1
|
Wang J, Deng X, Jian T, Yin S, Chen L, Vergnes L, Li Z, Liu H, Lee R, Lim SY, Bahn JH, Xiao X, Zhu X, Hu G, Reue K, Liu Y, Fan G. DNA methyltransferase 1 modulates mitochondrial function through bridging m 5C RNA methylation. Mol Cell 2025; 85:1999-2016.e11. [PMID: 40328247 DOI: 10.1016/j.molcel.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/25/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
DNA methyltransferase 1 (DNMT1) is an enzyme known for DNA methylation maintenance. Point mutations in its replication focus targeting sequence (RFTS) domain lead to late-onset neurodegeneration, such as autosomal dominant cerebellar ataxia-deafness and narcolepsy (ADCA-DN) disorder. Here, we demonstrated that DNMT1 has the capability to bind to mRNA transcripts and facilitate 5-methylcytosine (m5C) RNA methylation by recruiting NOP2/Sun RNA methyltransferase 2 (NSUN2). RNA m5C methylation, in turn, promotes RNA stability for those genes modulating mitochondrial function. When the DNMT1 RFTS domain is mutated in mice, it triggers aberrant DNMT1-RNA interaction and significantly elevated m5C RNA methylation and RNA stability for a portion of metabolic genes. Consequently, increased levels of metabolic RNA transcripts contribute to cumulative oxidative stress, mitochondrial dysfunction, and neurological symptoms. Collectively, our results reveal a dual role of DNMT1 in regulating both DNA and RNA methylation, which further modulates mitochondrial function, shedding light on the pathogenic mechanism of DNMT1 mutation-induced neurodegeneration.
Collapse
Affiliation(s)
- Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xiaoqian Deng
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianshen Jian
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Shanshan Yin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linzhi Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhehao Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Huoyuan Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ryan Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sin Yee Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; The Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121.
| |
Collapse
|
2
|
Parikh C, Glenn RA, Shi Y, Chatterjee K, Kasliwal K, Swanzey EE, Singer S, Do SC, Zhan Y, Furuta Y, Tahiliani M, Apostolou E, Polyzos A, Koche R, Mezey JG, Vierbuchen T, Stadtfeld M. Genetic variation modulates susceptibility to aberrant DNA hypomethylation and imprint deregulation in naive pluripotent stem cells. Stem Cell Reports 2025; 20:102450. [PMID: 40086447 PMCID: PMC12069886 DOI: 10.1016/j.stemcr.2025.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
Naive pluripotent stem cells (nPSCs) frequently undergo pathological loss of DNA methylation at imprinted gene loci, posing a hurdle for biomedical applications and underscoring the need to identify underlying causes. We show that nPSCs from inbred mouse strains exhibit strain-specific susceptibility to locus-specific deregulation of imprinting marks during reprogramming and upon exposure to a mitogen-activated protein kinase (MAPK) inhibitor, a common approach to maintain naive pluripotency. Analysis of genetically diverse nPSCs from the Diversity Outbred (DO) stock confirms the impact of genetic variation on epigenome stability, which we leverage to identify trans-acting quantitative trait loci (QTLs) that modulate DNA methylation levels at specific targets or genome-wide. Analysis of multi-target QTLs on chromosomes 4 and 17 suggests candidate transcriptional regulators contributing to DNA methylation maintenance in nPSCs. We propose that genetic variants represent biomarkers to identify pluripotent cell lines with desirable properties and may allow the targeted engineering of nPSCs with stable epigenomes.
Collapse
Affiliation(s)
- C Parikh
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - R A Glenn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Y Shi
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - K Chatterjee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - K Kasliwal
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - E E Swanzey
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - S Singer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - S C Do
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Y Zhan
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Y Furuta
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Tahiliani
- Department of Biology, New York University, New York, NY 10003, USA
| | - E Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - A Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - R Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J G Mezey
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA.
| | - T Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - M Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Liu L, Ha S, Cao D, Li M, Li Z. Transposition element MERVL regulates DNA demethylation through TET3 in oxidative-damaged mouse preimplantation embryos. Mol Med 2025; 31:95. [PMID: 40075261 PMCID: PMC11905524 DOI: 10.1186/s10020-025-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Transposable elements (TEs) comprise approximately half of eukaryotic genomes and significantly contribute to genome plasticity. In this study, we focused on a specific TE, MERVL, which exhibits particular expression during the 2-cell stage and commonly serves as an indicator of embryonic totipotency. However, its precise role in embryo development remains mysterious. We utilized DRUG-seq to investigate the effects of oxidative damage on genes and TEs expression. Our findings revealed that exposure to hydrogen peroxide (H2O2) could induce DNA damage, apoptosis, and incomplete DNA demethylation in embryos, which were potentially associated with MERVL expression. To further explore its function, antisense nucleotides (ASO) targeting MERVL were constructed to knockdown the expression in early embryos. Notably, this knockdown led to the occurrence of DNA damage and apoptosis as early as the 2-cell stage, consequently reducing the number of embryos that could progress to the blastocyst stage. Moreover, we discovered that MERVL exerted an influence on the reprogramming of embryonic DNA methylation. In MERVL-deficient embryos, the activity of the DNA demethylase ten-eleven translocation 3 (TET3) was suppressed, resulting in impaired demethylation when compared to normal development. This impairment might underpin the mechanism that impacts embryonic development. Collectively, our study not only verified the crucial role of MERVL in embryonic development but also probed its regulatory function in DNA methylation reprogramming, thereby laying a solid foundation for further investigations into MERVL's role.
Collapse
Affiliation(s)
- Lihong Liu
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515041, China
| | - Siyao Ha
- Institute Obsterics and Gynecology, Hospital of Obsterics and Gynecology,Fudan University, Shanghai, 200080, China
| | - Dan Cao
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515041, China
| | - MingQing Li
- Institute Obsterics and Gynecology, Hospital of Obsterics and Gynecology,Fudan University, Shanghai, 200080, China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515041, China.
| |
Collapse
|
4
|
Quarto G, Li Greci A, Bizet M, Penning A, Primac I, Murisier F, Garcia-Martinez L, Borges RL, Gao Q, Cingaram PKR, Calonne E, Hassabi B, Hubert C, Herpoel A, Putmans P, Mies F, Martin J, Van der Linden L, Dube G, Kumar P, Soin R, Kumar A, Misra A, Lan J, Paque M, Gupta YK, Blomme A, Close P, Estève PO, Caine EA, Riching KM, Gueydan C, Daniels DL, Pradhan S, Shiekhattar R, David Y, Morey L, Jeschke J, Deplus R, Collignon E, Fuks F. Fine-tuning of gene expression through the Mettl3-Mettl14-Dnmt1 axis controls ESC differentiation. Cell 2025; 188:998-1018.e26. [PMID: 39826545 DOI: 10.1016/j.cell.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
The marking of DNA, histones, and RNA is central to gene expression regulation in development and disease. Recent evidence links N6-methyladenosine (m6A), installed on RNA by the METTL3-METTL14 methyltransferase complex, to histone modifications, but the link between m6A and DNA methylation remains scarcely explored. This study shows that METTL3-METTL14 recruits the DNA methyltransferase DNMT1 to chromatin for gene-body methylation. We identify a set of genes whose expression is fine-tuned by both gene-body 5mC, which promotes transcription, and m6A, which destabilizes transcripts. We demonstrate that METTL3-METTL14-dependent 5mC and m6A are both essential for the differentiation of embryonic stem cells into embryoid bodies and that the upregulation of key differentiation genes during early differentiation depends on the dynamic balance between increased 5mC and decreased m6A. Our findings add a surprising dimension to our understanding of how epigenetics and epitranscriptomics combine to regulate gene expression and impact development and likely other biological processes.
Collapse
Affiliation(s)
- Giuseppe Quarto
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Andrea Li Greci
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Audrey Penning
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Irina Primac
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Frédéric Murisier
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rodrigo L Borges
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Qingzeng Gao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Pradeep K R Cingaram
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Bouchra Hassabi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Céline Hubert
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Adèle Herpoel
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Frédérique Mies
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Jérôme Martin
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Louis Van der Linden
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Gaurav Dube
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Pankaj Kumar
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Romuald Soin
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abhay Kumar
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anurag Misra
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jie Lan
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Morgane Paque
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yogesh K Gupta
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | | | | | | | - Cyril Gueydan
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | | | | | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jana Jeschke
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium.
| |
Collapse
|
5
|
Elder E, Lemieux A, Legault LM, Caron M, Bertrand-Lehouillier V, Dupas T, Raynal NM, Bourque G, Sinnett D, Gévry N, McGraw S. Rescuing DNMT1 fails to fully reverse the molecular and functional repercussions of its loss in mouse embryonic stem cells. Nucleic Acids Res 2025; 53:gkaf130. [PMID: 39997223 PMCID: PMC11851107 DOI: 10.1093/nar/gkaf130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Epigenetic mechanisms are crucial for developmental programming and can be disrupted by environmental stressors, increasing susceptibility to disease. This has sparked interest in therapies for restoring epigenetic balance, but it remains uncertain whether disordered epigenetic mechanisms can be fully corrected. Disruption of DNA methyltransferase 1 (DNMT1), responsible for DNA methylation maintenance, has particularly devastating biological consequences. Therefore, here we explored if rescuing DNMT1 activity is sufficient to reverse the effects of its loss utilizing mouse embryonic stem cells. However, only partial reversal could be achieved. Extensive changes in DNA methylation, histone modifications, and gene expression were detected, along with transposable element derepression and genomic instability. Reduction of cellular size, complexity, and proliferation rate were observed, as well as lasting effects in germ layer lineages and embryoid bodies. Interestingly, by analyzing the impact on imprinted regions, we uncovered 20 regions exhibiting imprinted-like signatures. Notably, while many permanent effects persisted throughout Dnmt1 inactivation and rescue, others arose from the rescue intervention. Lastly, rescuing DNMT1 after differentiation initiation worsened outcomes, reinforcing the need for early intervention. Our findings highlight the far-reaching functions of DNMT1 and provide valuable perspectives on the repercussions of epigenetic perturbations during early development and the challenges of rescue interventions.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Anthony Lemieux
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Maxime Caron
- University of Montreal Hospital Research Centre, Montreal, Quebec, H2X 0A9, Canada
| | - Virginie Bertrand-Lehouillier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Thomas Dupas
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Noël J-M Raynal
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1Y2, Canada
- McGill Genome Centre, Montreal, Quebec, H3A 0G1, Canada
| | - Daniel Sinnett
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, H3T 1C5, Canada
| | - Nicolas Gévry
- Department of Biology, University of Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
6
|
Richard Albert J, Urli T, Monteagudo-Sánchez A, Le Breton A, Sultanova A, David A, Scarpa M, Schulz M, Greenberg MVC. DNA methylation shapes the Polycomb landscape during the exit from naive pluripotency. Nat Struct Mol Biol 2025; 32:346-357. [PMID: 39448850 DOI: 10.1038/s41594-024-01405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
In mammals, 5-methylcytosine (5mC) and Polycomb repressive complex 2 (PRC2)-deposited histone 3 lysine 27 trimethylation (H3K27me3) are generally mutually exclusive at CpG-rich regions. As mouse embryonic stem cells exit the naive pluripotent state, there is massive gain of 5mC concomitantly with restriction of broad H3K27me3 to 5mC-free, CpG-rich regions. To formally assess how 5mC shapes the H3K27me3 landscape, we profiled the epigenome of naive and differentiated cells in the presence and absence of the DNA methylation machinery. Surprisingly, we found that 5mC accumulation is not required to restrict most H3K27me3 domains. Instead, this 5mC-independent H3K27me3 restriction is mediated by aberrant expression of the PRC2 antagonist Ezhip (encoding EZH inhibitory protein). At the subset of regions where 5mC appears to genuinely supplant H3K27me3, we identified 163 candidate genes that appeared to require 5mC deposition and/or H3K27me3 depletion for their activation in differentiated cells. Using site-directed epigenome editing to directly modulate 5mC levels, we demonstrated that 5mC deposition is sufficient to antagonize H3K27me3 deposition and confer gene activation at individual candidates. Altogether, we systematically measured the antagonistic interplay between 5mC and H3K27me3 in a system that recapitulates early embryonic dynamics. Our results suggest that H3K27me3 restraint depends on 5mC, both directly and indirectly. Our study also implies a noncanonical role of 5mC in gene activation, which may be important not only for normal development but also for cancer progression, as oncogenic cells frequently exhibit dynamic replacement of 5mC for H3K27me3 and vice versa.
