1
|
Newnes HV, Armitage JD, Buzzai AC, de Jong E, Audsley KM, Barnes SA, Srinivasan S, Serralha M, Fear VS, Guo BB, Jones ME, Forrest ARR, Foley B, Darcy PK, Beavis PA, Bosco A, Waithman J. Interleukin-4 modulates type I interferon to augment antitumor immunity. SCIENCE ADVANCES 2025; 11:eadt3618. [PMID: 40367186 PMCID: PMC12077506 DOI: 10.1126/sciadv.adt3618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Despite advances in immunotherapy, metastatic melanoma remains a considerable therapeutic challenge due to the complexity of the tumor microenvironment. Intratumoral type I interferon (IFN-I) has long been associated with improved clinical outcomes. However, several IFN-I subtypes can also paradoxically promote tumor growth in some contexts. We investigated this further by engineering murine B16 melanoma cells to overexpress various IFN-I subtypes, where a spectrum of outcomes was observed. Characterization of these tumors by RNA sequencing revealed a tumor immune phenotype, where potent IFN-I signaling concomitant with diminished type 2 inflammation failed to confer durable tumor control. T cell-mediated rejection of these tumors was restored by introducing interleukin-4 (IL-4) into the tumor microenvironment, either through ectopic expression or in a preclinical adoptive T cell therapy model. Collectively, our findings highlight the IFN-I/IL-4 axis in promoting antitumor immunity, which could be harnessed to target and stratify solid tumors that are nonresponsive to frontline therapies.
Collapse
Affiliation(s)
- Hannah V. Newnes
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Jesse D. Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Anthony C. Buzzai
- Department of Dermatology, Otto-von-Guericke University, Magdeburg, Germany
| | - Emma de Jong
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Katherine M. Audsley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Samantha A. Barnes
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Michael Serralha
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Vanessa S. Fear
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Belinda B. Guo
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Matt E. Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Alistair R. R. Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Bree Foley
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| | - Phil K. Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Paul A. Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Anthony Bosco
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- The Kids Research Institute Australia, The University of Western Australia, Perth, Australia
| |
Collapse
|
2
|
Lan S, Zhao Z, He Z. Measles Virus-Based Genetic Modifications: Progress in Hematological Malignancy Treatment. Onco Targets Ther 2025; 18:605-615. [PMID: 40304006 PMCID: PMC12039834 DOI: 10.2147/ott.s518407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
With the enhancement of public living standards and health awareness, demands for high-quality treatment with hematological malignancies are increasing, correspondingly. However, since significant adverse events have been found associated with chemotherapy, radiotherapy and other traditional anticancer measures, and a considerable number of patients still experience relapse or drug resistance, developing new treatment strategies has become the focus in the field of hematological malignancies. The measles virus vaccine strain, as an oncolytic virus, has been paid special attention to, due to its dual advantages of selectively invading and killing tumor cells and activating anti-tumor immunity. Currently, multiple studies have shown the effectiveness of unmodified measles virus vaccine strains in treating hematological malignancies. However, due to the systemic invasiveness and complexity of hematological malignancies, the concept of genetically engineered measles virus vaccine strain has garnered significant attention. In this article, we reviewed the progress on measles virus vaccine strains in the treatment of hematological malignancies, especially on the application of genetic engineering technology. Meanwhile, we also explored the challenges encountered in current treatments and discussed future design direction for modifying measles virus vaccine strains.
Collapse
Affiliation(s)
- Siqian Lan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Zhengyan Zhao
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| |
Collapse
|
3
|
Zhang Q, Song X, Liu J, Zhou X. Prospects of engineered bacteria-assisted CAR T Cell therapy in gastrointestinal cancers. Oncol Rev 2025; 19:1581856. [PMID: 40297102 PMCID: PMC12034723 DOI: 10.3389/or.2025.1581856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
The high incidence and mortality rates associated with gastrointestinal cancers represent a significant global health challenge. In recent years, CAR T cell therapy has emerged as a promising immunotherapeutic approach, demonstrating favorable clinical outcomes. However, the application of traditional CAR T cell therapy in gastrointestinal cancers faces numerous challenges, including the suppressive tumor microenvironment and limitations in anti-tumor efficacy. The application of engineered bacteria offers a novel strategy to enhance CAR T cell therapy by modulating the tumor microenvironment and boosting immune responses, potentially leading to improved therapeutic outcomes. This review synthesizes the current research advancements related to engineered bacteria-assisted CAR T cell therapy in gastrointestinal cancers, exploring its underlying mechanisms, clinical applications, and future developmental directions.
Collapse
Affiliation(s)
- Qingqing Zhang
- Reproductive Medicine, Weifang People’s Hospital, Weifang, Shandong, China
| | - Xiao Song
- Department of Gastroenterology, Weifang People’s Hospital, Weifang, Shandong, China
| | - Junhong Liu
- The Third Department of Geriatrics, Weifang People’s Hospital, Weifang, Shandong, China
| | - Xuejiao Zhou
- Hospital Preparation Center, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
4
|
Mortazavi Farsani SS, Soni J, Jin L, Yadav AK, Bansal S, Mi T, Hilakivi-Clarke L, Clarke R, Youngblood B, Cheema A, Verma V. Pyruvate kinase M2 activation reprograms mitochondria in CD8 T cells, enhancing effector functions and efficacy of anti-PD1 therapy. Cell Metab 2025:S1550-4131(25)00106-8. [PMID: 40199327 DOI: 10.1016/j.cmet.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2024] [Accepted: 03/06/2025] [Indexed: 04/10/2025]
Abstract
Mitochondria regulate T cell functions and response to immunotherapy. We show that pyruvate kinase M2 (PKM2) activation enhances mitochondria-dependent effector functions in CD8 and chimeric antigen receptor (CAR)-T cells. Multi-omics and 13C-glucose tracer studies showed that PKM2 agonism alters one-carbon metabolism, decreasing methionine levels, resulting in hypomethylated nuclear and mitochondrial DNA and enhancing mitochondrial biogenesis and functions. PKM2 activation increased the recall responses and anti-tumor functions of CD8 T cells, enhancing adoptive cell therapy. In preclinical models, the PKM2 agonist induced CD8 T cell-dependent anti-tumor responses that synergized with anti-programmed death 1 (PD1) therapy. Immunologically, PKM2 agonists boosted the activation of effector T cells while reducing FoxP3+ T regulatory (Treg) cells in the tumors. The anti-PD1 combination enhanced the frequency of tumor-specific activated CD8 T cells. Together, PKM2 agonism increased mitochondrial functions supporting cell cytotoxicity. Hence, pharmacological targeting of PKM2 can be a clinically viable strategy for enhancement of adoptive cell therapy, in situ anti-tumor immune responses, and immune checkpoint blockade therapy. VIDEO ABSTRACT.
