprogramming disorders and microenvironmental remodeling in hepatocellular carcinoma. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of SFKs. We explored in depth the molecular and cellular mechanisms of SFKs in the pathological progression and risk factors of hepatocellular carcinoma, including viral hepatitis, metabolic dysfunction-associated steatohepatitis, and other established risk factors. Herein, we highlight the potential of SFKs as a pharmacological target against hepatocellular in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Yunlong Zhao
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Letian Xie
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Binwei Liu
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yulin Deng
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Pengfei Li
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yuqing Dai
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Jiao Liu
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Yi
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
2
|
Xiao Z, Puré E. The fibroinflammatory response in cancer. Nat Rev Cancer 2025; 25:399-425. [PMID: 40097577 DOI: 10.1038/s41568-025-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fibroinflammation refers to the highly integrated fibrogenic and inflammatory responses mediated by the concerted function of fibroblasts and innate immune cells in response to tissue perturbation. This process underlies the desmoplastic remodelling of the tumour microenvironment and thus plays an important role in tumour initiation, growth and metastasis. More specifically, fibroinflammation alters the biochemical and biomechanical signalling in malignant cells to promote their proliferation and survival and further supports an immunosuppressive microenvironment by polarizing the immune status of tumours. Additionally, the presence of fibroinflammation is often associated with therapeutic resistance. As such, there is increasing interest in targeting this process to normalize the tumour microenvironment and thus enhance the treatment of solid tumours. Herein, we review advances made in unravelling the complexity of cancer-associated fibroinflammation that can inform the rational design of therapies targeting this.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Al Azim M, Di Martino JS. ECM, integrins, and DDRs: A nexus of cancer progression, therapy, and future directions. Matrix Biol 2025; 138:27-43. [PMID: 40350240 DOI: 10.1016/j.matbio.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025]
Abstract
Collagen is the most abundant protein in mammals, significantly contributing to cancer progression. Cells express two primary well-conserved collagen receptors, integrins and discoidin domain receptors (DDRs), which bind collagen on distinct sites, suggesting that cancer cells must integrate both signals to decide their fate. The crosstalk between integrins and DDRs mediated by collagen binding produces dynamic, integrated signals that control tumor progression, therapeutic resistance, and cancer cell heterogeneity. This review will discuss the dynamic interplay among collagen, integrins, and DDRs in ECM remodeling during cancer progression and these receptors' crosstalk. In addition, we explored current and future directions for ECM receptor-targeted therapies, including nanotechnologies and precision medicine, to improve therapeutic outcomes by establishing a proper balance between integrins and DDRs in cancer.
Collapse
Affiliation(s)
- Md Al Azim
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla 10595, NY, USA
| | - Julie S Di Martino
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla 10595, NY, USA.
| |
Collapse
|
4
|
Hong S, Peng P, Yao C, Huang Y, Cai S, Huang T, Ying Y, Mu C. Bone marrow-targeted LOXL2 inhibitor-loaded yolk-shell nanoparticle overcomes extracellular matrix-mediated chemotherapy resistance in acute myeloid leukemia. Int J Pharm 2025:125730. [PMID: 40389070 DOI: 10.1016/j.ijpharm.2025.125730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/29/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
The adhesion of leukemic cells to the extracellular matrix (ECM) in the bone marrow microenvironment is a critical factor contributing to the high rates of chemotherapeutic resistance and relapse observed in acute myeloid leukemia (AML) chemotherapy. In this study, preventing AML cell-ECM adhesion using bone marrow-targeted LOXL2 inhibitor (LOXL2i)-loaded yolk-shell nanoparticles (LOXL2i DSS6-NPs) significantly enhances the AML chemotherapeutic efficacy. Firstly, hydrophilic LOXL2i is successfully encapsulated in the collagen I-hydrogel yolk of nanoparticles composed of collagen I and PEG-PLGA with high drug loading content. The inhibition of LOXL2 with LOXL2i-loaded NPs disrupts the integrity of collagen structure in ECM and blocks contact-dependent interactions between AML cells and ECM in vitro. LOXL2i-loaded NPs also contribute to the penetration of nanoparticles in stroma-rich spheroids. LOXL2i-loaded DSS6-NPs can remodel the collagen crosslinking and decrease the deposition of ECM in vivo. LOXL2i-loaded DSS6-NPs sensitize AML to cytarabine treatment and greatly reduce the burden of leukemia in murine AML model. Overall, bone marrow-targeted LOXL2i-loaded yolk-shell nanoparticles represent an effective strategy to overcome AML chemotherapy resistance via blocking AML cell-ECM adhesion in the bone marrow.
Collapse
Affiliation(s)
- Shiyi Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pei Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cao Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yutian Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siying Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tongtong Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yulu Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
5
|
Liu T, Chu T, Luo X, Zhao H. Building a unified model for drug synergy analysis powered by large language models. Nat Commun 2025; 16:4537. [PMID: 40374634 PMCID: PMC12081637 DOI: 10.1038/s41467-025-59822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/05/2025] [Indexed: 05/17/2025] Open
Abstract
Drug synergy prediction is a challenging and important task in the treatment of complex diseases including cancer. In this manuscript, we present a unified Model, known as BAITSAO, for tasks related to drug synergy prediction with a unified pipeline to handle different datasets. We construct the training datasets for BAITSAO based on the context-enriched embeddings from Large Language Models for the initial representation of drugs and cell lines. After demonstrating the relevance of these embeddings, we pre-train BAITSAO with a large-scale drug synergy database under a multi-task learning framework with rigorous selections of tasks. We demonstrate the superiority of the model architecture and the pre-trained strategies of BAITSAO over other methods through comprehensive benchmark analysis. Moreover, we investigate the sensitivity of BAITSAO and illustrate its promising functions including drug discoveries, drug combinations-gene interaction, and multi-drug synergy predictions.
Collapse
Affiliation(s)
- Tianyu Liu
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Tinyi Chu
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Xiao Luo
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hongyu Zhao
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA.
- Department of Biostatistics, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Li W, Wu Y, Zhang Y, Gao W, Li X, Luo H, Lu M, Liu Z, Luo A. Halofuginone Disrupted Collagen Deposition via mTOR-eIF2α-ATF4 Axis to Enhance Chemosensitivity in Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416523. [PMID: 40126173 PMCID: PMC12097005 DOI: 10.1002/advs.202416523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/14/2025] [Indexed: 03/25/2025]
Abstract
The interplay between cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) mediates progress, metastasis, and therapy resistance. However, strategy of targeting ECM remodeling to enhance chemosensitivity in ovarian cancer remains elusive. Here, a 22-gene matrisome signature predicts chemotherapy response and survival in ovarian cancer. The dense, collagen-rich ECM secreted by CAFs harbors more M2 tumor-associated macrophages (TAMs) than the looser ECM based on single cell RNA-seq (scRNA-seq) of ovarian cancer, suggesting the promising approach of targeting collagen to remodel ECM. An integrated analysis identifies collagen type I alpha 1 chain (COL1A1) as a major component of the ECM that contributes to chemoresistance and poor prognosis, highlighting its potential as a therapeutic target. Halofuginone (HF), a clinically active derivative of febrifugine, is identified as a COL1A1-targeting natural compound by screening the Encyclopedia of Traditional Chinese Medicine (ETCM). Mechanistically, HF inhibits COL1A1 production via the mTOR-eIF2α-ATF4 axis in CAFs. Notably, HF disrupts collagen deposition and promotes CD8+ T cell infiltration, partially via M2-M1 macrophage polarization to enhance chemosensitivity. Overall, the findings suggest that HF combined with chemotherapy is a promising and effective treatment for ovarian cancer.
Collapse
Affiliation(s)
- Wenxin Li
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Yenan Wu
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Yanan Zhang
- Department of Obstetrics and GynecologyPeking University Third Hospital38 Xueyuan Rd, Haidian DistrictBeijing100191China
| | - Wenyan Gao
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Xin Li
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Haixia Luo
- Department of Gynecological OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Mengmeng Lu
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Zhihua Liu
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| | - Aiping Luo
- State Key Lab of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College17 Nanli Panjiayuan, Chaoyang DistrictBeijing100021China
| |
Collapse
|
7
|
Chen R, Zhang R, Ke F, Guo X, Zeng F, Liu Q. Mechanisms of breast cancer metastasis: the role of extracellular matrix. Mol Cell Biochem 2025; 480:2771-2796. [PMID: 39652293 DOI: 10.1007/s11010-024-05175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/23/2024] [Indexed: 05/03/2025]
Abstract
The components of the extracellular matrix (ECM) are dynamic, and they mediate mechanical signals that modulate cellular behaviors. Disruption of the ECM can induce the migration and invasion of cancer cells via specific signaling pathways and cytokines. Metastasis is a leading cause of high mortality in malignancies, and early intervention can improve survival rates. However, breast cancer is frequently diagnosed subsequent to metastasis, resulting in poor prognosis and distant metastasis poses substantial hurdles in therapy. In breast cancer, there is notable tissue remodeling of ECM proteins, with several identified as essential components for metastasis. Moreover, specific ECM molecules, receptors, enzymes, and various signaling pathways play crucial roles in breast cancer metastasis, drug treatment, and resistance. The in-depth consideration of these elements could provide potential therapeutic targets to enhance the survival rates and quality of life for breast cancer patients. This review explores the mechanisms by which alterations in the ECM contribute to breast cancer metastasis and discusses current clinical applications targeting ECM in breast cancer treatment, offering valuable perspectives for future ECM-based therapies.
Collapse
Affiliation(s)
- Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Ding X, Liang Y, Zhou S, Wu Y, Sałata P, Mikolajczk-Martinez A, Khosrawipour V, Zhang Z. Targeting tumor extracellular matrix with nanoparticles to circumvent therapeutic resistance. J Control Release 2025; 383:113786. [PMID: 40306575 DOI: 10.1016/j.jconrel.2025.113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Each stage of tumor development is intrinsically linked to the tumor microenvironment (TME), wherein the extracellular matrix (ECM) serves as a vital and abundant component in tumor tissues. The ECM is a non-cellular, three-dimensional macromolecular network scaffold that provides structural support to cells, stores bioactive molecules, and mediates signaling pathways through specific binding to cell surface receptors. Moreover, the ECM in tumor tissues plays a crucial role in impeding drug diffusion and resisting apoptosis induced by conventional anti-cancer therapies that primarily target cancer cells. Therefore, directing attentions towards the tumor ECM can facilitate the identification of novel targets and the development of new therapies. This review aims to summarize the composition, structure, remodeling, and function of tumor ECM, its association with drug resistance, and current targeting strategies, with a specific emphasis on nanoparticles (NPs).