Collapse
Affiliation(s)
| | - Teresa Urli
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Ana Monteagudo-Sánchez
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Carlos Simon Foundation, INCLIVA Health Research Institute, Valencia, Spain
| | - Anna Le Breton
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Amina Sultanova
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Angélique David
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Mathieu Schulz
- Institut Curie, PSL Research University, INSERM U934, CNRS, UMR3215, Paris, France
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montréal, Québec, Canada
| | | |
Collapse
|
7
|
Grillo G, Boyarchuk E, Mihic S, Ivkovic I, Bertrand M, Jouneau A, Dahlet T, Dumas M, Weber M, Velasco G, Francastel C. ZBTB24 is a conserved multifaceted transcription factor at genes and centromeres that governs the DNA methylation state and expression of satellite repeats. Hum Mol Genet 2025; 34:161-177. [PMID: 39562305 PMCID: PMC11780882 DOI: 10.1093/hmg/ddae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Since its discovery as a causative gene of the Immunodeficiency with Centromeric instability and Facial anomalies syndrome, ZBTB24 has emerged as a key player in DNA methylation, immunity and development. By extensively analyzing ZBTB24 genomic functions in ICF-relevant mouse and human cellular models, we document here its multiple facets as a transcription factor, with key roles in immune response-related genes expression and also in early embryonic development. Using a constitutive Zbtb24 ICF-like mutant and an auxin-inducible degron system in mouse embryonic stem cells, we showed that ZBTB24 is recruited to centromeric satellite DNA where it is required to establish and maintain the correct DNA methylation patterns through the recruitment of DNMT3B. The ability of ZBTB24 to occupy centromeric satellite DNA is conserved in human cells. Together, our results unveiled an essential and underappreciated role for ZBTB24 at mouse and human centromeric satellite repeat arrays by controlling their DNA methylation and transcription status.
Collapse
Affiliation(s)
- Giacomo Grillo
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| | - Ekaterina Boyarchuk
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
- UMR7216, Genome engineering in epigenetics platform (GENIE), Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| | - Seed Mihic
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| | - Ivana Ivkovic
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| | - Mathilde Bertrand
- Bioinformatics and Biostatistics Core Facility, iCONICS, Institut du Cerveau (ICM), Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, 47 bd de l'hôpital, Paris F-75013, France
| | - Alice Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Bâtiment 230, Domaine de Vilvert, Jouy-en-Josas 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 7 av. du Général de Gaulle, Maisons-Alfort 94700, France
| | - Thomas Dahlet
- University of Strasbourg, 4 rue Blaise Pascal, Strasbourg 67081, France
- CNRS UMR7242, Biotechnology and Cell Signaling, 300 bd Sébastien Brant, Illkirch 67412, France
| | - Michael Dumas
- University of Strasbourg, 4 rue Blaise Pascal, Strasbourg 67081, France
- CNRS UMR7242, Biotechnology and Cell Signaling, 300 bd Sébastien Brant, Illkirch 67412, France
| | - Michael Weber
- University of Strasbourg, 4 rue Blaise Pascal, Strasbourg 67081, France
- CNRS UMR7242, Biotechnology and Cell Signaling, 300 bd Sébastien Brant, Illkirch 67412, France
| | - Guillaume Velasco
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| | - Claire Francastel
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| |
Collapse
|
8
|
Katznelson A, Hernandez B, Fahning H, Tapia K, Burton A, Zhang J, Torres-Padilla ME, Plachta N, Zaret KS, McCarthy RL. ERH Enables Early Embryonic Differentiation and Overlays H3K9me3 Heterochromatin on a Cryptic Pluripotency H3K9me3 Landscape in Somatic Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.06.597604. [PMID: 38895478 PMCID: PMC11185749 DOI: 10.1101/2024.06.06.597604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Enhancer of Rudimentary Homolog (ERH) is an evolutionarily conserved protein originally characterized in fission yeast 1 and recently shown to maintain H3K9me3 in human fibroblasts 2 . Here, we find that ERH depletion in fibroblasts reverts the H3K9me3 landscape to an embryonic stem cell (ESC) state and enables activation of naïve and pluripotency genes and transposable elements during induced pluripotent stem cell (iPSC) reprogramming. We find that ERH similarly represses totipotent and alternative lineage programs during mouse preimplantation development and is required for proper segregation of the inner cell mass and trophectoderm cell lineages. During human ESC differentiation into germ layer lineages, ERH silences naïve and pluripotency genes, transposable elements, and alternative lineage somatic genes. As in fission yeast, we find that mammalian ERH interacts with RNA-binding proteins to engage and repress its chromatin targets. Our findings reveal a fundamental role for ERH in cell fate specification via the initiation and maintenance of early developmental gene repression.
Collapse
|
9
|
Nohara K, Suzuki T, Okamura K, Kawai T, Nakabayashi K. Acquired sperm hypomethylation by gestational arsenic exposure is re-established in both the paternal and maternal genomes of post-epigenetic reprogramming embryos. Epigenetics Chromatin 2025; 18:4. [PMID: 39815295 PMCID: PMC11737231 DOI: 10.1186/s13072-025-00569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming. However, our understanding of this process remains incomplete. Our previous study showed that arsenic exposure of F0 pregnant mice paternally increased tumor incidence in F2 offspring. The sperm methylome of arsenic-exposed F1 males exhibited characteristic features, including enrichment of hypomethylated cytosines at the promoters of retrotransposons LINEs and LTRs. Hypomethylation of retrotransposons is potentially detrimental. Determining whether these hypomethylation changes in sperm are transferred to the embryo is important in confirming the molecular pathway of intergenerational transmission of paternal effects of arsenic exposure. RESULTS We investigated the methylome of F2 male embryos after epigenetic reprogramming by reduced representation bisulfite sequencing (RRBS) and allele-specific analysis. To do so, embryos were obtained by crossing control or gestationally arsenic-exposed F1 males (C3H/HeN strain) with control females (C57BL/6 strain). The results revealed that the methylome of F2 embryos in the arsenic group was globally hypomethylated and enriched for hypomethylated cytosines in certain genomic regions, including LTR and LINE, as observed in F1 sperm of the arsenic group. Unexpectedly, the characteristic methylome features were detected not only in the paternal genome but also in the maternal genome of embryos. Furthermore, these methylation changes were found to rarely occur at the same positions between F1 sperm and F2 embryos. CONCLUSIONS The results of this study revealed that the characteristics of arsenic-induced methylome changes in F1 sperm are reproduced in both the paternal and maternal genomes of post-epigenetic reprogramming embryos. Furthermore, the results suggest that this re-establishment is achieved in collaboration with other factors that mediate region-specific methylation changes. These results also highlight the possibility that arsenic-induced sperm methylome changes could contribute to the development of disease predisposition in offspring.
Collapse
Affiliation(s)
- Keiko Nohara
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, 305‑ 8506, Japan.
| | - Takehiro Suzuki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, 305‑ 8506, Japan
| | - Kazuyuki Okamura
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, 305‑ 8506, Japan
| | - Tomoko Kawai
- Department of Maternal‑Fetal Biology, National Center for Child Health and Development, Tokyo, 157‑8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal‑Fetal Biology, National Center for Child Health and Development, Tokyo, 157‑8535, Japan
| |
Collapse
|
10
|
Xu Z, Shi J, Chen Q, Yang S, Wang Z, Xiao B, Lai Z, Jing Y, Li Y, Li X. Regulation of de novo and maintenance DNA methylation by DNA methyltransferases in postimplantation embryos. J Biol Chem 2025; 301:107990. [PMID: 39542247 PMCID: PMC11742614 DOI: 10.1016/j.jbc.2024.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
DNA methylation is mainly catalyzed by three DNA methyltransferase (DNMT) proteins in mammals. Usually DNMT1 is considered the primary DNMT for maintenance DNA methylation, whereas DNMT3A and DNMT3B function in de novo DNA methylation. Interestingly, we found DNMT3A and DNMT3B exerted maintenance and de novo DNA methylation in postimplantation mouse embryos. Together with DNMT1, they maintained DNA methylation at some pluripotent genes and lineage marker genes. Germline-derived DNA methylation at the imprinting control regions (ICRs) is stably maintained in embryos. DNMT1 maintained DNA methylation at most ICRs in postimplantation embryos. Surprisingly, DNA methylation was increased at five ICRs after implantation, and two DNMT3 proteins maintained the newly acquired DNA methylation at two of these five ICRs. Intriguingly, DNMT3A and DNMT3B maintained preexisting DNA methylation at four other ICRs, similar to what we found in embryonic stem cells before. These results suggest that DNA methylation is more dynamic than originally thought during embryogenesis including the ICRs of the imprinted regions. DNMT3A and DNMT3B exert both de novo and maintenance DNA methylation functions after implantation. They maintain large portions of newly acquired DNA methylation at variable degrees across the genome in mouse embryos, together with DNMT1. Furthermore, they contribute to maintenance of preexisting DNA methylation at a subset of ICRs as well as in the CpG islands and certain lineage marker gene. These findings may have some implications for the important roles of DNMT proteins in development and human diseases.