Collapse
Affiliation(s)
| | - Jignesh Soni
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lu Jin
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Anil Kumar Yadav
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Shivani Bansal
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Tian Mi
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Robert Clarke
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Benjamin Youngblood
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amrita Cheema
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Vivek Verma
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Vile R, Kendall B, Liseth O, Sangsuwannukul T, Elliott N, Yerovi MC, Thompson J, Swanson J, Rizk S, Diaz R, Tonne J. Immunodominant antiviral T cell responses outcompete immuno-subdominant antitumor responses to reduce the efficacy of oncolytic viroimmunotherapy. RESEARCH SQUARE 2025:rs.3.rs-6131273. [PMID: 40166032 PMCID: PMC11957203 DOI: 10.21203/rs.3.rs-6131273/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The paradigm in the field of oncolytic virotherapy proposes that tumor cell killing by an oncolytic virus (OV) culminates in the priming of antitumor CD8 T cells. However, this ignores the impact a highly immunodominant antiviral response against the OV has on the antitumor response which has been weakened by mechanisms of central tolerance. Here, we show that inflammatory Vesicular Stomatitis Virus (VSV) failed to prime an adoptively transferred, or pre-existing, population of tumor-reactive T cells. Combination with αPD1 immune checkpoint blockade therapy improved survival only when VSV expressed tumor associated antigens (TAA). These data show that, in this model, the highly inflammatory OV VSV alone actively outcompetes antitumor immunity. However, we also show that viral expression of a mutant near-self TAA can break central tolerance expanding heteroclitic self-reactive and near-self-reactive T cells, thus overcoming viral immunodominance by promoting tumor-specific T cell proliferation in parallel with expanding antiviral T cells.
Collapse
|
6
|
Zhang B, Wu J, Jiang H, Zhou M. Strategies to Overcome Antigen Heterogeneity in CAR-T Cell Therapy. Cells 2025; 14:320. [PMID: 40072049 PMCID: PMC11899321 DOI: 10.3390/cells14050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Chimeric antigen receptor (CAR) gene-modified T-cell therapy has achieved significant success in the treatment of hematological malignancies. However, this therapy has not yet made breakthroughs in the treatment of solid tumors and still faces issues of resistance and relapse in hematological cancers. A major reason for these problems is the antigenic heterogeneity of tumor tissues. This review outlines the antigenic heterogeneity encountered in CAR-T cell therapy and the corresponding strategies to address it. These strategies include using combination therapy to increase the abundance of target antigens, optimizing the structure of CARs to enhance sensitivity to low-density antigens, developing multi-targeted CAR-T cells, and reprogramming the TME to activate endogenous immunity. These approaches offer new directions for overcoming tumor antigenic heterogeneity in CAR-T cell therapy.
Collapse
Affiliation(s)
- Bohan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| | - Jiawen Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
- CARsgen Therapeutics, Shanghai 200231, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| |
Collapse
|
7
|
Zhu Y, Zhang X, Jin J, Wang X, Liu Y, Gao J, Hang D, Fang L, Zhang H, Liu H. Engineered oncolytic virus coated with anti-PD-1 and alendronate for ameliorating intratumoral T cell hypofunction. Exp Hematol Oncol 2025; 14:16. [PMID: 39955603 PMCID: PMC11829442 DOI: 10.1186/s40164-025-00611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Glioblastoma is a highly aggressive and devastating primary brain tumor that is resistant to conventional therapies. Oncolytic viruses represent a promising therapeutic approach for glioblastoma by selectively lysing tumor cells and eliciting an anti-tumor immune response. However, the clinical efficacy of oncolytic viruses is often hindered by challenges such as short persistence, host antiviral immune responses, and T cell dysfunction. METHODS We have developed a novel therapeutic strategy by "dressing" oncolytic viruses with anti-PD-1 antibodies and alendronate (PD-1/Al@OV) to prevent premature clearance of the oncolytic viruses and enhance T cell function, thereby improving immunotherapy outcomes against glioma. RESULTS We found that in the high reactive oxygen species environment of the tumor, PD-1/Al@OV disassembled to release oncolytic viruses, anti-PD-1, and alendronate. The released anti-PD-1 blocked the PD-1/PD-L1 pathway, activating T cells; the alendronate eliminated tumor-associated macrophages, increasing the concentration of oncolytic viruses; and the oncolytic viruses directly lysed cancer cells, enhancing intratumoral T cell infiltration. CONCLUSION This approach effectively improved the immunosuppressive microenvironment of glioblastoma and achieved a robust anti-tumor effect. Consequently, this study presents a novel strategy for immune combination therapy and the improvement of the glioblastoma immune microenvironment, thereby offering new prospects for the clinical application of oncolytic viruses.
Collapse
Affiliation(s)
- Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China.
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, 221002, China.
| | - Xuefeng Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Jiaqi Jin
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, 221002, China
| | - Xiaoqian Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155, Nanjing Bei Street, Shenyang, 110001, China
| | - Jian Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Diancheng Hang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, China.
| | - Hengzhu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China.
- Department of Neurosurgery, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou University, No. 98, Nantong West Road, Yangzhou, 225009, China.
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China.
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Conte M, Xella A, Woodall RT, Cassady KA, Branciamore S, Brown CE, Rockne RC. CAR T-cell and oncolytic virus dynamics and determinants of combination therapy success for glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634499. [PMID: 39896563 PMCID: PMC11785192 DOI: 10.1101/2025.01.23.634499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Glioblastoma is a highly aggressive and treatment-resistant primary brain cancer. While chimeric antigen receptor (CAR) T-cell therapy has demonstrated promising results in targeting these tumors, it has not yet been curative. An innovative approach to improve CAR T-cell efficacy is to combine them with other immune modulating therapies. In this study, we investigate in vitro combination of IL-13Rα2 targeted CAR T-cells with an oncolytic virus (OV) and study the complex interplay between tumor cells, CAR T-cells, and OV dynamics with a novel mathematical model. We fit the model to data collected from experiments with each therapy individually and in combination to reveal determinants of therapy synergy and improved efficacy. Our analysis reveals that the virus bursting size is a critical parameter in determining the net tumor infection rate and overall combination treatment efficacy. Moreover, the model predicts that administering the oncolytic virus simultaneously with, or prior to, CAR T-cells could maximize therapeutic efficacy.