Collapse
Affiliation(s)
- Xinyue Ding
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Yiyu Liang
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Siyuan Zhou
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Yao Wu
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Patricia Sałata
- Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | - Zhiwen Zhang
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China.
| |
Collapse
|
9
|
Hu X, Dou Q, Jiang P, Zhang M, Wang J. Targeting matrix metalloproteinases activating and indoleamine 2,3-dioxygenase suppression for triple-negative breast cancer multimodal therapy. Int J Biol Macromol 2025; 310:143289. [PMID: 40253020 DOI: 10.1016/j.ijbiomac.2025.143289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The dense extracellular matrix (ECM) and immunosuppressive tumor microenvironment represent two major challenges in the treatment of triple-negative breast cancer (TNBC). To address these obstacles, this study has developed a polymer micelle (NTP) for ECM remodeling and mitigation the immune microenvironment, based on activating endogenous matrix metalloproteinases (MMP) and suppression indoleamine 2,3-dioxygenase (IDO). Through self-assembly technology, this micelle effectively incorporates chemotherapy drugs (camptothecin (CPT) and cinnamaldehyde (CA)), reactive oxygen species (ROS) stimulants, nitric oxide (NO) donor and IDO inhibitor (NLG919), where CPT and CA have been reported to help generating ROS mainly in the mitochondrion. The guanidine group of poly-L-arginine (PArg), as an NO donor, can react with ROS to generate NO. The micelles aim to achieve significant therapeutic outcomes through robust drug penetration and anti-tumor immunity in multimodal therapy. They exhibit remarkable tumor tissue penetration ability, facilitating precise targeting of mitochondria and ROS production stimulation. Building upon this therapeutic foundation, the micellar system achieves in situ NO release, which effectively degrades the ECM through the activation of MMPs, while simultaneously promoting tumor cells apoptosis. Furthermore, the encapsulated NLG919 can be released and effectively mitigating the immunosuppressive milieu and triggering anti-tumor immune responses. Experimental results demonstrate that the micelles exhibit significant anti-tumor effects both in vitro and in vivo, accompanied by favorable biocompatibility. This study provides new insights into the application of subcellular targeting drug delivery systems in TNBC treatment, potentially heralding a new breakthrough in TNBC therapy.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China; Pharmaceutical Department, Baoding Second Hospital, Baoding 071051, China
| | - Qingqing Dou
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Peixiao Jiang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Mo Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China.
| | - Jing Wang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
10
|
Xie Y, Wang X, Wang W, Pu N, Liu L. Epithelial-mesenchymal transition orchestrates tumor microenvironment: current perceptions and challenges. J Transl Med 2025; 23:386. [PMID: 40176117 PMCID: PMC11963649 DOI: 10.1186/s12967-025-06422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical process in cancer progression, facilitating tumor cells to develop invasive traits and augmenting their migratory capabilities. EMT is primed by tumor microenvironment (TME)-derived signals, whereupon cancer cells undergoing EMT in turn remodel the TME, thereby modulating tumor progression and therapeutic response. This review discusses the mechanisms by which EMT coordinates TME dynamics, including secretion of soluble factors, direct cell contact, release of exosomes and enzymes, as well as metabolic reprogramming. Recent evidence also indicates that cells undergoing EMT may differentiate into cancer-associated fibroblasts, thereby establishing themselves as functional constituents of the TME. Elucidating the relationship between EMT and the TME offers novel perspectives for therapeutic strategies to enhance cancer treatment efficacy. Although EMT-directed therapies present significant therapeutic potential, the current lack of effective targeting approaches-attributable to EMT complexity and its microenvironmental context dependency-underscores the necessity for mechanistic investigations and translational clinical validation.
Collapse
Affiliation(s)
- Yuqi Xie
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Liu T, Chu T, Luo X, Zhao H. Building A Unified Model for Drug Synergy Analysis Powered by Large Language Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.08.588634. [PMID: 40236181 PMCID: PMC11996432 DOI: 10.1101/2024.04.08.588634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Drug synergy prediction is a challenging and important task in the treatment of complex diseases including cancer. In this manuscript, we present a novel unified Model, known as BAITSAO, for tasks related to drug synergy prediction with a unified pipeline to handle different datasets. We construct the training datasets for BAITSAO based on the context-enriched embeddings from Large Language Models for the initial representation of drugs and cell lines. After demonstrating the relevance of these embeddings, we pre-train BAITSAO with a large-scale drug synergy database under a multi-task learning framework with rigorous selections of tasks. We demonstrate the superiority of the model architecture and the pre-trained strategies of BAITSAO over other methods through comprehensive benchmark analysis. Moreover, we investigate the sensitivity of BAITSAO and illustrate its unique functions including new drug discoveries, drug combinations-gene interaction, and multi-drug synergy predictions.
Collapse
|
12
|
Liu H, Sun X, Dong B, Zhang J, Zhang J, Gu Y, Chen L, Pang X, Ye J, Wang X, Rong Z. Systematic Characterisation and Analysis of Lysyl Oxidase Family Members as Drivers of Tumour Progression and Multiple Drug Resistance. J Cell Mol Med 2025; 29:e70536. [PMID: 40179101 PMCID: PMC11967703 DOI: 10.1111/jcmm.70536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
The intricacies of tumour microenvironment, particularly the extracellular matrix (ECM), underscore its pivotal function in modulating tumour progression and drug resistance. Among the key regulators of ECM remodelling and homeostasis, the lysyl oxidases (LOXs) emerge as promising therapeutic targets of tumour treatment. Despite their significance, a holistic evaluation of the LOX family's genomics and clinical implications across diverse cancer types remains elusive. Herein, this study aimed to investigate the correlation between LOX family expression and patient outcomes, drug responsiveness and tumour microenvironment (TME) characteristics in a cohort of 33 tumours based on The Cancer Genome Atlas (TCGA) database. Notably, patients exhibiting elevated LOX family expression suffer from worse prognosis and resistance to a spectrum of antitumor therapies, encompassing chemotherapy, endocrine therapy, targeted therapy and immunotherapy, in contrast to counterparts with subdued LOX family expression levels. Furthermore, enrichment analysis indicated that the LOX family fosters tumour progression and drug resistance. These findings were further validated by multiplex immunofluorescence staining in breast, gastric and rectal cancer, as well as breast cancer organoids. Altogether, this study unravels the intricate association between the LOX family and tumour progression, alongside multidrug resistance. We have gained further insights into the roles of LOX family genes in various tumour types, offering a novel avenue for future research into the relationship between LOX family genes and tumorigenesis.
Collapse
Affiliation(s)
- Hongjin Liu
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Xiaojiao Sun
- School of Pharmaceutical Sciences, Peking UniversityBeijingChina
| | - Bingqi Dong
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Jixin Zhang
- Department of PathologyPeking University First HospitalBeijingChina
| | - Junling Zhang
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Yanlun Gu
- Department of PharmacyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Clinical Pharmacology and Translation of Innovative DrugsPeking University First HospitalBeijingChina
| | - Lin Chen
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Xiaocong Pang
- Department of PharmacyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Clinical Pharmacology and Translation of Innovative DrugsPeking University First HospitalBeijingChina
| | - Jingming Ye
- Department of Thyroid and Breast SurgeryPeking University First HospitalBeijingChina
| | - Xin Wang
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Zhuona Rong
- Department of PharmacyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Clinical Pharmacology and Translation of Innovative DrugsPeking University First HospitalBeijingChina
| |
Collapse
|
13
|
Kariya Y, Nishita M. Integrins in Cancer Drug Resistance: Molecular Mechanisms and Clinical Implications. Int J Mol Sci 2025; 26:3143. [PMID: 40243917 PMCID: PMC11989024 DOI: 10.3390/ijms26073143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
It is estimated that between 80 and 90% of mortality in cancer patients is directly or indirectly related to drug resistance. Consequently, overcoming drug resistance represents a significant challenge in the treatment of cancer. Integrins are transmembrane adhesion molecules that facilitate the linkage between the extracellular matrix (ECM) and the cytoskeleton, thereby enabling the activation of various cellular signaling pathways. Integrins are highly expressed in various cancers and contribute to cancer progression through invasion and metastasis. In addition, recent studies have revealed that integrins play a pivotal role in the development of drug resistance in cancer. This review will first provide an overview of integrin function and classification. It then discusses recent advances in understanding how integrins contribute to drug resistance in cancer, with a focus on ECM, drug transporters, the epithelial-to-mesenchymal transition (EMT), cancer stemness, PD-L1, and glycosylation. Finally, the potential applications of integrins as targets for therapeutic agents against drug-resistant cancers are also summarized.
Collapse
Affiliation(s)
- Yoshinobu Kariya
- Department of Biochemistry, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan
| | | |
Collapse
|
14
|
Çağlayan AD, Kahraman S, Çanakçı D, Tahtacı M, Altınboğa AA, Doğan HT. Association of lysyl oxidase expression with clinicopathological features in colorectal adenocarcinomas. Int J Colorectal Dis 2025; 40:75. [PMID: 40126681 PMCID: PMC11933219 DOI: 10.1007/s00384-025-04852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
PURPOSE Colorectal adenocarcinoma (CRC) is one of the leading causes of cancer-related mortality worldwide. Within the tumor microenvironment, neoplastic cells, along with tumor-promoting fibroblasts, contribute to the progression of CRC. Lysyl oxidase (LOX), an enzyme involved in this process facilitates collagen cross-linking within the extracellular matrix and plays a crucial role in remodeling the tumor microenvironment (TME) and promoting metastasis through epithelial-mesenchymal transition (EMT). This study investigates LOX expression in both tumor cells and the tumor stroma in relation with clinicopathological features in CRC patients. METHOD Immunohistochemical staining of LOX proteins was performed on tissue microarrays from colorectal tumor samples taken from resection specimens. LOX expression was quantified in tumor cells and stroma. The correlation between the expression of LOX and clinicopathological parameters was analyzed. RESULTS A positive correlation was observed between peritumoral stromal LOX expression and LOX expression in the tumor epithelium. High expression of LOX in tumor cells was significantly associated with poorer progression-free survival (PFS) among patients. Low tumor budding was observed in tumors with low stromal LOX expression. CONCLUSION The current study indicates that LOX may be an important contributor to CRC progression. The findings of this series, in which LOX expression correlated with tumor budding and survival, support a contribution for LOX to EMT and metastasis. Furthermore, LOX expression in both the tumor cell and stromal compartment may add information to improve prognosis in CRC management. These findings, however, have to be validated in further studies, as does also the investigation of LOX as a potential therapeutic target in CRC.