Collapse
Affiliation(s)
- Zhen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiajia Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qian Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuting Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zilin Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Xiao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijian Lai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yumeng Jing
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yilin Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
11
|
Formichetti S, Sadowska A, Ascolani M, Hansen J, Ganter K, Lancrin C, Humphreys N, Boulard M. Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo. PLoS Genet 2025; 21:e1011507. [PMID: 39787076 PMCID: PMC11717234 DOI: 10.1371/journal.pgen.1011507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees. The severity of the embryonic lethality was proportional to the extent of impairment of OGT's catalysis, demonstrating that the O-GlcNAc modification itself is required for early development. We identified hypomorphic Ogt alleles that perturb O-GlcNAc homeostasis while being compatible with embryogenesis. The analysis of the transcriptomes of the mutant embryos at different developmental stages suggested a sexually-dimorphic developmental delay caused by the decrease in O-GlcNAc. Furthermore, a mild reduction of OGT's enzymatic activity was sufficient to loosen the silencing of endogenous retroviruses in vivo.
Collapse
Affiliation(s)
- Sara Formichetti
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Germany
| | - Agnieszka Sadowska
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Michela Ascolani
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Julia Hansen
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Kerstin Ganter
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Christophe Lancrin
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Neil Humphreys
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Mathieu Boulard
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| |
Collapse
|
12
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
13
|
Ahamba IS, Mary-Cynthia Ikele C, Kimpe L, Goswami N, Wang H, Li Z, Ren Z, Dong X. Unraveling the genetic and epigenetic landscape governing intramuscular fat deposition in rabbits: Insights and implications. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100222. [PMID: 39290671 PMCID: PMC11406001 DOI: 10.1016/j.fochms.2024.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Intramuscular fat (IMF) content is a predominant factor recognized to affect rabbit meat quality, directly impacting flavor, juiciness, and consumer preference. Despite its significance, the major interplay of genetic and epigenetic factors regulating IMF in rabbits remains largely unexplored. This review sheds light on this critical knowledge gap, offering valuable insights and future directions. We delve into the potential role of established candidate genes from other livestock (e.g. PPARγ, FABP4, and SCD) in rabbits, while exploring the identified novel genes of IMF in rabbits. Furthermore, we explored the quantitative trait loci studies in rabbit IMF and genomic selection approaches for improving IMF content in rabbits. Beyond genetics, this review unveils the exciting realm of epigenetic mechanisms modulating IMF deposition. We explored the potential of DNA methylation patterns, histone modifications, and non-coding RNA-mediation as fingerprints for selecting rabbits with desirable IMF levels. Additionally, we explored the possibility of manipulating the epigenetic landscape through nutraceuticals interventions to promote favorable IMF depositions. By comprehensively deciphering the genomic and epigenetic terrain of rabbit intramuscular fat regulation, this study aims to assess the existing knowledge regarding the genetic and epigenetic factors that control the deposition of intramuscular fat in rabbits. By doing so, we identified gaps in the current research, and suggested potential areas for further investigation that would enhance the quality of rabbit meat. This can enable breeders to develop targeted breeding strategies, optimize nutrition, and create innovative interventions to enhance the quality of rabbit meat, meet consumer demands and increase market competitiveness.
Collapse
Affiliation(s)
- Ifeanyi Solomon Ahamba
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | | | - Lionel Kimpe
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Naqash Goswami
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Hui Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Zhen Li
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, China
| |
Collapse
|
14
|
Liu X, Ni Y, Ye L, Guo Z, Tan L, Li J, Yang M, Chen S, Li R. Nanopore strand-specific mismatch enables de novo detection of bacterial DNA modifications. Genome Res 2024; 34:2025-2038. [PMID: 39358016 PMCID: PMC11610603 DOI: 10.1101/gr.279012.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
DNA modifications in bacteria present diverse types and distributions, playing crucial functional roles. Current methods for detecting bacterial DNA modifications via nanopore sequencing typically involve comparing raw current signals to a methylation-free control. In this study, we found that bacterial DNA modification induces errors in nanopore reads. And these errors are found only in one strand but not the other, showing a strand-specific bias. Leveraging this discovery, we developed Hammerhead, a pioneering pipeline designed for de novo methylation discovery that circumvents the necessity of raw signal inference and a methylation-free control. The majority (14 out of 16) of the identified motifs can be validated by raw signal comparison methods or by identifying corresponding methyltransferases in bacteria. Additionally, we included a novel polishing strategy employing duplex reads to correct modification-induced errors in bacterial genome assemblies, achieving a reduction of over 85% in such errors. In summary, Hammerhead enables users to effectively locate bacterial DNA methylation sites from nanopore FASTQ/FASTA reads, thus holds promise as a routine pipeline for a wide range of nanopore sequencing applications, such as genome assembly, metagenomic binning, decontaminating eukaryotic genome assemblies, and functional analysis for DNA modifications.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Ying Ni
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen 518000, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Zhihao Guo
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Mengsu Yang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen 518000, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518000, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China;
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen 518000, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
15
|
Ryu HY. Histone Modification Pathways Suppressing Cryptic Transcription. EPIGENOMES 2024; 8:42. [PMID: 39584965 PMCID: PMC11586988 DOI: 10.3390/epigenomes8040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
Cryptic transcription refers to the unintended expression of non-canonical sites within the genome, producing aberrant RNA and proteins that may disrupt cellular functions. In this opinion piece, I will explore the role of histone modifications in modulating cryptic transcription and its implications for gene expression and cellular integrity, particularly with a focus on H3K36 and H3K4 methylation marks. H3K36 tri-methylation plays a crucial role in maintaining chromatin integrity by facilitating the recruitment of the Rpd3S histone deacetylase (HDAC) complex, which helps restore closed chromatin states following transcription and prevents cryptic initiation within gene bodies. In parallel, crosstalk between H3K4 di-methylation and histone ubiquitylation and sumoylation is critical for recruiting the Set3 HDAC complex, which maintains low histone acetylation levels in gene bodies and further suppresses cryptic transcription. Therefore, by elucidating these regulatory mechanisms, this opinion highlights the intricate interplay of histone modifications in preserving transcriptional fidelity and suggests potential pathways for future research to develop novel therapies for age-related disorders and other diseases associated with dysregulated gene expression.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; ; Tel.: +82-53-950-6352
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
16
|
Hossain I, Priam P, Reynoso SC, Sahni S, Zhang XX, Côté L, Doumat J, Chik C, Fu T, Lessard JA, Pastor WA. ZIC2 and ZIC3 promote SWI/SNF recruitment to safeguard progression towards human primed pluripotency. Nat Commun 2024; 15:8539. [PMID: 39358345 PMCID: PMC11447223 DOI: 10.1038/s41467-024-52431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The primed epiblast acts as a transitional stage between the relatively homogeneous naïve epiblast and the gastrulating embryo. Its formation entails coordinated changes in regulatory circuits driven by transcription factors and epigenetic modifications. Using a multi-omic approach in human embryonic stem cell models across the spectrum of peri-implantation development, we demonstrate that the transcription factors ZIC2 and ZIC3 have overlapping but essential roles in opening primed-specific enhancers. Together, they are essential to facilitate progression to and maintain primed pluripotency. ZIC2/3 accomplish this by recruiting SWI/SNF to chromatin and loss of ZIC2/3 or degradation of SWI/SNF both prevent enhancer activation. Loss of ZIC2/3 also results in transcriptome changes consistent with perturbed Polycomb activity and a shift towards the expression of genes linked to differentiation towards the mesendoderm. Additionally, we find an intriguing dependency on the transcriptional machinery for sustained recruitment of ZIC2/3 over a subset of primed-hESC specific enhancers. Taken together, ZIC2 and ZIC3 regulate highly dynamic lineage-specific enhancers and collectively act as key regulators of human primed pluripotency.
Collapse
Affiliation(s)
| | - Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Sofia C Reynoso
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Sahil Sahni
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Xiao X Zhang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Laurence Côté
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Joelle Doumat
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Candus Chik
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Tianxin Fu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Julie A Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Zhang L, Zhang Y, Sun H. Protein Modifications During Early Embryo Development. Am J Reprod Immunol 2024; 92:e70007. [PMID: 39460606 DOI: 10.1111/aji.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Infertility is a global reproductive health burden. Assisted reproductive technologies (ARTs) have been widely used to help patients become pregnant. Few embryos develop to the blastocyst stage with ARTs, leading to relatively low live birth rates. Protein modifications play crucial roles in nearly every aspect of cell biology, including reproductive processes. The aim of this study was to explore the characteristics of protein modifications during embryonic development. METHODS Proteomic data from humans and mice were acquired from the integrated proteome resources (iProX) of ProteomeXchange (PXD024267) and a tandem mass tag (TMT)-mass spectrometry dataset. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied for functional annotation. Protein-protein interactions (PPIs) of the modification-related genes were revealed by the STRING database. Modified proteins during mouse embryogenesis were visualized through heatmaps of hierarchically clustering using k-means. RESULTS We identified modification-related proteins in human embryo development and characterized them through heatmaps, GO analysis, KEGG analysis, and PPI network analysis. We found that the 4-cell stage to the 8-cell stage might be the demarcation period for modification-related protein expression patterns during embryo development. Using quantitative mass spectrometry, we elucidated the methylation, acetylation, and ubiquitination events that occur during mouse embryogenesis to validate our findings in human embryonic development to some extent. CONCLUSIONS The results of our study suggest that the posttranslational modifications (PTMs) of human preimplantation embryos might exhibit the same trends as those in mice to exert synergistic and fine-tuned regulatory effects during embryonic development.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanbing Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hailong Sun
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
18
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
19
|
Tabaro F, Boulard M. 3t-seq: automatic gene expression analysis of single-copy genes, transposable elements, and tRNAs from RNA-seq data. Brief Bioinform 2024; 25:bbae467. [PMID: 39322626 PMCID: PMC11424182 DOI: 10.1093/bib/bbae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/16/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
RNA sequencing is the gold-standard method to quantify transcriptomic changes between two conditions. The overwhelming majority of data analysis methods available are focused on polyadenylated RNA transcribed from single-copy genes and overlook transcripts from repeated sequences such as transposable elements (TEs). These self-autonomous genetic elements are increasingly studied, and specialized tools designed to handle multimapping sequencing reads are available. Transfer RNAs are transcribed by RNA polymerase III and are essential for protein translation. There is a need for integrated software that is able to analyze multiple types of RNA. Here, we present 3t-seq, a Snakemake pipeline for integrated differential expression analysis of transcripts from single-copy genes, TEs, and tRNA. 3t-seq produces an accessible report and easy-to-use results for downstream analysis starting from raw sequencing data and performing quality control, genome mapping, gene expression quantification, and statistical testing. It implements three methods to quantify TEs expression and one for tRNA genes. It provides an easy-to-configure method to manage software dependencies that lets the user focus on results. 3t-seq is released under MIT license and is available at https://github.com/boulardlab/3t-seq.