Collapse
Affiliation(s)
- Martina Conte
- Department of Mathematical, Physical and Computer Sciences, University of Parma Parco Area delle Scienze 53/A, 43124, Parma, Italy
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Agata Xella
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute Tampa, Florida, United States of America
| | - Ryan T. Woodall
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Kevin A. Cassady
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital Columbus, Ohio, United States of America
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus Ohio, United States of America
| | - Sergio Branciamore
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Christine E. Brown
- Departments of Hematology & Hematopoietic Cell Transplantation and Immuno–Oncology Beckman Research Institute, City of Hope National Medical Center Duarte, California, United States of America
| | - Russell C. Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| |
Collapse
|
9
|
Chen F, Lang L, Yang J, Yang F, Tang S, Fu Z, Saba NF, Luo M, Teng Y. SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis. Biomark Res 2025; 13:8. [PMID: 39789615 PMCID: PMC11721257 DOI: 10.1186/s40364-025-00726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment. METHODS The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S. Head and neck squamous cell carcinoma (HNSCC) cell lines and orthotopic mouse models were employed for research. Morphological changes were observed using both light microscopy and transmission electron microscopy. Molecular alterations were analyzed through Western blotting and ELISA kits. The tumor secretome was characterized using a combination of biotinylation and LC-MS analysis. Immune cell changes were evaluated by flow cytometry and immunohistochemistry. RESULTS Compared to its parental virus, VSV-S not only increases apoptosis by overexpressing SMAC during VSV infection but also triggers elevated levels of PANoptosis (pyroptosis, apoptosis, and necroptosis) in HNSCC cells via activation of caspase-1/gasdermin D (GSDMD) signaling. As a result, VSV-S-induced PANoptosis promotes CD8+ T cell tumor infiltration and enhances their cytotoxic capacity, eventually potentiating T cell-mediated antitumor immunity. Moreover, VSV-S reduces PDL1 levels in HNSCC cells and, in combination with PD1 blockade, produces a more potent antitumor effect than either therapy alone. CONCLUSIONS Our findings demonstrate that the combination of VSV-S and PD1 blockade offers a synergistic therapeutic strategy for HNSCC, supporting the advancement of VSV-based virotherapy as a promising strategy to improve outcomes for HNSCC patients.
Collapse
Affiliation(s)
- Fanghui Chen
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Liwei Lang
- Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jianqiang Yang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Fan Yang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Sijia Tang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Zhenzhen Fu
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Zeng Q, Zhang S, Leng N, Xing Y. Advancing tumor vaccines: Overcoming TME challenges, delivery strategies, and biomaterial-based vaccine for enhanced immunotherapy. Crit Rev Oncol Hematol 2025; 205:104576. [PMID: 39581246 DOI: 10.1016/j.critrevonc.2024.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Tumor vaccines, as an immunotherapeutic approach, harness the body's immune cells to provoke antitumor responses, which have shown promising efficacy in clinical settings. However, the immunosuppressive tumor microenvironment (TME) and the ineffective vaccine delivery systems hinder the progression of many vaccines beyond phase II trials. This article begins with a comprehensive review of the complex interactions between tumor vaccines and TME, summarizing the current state of vaccine clinical research. Subsequently, we review recent advancements in targeted vaccine delivery systems and explore biomaterial-based tumor vaccines as a strategy to improve the efficacy of both delivery systems and treatment. Finally, we have presented our perspectives on tumor vaccine development, aiming to advance the field towards the creation of more effective tumor vaccines.
Collapse
Affiliation(s)
- Qingsong Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shibo Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ning Leng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
11
|
Miao L, Zhang J, Xu W, Qian Q, Zhang G, Yuan Q, Lv Y, Zhang H, Shen C, Wang W. Global research trends in CAR-T cell therapy for solid tumors: A comprehensive visualization and bibliometric study (2012-2023). Hum Vaccin Immunother 2024; 20:2338984. [PMID: 38698555 PMCID: PMC11073418 DOI: 10.1080/21645515.2024.2338984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
CAR-T cell therapy has emerged as a significant approach for the management of hematological malignancies. Over the past few years, the utilization of CAR-T cells in the investigation and treatment of solid tumors has gained momentum, thereby establishing itself as a prominent area of research. This descriptive study involved the retrieval of articles about CAR-T cell therapy for solid tumors from the Web of Science Core Collection (WoSCC) database. Subsequently, bibliometric analysis and knowledge map analysis were conducted on these articles. The field under consideration is currently experiencing a period of swift advancement, as evidenced by the escalating number of publications in this domain each year. The United States holds an indisputable position as the foremost leader in this particular field, with the University of Pennsylvania emerging as the most active institution. The authors with the highest citation frequency and co-citation frequency are Carl H. June and Shannon L. Maude, respectively. The research hotspots in this field mainly focus on five aspects. Additionally, 10 emerging themes were identified. This study undertakes a comprehensive, systematic, and objective analysis and exploration of the field of CAR-T cell treatment for solid tumors, utilizing bibliometric methods. The findings of this study are expected to serve as a valuable reference and enlightenment for future research endeavors in this particular domain.
Collapse
Affiliation(s)
- Lele Miao
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Juan Zhang
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, China
| | - Wei Xu
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Qian Qian
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Guochao Zhang
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Quan Yuan
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Yuetao Lv
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Haiguo Zhang
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, China
| | - Chaoyan Shen
- Department of Ultrasound, Jining NO.1 People’s Hospital, Jining, China
| | - Wei Wang
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| |
Collapse
|
12
|
Amhis N. Innovative approaches to glioma treatment: Oncolytic foamy virus and CAR T cell therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200876. [PMID: 39380917 PMCID: PMC11459628 DOI: 10.1016/j.omton.2024.200876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Affiliation(s)
- Nawal Amhis
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
14
|
Ponterio E, Haas TL, De Maria R. Oncolytic virus and CAR-T cell therapy in solid tumors. Front Immunol 2024; 15:1455163. [PMID: 39539554 PMCID: PMC11557337 DOI: 10.3389/fimmu.2024.1455163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Adoptive immunotherapy with T cells, genetically modified to express a tumor-reactive chimeric antigen receptor (CAR), is an innovative and rapidly developing life-saving treatment for cancer patients without other therapeutic opportunities. CAR-T cell therapy has proven effective only in hematological malignancies. However, although by now only a few clinical trials had promising outcomes, we predict that CAR-T therapy will eventually become an established treatment for several solid tumors. Oncolytic viruses (OVs) can selectively replicate in and kill cancer cells without harming healthy cells. They can stimulate an immune response against the tumor, because OVs potentially stimulate adaptive immunity and innate components of the host immune system. Using CAR-T cells along with oncolytic viruses may enhance the efficacy of CAR-T cell therapy in destroying solid tumors by increasing the tumor penetrance of T cells and reducing the immune suppression by the tumor microenvironment. This review describes recent advances in the design of oncolytic viruses and CAR-T cells while providing an overview of the potential combination of oncolytic virotherapy with CAR-T cells for solid cancers. In this review, we will focus on the host-virus interaction in the tumor microenvironment to reverse local immunosuppression and to develop CAR-T cell effector function.