Collapse
Affiliation(s)
| | - Seda Kahraman
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Doğukan Çanakçı
- Ankara Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey
| | - Mustafa Tahtacı
- Department of Gastroenterology, Ankara Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey
| | - Ayşegül Aksoy Altınboğa
- Department of Pathology, Ankara Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey
| | - Hayriye Tatlı Doğan
- Department of Pathology, Ankara Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
15
|
Niture S, Ghosh S, Jaboin J, Seneviratne D. Tumor Microenvironment Dynamics of Triple-Negative Breast Cancer Under Radiation Therapy. Int J Mol Sci 2025; 26:2795. [PMID: 40141437 PMCID: PMC11943269 DOI: 10.3390/ijms26062795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of estrogen receptors (ER), progesterone receptors (PR), and HER2 expression. While TNBC is relatively less common, accounting for only 10-15% of initial breast cancer diagnosis, due to its aggressive nature, it carries a worse prognosis in comparison to its hormone receptor-positive counterparts. Despite significant advancements in the screening, diagnosis, and treatment of breast cancer, TNBC remains an important public health burden. Following treatment with chemotherapy, surgery, and radiation, over 40% of TNBC patients experience relapse within 3 years and achieve the least benefit from post-mastectomy radiation. The tumor microenvironment environment (TME) is pivotal in TNBC initiation, progression, immune evasion, treatment resistance, and tumor prognosis. TME is a complex network that consists of immune cells, non-immune cells, and soluble factors located in the region adjacent to the tumor that modulates the therapeutic response differentially between hormone receptor-positive breast cancer and TNBC. While the mechanisms underlying the radiation resistance of TNBC remain unclear, the immunosuppressive TME of TNBC has been implicated in chemotherapeutic resistance. Radiation therapy (RT) is known to alter the TME; however, immune changes elicited by radiation are poorly characterized to date, and whether these immune changes contribute to radiation resistance remains unknown. This review delves into the distinct characteristics of the TNBC TME, explores how RT influences TME dynamics, and examines mechanisms underlying tumor radiosensitization, radioresistance, and immune responses.
Collapse
Affiliation(s)
- Suryakant Niture
- Department of Radiation Oncology, Stephenson Cancer Center, Oklahoma University, Oklahoma City, OK 73104, USA
| | | | | | - Danushka Seneviratne
- Department of Radiation Oncology, Stephenson Cancer Center, Oklahoma University, Oklahoma City, OK 73104, USA
| |
Collapse
|
16
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
17
|
Sun J, Liu Y, Sun J, Ding J, Chen X. Biomaterials‐Involved Construction of Extracellular Matrices for Tumor Blockade Therapy. EXPLORATION 2025. [DOI: 10.1002/exp.20240229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/28/2025] [Indexed: 05/14/2025]
Abstract
ABSTRACTExtracellular matrices (ECMs) play a crucial role in the onset and progression of tumors by providing structural support and promoting the proliferation and metastases of tumor cells. Current therapeutic approaches targeting tumor ECMs focus on two main strategies: Inhibiting matrix degradation to prevent metastases and facilitating matrix degradation to enhance the penetration of drugs and immune cells. However, these strategies may lead to unintended consequences, such as tumor growth promotion, drug resistance, and side effects like fibrotic changes in healthy tissues. Biomaterials have made significant progress in fabricating artificial ECMs for tumor therapy by inducing biomineralization, fibrogenesis, or gelation. This perspective explores the fundamental concepts, benefits, and challenges of each technique. Additionally, future improvements and research directions in artificial ECMs are discussed, highlighting their potential to advance tumor therapy.
Collapse
Affiliation(s)
- Jinfeng Sun
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Chemistry Jilin University Changchun P. R. China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Jingshan Sun
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Chemistry Jilin University Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| |
Collapse
|
18
|
Wang Y, Hsu P, Hu H, Lin F, Wei X. Role of arachidonic acid metabolism in osteosarcoma prognosis by integrating WGCNA and bioinformatics analysis. BMC Cancer 2025; 25:445. [PMID: 40075313 PMCID: PMC11905593 DOI: 10.1186/s12885-024-13278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/02/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Osteosarcoma is a rare tumor with poor clinical outcomes. New therapeutic targets are urgently needed. Previous research indicates that genes abnormally expressed in osteosarcoma are significantly involved in the arachidonic acid (AA) metabolic pathway. However, the role of arachidonic acid metabolism-related genes (AAMRGs) in osteosarcoma prognosis remains unknown. METHODS Osteosarcoma samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were classified into high-score and low-score groups based on AAMRGs scores obtained through ssGSEA analysis. The intersecting genes were identified from weighted gene co-expression network analysis (WGCNA), DEGs (osteosarcoma vs. normal) and DE-AAMRGs (high- vs. low-score). An AA metabolism predictive model of the five AAMRGs were established by Cox regression and the LASSO algorithm. Model performance was evaluated using Kaplan-Meier survival and receiver operating characteristic (ROC) curve analysis. In vitro experiments of the AA related biomarkers was validated. RESULTS Our study constructed an AAMRGs prognostic signature (CD36, CLDN11, STOM, EPYC, PANX3). K-M analysis indicated that patients in the low-risk group showed superior overall survival to high-risk group (p<0.05). ROC curves showed that all AUC values in the prognostic model exceeded 0.76. By ESTIMATE algorithms, we discovered that patients in high-risk groups had lower immune score, stromal score, and estimate score. Correlation analysis showed the strongest positive correlation between STOM and natural killer cells, and the highest negative association between PANX3 and central memory CD8 T cells. An AAMRGs prognostic signature was constructed for osteosarcoma prognosis. CONCLUSION The study suggested that a high level of AAMRGs might serve as a biomarker for poor prognosis in osteosarcoma and offers a potential explanation for the role of cyclooxygenase inhibitors in cancer. The five biomarkers (CD36, CLDN11, EPYC, PANX3, and STOM) were screened to construct an AAMRGs risk model with prognostic value, providing a new reference for the prognosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yaling Wang
- Department of Oncology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Peichun Hsu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Hu
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Lin
- Department of Oncology, Shanghai Eighth People's Hospital, Shanghai, China.
| | - Xiaokang Wei
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Liu X, Yang J, Huang S, Hong Y, Zhu Y, Wang J, Wang Y, Liang T, Bai X. Pancreatic cancer-derived extracellular vesicles enhance chemoresistance by delivering KRAS G12D protein to cancer-associated fibroblasts. Mol Ther 2025; 33:1134-1153. [PMID: 39810420 PMCID: PMC11897769 DOI: 10.1016/j.ymthe.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
KRAS mutations are instrumental in the development and progression of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the efficacy of direct targeting of KRAS mutations to inhibit tumor development remains doubtful. It is therefore necessary to gain a deeper insight into the mechanism in which KRAS mutations influence the effectiveness of clinical treatments. In this study, KRASG12D protein was detected in cancer-associated fibroblasts (CAFs) from clinical samples of PDAC. In vitro experiments demonstrated that KRASG12D protein in CAFs was not expressed from its own mutant gene but was derived from the ingestion of tumor cell-derived extracellular vesicles (EVs). The presence of KRASG12D protein in CAFs resulted in enhanced proliferation and migration. Furthermore, KRASG12D-containing CAFs were observed to promote tumor chemoresistance to gemcitabine treatment both in vitro and in vivo. Application of a KRAS mutation-specific inhibitor, MRTX1133, has been demonstrated to reverse chemoresistance in PDAC. Moreover, clinical data suggest that patients with KRAS mutations have poorer prognosis following adjuvant chemotherapy. These findings elucidate the mechanism by which oncogenic KRAS mutations promote cancer chemoresistance and remodel tumor environment in a non-autonomous manner, suggesting a novel strategy for targeting KRAS mutations to enhance chemosensitivity in PDAC.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Sicong Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yifan Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yupeng Zhu
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Jianing Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Lengerli D, Çalışkan ÖA, Çalışkan K, Saatci Ö, Lim C, Vempati S, Çalışkan B, Şahin Ö, Banoglu E. Isoxazole-pyrimidine derivatives as TACC3 inhibitors: A novel modality to targeted cancer therapy. Bioorg Chem 2025; 156:108204. [PMID: 39889548 DOI: 10.1016/j.bioorg.2025.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Inhibiting the function of transforming acidic coiled-coil 3 (TACC3) offers a promising therapeutic approach for various cancers, such as breast, ovarian, and lung cancers.Our previous work introduced BO-264 as a novel chemotype for inhibiting TACC3 function, though it exhibited relatively low metabolic stability. In this study, sixty-two compounds were designed and synthesized to modify the structure of BO-264 to improve its metabolic stability while maintaining its potency. The tractable SAR results obtained by these novel analogs indicated that appropriate substitutions on the left-end phenyl-isoxazole and right-end morpholine groups improved metabolic stability while preserving potency. Among these, compound 13b exhibited approximately sevenfold improvement in metabolic stability and bioavailability while maintaining strong potency and a favorable safety profile. 13b markedly increased the levels of p-Histone H3 (Ser10), cleaved PARP, and p-H2AX (Ser139), indicative of mitotic arrest, apoptosis, and DNA damage, respectively. In addition, the protein-drug binding assay, DARTS, identified TACC3 as a biologically significant target of 13b, positioning it as an advanced lead compound for further development of clinically relevant TACC3 inhibitors in cancers with elevated TACC3 expression.
Collapse
Affiliation(s)
- Deniz Lengerli
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06560 Ankara, Turkey
| | - Özge Akbulut Çalışkan
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kübra Çalışkan
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06560 Ankara, Turkey
| | - Özge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Chaemin Lim
- A2A Pharmaceuticals, Inc., 1185 Avenue of the Americas, New York, NY 10036, USA
| | - Sridhar Vempati
- A2A Pharmaceuticals, Inc., 1185 Avenue of the Americas, New York, NY 10036, USA
| | - Burcu Çalışkan
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06560 Ankara, Turkey
| | - Özgür Şahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Erden Banoglu
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06560 Ankara, Turkey.
| |
Collapse
|
21
|
Maiques O, Sallan MC, Laddach R, Pandya P, Varela A, Crosas-Molist E, Barcelo J, Courbot O, Liu Y, Graziani V, Arafat Y, Sewell J, Rodriguez-Hernandez I, Fanshawe B, Jung-Garcia Y, Imbert PR, Grasset EM, Albrengues J, Santacana M, Macià A, Tarragona J, Matias-Guiu X, Marti RM, Tsoka S, Gaggioli C, Orgaz JL, Fruhwirth GO, Wallberg F, Betteridge K, Reyes-Aldasoro CC, Haider S, Braun A, Karagiannis SN, Elosegui-Artola A, Sanz-Moreno V. Matrix mechano-sensing at the invasive front induces a cytoskeletal and transcriptional memory supporting metastasis. Nat Commun 2025; 16:1394. [PMID: 39952917 PMCID: PMC11829002 DOI: 10.1038/s41467-025-56299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix (ECM) controls tumour dissemination. We characterise ECM organization in human and mouse tumours, identifying three regions: tumour body, proximal invasive front and distal invasive front. Invasive areas show increased matrix density, fibre thickness, length, and alignment, with unique radial fibre orientation at the distal invasive front correlating with amoeboid invasive features. Using patient samples and murine models, we find that metastases recapitulate ECM features of the primary tumour. Ex vivo culture of murine cancer cells isolated from the different tumour regions reveals a spatial cytoskeletal and transcriptional memory. Several in vitro models recapitulate the in vivo ECM organisation showing that increased matrix induces 3D confinement supporting Rho-ROCK-Myosin II activity, while radial orientation enhances directional invasion. Spatial transcriptomics identifies a mechano-inflammatory program associated with worse prognosis across multiple tumour types. These findings provide mechanistic insights into how ECM organization shapes local invasion and distant metastasis.