Collapse
Affiliation(s)
- Francesco Tabaro
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ercole Ramarini 32, Monterotondo 00015, Italy
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ercole Ramarini 32, Monterotondo 00015, Italy
| |
Collapse
|
20
|
Garge RK, Lynch V, Fields R, Casadei S, Best S, Stone J, Snyder M, McGann CD, Shendure J, Starita LM, Hamazaki N, Schweppe DK. The proteomic landscape and temporal dynamics of mammalian gastruloid development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.609098. [PMID: 39282277 PMCID: PMC11398484 DOI: 10.1101/2024.09.05.609098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Gastrulation is the highly coordinated process by which the early embryo breaks symmetry, establishes germ layers and a body plan, and sets the stage for organogenesis. As early mammalian development is challenging to study in vivo, stem cell-derived models have emerged as powerful surrogates, e.g. human and mouse gastruloids. However, although single cell RNA-seq (scRNA-seq) and high-resolution imaging have been extensively applied to characterize such in vitro embryo models, a paucity of measurements of protein dynamics and regulation leaves a major gap in our understanding. Here, we sought to address this by applying quantitative proteomics to human and mouse gastruloids at four key stages of their differentiation (naïve ESCs, primed ESCs, early gastruloids, late gastruloids). To the resulting data, we perform network analysis to map the dynamics of expression of macromolecular protein complexes and biochemical pathways, including identifying cooperative proteins that associate with them. With matched RNA-seq and phosphosite data from these same stages, we investigate pathway-, stage- and species-specific aspects of translational and post-translational regulation, e.g. finding peri-gastrulation stages of human and mice to be discordant with respect to the mitochondrial transcriptome vs. proteome, and nominating novel kinase-substrate relationships based on phosphosite dynamics. Finally, we leverage correlated dynamics to identify conserved protein networks centered around congenital disease genes. Altogether, our data (https://gastruloid.brotmanbaty.org/) and analyses showcase the potential of intersecting in vitro embryo models and proteomics to advance our understanding of early mammalian development in ways not possible through transcriptomics alone.
Collapse
Affiliation(s)
- Riddhiman K. Garge
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Valerie Lynch
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Silvia Casadei
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Sabrina Best
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Jeremy Stone
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Matthew Snyder
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Chris D. McGann
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
- Seattle Hub for Synthetic Biology, Seattle, Washington, USA
| | - Lea M. Starita
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Seattle Hub for Synthetic Biology, Seattle, Washington, USA
| | - Devin K. Schweppe
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Paulsen B, Piechota S, Barrachina F, Giovannini A, Kats S, Potts KS, Rockwell G, Marchante M, Estevez SL, Noblett AD, Figueroa AB, Aschenberger C, Kelk DA, Forti M, Marcinyshyn S, Wiemer K, Sanchez M, Belchin P, Lee JA, Buyuk E, Slifkin RE, Smela MP, Fortuna PRJ, Chatterjee P, McCulloh DH, Copperman AB, Ordonez-Perez D, Klein JU, Kramme CC. Rescue in vitro maturation using ovarian support cells of human oocytes from conventional stimulation cycles yields oocytes with improved nuclear maturation and transcriptomic resemblance to in vivo matured oocytes. J Assist Reprod Genet 2024; 41:2021-2036. [PMID: 38814543 PMCID: PMC11339229 DOI: 10.1007/s10815-024-03143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE Determine if the gene expression profiles of ovarian support cells (OSCs) and cumulus-free oocytes are bidirectionally influenced by co-culture during in vitro maturation (IVM). METHODS Fertility patients aged 25 to 45 years old undergoing conventional ovarian stimulation donated denuded immature oocytes for research. Oocytes were randomly allocated to either OSC-IVM culture (intervention) or Media-IVM culture (control) for 24-28 h. The OSC-IVM culture condition was composed of 100,000 OSCs in suspension culture with human chorionic gonadotropin (hCG), recombinant follicle stimulating hormone (rFSH), androstenedione, and doxycycline supplementation. The Media-IVM control lacked OSCs and contained the same supplementation. A limited set of in vivo matured MII oocytes were donated for comparative evaluation. Endpoints consisted of MII formation rate, morphological and spindle quality assessment, and gene expression analysis compared to in vitro and in vivo controls. RESULTS OSC-IVM resulted in a statistically significant improvement in MII formation rate compared to the Media-IVM control, with no apparent effect on morphology or spindle assembly. OSC-IVM MII oocytes displayed a closer transcriptomic maturity signature to IVF-MII controls than Media-IVM control MII oocytes. The gene expression profile of OSCs was modulated in the presence of oocytes, displaying culture- and time-dependent differential gene expression during IVM. CONCLUSION The OSC-IVM platform is a novel tool for rescue maturation of human oocytes, yielding oocytes with improved nuclear maturation and a closer transcriptomic resemblance to in vivo matured oocytes, indicating a potential enhancement in oocyte cytoplasmic maturation. These improvements on oocyte quality after OSC-IVM are possibly occurring through bidirectional crosstalk of cumulus-free oocytes and ovarian support cells.
Collapse
Affiliation(s)
- Bruna Paulsen
- Gameto Inc., 430 E. 29th St Fl 14, New York, NY, 10016, USA
| | | | | | | | - Simone Kats
- Gameto Inc., 430 E. 29th St Fl 14, New York, NY, 10016, USA
| | | | | | | | - Samantha L Estevez
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | | - Marta Sanchez
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Pedro Belchin
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Joseph A Lee
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Erkan Buyuk
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Rick E Slifkin
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Merrick Pierson Smela
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Patrick R J Fortuna
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| | | | - Alan B Copperman
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reproductive Medicine Associates of New York, New York, NY, USA
| | | | | | | |
Collapse
|
22
|
Parikh C, Glenn RA, Shi Y, Chatterjee K, Swanzey EE, Singer S, Do SC, Zhan Y, Furuta Y, Tahiliani M, Apostolou E, Polyzos A, Koche R, Mezey JG, Vierbuchen T, Stadtfeld M. Genetic variation modulates susceptibility to aberrant DNA hypomethylation and imprint deregulation in naïve pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600805. [PMID: 38979237 PMCID: PMC11230387 DOI: 10.1101/2024.06.26.600805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Naïve pluripotent stem cells (nPSC) frequently undergo pathological and not readily reversible loss of DNA methylation marks at imprinted gene loci. This abnormality poses a hurdle for using pluripotent cell lines in biomedical applications and underscores the need to identify the causes of imprint instability in these cells. We show that nPSCs from inbred mouse strains exhibit pronounced strain-specific susceptibility to locus-specific deregulation of imprinting marks during reprogramming to pluripotency and upon culture with MAP kinase inhibitors, a common approach to maintain naïve pluripotency. Analysis of genetically highly diverse nPSCs from the Diversity Outbred (DO) stock confirms that genetic variation is a major determinant of epigenome stability in pluripotent cells. We leverage the variable DNA hypomethylation in DO lines to identify several trans-acting quantitative trait loci (QTLs) that determine epigenome stability at either specific target loci or genome-wide. Candidate factors encoded by two multi-target QTLs on chromosomes 4 and 17 suggest specific transcriptional regulators that contribute to DNA methylation maintenance in nPSCs. We propose that genetic variants represent candidate biomarkers to identify pluripotent cell lines with desirable properties and might serve as entry points for the targeted engineering of nPSCs with stable epigenomes. Highlights Naïve pluripotent stem cells from distinct inbred mouse strains exhibit variable DNA methylation levels at imprinted gene loci.The vulnerability of pluripotent stem cells to loss of genomic imprinting caused by MAP kinase inhibition strongly differs between inbred mouse strains.Genetically diverse pluripotent stem cell lines from Diversity Outbred mouse stock allow the identification of quantitative trait loci controlling DNA methylation stability.Genetic variants may serve as biomarkers to identify naïve pluripotent stem cell lines that are epigenetically stable in specific culture conditions.
Collapse
|
23
|
Anvar Z, Jochum MD, Chakchouk I, Sharif M, Demond H, To AK, Kraushaar DC, Wan YW, Andrews S, Kelsey G, Veyver IB. Maternal loss-of-function of Nlrp2 results in failure of epigenetic reprogramming in mouse oocytes. RESEARCH SQUARE 2024:rs.3.rs-4457414. [PMID: 38883732 PMCID: PMC11177987 DOI: 10.21203/rs.3.rs-4457414/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background NLRP2 belongs to the subcortical maternal complex (SCMC) of mammalian oocytes and preimplantation embryos. This multiprotein complex, encoded by maternal-effect genes, plays a pivotal role in the zygote-to-embryo transition, early embryogenesis, and epigenetic (re)programming. The maternal inactivation of genes encoding SCMC proteins has been linked to infertility and subfertility in mice and humans. However, the underlying molecular mechanisms for the diverse functions of the SCMC, particularly how this cytoplasmic structure influences DNA methylation, which is a nuclear process, are not fully understood. Results We undertook joint transcriptome and DNA methylome profiling of pre-ovulatory germinal-vesicle oocytes from Nlrp2-null, heterozygous (Het), and wild-type (WT) female mice. We identified numerous differentially expressed genes (DEGs) in Het and Nlrp2-null when compared to WT oocytes. The genes for several crucial factors involved in oocyte transcriptome modulation and epigenetic reprogramming, such as DNMT1, UHRF1, KDM1B and ZFP57 were overexpressed in Het and Nlrp2-null oocytes. Absence or reduction of Nlrp2, did not alter the distinctive global DNA methylation landscape of oocytes, including the bimodal pattern of the oocyte methylome. Additionally, although the methylation profile of germline differentially methylated regions (gDMRs) of imprinted genes was preserved in oocytes of Het and Nlrp2-null mice, we found altered methylation in oocytes of both genotypes at a small percentage of the oocyte-characteristic hyper- and hypomethylated domains. Through a tiling approach, we identified specific DNA methylation differences between the genotypes, with approximately 1.3% of examined tiles exhibiting differential methylation in Het and Nlrp2-null compared to WT oocytes. Conclusions Surprisingly, considering the well-known correlation between transcription and DNA methylation in developing oocytes, we observed no correlation between gene expression differences and gene-body DNA methylation differences in Nlrp2-null versus WT oocytes or Het versus WT oocytes. We therefore conclude that post-transcriptional changes in the stability of transcripts rather than altered transcription is primarily responsible for transcriptome differences in Nlrp2-null and Het oocytes.