Collapse
Affiliation(s)
- Eleonora Ponterio
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionali, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tobias Longin Haas
- Dipartimento di Medicina e Chirurgia Traslazionali, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
- IIGM - Italian Institute for Genomic Medicine, Candiolo, TO, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionali, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” - I.R.C.C.S., Rome, Italy
| |
Collapse
|
15
|
Stilpeanu RI, Secara BS, Cretu-Stancu M, Bucur O. Oncolytic Viruses as Reliable Adjuvants in CAR-T Cell Therapy for Solid Tumors. Int J Mol Sci 2024; 25:11127. [PMID: 39456909 PMCID: PMC11508774 DOI: 10.3390/ijms252011127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Although impactful scientific advancements have recently been made in cancer therapy, there remains an opportunity for future improvements. Immunotherapy is perhaps one of the most cutting-edge categories of therapies demonstrating potential in the clinical setting. Genetically engineered T cells express chimeric antigen receptors (CARs), which can detect signals expressed by the molecules present on the surface of cancer cells, also called tumor-associated antigens (TAAs). Their effectiveness has been extensively demonstrated in hematological cancers; therefore, these results can establish the groundwork for their applications on a wide range of requirements. However, the application of CAR-T cell technology for solid tumors has several challenges, such as the existence of an immune-suppressing tumor microenvironment and/or inadequate tumor infiltration. Consequently, combining therapies such as CAR-T cell technology with other approaches has been proposed. The effectiveness of combining CAR-T cell with oncolytic virus therapy, with either genetically altered or naturally occurring viruses, to target tumor cells is currently under investigation, with several clinical trials being conducted. This narrative review summarizes the current advancements, opportunities, benefits, and limitations in using each therapy alone and their combination. The use of oncolytic viruses offers an opportunity to address the existing challenges of CAR-T cell therapy, which appear in the process of trying to overcome solid tumors, through the combination of their strengths. Additionally, utilizing oncolytic viruses allows researchers to modify the virus, thus enabling the targeted delivery of specific therapeutic agents within the tumor environment. This, in turn, can potentially enhance the cytotoxic effect and therapeutic potential of CAR-T cell technology on solid malignancies, with impactful results in the clinical setting.
Collapse
MESH Headings
- Humans
- Neoplasms/therapy
- Neoplasms/immunology
- Oncolytic Viruses/genetics
- Oncolytic Viruses/immunology
- Immunotherapy, Adoptive/methods
- Oncolytic Virotherapy/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Tumor Microenvironment/immunology
- T-Lymphocytes/immunology
- Combined Modality Therapy/methods
- Adjuvants, Immunologic
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Ruxandra Ilinca Stilpeanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | - Bianca Stefania Secara
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | | | - Octavian Bucur
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
- Genomics Research and Development Institute, 020021 Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA 02108, USA
| |
Collapse
|
16
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
17
|
Zhang Z, Su M, Jiang P, Wang X, Tong X, Wu G. Unlocking Apoptotic Pathways: Overcoming Tumor Resistance in CAR-T-Cell Therapy. Cancer Med 2024; 13:e70283. [PMID: 39377542 PMCID: PMC11459502 DOI: 10.1002/cam4.70283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T-cell therapy has transformed cancer treatment, leading to remarkable clinical outcomes. However, resistance continues to be a major obstacle, significantly limiting its efficacy in numerous patients. OBJECTIVES This review critically examines the challenges associated with CAR-T-cell therapy, with a particular focus on the role of apoptotic pathways in overcoming resistance. METHODS We explore various strategies to sensitize tumor cells to CAR-T-cell-mediated apoptosis, including the use of combination therapies with BH3 mimetics, Mcl-1 inhibitors, IAP inhibitors, and HDAC inhibitors. These agents inhibit anti-apoptotic proteins and activate intrinsic mitochondrial pathways, enhancing the susceptibility of tumor cells to apoptosis. Moreover, targeting the extrinsic pathway can increase the expression of death receptors on tumor cells, further promoting their apoptosis. The review also discusses the development of novel CAR constructs that enhance anti-apoptotic protein expression, such as Bcl-2, which may counteract CAR-T cell exhaustion and improve antitumor efficacy. We assess the impact of the tumor microenvironment (TME) on CAR-T cell function and propose dual-targeting CAR-T cells to simultaneously address both myeloid-derived suppressor cells (MDSCs) and tumor cells. Furthermore, we explore the potential of combining agents like PPAR inhibitors to activate the cGAS-STING pathway, thereby improving CAR-T cell infiltration into the tumor. CONCLUSIONS This review highlights that enhancing tumor cell sensitivity to apoptosis and increasing CAR-T cell cytotoxicity through apoptotic pathways could significantly improve therapeutic outcomes. Targeting apoptotic proteins, particularly those involved in the intrinsic mitochondrial pathway, constitutes a novel approach to overcoming resistance. The insights presented herein lay a robust foundation for future research and clinical applications aimed at optimizing CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhanna Zhang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Manqi Su
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Panruo Jiang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Xiaoxia Wang
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| | - Xiangmin Tong
- Department of Central LaboratorySchool of Medicine, Affiliated Hangzhou First People's Hospital, WestLake UniversityZhejiangHangzhouChina
| | - Gongqiang Wu
- Department of HematologyDongyang Hospital Affiliated to WenZhou Medical UniversityJinhuaZhejiangChina
| |
Collapse
|
18
|
Hua X, Xuan S, Tang Y, You S, Zhao S, Qiu Y, Li Y, Li Y, Su Y, Qu P. Progression of oncolytic virus in liver cancer treatment. Front Oncol 2024; 14:1446085. [PMID: 39391253 PMCID: PMC11464341 DOI: 10.3389/fonc.2024.1446085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
The liver plays a crucrial role in detoxification, metabolism, and nutrient storage. Because liver cancer ranks among the top three leading causes of death globally, there is an urgent need for developing treatment strategies for liver cancer. Although traditional approaches such as radiation, chemotherapy, surgical removal, and transplantation are widely practiced, the number of patients with liver cancer continues to increase rapidly each year. Some novel therapeutics for liver cancer have been studied for many years. In the past decade, oncolytic therapy has emerged, in which viruses selectively infect and destroy cancer cells while sparing normal cells. However, oncolytic virotherapy for liver cancer remains relatively obscure due to the aggressive nature of the disease and the limited effectiveness of treatment. To keep pace with the latest developments in oncolytic tumor therapy for liver cancer, this review summarizes basic science studies and clinical trials conducted within 5 years, focusing on the efficacy and safety profiles of the five most commonly used oncolytic viruses: herpes simplex virus, adenovirus, influenza virus, vaccinia virus, and coxsackievirus.
Collapse
Affiliation(s)
- Xuesi Hua
- School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Siyu Xuan
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yangyang Tang
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shilin You
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Shang Zhao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Yinqing Li
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peng Qu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
- Department of Pharmacy, Zhejiang University of Technology Fuyang Yinhu Institute of Innovation and Entrepreneurship, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Ahmed EN, Cutmore LC, Marshall JF. Syngeneic Mouse Models for Pre-Clinical Evaluation of CAR T Cells. Cancers (Basel) 2024; 16:3186. [PMID: 39335157 PMCID: PMC11430534 DOI: 10.3390/cancers16183186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of hematological malignancies. Unfortunately, this improvement has yet to be translated into the solid tumor field. Current immunodeficient models used in pre-clinical testing often overestimate the efficacy of CAR T cell therapy as they fail to recapitulate the immunosuppressive tumor microenvironment characteristic of solid tumors. As CAR T cell monotherapy is unlikely to be curative for many solid tumors, combination therapies must be investigated, for example, stromal remodeling agents and immunomodulators. The evaluation of these combination therapies requires a fully immunocompetent mouse model in order to recapitulate the interaction between the host's immune system and the CAR T cells. This review will discuss the need for improved immunocompetent murine models for the pre-clinical evaluation of CAR T cells, the current use of such models and future directions.