Collapse
Affiliation(s)
- Oscar Maiques
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marta C Sallan
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, SE1 9RT, London, UK
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Pahini Pandya
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Adrian Varela
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eva Crosas-Molist
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Jaume Barcelo
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Olivia Courbot
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Yanbo Liu
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Vittoria Graziani
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Youssef Arafat
- Department of Computer Science, City St George's, University of London, London, UK
| | - Joanne Sewell
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Irene Rodriguez-Hernandez
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Bruce Fanshawe
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Yaiza Jung-Garcia
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Paul Rc Imbert
- CMR Advanced Bio-imaging Facility, Centre for Microvascular Research, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eloise M Grasset
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Jean Albrengues
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Maria Santacana
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
| | - Anna Macià
- Oncologic Pathology Group, IRBLleida, Departments of Experimental Medicine and Basic Medical Sciences, University of Lleida, Lleida, 25198, Spain
| | - Jordi Tarragona
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, CIBERONC, Lleida, 25198, Spain
- Oncologic Pathology Group, IRBLleida, Departments of Experimental Medicine and Basic Medical Sciences, University of Lleida, Lleida, 25198, Spain
- Department of Pathology, Hospital Universitari de Bellvitge University of Barcelona, IDIBELL, CIBERONC, L'Hospitalet-, Barcelona, 08907, Spain
| | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, CIBERONC, University of Lleida, CIBERONC, IRB Lleida, Lleida, 25198, Spain
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Cedric Gaggioli
- University Cote d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Jose L Orgaz
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, 28029, Madrid, Spain
| | - Gilbert O Fruhwirth
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Fredrik Wallberg
- Quell Therapeutics, Translation & Innovation Hub, 84 Wood Ln, London, W12 0BZ, UK
- Light Microscopy Facility, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Kai Betteridge
- Light Microscopy Facility, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Constantino Carlos Reyes-Aldasoro
- Department of Computer Science, City St George's, University of London, London, UK
- Integrated Pathology Unit, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Syed Haider
- Breast Cancer Research Bioinformatics Group, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Andrejs Braun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, SE1 9RT, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | | | - Victoria Sanz-Moreno
- Cytoskeleton and metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK.
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK.
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
22
|
Agrawal A, Javanmardi Y, Watson SA, Serwinski B, Djordjevic B, Li W, Aref AR, Jenkins RW, Moeendarbary E. Mechanical signatures in cancer metastasis. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:3. [PMID: 39917412 PMCID: PMC11794153 DOI: 10.1038/s44341-024-00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/20/2024] [Indexed: 02/09/2025]
Abstract
The cancer metastatic cascade includes a series of mechanical barrier-crossing events, involving the physical movement of cancer cells from their primary location to a distant organ. This review describes the physical changes that influence tumour proliferation, progression, and metastasis. We identify potential mechanical signatures at every step of the metastatic cascade and discuss some latest mechanobiology-based therapeutic interventions to highlight the importance of interdisciplinary approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ayushi Agrawal
- Department of Mechanical Engineering, University College London, London, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, UK
| | - Sara A. Watson
- Department of Mechanical Engineering, University College London, London, UK
- Division of Biosciences, University College London, London, UK
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, UK
- Northeastern University London, London, UK
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, UK
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Amir R. Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
23
|
Ma CP, Lo SJ, Chin-Ming Tan B. Good things come in small packages: The discovery of small RNAs in the smallest animal model. Biomed J 2025; 48:100832. [PMID: 39952406 PMCID: PMC11893309 DOI: 10.1016/j.bj.2025.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
The 2024 Nobel Prize in Physiology or Medicine has been awarded to two pioneering researchers, Victor Ambros and Gary Ruvkun, marking the fourth time research using Caenorhabditis elegans (C. elegans) has received this prestigious recognition. With a rapid life cycle of just 3.5 days and four distinct larval stages, C. elegans serves as an ideal model for exploring complex genetic mechanisms, particularly heterochronic gene regulation. Ambros and Ruvkun's groundbreaking work on lin-4 and lin-14 genes in C. elegans revealed that lin-4 functions as a 22-nucleotide small RNA-now known as a microRNA (miRNA)-that binds complementarily to the 3' UTR of lin-14 mRNA, effectively inhibiting LIN-14 protein synthesis. This discovery was the first demonstration of miRNA in post-transcriptional gene regulation, a finding that has since reshaped our understanding of genetic regulation across species. Their research on small RNAs in C. elegans not only opened a new paradigm in molecular biology but also highlighted the power of this model organism in uncovering universal biological principles.
Collapse
Affiliation(s)
- Chung-Pei Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szecheng J Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Kozlova N, Cruz KA, Doh HM, Ruzette AA, Willis NA, Hong SM, Gonzalez RS, Vyas M, Selfors LM, Dreyer S, Upstill-Goddard R, Faia KL, Wenglowsky S, Close J, Beutel AK, Jutric Z, Oliphant MUJ, Thapa B, Taylor MS, Mustonen V, Mangalath P, Halbrook CJ, Grossman JE, Hwang RF, Clohessy JG, Ruskamo S, Kursula P, Petrova B, Kanarek N, Cole PA, Chang DK, Nørrelykke SF, Scully R, Muranen T. A novel DNA repair protein, N-Myc downstream regulated gene 1 (NDRG1), links stromal tumour microenvironment to chemoresistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634323. [PMID: 39896456 PMCID: PMC11785227 DOI: 10.1101/2025.01.22.634323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In pancreatic ductal adenocarcinoma cancer (PDAC) drug resistance is a severe clinical problem and patients relapse within a few months after receiving the standard-of-care chemotherapy. One contributing factor to treatment resistance is the desmoplastic nature of PDAC; the tumours are surrounded by thick layers of stroma composing up to 90% of the tumour mass. This stroma, which is mostly comprised of extracellular matrix (ECM) proteins, is secreted by cancer-associated fibroblasts (CAFs) residing in the tumour microenvironment. However, the mechanistic basis by which the tumour stroma directly contributes to chemoresistance remains unclear. Here, we show that CAF-secreted ECM proteins induce chemoresistance by blunting chemotherapy-induced DNA damage. Mechanistically, we identify N-myc downstream regulated gene 1 (NDRG1) as a key protein required for stroma-induced chemoresistance that responds to signals from the ECM and adhesion receptors. We further show that NDRG1 is a novel DNA repair protein that physically interacts with replication forks, maintains DNA replication and functions to resolve stalled forks caused by chemotherapy. More specifically, NDRG1 reduces R-loops, RNA-DNA hybrids that are known to cause genomic instability. R-loops occur during replication-transcription conflicts in S-phase and after chemotherapy treatments, thus posing a major threat to normal replication fork homeostasis. We identify NDRG1 as highly expressed in PDAC tumours, and its high expression correlates with chemoresistance and poor disease-specific survival. Importantly, knock-out of NDRG1 or inhibition of its phosphorylation restores chemotherapy-induced DNA damage and resensitizes tumour cells to treatment. In conclusion, our data reveal an unexpected role for CAF-secreted ECM proteins in enhancing DNA repair via NDRG1, a novel DNA repair protein, directly linking tumour stroma to replication fork homeostasis and R-loop biology, with important therapeutic implications for restoring DNA damage response pathways in pancreatic cancer. Summary paragraph Drug resistance is a severe clinical problem in stroma-rich tumours, such as pancreatic ductal adenocarcinoma (PDAC), and patients often relapse within a few months on chemotherapy 1-9 . The stroma, comprised of extracellular matrix (ECM) proteins, is secreted by cancer-associated fibroblasts (CAFs) residing in the tumour microenvironment 10-13 . Prior work show that ECM proteins provide survival benefits to cancer cells 14,15 . However, the precise role of CAF-secreted ECM in resistance to DNA damaging chemotherapies remains poorly understood. Here, we link ECM proteins to chemoresistance by enhanced DNA damage repair (DDR). Mechanistically, we identify N-myc downstream-regulated gene 1 (NDRG1) as a key effector downstream of ECM and the integrin-Src-SGK1-signalling axis that mediates enhanced DDR. We show that NDRG1 loss, mutation of conserved His194, or inhibition of NDRG1 phosphorylation by SGK1 lead to replication fork stalling, increased R-loops, and higher transcription-replication conflicts, resulting in genomic instability and sensitivity to chemotherapies. Our analysis of PDAC patient cohorts 16 found that high NDRG1 expression correlates with chemoresistance and poor patient survival. In conclusion, we uncover an unexpected role for CAF-secreted ECM proteins in promoting therapeutic resistance by enhancing DDR and establish NDRG1 as a novel DNA repair protein directly linking tumour stroma to DDR.
Collapse
|
25
|
Tatlı Doğan H, Doğan M, Kahraman S, Çanakçı D, Şendur MAN, Tahtacı M, Erdoğan F. Impact of HIF-1α, LOX and ITGA5 Synergistic Interaction in the Tumor Microenvironment on Colorectal Cancer Prognosis. Diagnostics (Basel) 2025; 15:184. [PMID: 39857068 PMCID: PMC11764385 DOI: 10.3390/diagnostics15020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Background: As colorectal cancers are histopathologically and molecularly highly heterogeneous tumors, it is necessary to consider the tumor's microenvironment as well as its cellular characteristics in order to determine the biological behavior of the tumor. This study included 100 patients who underwent resection for colorectal cancer. We aimed to investigate the relationships between the expression status of the HIF-1α, LOX and ITGA5 proteins and clinicopathologic parameters. Methods: HIF-1α, LOX and ITGA5 antibodies were applied immunohistochemically to tissue microarrays prepared from tumor samples. Expression status in the tumor microenvironment were evaluated using a combined scoring system based on staining intensity and the percentage of positively stained cells. Nuclear HIF-1α expression in tumor cells was quantified, with >1% considered positive. The staining of HIF-1α, ITGA5 and LOX was analyzed in relation to prognostic and molecular features. Results: The staining of HIF-1α, ITGA5 and LOX in the tumor microenvironment demonstrated a positive correlation with one another and with HIF-1α and LOX expression in tumor cells. In patients with KRAS, NRAS or BRAF mutation and the moderate to strong expression of all three of these proteins in the tumor microenvironment, the number of metastatic lymph nodes was higher than in other patients. Stage IV patients with the moderate to strong expression of HIF-1α, ITGA5 or LOX in the microenvironment had lower progression-free survival than those with weak expression (p < 0.05). In addition, female gender; moderate to strong HIF-1α, LOX and ITGA5 stromal expression; and metastatic first line chemotherapy only were found to be independently associated with an increased risk of progression. Conclusions: These markers may be useful in predicting treatment responses and may also guide the development of alternative or combined treatments that specifically target molecules such as HIF and LOX. Our study should be supported by more comprehensive studies addressing the tumor stroma and its prognostic importance.