Collapse
|
24
|
Batki J, Hetzel S, Schifferl D, Bolondi A, Walther M, Wittler L, Grosswendt S, Herrmann BG, Meissner A. Extraembryonic gut endoderm cells undergo programmed cell death during development. Nat Cell Biol 2024; 26:868-877. [PMID: 38849542 PMCID: PMC11178501 DOI: 10.1038/s41556-024-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Despite a distinct developmental origin, extraembryonic cells in mice contribute to gut endoderm and converge to transcriptionally resemble their embryonic counterparts. Notably, all extraembryonic progenitors share a non-canonical epigenome, raising several pertinent questions, including whether this landscape is reset to match the embryonic regulation and if extraembryonic cells persist into later development. Here we developed a two-colour lineage-tracing strategy to track and isolate extraembryonic cells over time. We find that extraembryonic gut cells display substantial memory of their developmental origin including retention of the original DNA methylation landscape and resulting transcriptional signatures. Furthermore, we show that extraembryonic gut cells undergo programmed cell death and neighbouring embryonic cells clear their remnants via non-professional phagocytosis. By midgestation, we no longer detect extraembryonic cells in the wild-type gut, whereas they persist and differentiate further in p53-mutant embryos. Our study provides key insights into the molecular and developmental fate of extraembryonic cells inside the embryo.
Collapse
Affiliation(s)
- Julia Batki
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Dennis Schifferl
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefanie Grosswendt
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
25
|
Tibben BM, Rothbart SB. Mechanisms of DNA Methylation Regulatory Function and Crosstalk with Histone Lysine Methylation. J Mol Biol 2024; 436:168394. [PMID: 38092287 PMCID: PMC10957332 DOI: 10.1016/j.jmb.2023.168394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
DNA methylation is a well-studied epigenetic modification that has key roles in regulating gene expression, maintaining genome integrity, and determining cell fate. Precisely how DNA methylation patterns are established and maintained in specific cell types at key developmental stages is still being elucidated. However, research over the last two decades has contributed to our understanding of DNA methylation regulation by other epigenetic processes. Specifically, lysine methylation on key residues of histone proteins has been shown to contribute to the allosteric regulation of DNA methyltransferase (DNMT) activities. In this review, we discuss the dynamic interplay between DNA methylation and histone lysine methylation as epigenetic regulators of genome function by synthesizing key recent studies in the field. With a focus on DNMT3 enzymes, we discuss mechanisms of DNA methylation and histone lysine methylation crosstalk in the regulation of gene expression and the maintenance of genome integrity. Further, we discuss how alterations to the balance of various sites of histone lysine methylation and DNA methylation contribute to human developmental disorders and cancers. Finally, we provide perspectives on the current direction of the field and highlight areas for continued research and development.
Collapse
Affiliation(s)
- Bailey M Tibben
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
26
|
Giaccari C, Cecere F, Argenziano L, Pagano A, Galvao A, Acampora D, Rossi G, Hay Mele B, Acurzio B, Coonrod S, Cubellis MV, Cerrato F, Andrews S, Cecconi S, Kelsey G, Riccio A. A maternal-effect Padi6 variant causes nuclear and cytoplasmic abnormalities in oocytes, as well as failure of epigenetic reprogramming and zygotic genome activation in embryos. Genes Dev 2024; 38:131-150. [PMID: 38453481 PMCID: PMC10982689 DOI: 10.1101/gad.351238.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Lucia Argenziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Angela Pagano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Antonio Galvao
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - Dario Acampora
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso," Consiglio Nazionale delle Ricerche (CNR), Naples 80131, Italy
| | - Gianna Rossi
- Department of Life, Health, and Environmental Sciences, Università dell'Aquila, L'Aquila 67100, Italy
| | - Bruno Hay Mele
- Department of Biology, University of Naples "Federico II," Napoli 80126, Italy
| | - Basilia Acurzio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Scott Coonrod
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, USA
| | | | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Simon Andrews
- Bioinformatics Unit, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell'Aquila, L'Aquila 67100, Italy
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge CB2 0QQ, United Kingdom
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy;
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso," Consiglio Nazionale delle Ricerche (CNR), Naples 80131, Italy
| |
Collapse
|
27
|
Vukic M, Chouaref J, Della Chiara V, Dogan S, Ratner F, Hogenboom JZM, Epp TA, Chawengsaksophak K, Vonk KKD, Breukel C, Ariyurek Y, San Leon Granado D, Kloet SL, Daxinger L. CDCA7-associated global aberrant DNA hypomethylation translates to localized, tissue-specific transcriptional responses. SCIENCE ADVANCES 2024; 10:eadk3384. [PMID: 38335290 PMCID: PMC10857554 DOI: 10.1126/sciadv.adk3384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Disruption of cell division cycle associated 7 (CDCA7) has been linked to aberrant DNA hypomethylation, but the impact of DNA methylation loss on transcription has not been investigated. Here, we show that CDCA7 is critical for maintaining global DNA methylation levels across multiple tissues in vivo. A pathogenic Cdca7 missense variant leads to the formation of large, aberrantly hypomethylated domains overlapping with the B genomic compartment but without affecting the deposition of H3K9 trimethylation (H3K9me3). CDCA7-associated aberrant DNA hypomethylation translated to localized, tissue-specific transcriptional dysregulation that affected large gene clusters. In the brain, we identify CDCA7 as a transcriptional repressor and epigenetic regulator of clustered protocadherin isoform choice. Increased protocadherin isoform expression frequency is accompanied by DNA methylation loss, gain of H3K4 trimethylation (H3K4me3), and increased binding of the transcriptional regulator CCCTC-binding factor (CTCF). Overall, our in vivo work identifies a key role for CDCA7 in safeguarding tissue-specific expression of gene clusters via the DNA methylation pathway.
Collapse
Affiliation(s)
- Maja Vukic
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jihed Chouaref
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Serkan Dogan
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Fallon Ratner
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Trevor A. Epp
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kallayanee Chawengsaksophak
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kelly K. D. Vonk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Susan L. Kloet
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
28
|
Ramos-Alonso L, Chymkowitch P. Maintaining transcriptional homeostasis during cell cycle. Transcription 2024; 15:1-21. [PMID: 37655806 PMCID: PMC11093055 DOI: 10.1080/21541264.2023.2246868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pierre Chymkowitch
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Ding Y, Zhao L, Wang G, Shi Y, Guo G, Liu C, Chen Z, Coker OO, She J, Yu J. PacBio sequencing of human fecal samples uncovers the DNA methylation landscape of 22 673 gut phages. Nucleic Acids Res 2023; 51:12140-12149. [PMID: 37904586 PMCID: PMC10711547 DOI: 10.1093/nar/gkad977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Gut phages have an important impact on human health. Methylation plays key roles in DNA recognition, gene expression regulation and replication for phages. However, the DNA methylation landscape of gut phages is largely unknown. Here, with PacBio sequencing (2120×, 4785 Gb), we detected gut phage methylation landscape based on 22 673 gut phage genomes, and presented diverse methylation motifs and methylation differences in genomic elements. Moreover, the methylation rate of phages was associated with taxonomy and host, and N6-methyladenine methylation rate was higher in temperate phages than in virulent phages, suggesting an important role for methylation in phage-host interaction. In particular, 3543 (15.63%) phage genomes contained restriction-modification system, which could aid in evading clearance by the host. This study revealed the DNA methylation landscape of gut phage and its potential roles, which will advance the understanding of gut phage survival and human health.
Collapse
Affiliation(s)
- Yanqiang Ding
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liuyang Zhao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guoping Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Shi
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Guo
- Center for Gut Microbiome Research, Department of Surgery, Med-X Institute, Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Changan Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Olabisi Oluwabukola Coker
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junjun She
- Center for Gut Microbiome Research, Department of Surgery, Med-X Institute, Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
30
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
31
|
Verma A, Poondi Krishnan V, Cecere F, D’Angelo E, Lullo V, Strazzullo M, Selig S, Angelini C, Matarazzo MR, Riccio A. ICF1-Syndrome-Associated DNMT3B Mutations Prevent De Novo Methylation at a Subset of Imprinted Loci during iPSC Reprogramming. Biomolecules 2023; 13:1717. [PMID: 38136588 PMCID: PMC10741953 DOI: 10.3390/biom13121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Parent-of-origin-dependent gene expression of a few hundred human genes is achieved by differential DNA methylation of both parental alleles. This imprinting is required for normal development, and defects in this process lead to human disease. Induced pluripotent stem cells (iPSCs) serve as a valuable tool for in vitro disease modeling. However, a wave of de novo DNA methylation during reprogramming of iPSCs affects DNA methylation, thus limiting their use. The DNA methyltransferase 3B (DNMT3B) gene is highly expressed in human iPSCs; however, whether the hypermethylation of imprinted loci depends on DNMT3B activity has been poorly investigated. To explore the role of DNMT3B in mediating de novo DNA methylation at imprinted DMRs, we utilized iPSCs generated from patients with immunodeficiency, centromeric instability, facial anomalies type I (ICF1) syndrome that harbor biallelic hypomorphic DNMT3B mutations. Using a whole-genome array-based approach, we observed a gain of methylation at several imprinted loci in control iPSCs but not in ICF1 iPSCs compared to their parental fibroblasts. Moreover, in corrected ICF1 iPSCs, which restore DNMT3B enzymatic activity, imprinted DMRs did not acquire control DNA methylation levels, in contrast to the majority of the hypomethylated CpGs in the genome that were rescued in the corrected iPSC clones. Overall, our study indicates that DNMT3B is responsible for de novo methylation of a subset of imprinted DMRs during iPSC reprogramming and suggests that imprinting is unstable during a specific time window of this process, after which the epigenetic state at these regions becomes resistant to perturbation.
Collapse
Affiliation(s)
- Ankit Verma
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (A.V.); (F.C.); (E.D.)
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| | - Varsha Poondi Krishnan
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (A.V.); (F.C.); (E.D.)
| | - Emilia D’Angelo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (A.V.); (F.C.); (E.D.)
| | - Vincenzo Lullo
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| | - Maria Strazzullo
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| | - Sara Selig
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel;
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa 31096, Israel
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy;
| | - Maria R. Matarazzo
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (A.V.); (F.C.); (E.D.)