Collapse
Affiliation(s)
- Eman N Ahmed
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Lauren C Cutmore
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
20
|
Harrer DC, Eder M, Barden M, Pan H, Herr W, Abken H. Ectopic PU.1 Expression Provides Chimeric Antigen Receptor (CAR) T Cells with Innate Cell Capacities Including IFN-β Release. Cancers (Basel) 2024; 16:2737. [PMID: 39123467 PMCID: PMC11311516 DOI: 10.3390/cancers16152737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved extraordinary success in eliminating B cell malignancies; however, so far, it has shown limited efficacy in the treatment of solid tumors, which is thought to be due to insufficient CAR T cell activation. We hypothesized that the transcription factor PU.1, a master regulator of innate cell functionality, may augment pro-inflammatory CAR T cell activation. T cells were engineered with a CEA-specific CAR together with the constitutive expression of PU.1. CAR-redirected T cell activation was recorded for canonical functionality in vitro under conditions of prolonged repetitive antigen exposure. Ectopic PU.1 expression in CAR T cells upregulated the costimulatory receptors CD40, CD80, CD86, and CD70, which, unexpectedly, did not augment effector functions but hampered the upregulation of 4-1BB, decreased IL-2 production, reduced CAR T cell proliferation, and impaired their cytotoxic capacities. Under "stress" conditions of repetitive engagement of cognate tumor cells, CAR T cells with ectopic PU.1 showed reduced persistence, and finally failed to control the growth of cancer cells. Mechanistically, PU.1 caused CAR T cells to secrete IFN-β, a cytokine known to promote CAR T cell attrition and apoptosis. Collectively, PU.1 can polarize the functional capacities of CAR T cells towards innate cells.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Matthias Eder
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Markus Barden
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Hong Pan
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Wolfgang Herr
- Department of Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| |
Collapse
|
21
|
Gao X, Liu J, Sun R, Zhang J, Cao X, Zhang Y, Zhao M. Alliance between titans: combination strategies of CAR-T cell therapy and oncolytic virus for the treatment of hematological malignancies. Ann Hematol 2024; 103:2569-2589. [PMID: 37853078 DOI: 10.1007/s00277-023-05488-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
There have been several clinical studies using chimeric antigen receptor (CAR)-T cell therapy for different hematological malignancies. It has transformed the therapy landscape for hematologic malignancies dramatically. Nonetheless, in acute myeloid leukemia (AML) and T cell malignancies, it still has a dismal prognosis. Even in the most promising locations, recurrence with CAR-T treatment remains a big concern. Oncolytic viruses (OVs) can directly lyse tumor cells or cause immune responses, and they can be manipulated to create therapeutic proteins, increasing anticancer efficacy. Oncolytic viruses have been proven in a rising number of studies to be beneficial in hematological malignancies. There are limitations that cannot be avoided by using either treatment alone, and the combination of CAR-T cell therapy and oncolytic virus therapy may complement the disadvantages of individual application, enhance the advantages of their respective treatment methods and improve the treatment effect. The alternatives for combining two therapies in hematological malignancies are discussed in this article.
Collapse
Affiliation(s)
- Xuejin Gao
- Emergency, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jile Liu
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Rui Sun
- Nankai University School of Medicine, Tianjin, 300192, China
| | - Jingkun Zhang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
22
|
Yuan Z, Zhang Y, Wang X, Wang X, Ren S, He X, Su J, Zheng A, Guo S, Chen Y, Deng S, Wu X, Li M, Du F, Zhao Y, Shen J, Wang Z, Xiao Z. The investigation of oncolytic viruses in the field of cancer therapy. Front Oncol 2024; 14:1423143. [PMID: 39055561 PMCID: PMC11270537 DOI: 10.3389/fonc.2024.1423143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a potential strategy for tumor treatment due to their ability to selectively replicate in tumor cells, induce apoptosis, and stimulate immune responses. However, the therapeutic efficacy of single OVs is limited by the complexity and immunosuppressive nature of the tumor microenvironment (TME). To overcome these challenges, engineering OVs has become an important research direction. This review focuses on engineering methods and multi-modal combination therapies for OVs aimed at addressing delivery barriers, viral phagocytosis, and antiviral immunity in tumor therapy. The engineering approaches discussed include enhancing in vivo immune response, improving replication efficiency within the tumor cells, enhancing safety profiles, and improving targeting capabilities. In addition, this review describes the potential mechanisms of OVs combined with radiotherapy, chemotherapy, cell therapy and immune checkpoint inhibitors (ICIs), and summarizes the data of ongoing clinical trials. By continuously optimizing engineering strategies and combination therapy programs, we can achieve improved treatment outcomes and quality of life for cancer patients.
Collapse
Affiliation(s)
- Zijun Yuan
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sipeng Guo
- Research And Experiment Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zechen Wang
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
| | - Zhangang Xiao
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
23
|
Ramapriyan R, Vykunta VS, Vandecandelaere G, Richardson LGK, Sun J, Curry WT, Choi BD. Altered cancer metabolism and implications for next-generation CAR T-cell therapies. Pharmacol Ther 2024; 259:108667. [PMID: 38763321 DOI: 10.1016/j.pharmthera.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Vivasvan S Vykunta
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gust Vandecandelaere
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leland G K Richardson
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jing Sun
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Stergiopoulos GM, Concilio SC, Galanis E. An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas. Curr Treat Options Oncol 2024; 25:952-991. [PMID: 38896326 PMCID: PMC11878440 DOI: 10.1007/s11864-024-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
OPINION STATEMENT Malignant gliomas are common central nervous system tumors that pose a significant clinical challenge due to the lack of effective treatments. Glioblastoma (GBM), a grade 4 malignant glioma, is the most prevalent primary malignant brain tumor and is associated with poor prognosis. Current clinical trials are exploring various strategies to combat GBM, with oncolytic viruses (OVs) appearing particularly promising. In addition to ongoing and recently completed clinical trials, one OV (Teserpaturev, Delytact®) received provisional approval for GBM treatment in Japan. OVs are designed to selectively target and eliminate cancer cells while promoting changes in the tumor microenvironment that can trigger and support long-lasting anti-tumor immunity. OVs offer the potential to remodel the tumor microenvironment and reverse systemic immune exhaustion. Additionally, an increasing number of OVs are armed with immunomodulatory payloads or combined with immunotherapy approaches in an effort to promote anti-tumor responses in a tumor-targeted manner. Recently completed oncolytic virotherapy trials can guide the way for future treatment individualization through patient preselection, enhancing the likelihood of achieving the highest possible clinical success. These trials also offer valuable insight into the numerous challenges inherent in malignant glioma treatment, some of which OVs can help overcome.