Collapse
Affiliation(s)
- Hayriye Tatlı Doğan
- Department of Pathology, Faculty of Medicine, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Mehmet Doğan
- Department of Pathology, Faculty of Medicine, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Seda Kahraman
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Doğukan Çanakçı
- Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | | | - Mustafa Tahtacı
- Department of Gastroenterology, Faculty of Medicine, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| | - Fazlı Erdoğan
- Department of Pathology, Faculty of Medicine, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara 06800, Turkey
| |
Collapse
|
26
|
Zhang H, Wang X, Dong M, Wang J, Ren W. Unveiling novel regulatory mechanisms of miR-5195-3p in pelvic organ prolapse pathogenesis†. Biol Reprod 2025; 112:86-101. [PMID: 39530351 DOI: 10.1093/biolre/ioae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Pelvic organ prolapse is a condition that significantly affects women's quality of life. The pathological mechanism of pelvic organ prolapse is not yet fully understood, and its pathogenesis is often caused by multiple factors, including the metabolic imbalance of the extracellular matrix. This study aims to investigate the role of miR-5195-3p, a microRNA, in the pathology of pelvic organ prolapse and its regulatory mechanism. Using various molecular biology techniques such as real-time reverse transcription Polymerase Chain Reaction (PCR), fluorescence in situ hybridization, immunohistochemistry, and Western blot, miR-5195-3p expression was examined in vaginal wall tissues obtained from pelvic organ prolapse patients. Results revealed an up-regulation of miR-5195-3p expression in these tissues, showing a negative correlation with the expression of extracellular matrix-related proteins. Further analysis using bioinformatics tools identified Lipoxygenase (LOX) as a potential target in pelvic organ prolapse. Dual luciferase reporter gene experiments confirmed LOX as a direct target of miR-5195-3p. Interestingly, regulating the expression of LOX also influenced the transforming growth factor β1 signaling pathway and had an impact on extracellular matrix metabolism. This finding suggests that miR-5195-3p controls extracellular matrix metabolism by targeting LOX and modulating the TGF-β1 signaling pathway. In conclusion, this study unveils the involvement of miR-5195-3p in the pathological mechanism of pelvic organ prolapse by regulating extracellular matrix metabolism through the LOX/TGF-β1 axis. These findings reveal new mechanisms in the pathogenesis of pelvic organ prolapse, providing a theoretical foundation and therapeutic targets for further research on pelvic organ prolapse treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xinlu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Meng Dong
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jie Wang
- Department of Health Management, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China
| | - Weidong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
27
|
Wu Q, Yang C, Huang C, Lin Z. Screening key genes for intracranial aneurysm rupture using LASSO regression and the SVM-RFE algorithm. Front Med (Lausanne) 2025; 11:1487224. [PMID: 39835095 PMCID: PMC11743535 DOI: 10.3389/fmed.2024.1487224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Background Although an intracranial aneurysm (IA) is widespread and fatal, few drugs can be used to prevent its rupture. This study explored the molecular mechanism and potential targets of IA rupture through bioinformatics methods. Methods The gene expression matrices of GSE13353, GSE122897, and GSE15629 were downloaded. Differentially expressed genes (DEGs) were screened using the limma package. Functional enrichment analysis was performed, and a PPI network was constructed. Furthermore, candidate key genes were identified using the least absolute shrinkage and selection operator (LASSO) regression model, support vector machine-recursive feature elimination (SVM-RFE) analysis, and PPI network analysis. ROC analysis was conducted to further verify the diagnostic value of the key genes. Results A total of 334 DEGs were screened, including 175 upregulated genes and 159 downregulated genes. Further functional analysis suggested that the DEGs were enriched in inflammation and immune response pathways. Fourteen hub genes were identified using the two algorithms. The PPI networks of the hub genes were analyzed using the Cytoscape plugin CytoNCA to obtain two key genes (IL10 and Integrin α5 (ITGA5)). The ROC curve analysis showed that the AUC values of IL10 and ITGA5 were 0.801, and 0.786, respectively. In addition, the two key genes were significantly positively correlated with macrophages and Treg (T) cells. The immune score and ESTIMATE score of the ruptured IA group were significantly higher than those of the unruptured IA group. Conclusion The increase in IL-10 and ITGA5 may weaken the vascular wall by promoting inflammation in blood vessels and immune cells, which could have a harmful effect on the rupture of IAs.
Collapse
Affiliation(s)
| | | | | | - Zhiying Lin
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
28
|
Guo Z, Zhu Z, Lin X, Wang S, Wen Y, Wang L, Zhi L, Zhou J. Tumor microenvironment and immunotherapy for triple-negative breast cancer. Biomark Res 2024; 12:166. [PMID: 39741315 DOI: 10.1186/s40364-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans. The tumor microenvironment (TME), comprising immune cells, stromal cells, and various cytokines, plays a crucial role in TNBC progression and response to immunotherapy. The high presence of tumor-infiltrating lymphocytes and immune checkpoint proteins in TNBC indicates the potential of immunotherapeutic strategies. However, the complexity of the TME, while offering therapeutic targets, requires further exploration of its multiple roles in immunotherapy. In this review, we discuss the interaction mechanism between TME and TNBC immunotherapy based on the characteristics and composition of TME, and elaborate on and analyze the effect of TME on immunotherapy, the potential of TME as an immune target, and the ability of TME as a biomarker. Understanding these dynamics will offer new insights for enhancing therapeutic approaches and investigating stratification and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Zijie Guo
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Ziyu Zhu
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Xixi Lin
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Shenkangle Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Yihong Wen
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Lili Zhi
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center, Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
29
|
Jasmer KJ, Shanbhag VC, Forti KM, Woods LT, Gudekar NS, Weisman GA, Petris MJ. Pulmonary lysyl oxidase expression and its role in seeding Lewis lung carcinoma cells. Clin Exp Metastasis 2024; 42:7. [PMID: 39714512 DOI: 10.1007/s10585-024-10325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Copper promotes tumor growth and metastasis through a variety of mechanisms, most notably as a cofactor within the lysyl oxidase (LOX) family of secreted cuproenzymes. Members of this family, which include LOX and LOX-like enzymes LOXL1-4, catalyze the copper-dependent crosslinking of collagens and elastin within the extracellular matrix (ECM). Elevated LOX expression is associated with higher incidence and worse prognosis in multiple cancers, including colorectal, breast, pancreatic, and head and neck. In this study, we demonstrated that elevated LOX expression correlates with decreased overall survival and shorter median time to first progression in patients with lung cancer. Previous studies have demonstrated that LOX secreted from tumors is critical for pre-metastatic niche formation by promoting ECM remodeling and the recruitment of immune cells and endothelial precursors. Here, we demonstrated that ablation of the LOX gene in Lewis lung carcinoma (LLC) cells diminishes tumor growth and metastasis compared to wild-type LLC cells in a syngeneic mouse model. Although the role of tumor-derived LOX in tumor formation and metastasis is well established, little is known regarding the possible contribution of LOX produced by the parenchymal tissue of metastatic organs. Thus, this report describes our findings that host-derived LOX produced by the lung contributes to the pulmonary metastasis of LLC cells in mice. The suppression of pulmonary lysyl oxidase expression reduces the metastatic potential of Lewis Lung Carcinoma cells in mice, revealing a previously unknown influence of LOX expression in the parenchymal tissue of metastatic target organs on the seeding of tumor cells.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA.
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Vinit C Shanbhag
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Nikita S Gudekar
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Michael J Petris
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
30
|
Wei L, Kim SH, Armaly AM, Aubé J, Xu L, Wu X. HuR inhibition overcomes cFLIP-mediated doxorubicin resistance in triple-negative breast cancer. NPJ Precis Oncol 2024; 8:286. [PMID: 39706893 DOI: 10.1038/s41698-024-00780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Triple-negative breast cancer (TNBC) presents therapeutic challenges due to limited targeted treatment options and resistance to chemotherapy drugs, such as doxorubicin. This study investigated doxorubicin resistance mechanisms and a strategy to overcome it. A doxorubicin-resistant cell subline (231-DR) was developed from MDA-MB-231 TNBC cells, and enhanced expression of cellular FLICE-inhibitory protein (cFLIP) in 231-DR cells was identified as a potential driver of the resistance. Overexpression of cFLIP conferred resistance to doxorubicin-induced apoptosis, whereas siRNA-mediated cFLIP depletion induced apoptosis, particularly in 231-DR cells. Furthermore, the RNA-binding protein Hu antigen R (HuR) was found to regulate cFLIP expression. HuR Inhibition with KH-3 or RNA interference reduced cFLIP levels. Importantly, KH-3 sensitized TNBC cells to doxorubicin-induced apoptosis. In summary, this study delineates cFLIP's role in mediating doxorubicin resistance and identifies HuR as a positive regulator of cFLIP, offering a novel therapeutic avenue against chemoresistance in TNBC by combining HuR inhibition with doxorubicin.
Collapse
Affiliation(s)
- Lanjing Wei
- Bioengineering Program, The University of Kansas, Lawrence, KS, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sung Hae Kim
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA
| | - Ahlam M Armaly
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC, USA
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA.
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS, USA.
| | - Xiaoqing Wu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA.
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
31
|
Lo Buglio G, Lo Cicero A, Campora S, Ghersi G. The Multifaced Role of Collagen in Cancer Development and Progression. Int J Mol Sci 2024; 25:13523. [PMID: 39769286 PMCID: PMC11678882 DOI: 10.3390/ijms252413523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/05/2025] Open
Abstract
Collagen is a crucial protein in the extracellular matrix (ECM) essential for preserving tissue architecture and supporting crucial cellular functions like proliferation and differentiation. There are twenty-eight identified types of collagen, which are further divided into different subgroups. This protein plays a critical role in regulating tissue homeostasis. However, in solid tumors, the balance can be disrupted, due to an abundance of collagen in the tumor microenvironment, which significantly affects tumor growth, cell invasion, and metastasis. It is important to investigate the specific types of collagens in cancer ECM and their distinct roles in tumor progression to comprehend their unique contribution to tumor behavior. The diverse pathophysiological functions of different collagen types in cancers illustrate collagen's dual roles, offering potential therapeutic options and serving as prognostic markers.