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy; (V.P.K.); (V.L.); (M.S.)
| |
Collapse
|
32
|
Mai L, Wen Z, Zhang Y, Gao Y, Lin G, Lian Z, Yang X, Zhou J, Lin X, Luo C, Peng W, Chen C, Peng J, Liu D, Marjani SL, Tao Q, Cui Y, Zhang J, Wu X, Weissman SM, Pan X. Shortcut barcoding and early pooling for scalable multiplex single-cell reduced-representation CpG methylation sequencing at single nucleotide resolution. Nucleic Acids Res 2023; 51:e108. [PMID: 37870443 PMCID: PMC10681715 DOI: 10.1093/nar/gkad892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
DNA methylation is essential for a wide variety of biological processes, yet the development of a highly efficient and robust technology remains a challenge for routine single-cell analysis. We developed a multiplex scalable single-cell reduced representation bisulfite sequencing (msRRBS) technology. It allows cell-specific barcoded DNA fragments of individual cells to be pooled before bisulfite conversion, free of enzymatic modification or physical capture of the DNA ends, and achieves read mapping rates of 62.5 ± 3.9%, covering 60.0 ± 1.4% of CpG islands and 71.6 ± 1.6% of promoters in K562 cells. Its reproducibility is shown in duplicates of bulk cells with close to perfect correlation (R = 0.97-0.99). At a low 1 Mb of clean reads, msRRBS provides highly consistent coverage of CpG islands and promoters, outperforming the conventional methods with orders of magnitude reduction in cost. Here, we use this method to characterize the distinct methylation patterns and cellular heterogeneity of six cell lines, plus leukemia and hepatocellular carcinoma models. Taking 4 h of hands-on time, msRRBS offers a unique, highly efficient approach for dissecting methylation heterogeneity in a variety of multicellular systems.
Collapse
Affiliation(s)
- Liyao Mai
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Zebin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Yulong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Yu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Guanchuan Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Zhiwei Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Xiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jingjing Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Xianwei Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- SequMed Institute of Biomedical Sciences, Guangzhou 510530, Guangdong Province, China
| | - Chaochao Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Wanwan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Caiming Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Jiajia Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Duolian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT 06050, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, 999077 Hong Kong, China
| | - Yongping Cui
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518035, Guangdong, China
| | - Junxiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- SequMed Institute of Biomedical Sciences, Guangzhou 510530, Guangdong Province, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sherman M Weissman
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong Province, China
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518035, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
33
|
Aich M, Ansari AH, Ding L, Iesmantavicius V, Paul D, Choudhary C, Maiti S, Buchholz F, Chakraborty D. TOBF1 modulates mouse embryonic stem cell fate through regulating alternative splicing of pluripotency genes. Cell Rep 2023; 42:113177. [PMID: 37751355 DOI: 10.1016/j.celrep.2023.113177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Embryonic stem cells (ESCs) can undergo lineage-specific differentiation, giving rise to different cell types that constitute an organism. Although roles of transcription factors and chromatin modifiers in these cells have been described, how the alternative splicing (AS) machinery regulates their expression has not been sufficiently explored. Here, we show that the long non-coding RNA (lncRNA)-associated protein TOBF1 modulates the AS of transcripts necessary for maintaining stem cell identity in mouse ESCs. Among the genes affected is serine/arginine splicing factor 1 (SRSF1), whose AS leads to global changes in splicing and expression of a large number of downstream genes involved in the maintenance of ESC pluripotency. By overlaying information derived from TOBF1 chromatin occupancy, the distribution of its pluripotency-associated OCT-SOX binding motifs, and transcripts undergoing differential expression and AS upon its knockout, we describe local nuclear territories where these distinct events converge. Collectively, these contribute to the maintenance of mouse ESC identity.
Collapse
Affiliation(s)
- Meghali Aich
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asgar Hussain Ansari
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Li Ding
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vytautas Iesmantavicius
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Deepanjan Paul
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Souvik Maiti
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Debojyoti Chakraborty
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
34
|
Hay AD, Kessler NJ, Gebert D, Takahashi N, Tavares H, Teixeira FK, Ferguson-Smith AC. Epigenetic inheritance is unfaithful at intermediately methylated CpG sites. Nat Commun 2023; 14:5336. [PMID: 37660134 PMCID: PMC10475082 DOI: 10.1038/s41467-023-40845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023] Open
Abstract
DNA methylation at the CpG dinucleotide is considered a stable epigenetic mark due to its presumed long-term inheritance through clonal expansion. Here, we perform high-throughput bisulfite sequencing on clonally derived somatic cell lines to quantitatively measure methylation inheritance at the nucleotide level. We find that although DNA methylation is generally faithfully maintained at hypo- and hypermethylated sites, this is not the case at intermediately methylated CpGs. Low fidelity intermediate methylation is interspersed throughout the genome and within genes with no or low transcriptional activity, and is not coordinately maintained between neighbouring sites. We determine that the probabilistic changes that occur at intermediately methylated sites are likely due to DNMT1 rather than DNMT3A/3B activity. The observed lack of clonal inheritance at intermediately methylated sites challenges the current epigenetic inheritance model and has direct implications for both the functional relevance and general interpretability of DNA methylation as a stable epigenetic mark.
Collapse
Affiliation(s)
- Amir D Hay
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Nozomi Takahashi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Hugo Tavares
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Felipe K Teixeira
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
35
|
Graham-Paquin AL, Saini D, Sirois J, Hossain I, Katz MS, Zhuang QKW, Kwon SY, Yamanaka Y, Bourque G, Bouchard M, Pastor WA. ZMYM2 is essential for methylation of germline genes and active transposons in embryonic development. Nucleic Acids Res 2023; 51:7314-7329. [PMID: 37395395 PMCID: PMC10415128 DOI: 10.1093/nar/gkad540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
ZMYM2 is a transcriptional repressor whose role in development is largely unexplored. We found that Zmym2-/- mice show embryonic lethality by E10.5. Molecular characterization of Zmym2-/- embryos revealed two distinct defects. First, they fail to undergo DNA methylation and silencing of germline gene promoters, resulting in widespread upregulation of germline genes. Second, they fail to methylate and silence the evolutionarily youngest and most active LINE element subclasses in mice. Zmym2-/- embryos show ubiquitous overexpression of LINE-1 protein as well as aberrant expression of transposon-gene fusion transcripts. ZMYM2 homes to sites of PRC1.6 and TRIM28 complex binding, mediating repression of germline genes and transposons respectively. In the absence of ZMYM2, hypermethylation of histone 3 lysine 4 occurs at target sites, creating a chromatin landscape unfavourable for establishment of DNA methylation. ZMYM2-/- human embryonic stem cells also show aberrant upregulation and demethylation of young LINE elements, indicating a conserved role in repression of active transposons. ZMYM2 is thus an important new factor in DNA methylation patterning in early embryonic development.
Collapse
Affiliation(s)
- Adda-Lee Graham-Paquin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Megan S Katz
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Yojiro Yamanaka
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
- Canadian Center for Computational Genomics,McGill University, Montreal, Quebec, Canada
| | - Maxime Bouchard
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Singh A, Rappolee DA, Ruden DM. Epigenetic Reprogramming in Mice and Humans: From Fertilization to Primordial Germ Cell Development. Cells 2023; 12:1874. [PMID: 37508536 PMCID: PMC10377882 DOI: 10.3390/cells12141874] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, advances in the understanding of epigenetic reprogramming from fertilization to the development of primordial germline cells in a mouse and human embryo are discussed. To gain insights into the molecular underpinnings of various diseases, it is essential to comprehend the intricate interplay between genetic, epigenetic, and environmental factors during cellular reprogramming and embryonic differentiation. An increasing range of diseases, including cancer and developmental disorders, have been linked to alterations in DNA methylation and histone modifications. Global epigenetic reprogramming occurs in mammals at two stages: post-fertilization and during the development of primordial germ cells (PGC). Epigenetic reprogramming after fertilization involves rapid demethylation of the paternal genome mediated through active and passive DNA demethylation, and gradual demethylation in the maternal genome through passive DNA demethylation. The de novo DNA methyltransferase enzymes, Dnmt3a and Dnmt3b, restore DNA methylation beginning from the blastocyst stage until the formation of the gastrula, and DNA maintenance methyltransferase, Dnmt1, maintains methylation in the somatic cells. The PGC undergo a second round of global demethylation after allocation during the formative pluripotent stage before gastrulation, where the imprints and the methylation marks on the transposable elements known as retrotransposons, including long interspersed nuclear elements (LINE-1) and intracisternal A-particle (IAP) elements are demethylated as well. Finally, DNA methylation is restored in the PGC at the implantation stage including sex-specific imprints corresponding to the sex of the embryo. This review introduces a novel perspective by uncovering how toxicants and stress stimuli impact the critical period of allocation during formative pluripotency, potentially influencing both the quantity and quality of PGCs. Furthermore, the comprehensive comparison of epigenetic events between mice and humans breaks new ground, empowering researchers to make informed decisions regarding the suitability of mouse models for their experiments.
Collapse
Affiliation(s)
- Aditi Singh
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Daniel A. Rappolee
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Reproductive Stress Measurement, Mechanisms and Management, Corp., 135 Lake Shore Rd., Grosse Pointe Farms, MI 48236, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Douglas M. Ruden
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
37
|
Tabe-Bordbar S, Sinha S. Integrative modeling of lncRNA-chromatin interaction maps reveals diverse mechanisms of nuclear retention. BMC Genomics 2023; 24:395. [PMID: 37442953 DOI: 10.1186/s12864-023-09498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Many long non-coding RNAs, known to be involved in transcriptional regulation, are enriched in the nucleus and interact with chromatin. However, their mechanisms of chromatin interaction and the served cellular functions are poorly understood. We sought to characterize the mechanisms of lncRNA nuclear retention by systematically mapping the sequence and chromatin features that distinguish lncRNA-interacting genomic segments. RESULTS We found DNA 5-mer frequencies to be predictive of chromatin interactions for all lncRNAs, suggesting sequence-specificity as a global theme in the interactome. Sequence features representing protein-DNA and protein-RNA binding motifs revealed potential mechanisms for specific lncRNAs. Complementary to these global themes, transcription-related features and DNA-RNA triplex formation potential were noted to be highly predictive for two mutually exclusive sets of lncRNAs. DNA methylation was also noted to be a significant predictor, but only when combined with other epigenomic features. CONCLUSIONS Taken together, our statistical findings suggest that a group of lncRNAs interacts with transcriptionally inactive chromatin through triplex formation, whereas another group interacts with transcriptionally active regions and is involved in DNA Damage Response (DDR) through formation of R-loops. Curiously, we observed a strong pattern of enrichment of 5-mers in four potentially interacting entities: lncRNA-bound DNA tiles, lncRNAs, miRNA seed sequences, and repeat elements. This finding points to a broad sequence-based network of interactions that may underlie regulation of fundamental cellular functions. Overall, this study reveals diverse sequence and chromatin features related to lncRNA-chromatin interactions, suggesting potential mechanisms of nuclear retention and regulatory function.