Collapse
Affiliation(s)
| | | | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
25
|
Mikolič V, Pantović-Žalig J, Malenšek Š, Sever M, Lainšček D, Jerala R. Toll-like receptor 4 signaling activation domains promote CAR T cell function against solid tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200815. [PMID: 38840781 PMCID: PMC11152746 DOI: 10.1016/j.omton.2024.200815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a powerful therapeutic approach against a range of hematologic malignancies. While the incorporation of CD28 or 4-1BB costimulatory signaling domains into CARs revolutionized immune responses, there is an exciting prospect of further enhancing CAR functionality. Here, we investigated the design of CD19 CARs enriched with distinct Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), or Toll/IL-1 domain-containing adaptor-inducing interferon (IFN)-β (TRIF) costimulatory domains. Screening of various designs identified several candidates with no tonic activity but with increased CD19 target cell-dependent interleukin (IL)-2 production. Human T cells transduced with the selected CAR construct exhibited augmented hIL-2 and hIFN-γ induction and cytotoxicity when cocultured with CD19-positive lymphoma and solid-tumor cell lines. RNA sequencing (RNA-seq) analysis demonstrated the upregulation of some genes involved in the innate immune response and T cell activation and proliferation. In experiments on a xenogeneic solid-tumor mice model, MyD88 and TLR4 CAR T cells exhibited prolonged remission. This study demonstrates that the integration of a truncated TLR4 signaling costimulatory domain could provide immunotherapeutic potential against both hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Veronika Mikolič
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Jelica Pantović-Žalig
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Špela Malenšek
- Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Matjaž Sever
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Olifirenko V, Barlev NA. A Review of CAR-T Combination Therapies for Treatment of Gynecological Cancers. Int J Mol Sci 2024; 25:6595. [PMID: 38928301 PMCID: PMC11204235 DOI: 10.3390/ijms25126595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
CAR-T cell therapy offers a promising way for prolonged cancer remission, specifically in the case of blood cancers. However, its application in the treatment of solid tumors still faces many limitations. This review paper provides a comprehensive overview of the challenges and strategies associated with CAR-T cell therapy for solid tumors, with a focus on gynecological cancer. This study discusses the limitations of CAR-T therapy for solid tumor treatment, such as T cell exhaustion, stromal barrier, and antigen shedding. Additionally, it addresses possible approaches to increase CAR-T efficacy in solid tumors, including combination therapies with checkpoint inhibitors and chemotherapy, as well as the novel approach of combining CAR-T with oncolytic virotherapy. Given the lack of comprehensive research on CAR-T combination therapies for treating gynecological cancers, this review aims to provide insights into the current landscape of combination therapies for solid tumors and highlight the potential of such an approach in gynecology.
Collapse
Affiliation(s)
| | - Nikolai A. Barlev
- Department of Biomedical Studies, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| |
Collapse
|
27
|
Vazaios K, van Berkum RE, Calkoen FG, van der Lugt J, Hulleman E. OV Modulators of the Paediatric Brain TIME: Current Status, Combination Strategies, Limitations and Future Directions. Int J Mol Sci 2024; 25:5007. [PMID: 38732225 PMCID: PMC11084613 DOI: 10.3390/ijms25095007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Oncolytic viruses (OVs) are characterised by their preference for infecting and replicating in tumour cells either naturally or after genetic modification, resulting in oncolysis. Furthermore, OVs can elicit both local and systemic anticancer immune responses while specifically infecting and lysing tumour cells. These characteristics render them a promising therapeutic approach for paediatric brain tumours (PBTs). PBTs are frequently marked by a cold tumour immune microenvironment (TIME), which suppresses immunotherapies. Recent preclinical and clinical studies have demonstrated the capability of OVs to induce a proinflammatory immune response, thereby modifying the TIME. In-depth insights into the effect of OVs on different cell types in the TIME may therefore provide a compelling basis for using OVs in combination with other immunotherapy modalities. However, certain limitations persist in our understanding of oncolytic viruses' ability to regulate the TIME to enhance anti-tumour activity. These limitations primarily stem from the translational limitations of model systems, the difficulties associated with tracking reliable markers of efficacy throughout the course of treatment and the role of pre-existing viral immunity. In this review, we describe the different alterations observed in the TIME in PBTs due to OV treatment, combination therapies of OVs with different immunotherapies and the hurdles limiting the development of effective OV therapies while suggesting future directions based on existing evidence.
Collapse
Affiliation(s)
| | | | | | | | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (F.G.C.); (J.v.d.L.)
| |
Collapse
|
28
|
Moinuddin A, Poznanski SM, Portillo AL, Monteiro JK, Ashkar AA. Metabolic adaptations determine whether natural killer cells fail or thrive within the tumor microenvironment. Immunol Rev 2024; 323:19-39. [PMID: 38459782 DOI: 10.1111/imr.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Natural Killer (NK) cells are a top contender in the development of adoptive cell therapies for cancer due to their diverse antitumor functions and ability to restrict their activation against nonmalignant cells. Despite their success in hematologic malignancies, NK cell-based therapies have been limited in the context of solid tumors. Tumor cells undergo various metabolic adaptations to sustain the immense energy demands that are needed to support their rapid and uncontrolled proliferation. As a result, the tumor microenvironment (TME) is depleted of nutrients needed to fuel immune cell activity and contains several immunosuppressive metabolites that hinder NK cell antitumor functions. Further, we now know that NK cell metabolic status is a main determining factor of their effector functions. Hence, the ability of NK cells to withstand and adapt to these metabolically hostile conditions is imperative for effective and sustained antitumor activity in the TME. With this in mind, we review the consequences of metabolic hostility in the TME on NK cell metabolism and function. We also discuss tumor-like metabolic programs in NK cell induced by STAT3-mediated expansion that adapt NK cells to thrive in the TME. Finally, we examine how other approaches can be applied to enhance NK cell metabolism in tumors.
Collapse
Affiliation(s)
- Adnan Moinuddin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Sophie M Poznanski
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Ana L Portillo
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Ashkar
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Chen Y, Yu D, Qian H, Shi Y, Tao Z. CD8 + T cell-based cancer immunotherapy. J Transl Med 2024; 22:394. [PMID: 38685033 PMCID: PMC11057112 DOI: 10.1186/s12967-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system in humans is a defense department against both exogenous and endogenous hazards, where CD8+ T cells play a crucial role in opposing pathological threats. Various immunotherapies based on CD8+ T cells have emerged in recent decades, showing their promising results in treating intractable diseases. However, in the fight against the constantly changing and evolving cancers, the formation and function of CD8+ T cells can be challenged by tumors that might train a group of accomplices to resist the T cell killing. As cancer therapy stepped into the era of immunotherapy, understanding the physiological role of CD8+ T cells, studying the machinery of tumor immune escape, and thereby formulating different therapeutic strategies become the imperative missions for clinical and translational researchers to fulfill. After brief basics of CD8+ T cell-based biology is covered, this review delineates the mechanisms of tumor immune escape and discusses different cancer immunotherapy regimens with their own advantages and setbacks, embracing challenges and perspectives in near future.