Collapse
Affiliation(s)
- Gabriele Lo Buglio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alessandra Lo Cicero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
- Abiel srl, 90128 Palermo, Italy
| |
Collapse
|
32
|
Zhu S, Jin G, He X, Li Y, Xu F, Guo H. Mechano-assisted strategies to improve cancer chemotherapy. Life Sci 2024; 359:123178. [PMID: 39471901 DOI: 10.1016/j.lfs.2024.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Chemotherapy remains a cornerstone in cancer treatment; however, its effectiveness is frequently undermined by the development of drug resistance. Recent studies underscores the pivotal role of the tumor mechanical microenvironment (TMME) and the emerging field of mechanical nanomedicine in tackling chemo-resistance. This review offers an in-depth analysis of mechano-assisted strategies aimed at mitigating chemo-resistance through the modification of the TMME and the refinement of mechanical nanomedicine delivery systems. We explore the potential of targeting abnormal tumor mechanical properties as a promising avenue for enhancing the efficacy of cancer chemotherapy, which offers novel directions for advancing future cancer therapies, especially from the mechanomedicine perspective.
Collapse
Affiliation(s)
- Shanshan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
33
|
Redoute-Timonnier C, Auguste P. Implication of the Extracellular Matrix in Metastatic Tumor Cell Dormancy. Cancers (Basel) 2024; 16:4076. [PMID: 39682261 DOI: 10.3390/cancers16234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Metastasis is the main cause of cancer-related deaths. The formation and growth of metastasis is a multistep process. Tumor cells extravasating in the secondary organ are in contact with a new microenvironment and a new extracellular matrix (ECM), called the metastatic niche. Some components of the ECM, such as periostin, can induce tumor cell growth in macrometastasis. In contrast, other components, such as Thrombospondin 1 (TSP-1), can maintain isolated cells in a dormant state. During dormancy, intracellular signaling activation, such as p38, maintains tumor cells arrested in the cell-cycle G0 phase for years. At any moment, stress can induce ECM modifications and binding to their specific receptors (mainly integrins) and reactivate dormant tumor cell growth in macrometastasis. In this review, we describe the tumor microenvironment of the different niches implicated in tumor cell dormancy. The role of ECM components and their associated receptors and intracellular signaling in the reactivation of dormant tumor cells in macrometastasis will be emphasized. We also present the different methodologies and experimental approaches used to study tumor cell dormancy. Finally, we discuss the current and future treatment strategies to avoid late metastasis relapse in patients.
Collapse
Affiliation(s)
| | - Patrick Auguste
- University of Bordeaux, INSERM, BRIC, U1312, MIRCADE Team, F-33000 Bordeaux, France
| |
Collapse
|
34
|
Bamberg EE, Maslanka M, Vinod-Paul K, Sams S, Pollack E, Conklin M, Kabos P, Hansen KC. Obesity-driven changes in breast tissue exhibit a pro-angiogenic extracellular matrix signature. Matrix Biol Plus 2024; 24:100162. [PMID: 39380725 PMCID: PMC11460480 DOI: 10.1016/j.mbplus.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Obesity has reached epidemic proportions in the United States, emerging as a risk factor for the onset of breast cancer and a harbinger of unfavorable outcomes [1], [2], [3]. Despite limited understanding of the precise mechanisms, both obesity and breast cancer are associated with extracellular matrix (ECM) rewiring [4], [5], [6]. Utilizing total breast tissue proteomics, we analyzed normal-weight (18.5 to < 25 kg/m2), overweight (25 to < 30 kg/m2), and obese (≥30 kg/m2) individuals to identify potential ECM modifying proteins for cancer development and acceleration. Obese individuals exhibited substantial ECM alterations, marked by increased basement membrane deposition, angiogenic signatures, and ECM-modifying proteins. Notably, the collagen IV crosslinking enzyme peroxidasin (PXDN) emerged as a potential mediator of the ECM changes in individuals with an elevated body mass index (BMI), strongly correlating with angiogenic and basement membrane signatures. Furthermore, glycan-binding proteins galectin-1 (LGALS1) and galectin-3 (LGALS3), which play crucial roles in matrix interactions and angiogenesis, also strongly correlate with ECM modifications. In breast cancer, elevated PXDN, LGALS1, and LGALS3 correlate with reduced relapse-free and distant-metastatic-free survival. These proteins were significantly associated with mesenchymal stromal cell markers, indicating adipocytes and fibroblasts may be the primary contributors of the obesity-related ECM changes. Our findings unveil a pro-angiogenic ECM signature in obese breast tissue, offering potential targets to inhibit breast cancer development and progression.
Collapse
Affiliation(s)
- Ellen E Bamberg
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark Maslanka
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kiran Vinod-Paul
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erica Pollack
- Department of Radiology and Medical Imaging, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew Conklin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, Carbone Cancer Center (Tumor Microenvironment Program), University of Wisconsin, Madison, WI, USA
- Laboratory for Optical and Computations Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
35
|
Cetin M, Saatci O, Rezaeian AH, Rao CN, Beneker C, Sreenivas K, Taylor H, Pederson B, Chatzistamou I, Buckley B, Lessner S, Angel P, McInnes C, Sahin O. A highly potent bi-thiazole inhibitor of LOX rewires collagen architecture and enhances chemoresponse in triple-negative breast cancer. Cell Chem Biol 2024; 31:1926-1941.e11. [PMID: 39043186 PMCID: PMC11585458 DOI: 10.1016/j.chembiol.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/12/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024]
Abstract
Lysyl oxidase (LOX) is upregulated in highly stiff aggressive tumors, correlating with metastasis, resistance, and worse survival; however, there are currently no potent, safe, and orally bioavailable small molecule LOX inhibitors to treat these aggressive desmoplastic solid tumors in clinics. Here we discovered bi-thiazole derivatives as potent LOX inhibitors by robust screening of drug-like molecules combined with cell/recombinant protein-based assays. Structure-activity relationship analysis identified a potent lead compound (LXG6403) with ∼3.5-fold specificity for LOX compared to LOXL2 while not inhibiting LOXL1 with a competitive, time- and concentration-dependent irreversible mode of inhibition. LXG6403 shows favorable pharmacokinetic properties, globally changes ECM/collagen architecture, and reduces tumor stiffness. This leads to better drug penetration, inhibits FAK signaling, and induces ROS/DNA damage, G1 arrest, and apoptosis in chemoresistant triple-negative breast cancer (TNBC) cell lines, PDX organoids, and in vivo. Overall, our potent and tolerable bi-thiazole LOX inhibitor enhances chemoresponse in TNBC, the deadliest breast cancer subtype.
Collapse
Affiliation(s)
- Metin Cetin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Abdol-Hossein Rezaeian
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Chad Beneker
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kukkamudi Sreenivas
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Harrison Taylor
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Breanna Pederson
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology, University of South Carolina, Columbia, SC 29208, USA
| | - Brian Buckley
- Small Molecule Screening Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Susan Lessner
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
36
|
Bai J, Yan M, Xu Y, Wang Y, Yao Y, Jin P, Zhang Y, Qu Y, Niu L, Li H. YAP enhances mitochondrial OXPHOS in tumor-infiltrating Treg through upregulating Lars2 on stiff matrix. J Immunother Cancer 2024; 12:e010463. [PMID: 39551603 PMCID: PMC11574482 DOI: 10.1136/jitc-2024-010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Tumor-infiltrating regulatory T cells (TI-Tregs) are well-adapted to thrive in the challenging tumor microenvironment (TME) by undergoing metabolic reprogramming, notably shifting from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS) for energy production. The extracellular matrix is an important component of the TME, contributing to the regulation of both tumor and immune cell metabolism patterns by activating mechanosensors such as YAP. Whether YAP plays a part in regulating TI-Treg mitochondrial function and the underlying mechanisms are yet to be elucidated. METHODS To gain insights into the effect of matrix stiffness on YAP activation in Tregs, alterations in stiffness were performed both in vitro and in vivo. YAP conditional knockout mice were used to determine the role of YAP in TI-Tregs. RNA-seq, quantitative PCR, flow cytometry, lentivirus infection and mitochondrial function assay were employed to uncover the mechanism of YAP modulating mitochondrial function in TI-Tregs. A YAP inhibitor and a low leucine diet were applied to tumor-bearing mice to seek the potential antitumor strategy. RESULTS In this study, we found that YAP, as a mechanotransducer, was activated by matrix stiffness in TI-Tregs. A deficiency in YAP significantly hindered the immunosuppressive capability of TI-Tregs by disrupting mitochondrial function. Mechanically, YAP enhanced mitochondrial OXPHOS by upregulating the transcription of Lars2 (Leucyl-tRNA synthetase 2, mitochondrial), which was essential for mitochondrial protein translation in TI-Tregs. Since Lars2 relied much on its substrate amino acid, leucine, the combination of a low leucine diet and YAP inhibitor synergistically induced mitochondrial dysfunction in TI-Tregs, ultimately restraining tumor growth. CONCLUSIONS This finding uncovered a new understanding of how YAP shapes mitochondrial function in TI-Tregs in response to mechanical signals within the TME, making the combined strategy of traditional medicine and diet adjustment a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Jingchao Bai
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Meinan Yan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yihan Xu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Youhui Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yuan Yao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Peng Jin
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuhan Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yang Qu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Liling Niu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| |
Collapse
|
37
|
Wu S, Ge A, Deng X, Liu L, Wang Y. Evolving immunotherapeutic solutions for triple-negative breast carcinoma. Cancer Treat Rev 2024; 130:102817. [PMID: 39154410 DOI: 10.1016/j.ctrv.2024.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Triple-negative breast carcinoma (TNBC) remains a formidable clinical hurdle owing to its high aggressiveness and scant therapeutic options. Nonetheless, the evolving landscape of immunotherapeutic strategies opens up promising avenues for tackling this hurdle. This review discusses the advancing immunotherapy for TNBC, accentuating personalized interventions due to tumor microenvironment (TME) diversity. Immune checkpoint inhibitors (ICIs) hold pivotal significance, both as single-agent therapies and when administered alongside cytotoxic agents. Moreover, the concurrent inhibition of multiple immune checkpoints represents a potent approach to augment the efficacy of cancer immunotherapy. Synergistic effects have been observed when ICIs are combined with targeted treatments like PARP inhibitors, anti-angiogenics, and ADCs (antibody-drug conjugates). Emerging tactics include tumor vaccines, cellular immunotherapy, and oncolytic viruses, leveraging the immune system's ability for selective malignant cell destruction. This review offers an in-depth examination of the diverse landscape of immunotherapy development for TNBC, furnishing meticulous insights into various advancements within this field. In addition, immunotherapeutic interventions offer hope for TNBC, needing further research for optimization.