Collapse
Affiliation(s)
- Shayan Tabe-Bordbar
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Saurabh Sinha
- Department of Biomedical Engineering, Georgia Institute of Technology, UAW 3108, 313 Ferst Drive NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
38
|
Gao L, Zhang Z, Zheng X, Wang F, Deng Y, Zhang Q, Wang G, Zhang Y, Liu X. The Novel Role of Zfp296 in Mammalian Embryonic Genome Activation as an H3K9me3 Modulator. Int J Mol Sci 2023; 24:11377. [PMID: 37511136 PMCID: PMC10379624 DOI: 10.3390/ijms241411377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The changes in epigenetic modifications during early embryonic development significantly impact mammalian embryonic genome activation (EGA) and are species-conserved to some degree. Here, we reanalyzed the published RNA-Seq of human, mouse, and goat early embryos and found that Zfp296 (zinc finger protein 296) expression was higher at the EGA stage than at the oocyte stage in all three species (adjusted p-value < 0.05 |log2(foldchange)| ≥ 1). Subsequently, we found that Zfp296 was conserved across human, mouse, goat, sheep, pig, and bovine embryos. In addition, we identified that ZFP296 interacts with the epigenetic regulators KDM5B, SMARCA4, DNMT1, DNMT3B, HP1β, and UHRF1. The Cys2-His2(C2H2) zinc finger domain TYPE2 TYPE3 domains of ZFP296 co-regulated the modification level of the trimethylation of lysine 9 on the histone H3 protein subunit (H3K9me3). According to ChIP-seq analysis, ZFP296 was also enriched in Trim28, Suv39h1, Setdb1, Kdm4a, and Ehmt2 in the mESC genome. Then, knockdown of the expression of Zfp296 at the late zygote of the mouse led to the early developmental arrest of the mouse embryos and failure resulting from a decrease in H3K9me3. Together, our results reveal that Zfp296 is an H3K9me3 modulator which is essential to the embryonic genome activation of mouse embryos.
Collapse
Affiliation(s)
- Lu Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Xiaoman Zheng
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Fan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Yi Deng
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Qian Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Guoyan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
39
|
Li Q, Lu J, Yin X, Chang Y, Wang C, Yan M, Feng L, Cheng Y, Gao Y, Xu B, Zhang Y, Wang Y, Cui G, Xu L, Sun Y, Zeng R, Li Y, Jing N, Xu GL, Wu L, Tang F, Li J. Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation. Nat Commun 2023; 14:2922. [PMID: 37217538 PMCID: PMC10203112 DOI: 10.1038/s41467-023-38528-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
During embryo development, DNA methylation is established by DNMT3A/3B and subsequently maintained by DNMT1. While much research has been done in this field, the functional significance of DNA methylation in embryogenesis remains unknown. Here, we establish a system of simultaneous inactivation of multiple endogenous genes in zygotes through screening for base editors that can efficiently introduce a stop codon. Embryos with mutations in Dnmts and/or Tets can be generated in one step with IMGZ. Dnmt-null embryos display gastrulation failure at E7.5. Interestingly, although DNA methylation is absent, gastrulation-related pathways are down-regulated in Dnmt-null embryos. Moreover, DNMT1, DNMT3A, and DNMT3B are critical for gastrulation, and their functions are independent of TET proteins. Hypermethylation can be sustained by either DNMT1 or DNMT3A/3B at some promoters, which are related to the suppression of miRNAs. The introduction of a single mutant allele of six miRNAs and paternal IG-DMR partially restores primitive streak elongation in Dnmt-null embryos. Thus, our results unveil an epigenetic correlation between promoter methylation and suppression of miRNA expression for gastrulation and demonstrate that IMGZ can accelerate deciphering the functions of multiple genes in vivo.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiansen Lu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chao Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Meng Yan
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Li Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yanbo Cheng
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yun Gao
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingyi Wang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Guizhong Cui
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Luang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
40
|
Osipovich AB, Dudek KD, Trinh LT, Kim LH, Shrestha S, Cartailler JP, Magnuson MA. ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes. PLoS Genet 2023; 19:e1010729. [PMID: 37155670 PMCID: PMC10166502 DOI: 10.1371/journal.pgen.1010729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger protein 92 (Zfp92), an X-linked KRAB-ZFP that is highly expressed in pancreatic islets of adult mice, by analyzing global Zfp92 knockout (KO) mice. Physiological, transcriptomic and genome-wide chromatin binding studies indicate that the principal function of ZFP92 in mice is to bind to and suppress the activity of B1/Alu type of SINE elements and modulate the activity of surrounding genomic entities. Deletion of Zfp92 leads to changes in expression of select LINE and LTR retroelements and genes located in the vicinity of ZFP92-bound chromatin. The absence of Zfp92 leads to altered expression of specific genes in islets, adipose and muscle that result in modest sex-specific alterations in blood glucose homeostasis, body mass and fat accumulation. In islets, Zfp92 influences blood glucose concentration in postnatal mice via transcriptional effects on Mafb, whereas in adipose and muscle, it regulates Acacb, a rate-limiting enzyme in fatty acid metabolism. In the absence of Zfp92, a novel TE-Capn11 fusion transcript is overexpressed in islets and several other tissues due to de-repression of an IAPez TE adjacent to ZFP92-bound SINE elements in intron 3 of the Capn11 gene. Together, these studies show that ZFP92 functions both to repress specific TEs and to regulate the transcription of specific genes in discrete tissues.
Collapse
Affiliation(s)
- Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Karrie D. Dudek
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Linh T. Trinh
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lily H. Kim
- College of Arts and Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jean-Philippe Cartailler
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
41
|
Lismer A, Kimmins S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat Commun 2023; 14:2142. [PMID: 37059740 PMCID: PMC10104880 DOI: 10.1038/s41467-023-37820-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Although more studies are demonstrating that a father's environment can influence child health and disease, the molecular mechanisms underlying non-genetic inheritance remain unclear. It was previously thought that sperm exclusively contributed its genome to the egg. More recently, association studies have shown that various environmental exposures including poor diet, toxicants, and stress, perturbed epigenetic marks in sperm at important reproductive and developmental loci that were associated with offspring phenotypes. The molecular and cellular routes that underlie how epigenetic marks are transmitted at fertilization, to resist epigenetic reprogramming in the embryo, and drive phenotypic changes are only now beginning to be unraveled. Here, we provide an overview of the state of the field of intergenerational paternal epigenetic inheritance in mammals and present new insights into the relationship between embryo development and the three pillars of epigenetic inheritance: chromatin, DNA methylation, and non-coding RNAs. We evaluate compelling evidence of sperm-mediated transmission and retention of paternal epigenetic marks in the embryo. Using landmark examples, we discuss how sperm-inherited regions may escape reprogramming to impact development via mechanisms that implicate transcription factors, chromatin organization, and transposable elements. Finally, we link paternally transmitted epigenetic marks to functional changes in the pre- and post-implantation embryo. Understanding how sperm-inherited epigenetic factors influence embryo development will permit a greater understanding related to the developmental origins of health and disease.
Collapse
Affiliation(s)
- Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
42
|
Kreibich E, Kleinendorst R, Barzaghi G, Kaspar S, Krebs AR. Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation. Mol Cell 2023; 83:787-802.e9. [PMID: 36758546 DOI: 10.1016/j.molcel.2023.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Enhancers are cis-regulatory elements that control the establishment of cell identities during development. In mammals, enhancer activation is tightly coupled with DNA demethylation. However, whether this epigenetic remodeling is necessary for enhancer activation is unknown. Here, we adapted single-molecule footprinting to measure chromatin accessibility and transcription factor binding as a function of the presence of methylation on the same DNA molecules. We leveraged natural epigenetic heterogeneity at active enhancers to test the impact of DNA methylation on their chromatin accessibility in multiple cell lineages. Although reduction of DNA methylation appears dispensable for the activity of most enhancers, we identify a class of cell-type-specific enhancers where DNA methylation antagonizes the binding of transcription factors. Genetic perturbations reveal that chromatin accessibility and transcription factor binding require active demethylation at these loci. Thus, in addition to safeguarding the genome from spurious activation, DNA methylation directly controls transcription factor occupancy at active enhancers.
Collapse
Affiliation(s)
- Elisa Kreibich
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Rozemarijn Kleinendorst
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Guido Barzaghi
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Sarah Kaspar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Arnaud R Krebs
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
43
|
Al Adhami H, Vallet J, Schaal C, Schumacher P, Bardet AF, Dumas M, Chicher J, Hammann P, Daujat S, Weber M. Systematic identification of factors involved in the silencing of germline genes in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:3130-3149. [PMID: 36772830 PMCID: PMC10123117 DOI: 10.1093/nar/gkad071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
In mammals, many germline genes are epigenetically repressed to prevent their illegitimate expression in somatic cells. To advance our understanding of the mechanisms restricting the expression of germline genes, we analyzed their chromatin signature and performed a CRISPR-Cas9 knock-out screen for genes involved in germline gene repression using a Dazl-GFP reporter system in mouse embryonic stem cells (mESCs). We show that the repression of germline genes mainly depends on the polycomb complex PRC1.6 and DNA methylation, which function additively in mESCs. Furthermore, we validated novel genes involved in the repression of germline genes and characterized three of them: Usp7, Shfm1 (also known as Sem1) and Erh. Inactivation of Usp7, Shfm1 or Erh led to the upregulation of germline genes, as well as retrotransposons for Shfm1, in mESCs. Mechanistically, USP7 interacts with PRC1.6 components, promotes PRC1.6 stability and presence at germline genes, and facilitates DNA methylation deposition at germline gene promoters for long term repression. Our study provides a global view of the mechanisms and novel factors required for silencing germline genes in embryonic stem cells.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Celia Schaal
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Paul Schumacher
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.,Karlsruhe Institute of Technology (KIT), IAB, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Sylvain Daujat
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| |
Collapse
|
44
|
Chu X, Hou Y, Zhang X, Li M, Ma D, Tang Y, Yuan C, Sun C, Liang M, Liu J, Wei Q, Chang Y, Wang C, Zhang J. Hepatic Glucose Metabolism Disorder Induced by Adipose Tissue-Derived miR-548ag via DPP4 Upregulation. Int J Mol Sci 2023; 24:ijms24032964. [PMID: 36769291 PMCID: PMC9917501 DOI: 10.3390/ijms24032964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to explore the molecular mechanism underlying the regulation of glucose metabolism by miR-548ag. For the first time, we found that miR-548ag expression was elevated in the abdominal adipose tissue and serum of subjects with obesity and type 2 diabetes mellitus (T2DM). The conditional knockout of adipose tissue Dicer notably reduced the expression and content of miR-548ag in mouse adipose tissue, serum, and liver tissue. The combined use of RNAseq, an miRNA target gene prediction software, and the dual luciferase reporter assay confirmed that miR-548ag exerts a targeted regulatory effect on DNMT3B and DPP4. miR-548ag and DPP4 expression was increased in the adipose tissue, serum, and liver tissue of diet-induced obese mice, while DNMT3B expression was decreased. It was subsequently confirmed both in vitro and in vivo that adipose tissue-derived miR-548ag impaired glucose tolerance and insulin sensitivity by inhibiting DNMT3B and upregulating DPP4. Moreover, miR-548ag inhibitors significantly improved the adverse metabolic phenotype in both obese mice and db/db mice. These results revealed that the expression of the adipose tissue-derived miR-548ag increased in obese subjects, and that this could upregulate the expression of DPP4 by targeting DNMT3B, ultimately leading to glucose metabolism disorder. Therefore, miR-548ag could be utilized as a potential target in the treatment of T2DM.