Collapse
Affiliation(s)
- Yanxia Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dingning Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Department of Laboratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Zhimin Tao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Department of Emergency Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| |
Collapse
|
30
|
Andreu-Saumell I, Rodriguez-Garcia A, Mühlgrabner V, Gimenez-Alejandre M, Marzal B, Castellsagué J, Brasó-Maristany F, Calderon H, Angelats L, Colell S, Nuding M, Soria-Castellano M, Barbao P, Prat A, Urbano-Ispizua A, Huppa JB, Guedan S. CAR affinity modulates the sensitivity of CAR-T cells to PD-1/PD-L1-mediated inhibition. Nat Commun 2024; 15:3552. [PMID: 38670972 PMCID: PMC11053011 DOI: 10.1038/s41467-024-47799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.
Collapse
Affiliation(s)
- Irene Andreu-Saumell
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Alba Rodriguez-Garcia
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain.
| | - Vanessa Mühlgrabner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Marta Gimenez-Alejandre
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Berta Marzal
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Joan Castellsagué
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Fara Brasó-Maristany
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Hugo Calderon
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Laura Angelats
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Salut Colell
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Mara Nuding
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Marta Soria-Castellano
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Paula Barbao
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
| | - Aleix Prat
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Sonia Guedan
- Oncology and Hematology Department, Fundació Clínic Recerca Biomédica- IDIBAPS, Barcelona, Spain.
| |
Collapse
|
31
|
Xu MY, Zeng N, Liu CQ, Sun JX, An Y, Zhang SH, Xu JZ, Zhong XY, Ma SY, He HD, Hu J, Xia QD, Wang SG. Enhanced cellular therapy: revolutionizing adoptive cellular therapy. Exp Hematol Oncol 2024; 13:47. [PMID: 38664743 PMCID: PMC11046957 DOI: 10.1186/s40164-024-00506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Enhanced cellular therapy has emerged as a novel concept following the basis of cellular therapy. This treatment modality applied drugs or biotechnology to directly enhance or genetically modify cells to enhance the efficacy of adoptive cellular therapy (ACT). Drugs or biotechnology that enhance the killing ability of immune cells include immune checkpoint inhibitors (ICIs) / antibody drugs, small molecule inhibitors, immunomodulatory factors, proteolysis targeting chimera (PROTAC), oncolytic virus (OV), etc. Firstly, overcoming the inhibitory tumor microenvironment (TME) can enhance the efficacy of ACT, which can be achieved by blocking the immune checkpoint. Secondly, cytokines or cytokine receptors can be expressed by genetic engineering or added directly to adoptive cells to enhance the migration and infiltration of adoptive cells to tumor cells. Moreover, multi-antigen chimeric antigen receptors (CARs) can be designed to enhance the specific recognition of tumor cell-related antigens, and OVs can also stimulate antigen release. In addition to inserting suicide genes into adoptive cells, PROTAC technology can be used as a safety switch or degradation agent of immunosuppressive factors to enhance the safety and efficacy of adoptive cells. This article comprehensively summarizes the mechanism, current situation, and clinical application of enhanced cellular therapy, describing potential improvements to adoptive cellular therapy.
Collapse
Affiliation(s)
- Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hao-Dong He
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jia Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
32
|
Liao YM, Hsu SH, Chiou SS. Harnessing the Transcriptional Signatures of CAR-T-Cells and Leukemia/Lymphoma Using Single-Cell Sequencing Technologies. Int J Mol Sci 2024; 25:2416. [PMID: 38397092 PMCID: PMC10889174 DOI: 10.3390/ijms25042416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has greatly improved outcomes for patients with relapsed or refractory hematological malignancies. However, challenges such as treatment resistance, relapse, and severe toxicity still hinder its widespread clinical application. Traditional transcriptome analysis has provided limited insights into the complex transcriptional landscape of both leukemia cells and engineered CAR-T-cells, as well as their interactions within the tumor microenvironment. However, with the advent of single-cell sequencing techniques, a paradigm shift has occurred, providing robust tools to unravel the complexities of these factors. These techniques enable an unbiased analysis of cellular heterogeneity and molecular patterns. These insights are invaluable for precise receptor design, guiding gene-based T-cell modification, and optimizing manufacturing conditions. Consequently, this review utilizes modern single-cell sequencing techniques to clarify the transcriptional intricacies of leukemia cells and CAR-Ts. The aim of this manuscript is to discuss the potential mechanisms that contribute to the clinical failures of CAR-T immunotherapy. We examine the biological characteristics of CAR-Ts, the mechanisms that govern clinical responses, and the intricacies of adverse events. By exploring these aspects, we hope to gain a deeper understanding of CAR-T therapy, which will ultimately lead to improved clinical outcomes and broader therapeutic applications.
Collapse
Affiliation(s)
- Yu-Mei Liao
- Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
33
|
Natarelli N, Aleman SJ, Mark IM, Tran JT, Kwak S, Botto E, Aflatooni S, Diaz MJ, Lipner SR. A Review of Current and Pipeline Drugs for Treatment of Melanoma. Pharmaceuticals (Basel) 2024; 17:214. [PMID: 38399429 PMCID: PMC10892880 DOI: 10.3390/ph17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Malignant melanoma is the most aggressive form of skin cancer. Standard treatment options include surgery, radiation therapy, systemic chemotherapy, targeted therapy, and immunotherapy. Combining these modalities often yields better responses. Surgery is suitable for localized cases, sometimes involving lymph node dissection and biopsy, to assess the spread of the disease. Radiation therapy may be sometimes used as a standalone treatment or following surgical excision. Systemic chemotherapy, while having low response rates, is utilized as part of combination treatments or when other methods fail. The development of resistance to systemic chemotherapies and associated side effects have prompted further research and clinical trials for novel approaches. In the case of advanced-stage melanoma, a comprehensive approach may be necessary, incorporating targeted therapies and immunotherapies that demonstrate significant antitumor activity. Targeted therapies, including inhibitors targeting BRAF, MEK, c-KIT, and NRAS, are designed to block the specific molecules responsible for tumor growth. These therapies show promise, particularly in patients with corresponding mutations. Combination therapy, including BRAF and MEK inhibitors, has been evidenced to improve progression-free survival; however, concerns about resistance and cutaneous toxicities highlight the need for close monitoring. Immunotherapies, leveraging tumor-infiltrating lymphocytes and CAR T cells, enhance immune responses. Lifileucel, an FDA-approved tumor-infiltrating lymphocyte therapy, has demonstrated improved response rates in advanced-stage melanoma. Ongoing trials continue to explore the efficacy of CAR T-cell therapy for advanced melanoma. Checkpoint inhibitors targeting CTLA-4 and PD-1 have enhanced outcomes. Emerging IL-2 therapies boost dendritic cells, enhancing anticancer immunity. Oncolytic virus therapy, approved for advanced melanoma, augments treatment efficacy in combination approaches. While immunotherapy has significantly advanced melanoma treatment, its success varies, prompting research into new drugs and factors influencing outcomes. This review provides insights into current melanoma treatments and recent therapeutic advances.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Sarah J. Aleman
- School of Medicine, Louisiana State University, New Orleans, LA 70112, USA
| | - Isabella M. Mark
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jasmine T. Tran
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Sean Kwak
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Elizabeth Botto
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Michael J. Diaz
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Shari R. Lipner
- Department of Dermatology, Weill Cornell Medicine, New York City, NY 10021, USA
| |
Collapse
|
34
|
DePeaux K, Delgoffe GM. Integrating innate and adaptive immunity in oncolytic virus therapy. Trends Cancer 2024; 10:135-146. [PMID: 37880008 PMCID: PMC10922271 DOI: 10.1016/j.trecan.2023.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Oncolytic viruses (OVs), viruses engineered to lyse tumor cells, work hand in hand with the immune response. While for decades the field isolated lytic capability and viral spread to increase response to virotherapy, there is now a wealth of research that demonstrates the importance of immunity in the OV mechanism of action. In this review, we will cover how OVs interact with the innate immune system to fully activate the adaptive immune system and yield exceptional tumor clearances as well as look forward at combination therapies which can improve clinical responses.