Collapse
Affiliation(s)
- Shiting Wu
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Anqi Ge
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Xianguang Deng
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Lifang Liu
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Yue Wang
- Department of Galactophore, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province 410007, China.
| |
Collapse
|
38
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Hou X, Shen Y, Huang B, Li Q, Li S, Jiang T, Shan X, Xu W, Liu S, Wu S, Zhao D, Zhu A, Sun L, Xu H, Yue W. Losartan-based nanocomposite hydrogel overcomes chemo-immunotherapy resistance by remodeling tumor mechanical microenvironment. J Nanobiotechnology 2024; 22:667. [PMID: 39472933 PMCID: PMC11523888 DOI: 10.1186/s12951-024-02871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Preclinical studies demonstrating high cure rates with PD1/PD-L1 combinations have led to numerous clinical trials, but emerging results are disappointing. These combined immunotherapies are commonly employed for patients with refractory tumors following prior treatment with cytotoxic agents. Here, we uncovered that the post-chemotherapy tumor presents a unique mechanical microenvironment characterized by an altered extracellular matrix (ECM) elasticity and increased stiffness, which facilitate the development of aggressive tumor phenotypes and confer resistance to checkpoint blocking therapy. As thus, we rationally designed an in situ nanocomposite hydrogel system, LOS&FeOX@Gel, which enabled effective and specific delivery of the therapeutic payloads (losartan [LOS] and oxaliplatin [OX]) into tumor. We demonstrate that sustained release of LOS effectively remodels the tumor mechanical microenvironment (TMM) by reducing ECM deposition and its associated "solid stress", thereby augmenting the efficacy of OX and its immunological effects. Importantly, this hydrogel system greatly sensitized post-chemotherapy tumor to checkpoint blocking therapy, showing synergistic therapeutic effects against cancer metastasis. Our study provides mechanistic insights and preclinical rationale for modulating TMM as a potential neoadjuvant regimen for tumor to optimize the benefits of chemo-immunotherapy, which lays the groundwork for leveraging "mechanical-immunoengineering" strategies to combat refractory tumors.
Collapse
Affiliation(s)
- Xiaodong Hou
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Yuting Shen
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Bin Huang
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310013, P.R. China
| | - Qiuyan Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Shaoyue Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Tingting Jiang
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Xuexia Shan
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Weichen Xu
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Shuo Liu
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Shengbo Wu
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310013, P.R. China
| | - De Zhao
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
| | - Anqi Zhu
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China
| | - Liping Sun
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China.
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China.
| | - Huixiong Xu
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China.
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
| | - Wenwen Yue
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, P.R. China.
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P.R. China.
| |
Collapse
|
40
|
Sun Y, Li ZZ, Yang J, Sha YR, Hou XY, Fu H, Li JY, Bai SC, Xie YF, Wang GH. Molecular mechanism of hypoxia and alpha-ketoglutaric acid on collagen expression in scleral fibroblasts. Int J Ophthalmol 2024; 17:1780-1790. [PMID: 39430015 PMCID: PMC11422372 DOI: 10.18240/ijo.2024.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
AIM To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid (α-KG) on scleral collagen expression. METHODS Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness (ChT) during myopia. The establishment of a hypoxic myopia model (HYP) for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia and α-KG on collagen expression were demonstrated by Sirius red staining. Transcriptome analysis was used to verify the genes and pathways that hypoxia and α-KG affect collagen expression. Finally, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used for reverse verification. RESULTS Meta-analysis results aligned with clinical statistics, revealing a thinning of ChT, leading to scleral hypoxia. Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group, showed that hypoxia reduced collagen expression in scleral fibroblasts, while α-KG can elevated collagen expression under HYP conditions. Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia and α-KG affect scleral collagen expression and the results were verified by RT-qPCR. CONCLUSION The potential molecular mechanisms through which hypoxia and α-KG influencing myopia is unraveled and three novel genes TLCD4, TBC1D4, and EPHX3 are identified. These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.
Collapse
Affiliation(s)
- Yun Sun
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zhuo-Zheng Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jing Yang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Ya-Ru Sha
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xin-Yu Hou
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Hong Fu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jia-Yin Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Shu-Chang Bai
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Yong-Fang Xie
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Guo-Hui Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
41
|
Park M, Jin J, An DY, Kim DH, Lee J, Yun JW, Hwang I, Park JS, Kim MK, Lee YM, Byun JK, Choi YK, Park KG. Targeting YAP Activity and Glutamine Metabolism Cooperatively Suppresses Tumor Progression by Preventing Extracellular Matrix Accumulation. Cancer Res 2024; 84:3388-3401. [PMID: 39073839 DOI: 10.1158/0008-5472.can-23-3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Cancer cells use multiple mechanisms to evade the effects of glutamine metabolism inhibitors. The pathways that govern responses to alterations in glutamine availability within the tumor may represent therapeutic targets for combinatorial strategies with these inhibitors. Here, we showed that targeting glutamine utilization stimulated Yes-associated protein (YAP) signaling in cancer cells by reducing cyclic adenosine monophosphate/protein kinase A (PKA)-dependent phosphorylation of large tumor suppressor (LATS). Elevated YAP activation induced extracellular matrix (ECM) deposition by increasing the secretion of connective tissue growth factor that promoted the production of fibronectin and collagen by surrounding fibroblasts. Consequently, inhibiting YAP synergized with inhibition of glutamine utilization to effectively suppress tumor growth in vivo, along with a concurrent decrease in ECM deposition. Blocking ECM remodeling also augmented the tumor suppressive effects of the glutamine utilization inhibitor. Collectively, these data reveal mechanisms by which targeting glutamine utilization increases ECM accumulation and identify potential strategies to reduce ECM levels and increase the efficacy of glutamine metabolism inhibitors. Significance: Blocking glutamine utilization activates YAP to promote ECM deposition by fibroblasts, highlighting the potential of YAP inhibitors and antifibrotic strategies as promising approaches for effective combination metabolic therapies in cancer.
Collapse
Affiliation(s)
- Mihyang Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
| | - Jonghwa Jin
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Da Young An
- Department of Biomedical Science, Kyungpook National University, Daegu, South Korea
| | - Dong-Ho Kim
- Department of Biomedical Science, Kyungpook National University, Daegu, South Korea
| | - Jaebon Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Jae Won Yun
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Ilseon Hwang
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jae Seok Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - You Mie Lee
- College of Pharmacy, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, Republic of Korea
- Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Jun-Kyu Byun
- Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Yeon-Kyung Choi
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea
- Department of Biomedical Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
42
|
Liu J, Wang Y, Chen X, Chen X, Zhang M. ITGA5 is associated with prognosis marker and immunosuppression in head and neck squamous cell carcinoma. Diagn Pathol 2024; 19:134. [PMID: 39375732 PMCID: PMC11457354 DOI: 10.1186/s13000-024-01559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a major tumor that seriously threatens the health of the head and neck or mucosal system. It is manifested as a malignant phenotype of high metastasis and invasion caused by squamous cell transformation in the tissue area. Therefore, it is necessary to search for a biomarker that can systematically correlate and reflect the prognosis of HNSCC based on the characteristics of head and neck tumors. METHODS Based on TCGA-HNSCC data, R software was used to analyze gene expression, correlation, Venn diagram, immune invasive and immunosuppressive phenotypes respectively. The intrinsic effect of ITGA5 on the malignant phenotype of HNSCC cells was verified by cell experiments. Immunohistochemical images from The Human Protein Atlas (THPA) database display the differences in the expression of related proteins in HNSCC tissues. Based on functional enrichment and correlation analysis, the prognostic value of ITGA5 for HNSCC was explored, and the expression level of ITGA5 may affect the chemotherapy of targeting the PI3K-AKT. RESULTS In this study, the target gene ITGA5 may be identified as a valuable prognostic marker for HNSCC. The results of enrichment analysis showed that ITGA5 was mainly involved in the dynamic process of extracellular matrix, which may affect the migration or metastasis of tumor cells. Meanwhile, ITGA5 may be closely related to the infiltration of M2 macrophages, and its secretory phenotypes TGFB1, PDGFA and PDGFB may affect the immunosuppressive phenotypes of tumor cells, which reflects the systemic influence of ITGA5 in HNSCC. In addition, the expression levels of ITGA5 were negatively correlated with the efficacy of targeting PI3K-AKT chemotherapy. CONCLUSION ITGA5 can be used as a potential marker to systematically associate with prognosis of HNSCC, which may be associated with HNSCC malignant phenotype, immunosuppression and chemotherapy resistance.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Chengdu City, Sichuan Province, China
| | - Yongkuan Wang
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China
| | - Xi Chen
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China
| | - Xiaofang Chen
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China
| | - Meng Zhang
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China.
| |
Collapse
|
43
|
Han R, Sun X, Wu Y, Yang YH, Wang QC, Zhang XT, Ding T, Yang JT. Proteomic and Phosphoproteomic Profiling of Matrix Stiffness-Induced Stemness-Dormancy State Transition in Breast Cancer Cells. J Proteome Res 2024; 23:4658-4673. [PMID: 39298182 DOI: 10.1021/acs.jproteome.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The dormancy of cancer stem cells is a major factor leading to drug resistance and a high rate of late recurrence and mortality in estrogen receptor-positive (ER+) breast cancer. Previously, we demonstrated that a stiffer matrix induces tumor cell dormancy and drug resistance, whereas a softened matrix promotes tumor cells to exhibit a stem cell state with high proliferation and migration. In this study, we present a comprehensive analysis of the proteome and phosphoproteome in response to gradient changes in matrix stiffness, elucidating the mechanisms behind cell dormancy-induced drug resistance. Overall, we found that antiapoptotic and membrane transport processes may be involved in the mechanical force-induced dormancy resistance of ER+ breast cancer cells. Our research provides new insights from a holistic proteomic and phosphoproteomic perspective, underscoring the significant role of mechanical forces stemming from the stiffness of the surrounding extracellular matrix as a critical regulatory factor in the tumor microenvironment.