Collapse
Affiliation(s)
- Xiaolong Chu
- Medical College, Shihezi University, Shihezi 832000, China
- Department of Medical Genetics, Medical College of Tarim University, Alaer 843300, China
| | - Yanting Hou
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Xueting Zhang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Menghuan Li
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Dingling Ma
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Yihan Tang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Chenggang Yuan
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Chaoyue Sun
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Maodi Liang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Jie Liu
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Qianqian Wei
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Yongsheng Chang
- Medical College, Shihezi University, Shihezi 832000, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Cuizhe Wang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
- Correspondence: (C.W.); (J.Z.); Tel./Fax: +86-993-205-5801 (C.W. & J.Z.)
| | - Jun Zhang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
- Correspondence: (C.W.); (J.Z.); Tel./Fax: +86-993-205-5801 (C.W. & J.Z.)
| |
Collapse
|
45
|
Poondi Krishnan V, Morone B, Toubiana S, Krzak M, Fioriniello S, Della Ragione F, Strazzullo M, Angelini C, Selig S, Matarazzo MR. The aberrant epigenome of DNMT3B-mutated ICF1 patient iPSCs is amenable to correction, with the exception of a subset of regions with H3K4me3- and/or CTCF-based epigenetic memory. Genome Res 2023; 33:169-183. [PMID: 36828588 PMCID: PMC10069469 DOI: 10.1101/gr.276986.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/12/2023] [Indexed: 02/26/2023]
Abstract
Bi-allelic hypomorphic mutations in DNMT3B disrupt DNA methyltransferase activity and lead to immunodeficiency, centromeric instability, facial anomalies syndrome, type 1 (ICF1). Although several ICF1 phenotypes have been linked to abnormally hypomethylated repetitive regions, the unique genomic regions responsible for the remaining disease phenotypes remain largely uncharacterized. Here we explored two ICF1 patient-derived induced pluripotent stem cells (iPSCs) and their CRISPR-Cas9-corrected clones to determine whether DNMT3B correction can globally overcome DNA methylation defects and related changes in the epigenome. Hypomethylated regions throughout the genome are highly comparable between ICF1 iPSCs carrying different DNMT3B variants, and significantly overlap with those in ICF1 patient peripheral blood and lymphoblastoid cell lines. These regions include large CpG island domains, as well as promoters and enhancers of several lineage-specific genes, in particular immune-related, suggesting that they are premarked during early development. CRISPR-corrected ICF1 iPSCs reveal that the majority of phenotype-related hypomethylated regions reacquire normal DNA methylation levels following editing. However, at the most severely hypomethylated regions in ICF1 iPSCs, which also display the highest increases in H3K4me3 levels and/or abnormal CTCF binding, the epigenetic memory persists, and hypomethylation remains uncorrected. Overall, we demonstrate that restoring the catalytic activity of DNMT3B can reverse the majority of the aberrant ICF1 epigenome. However, a small fraction of the genome is resilient to this rescue, highlighting the challenge of reverting disease states that are due to genome-wide epigenetic perturbations. Uncovering the basis for the persistent epigenetic memory will promote the development of strategies to overcome this obstacle.
Collapse
Affiliation(s)
- Varsha Poondi Krishnan
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, (IGB-ABT) CNR, Naples 80131, Italy
| | - Barbara Morone
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, (IGB-ABT) CNR, Naples 80131, Italy
| | - Shir Toubiana
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Monika Krzak
- Institute for Applied Computing (IAC) "Mauro Picone", CNR, Naples 80131 Italy
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, (IGB-ABT) CNR, Naples 80131, Italy
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, (IGB-ABT) CNR, Naples 80131, Italy.,IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia 86077, Italy
| | - Maria Strazzullo
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, (IGB-ABT) CNR, Naples 80131, Italy;
| | - Claudia Angelini
- Institute for Applied Computing (IAC) "Mauro Picone", CNR, Naples 80131 Italy;
| | - Sara Selig
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel; .,Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa 31096, Israel
| | - Maria R Matarazzo
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, (IGB-ABT) CNR, Naples 80131, Italy
| |
Collapse
|
46
|
Erenpreisa J, Giuliani A, Yoshikawa K, Falk M, Hildenbrand G, Salmina K, Freivalds T, Vainshelbaum N, Weidner J, Sievers A, Pilarczyk G, Hausmann M. Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change. Int J Mol Sci 2023; 24:2658. [PMID: 36769000 PMCID: PMC9917235 DOI: 10.3390/ijms24032658] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
Complex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers. Under environmental stress or during cell development, differentiation towards specialized cell types, or to dysfunctional tumor, the cell nucleus seems to react as a whole through coordinated changes at all levels of control. This implies the need for a framework in which biological, chemical, and physical manifestations can serve as a basis for a coherent theory of gene self-organization. An international symposium held at the Biomedical Research and Study Center in Riga, Latvia, on 25 July 2022 addressed novel aspects of the abovementioned topic. The present article reviews the most recent results and conclusions of the state-of-the-art research in this multidisciplinary field of science, which were delivered and discussed by scholars at the Riga symposium.
Collapse
Affiliation(s)
| | - Alessandro Giuliani
- Istituto Superiore di Sanita Environment and Health Department, 00161 Roma, Italy
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Faculty of Engineering, University of Applied Science Aschaffenburg, 63743 Aschaffenburg, Germany
| | - Kristine Salmina
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV1004 Riga, Latvia
| | - Ninel Vainshelbaum
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
- Doctoral Study Program, University of Latvia, LV1004 Riga, Latvia
| | - Jonas Weidner
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Aaron Sievers
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Institute for Human Genetics, University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Götz Pilarczyk
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Andrews S, Krueger C, Mellado-Lopez M, Hemberger M, Dean W, Perez-Garcia V, Hanna CW. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B. Nat Commun 2023; 14:371. [PMID: 36690623 PMCID: PMC9870994 DOI: 10.1038/s41467-023-36019-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
DNA methylation is a repressive epigenetic modification that is essential for development, exemplified by the embryonic and perinatal lethality observed in mice lacking de novo DNA methyltransferases (DNMTs). Here we characterise the role for DNMT3A, 3B and 3L in gene regulation and development of the mouse placenta. We find that each DNMT establishes unique aspects of the placental methylome through targeting to distinct chromatin features. Loss of Dnmt3b results in de-repression of germline genes in trophoblast lineages and impaired formation of the maternal-foetal interface in the placental labyrinth. Using Sox2-Cre to delete Dnmt3b in the embryo, leaving expression intact in placental cells, the placental phenotype was rescued and, consequently, the embryonic lethality, as Dnmt3b null embryos could now survive to birth. We conclude that de novo DNA methylation by DNMT3B during embryogenesis is principally required to regulate placental development and function, which in turn is critical for embryo survival.
Collapse
Affiliation(s)
- Simon Andrews
- Bioinformatics Programme, Babraham Institute, Cambridge, UK
| | - Christel Krueger
- Bioinformatics Programme, Babraham Institute, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Bioinformatics Innovation Hub, Altos Labs Cambridge Institute, Cambridge, UK
| | | | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | | | - Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
48
|
Lauria A, Meng G, Proserpio V, Rapelli S, Maldotti M, Polignano IL, Anselmi F, Incarnato D, Krepelova A, Donna D, Levra Levron C, Donati G, Molineris I, Neri F, Oliviero S. DNMT3B supports meso-endoderm differentiation from mouse embryonic stem cells. Nat Commun 2023; 14:367. [PMID: 36690616 PMCID: PMC9871038 DOI: 10.1038/s41467-023-35938-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
The correct establishment of DNA methylation patterns during mouse early development is essential for cell fate specification. However, the molecular targets as well as the mechanisms that determine the specificity of the de novo methylation machinery during differentiation are not completely elucidated. Here we show that the DNMT3B-dependent DNA methylation of key developmental regulatory regions at epiblast-like cells (EpiLCs) provides an epigenetic priming that ensures flawless commitment at later stages. Using in vitro stem cell differentiation and loss of function experiments combined with high-throughput genome-wide bisulfite-, bulk-, and single cell RNA-sequencing we dissected the specific role of DNMT3B in cell fate. We identify DNMT3B-dependent regulatory elements on the genome which, in Dnmt3b knockout (3BKO), impair the differentiation into meso-endodermal (ME) progenitors and redirect EpiLCs towards the neuro-ectodermal lineages. Moreover, ectopic expression of DNMT3B in 3BKO re-establishes the DNA methylation of the master regulator Sox2 super-enhancer, downmodulates its expression, and restores the expression of ME markers. Taken together, our data reveal that DNMT3B-dependent methylation at the epiblast stage is essential for the priming of the meso-endodermal lineages and provide functional characterization of the de novo DNMTs during EpiLCs lineage determination.
Collapse
Affiliation(s)
- Andrea Lauria
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Guohua Meng
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Valentina Proserpio
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Stefania Rapelli
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Mara Maldotti
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Isabelle Laurence Polignano
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Francesca Anselmi
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Anna Krepelova
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Daniela Donna
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Ivan Molineris
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Francesco Neri
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy.
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy.
| |
Collapse
|
49
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
50
|
Wang J, Qin Y, Kang Y, Li X, Wang Y, Li H, Czajkowsky DM, Shao Z. Temporal profiling with ultra-deep RRBS sequencing reveals the relative rarity of stably maintained methylated CpG sites in human cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1935-1938. [PMID: 36789696 PMCID: PMC10157517 DOI: 10.3724/abbs.2022185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|