Collapse
Affiliation(s)
- Rong Han
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Xu Sun
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Yue Wu
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Ye-Hong Yang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Qiao-Chu Wang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Xu-Tong Zhang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Tao Ding
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| | - Jun-Tao Yang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 10050, China
| |
Collapse
|
44
|
Bugajova M, Raudenska M, Masarik M, Kalfert D, Betka J, Balvan J. RNAs in tumour-derived extracellular vesicles and their significance in the tumour microenvironment. Int J Cancer 2024; 155:1147-1161. [PMID: 38845351 DOI: 10.1002/ijc.35035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 08/03/2024]
Abstract
Small extracellular vesicles (sEVs) secreted by various types of cells serve as crucial mediators of intercellular communication within the complex tumour microenvironment (TME). Tumour-derived small extracellular vesicles (TDEs) are massively produced and released by tumour cells, recapitulating the specificity of their cell of origin. TDEs encapsulate a variety of RNA species, especially messenger RNAs, microRNAs, long non-coding RNAs, and circular RNAs, which release to the TME plays multifaced roles in cancer progression through mediating cell proliferation, invasion, angiogenesis, and immune evasion. sEVs act as natural delivery vehicles of RNAs and can serve as useful targets for cancer therapy. This review article provides an overview of recent studies on TDEs and their RNA cargo, with emphasis on the role of these RNAs in carcinogenesis.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
45
|
Arpinati L, Carradori G, Scherz-Shouval R. CAF-induced physical constraints controlling T cell state and localization in solid tumours. Nat Rev Cancer 2024; 24:676-693. [PMID: 39251836 DOI: 10.1038/s41568-024-00740-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Solid tumours comprise cancer cells that engage in continuous interactions with non-malignant cells and with acellular components, forming the tumour microenvironment (TME). The TME has crucial and diverse roles in tumour progression and metastasis, and substantial efforts have been dedicated into understanding the functions of different cell types within the TME. These efforts highlighted the importance of non-cell-autonomous signalling in cancer, mediating interactions between the cancer cells, the immune microenvironment and the non-immune stroma. Much of this non-cell-autonomous signalling is mediated through acellular components of the TME, known as the extracellular matrix (ECM), and controlled by the cells that secrete and remodel the ECM - the cancer-associated fibroblasts (CAFs). In this Review, we delve into the complex crosstalk among cancer cells, CAFs and immune cells, highlighting the effects of CAF-induced ECM remodelling on T cell functions and offering insights into the potential of targeting ECM components to improve cancer therapies.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Carradori
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Jiang D, Zhao J, Zheng J, Zhao Y, Le M, Qin D, Huang Q, Huang J, Zhao Q, Wang L, Dong X. LOX-mediated ECM mechanical stress induces Piezo1 activation in hypoxic-ischemic brain damage and identification of novel inhibitor of LOX. Redox Biol 2024; 76:103346. [PMID: 39260063 PMCID: PMC11414707 DOI: 10.1016/j.redox.2024.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) poses a significant challenge in neonatal medicine, often resulting in profound and lasting neurological deficits. Current therapeutic strategies for hypoxia-ischemia brain damage (HIBD) remain limited. Ferroptosis has been reported to play a crucial role in HIE and serves as a potential therapeutic target. However, the mechanisms underlying ferroptosis in HIBD remain largely unclear. In this study, we found that elevated lysyl oxidase (LOX) expression correlates closely with the severity of HIE, suggesting LOX as a potential biomarker for HIE. LOX expression levels and enzymatic activity were significantly increased in HI-induced neuronal models both in vitro and in vivo. Notably, we discovered that HI-induced brain tissue injury results in increased stiffness and observed a selective upregulation of the mechanosensitive ion channel Piezo1 in both brain tissue of HIBD and primary cortex neurons. Mechanistically, LOX increases its catalytic substrates, the Collagen I/III components, promoting extracellular matrix (ECM) remodeling and possibly mediating ECM cross-linking, which leads to increased stiffness at the site of injury and subsequent activation of the Piezo1 channel. Piezo1 senses these stiffness stimuli and then induces neuronal ferroptosis in a GPX4-dependent manner. Pharmacological inhibition of LOX or Piezo1 ameliorated brain neuronal ferroptosis and improved learning and memory impairments. Furthermore, we identified traumatic acid (TA) as a novel LOX inhibitor that effectively suppresses LOX enzymatic activity, mitigating neuronal ferroptosis and promoting synaptic plasticity. In conclusion, our findings elucidate a critical role for LOX-mediated ECM mechanical stress-induced Piezo1 activation in regulating ferroptotic cell death in HIBD. This mechanistic insight provides a basis for developing targeted therapies aimed at ameliorating neurological outcomes in neonates affected by HIBD.
Collapse
Affiliation(s)
- Dongya Jiang
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| | - Meini Le
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dani Qin
- Department of Pediatrics, Yixing People's Hospital, Yixing, China
| | - Qiong Huang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyu Huang
- Department of Cardiology, Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University
| | - Qingshun Zhao
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Long Wang
- Department of Cardiology, Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University.
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Guo M, Sun Y, Wang X, Wang Z, Yuan X, Chen X, Yuan X, Wang L. The MCIB Model: A Novel Theory for Describing the Spatial Heterogeneity of the Tumor Microenvironment. Int J Mol Sci 2024; 25:10486. [PMID: 39408814 PMCID: PMC11476373 DOI: 10.3390/ijms251910486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment (TME) can be regarded as a complex and dynamic microecosystem generated by the interactions of tumor cells, interstitial cells, the extracellular matrix, and their products and plays an important role in the occurrence, progression and metastasis of tumors. In a previous study, we constructed an IEO model (prI-, prE-, and pOst-metastatic niche) according to the chronological sequence of TME development. In this paper, to fill the theoretical gap in spatial heterogeneity in the TME, we defined an MCIB model (Metabolic, Circulatory, Immune, and microBial microenvironment). The MCIB model divides the TME into four subtypes that interact with each other in terms of mechanism, corresponding to the four major links of metabolic reprogramming, vascular remodeling, immune response, and microbial action, providing a new way to assess the TME. The combination of the MCIB model and IEO model comprehensively depicts the spatiotemporal evolution of the TME and can provide a theoretical basis for the combination of clinical targeted therapy, immunotherapy, and other comprehensive treatment modalities for tumors according to the combination and crosstalk of different subtypes in the MCIB model and provide a powerful research paradigm for tumor drug-resistance mechanisms and tumor biological behavior.
Collapse
Affiliation(s)
- Minghao Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Yinan Sun
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zikun Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| |
Collapse
|
48
|
Orrapin S, Moonmuang S, Udomruk S, Yongpitakwattana P, Pruksakorn D, Chaiyawat P. Unlocking the tumor-immune microenvironment in osteosarcoma: insights into the immune landscape and mechanisms. Front Immunol 2024; 15:1394284. [PMID: 39359731 PMCID: PMC11444963 DOI: 10.3389/fimmu.2024.1394284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Osteosarcoma has a unique tumor microenvironment (TME), which is characterized as a complex microenvironment comprising of bone cells, immune cells, stromal cells, and heterogeneous vascular structures. These elements are intricately embedded in a mineralized extracellular matrix, setting it apart from other primary TMEs. In a state of normal physiological function, these cell types collaborate in a coordinated manner to maintain the homeostasis of the bone and hematopoietic systems. However, in the pathological condition, i.e., neoplastic malignancies, the tumor-immune microenvironment (TIME) has been shown to promote cancer cells proliferation, migration, apoptosis and drug resistance, as well as immune escape. The intricate and dynamic system of the TIME in osteosarcoma involves crucial roles played by various infiltrating cells, the complement system, and exosomes. This complexity is closely associated with tumor cells evading immune surveillance, experiencing uncontrolled proliferation, and facilitating metastasis. In this review, we elucidate the intricate interplay between diverse cell populations in the osteosarcoma TIME, each contributing uniquely to tumor progression. From chondroblastic and osteoblastic osteosarcoma cells to osteoclasts, stromal cells, and various myeloid and lymphoid cell subsets, the comprehensive single-cell analysis provides a detailed roadmap of the complex osteosarcoma ecosystem. Furthermore, we summarize the mutations, epigenetic mechanisms, and extracellular vesicles that dictate the immunologic landscape and modulate the TIME of osteosarcoma. The perspectives of the clinical implementation of immunotherapy and therapeutic approaches for targeting immune cells are also intensively discussed.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sutpirat Moonmuang
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Petlada Yongpitakwattana
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
49
|
Meinag FE, Fatahi M, Vahedian V, Maroufi NF, Mosayyebi B, Ahmadi E, Rahmati M. Modulatory effects of miRNAs in doxorubicin resistance: A mechanistic view. Funct Integr Genomics 2024; 24:150. [PMID: 39222264 DOI: 10.1007/s10142-024-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs and play an important role in controlling vital biological processes, including cell cycle control, apoptosis, metabolism, and development and differentiation, which lead to various diseases such as neurological, metabolic disorders, and cancer. Chemotherapy consider as gold treatment approaches for cancer patients. However, chemotherapeutic is one of the main challenges in cancer management. Doxorubicin (DOX) is an anti-cancer drug that interferes with the growth and spread of cancer cells. DOX is used to treat various types of cancer, including breast, nervous tissue, bladder, stomach, ovary, thyroid, lung, bone, muscle, joint and soft tissue cancers. Also recently, miRNAs have been identified as master regulators of specific genes responsible for the mechanisms that initiate chemical resistance. miRNAs have a regulatory effect on chemotherapy resistance through the regulation of apoptosis process. Also, the effect of miRNAs p53 gene as a key tumor suppressor was confirmed via studies. miRNAs can affect main biological pathways include PI3K pathway. This review aimed to present the current understanding of the mechanisms and effects of miRNAs on apoptosis, p53 and PTEN/PI3K/Akt signaling pathway related to DOX resistance.
Collapse
Affiliation(s)
- Fatemeh Ebadi Meinag
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Fatahi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy/Cell Therapy Center (CTC-USP), Clinical Hospital and Cancer Institute (ICESP), Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM/31), Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology and Immuno-Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Duong VT, Ha M, Kim J, Kim JY, Park S, Reshma KM, Han ME, Lee D, Kim YH, Oh SO. Recycling machinery of integrin coupled with focal adhesion turnover via RAB11-UNC13D-FAK axis for migration of pancreatic cancer cells. J Transl Med 2024; 22:800. [PMID: 39210440 PMCID: PMC11360766 DOI: 10.1186/s12967-024-05630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Recycling of integrin via endosomal vesicles is critical for the migration of cancer cells, which leads to the metastasis of pancreatic cancer and devastating cancer-related death. So, new diagnostic and therapeutic molecules which target the recycling of endosomal vesicles need to be developed. METHODS Public databases including TCGA, ICGC, GSE21501, GSE28735, and GENT are analyzed to derive diagnostic and therapeutic targets. To reveal biological roles and underlying mechanisms of molecular targets, various molecular biological experiments were conducted. RESULTS First, we identified UNC13D's overexpression in patients with pancreatic cancer (n = 824) and its prognostic significance and high hazard ratio (HR) in four independent pancreatic cancer cohorts (TCGA, n = 178, p = 0.014, HR = 3.629; ICGC, n = 91, p = 0.000, HR = 4.362; GSE21501, n = 102, p = 0.002, HR = 2.339; GSE28735, n = 45, p = 0.022, HR = 2.681). Additionally, its expression is associated with the clinicopathological progression of pancreatic cancer. Further biological studies have shown that UNC13D regulates the migration of pancreatic cancer cells by coupling the exocytosis of recycling endosomes with focal adhesion turnover via the regulation of FAK phosphorylation. Immunoprecipitation and immunocytochemistry showed the formation of the RAB11-UNC13D-FAK axis in endosomes during integrin recycling. We observed that UNC13D directly interacted with the FERM domain of FAK and regulated FAK phosphorylation in a calcium-dependent manner. Finally, we found co-expression of UNC13D and FAK showed the poorest survival (TCGA, p = 0.000; ICGC, p = 0.036; GSE28735, p = 0.006). CONCLUSIONS We highlight that UNC13D, a novel prognostic factor, promotes pancreatic cancer progression by coupling integrin recycling with focal adhesion turnover via the RAB11-UNC13D-FAK axis for the migration of pancreatic cancer cells.
Collapse
Affiliation(s)
- Van-Thanh Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Mihyang Ha
- Department of Nuclear Medicine and Medical Research Institute, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jayoung Kim
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji-Young Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Siyoung Park
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Khatun Mst Reshma
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|