Collapse
Affiliation(s)
- Kristin DePeaux
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Loos P, Short L, Savage G, Evgin L. Expansion and Retroviral Transduction of Primary Murine T Cells for CAR T-Cell Therapy. Methods Mol Biol 2024; 2748:41-53. [PMID: 38070106 DOI: 10.1007/978-1-0716-3593-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The development of chimeric antigen receptor (CAR) T cells has been a revolutionary technology for the treatment of relapsed and refractory leukemias and lymphomas. The synthetic CAR molecule redirects T cell function toward tumor surface-expressed antigens through a single-chain variable fragment (scFv) fused to CD3z and intracellular costimulatory domains. Here, we describe a protocol for the generation of CAR T cells using primary mouse T cells and a gammaretroviral vector encoding a CAR transgene. This protocol outlines several transduction and expansion methods based on the use of two transduction enhancers, RetroNectin® and Vectofusin®-1, and cell culture systems such as conventional plates or G-Rex® devices.
Collapse
Affiliation(s)
- Pauline Loos
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Lauralie Short
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Gillian Savage
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Laura Evgin
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Zhang L, Guo S, Chang S, Jiang G. Revolutionizing Cancer Treatment: Unleashing the Power of Combining Oncolytic Viruses with CAR-T Cells. Anticancer Agents Med Chem 2024; 24:1407-1418. [PMID: 39051583 DOI: 10.2174/0118715206308253240723055019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Oncolytic Viruses (OVs) have emerged as a promising treatment option for cancer thanks to their significant research potential and encouraging results. These viruses exert a profound impact on the tumor microenvironment, making them effective against various types of cancer. In contrast, the efficacy of Chimeric antigen receptor (CAR)-T cell therapy in treating solid tumors is relatively low. The combination of OVs and CAR-T cell therapy, however, is a promising area of research. OVs play a crucial role in enhancing the tumor-suppressive microenvironment, which in turn enables CAR-T cells to function efficiently in the context of solid malignancies. This review aims to provide a comprehensive analysis of the benefits and drawbacks of OV therapy and CAR-T cell therapy, with a focus on the potential of combining these two treatment approaches.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - ShuXian Guo
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - ShuYing Chang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| |
Collapse
|
37
|
Li Y, Duan HY, Yang KD, Ye JF. Advancements and challenges in oncolytic virus therapy for gastrointestinal tumors. Biomed Pharmacother 2023; 168:115627. [PMID: 37812894 DOI: 10.1016/j.biopha.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Tumors of the gastrointestinal tract impose a substantial healthcare burden due to their prevalence and challenging prognosis. METHODS We conducted a review of peer-reviewed scientific literature using reputable databases (PubMed, Scopus, Web of Science) with a focus on oncolytic virus therapy within the context of gastrointestinal tumors. Our search covered the period up to the study's completion in June 2023. INCLUSION AND EXCLUSION CRITERIA This study includes articles from peer-reviewed scientific journals, written in English, that specifically address oncolytic virus therapy for gastrointestinal tumors, encompassing genetic engineering advances, combined therapeutic strategies, and safety and efficacy concerns. Excluded are articles not meeting these criteria or focusing on non-primary gastrointestinal metastatic tumors. RESULTS Our review revealed the remarkable specificity of oncolytic viruses in targeting tumor cells and their potential to enhance anti-tumor immune responses. However, challenges related to safety and efficacy persist, underscoring the need for ongoing research and improvement. CONCLUSION This study highlights the promising role of oncolytic virus therapy in enhancing gastrointestinal tumor treatments. Continued investigation and innovative combination therapies hold the key to reducing the burden of these tumors on patients and healthcare systems.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China; School of Nursing, Jilin University, Changchun, China
| | - Hao-Yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - Jun-Feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
38
|
Chen C, Jung A, Yang A, Monroy I, Zhang Z, Chaurasiya S, Deshpande S, Priceman S, Fong Y, Park AK, Woo Y. Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies. Cancers (Basel) 2023; 15:5661. [PMID: 38067366 PMCID: PMC10705752 DOI: 10.3390/cancers15235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Precision immune oncology capitalizes on identifying and targeting tumor-specific antigens to enhance anti-tumor immunity and improve the treatment outcomes of solid tumors. Gastric cancer (GC) is a molecularly heterogeneous disease where monoclonal antibodies against human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor (VEGF), and programmed cell death 1 (PD-1) combined with systemic chemotherapy have improved survival in patients with unresectable or metastatic GC. However, intratumoral molecular heterogeneity, variable molecular target expression, and loss of target expression have limited antibody use and the durability of response. Often immunogenically "cold" and diffusely spread throughout the peritoneum, GC peritoneal carcinomatosis (PC) is a particularly challenging, treatment-refractory entity for current systemic strategies. More adaptable immunotherapeutic approaches, such as oncolytic viruses (OVs) and chimeric antigen receptor (CAR) T cells, have emerged as promising GC and GCPC treatments that circumvent these challenges. In this study, we provide an up-to-date review of the pre-clinical and clinical efficacy of CAR T cell therapy for key primary antigen targets and provide a translational overview of the types, modifications, and mechanisms for OVs used against GC and GCPC. Finally, we present a novel, summary-based discussion on the potential synergistic interplay between OVs and CAR T cells to treat GCPC.
Collapse
Affiliation(s)
- Courtney Chen
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Audrey Jung
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Annie Yang
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Isabel Monroy
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
| | - Zhifang Zhang
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Shyambabu Chaurasiya
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Supriya Deshpande
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Saul Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
| | - Anthony K. Park
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA; (I.M.); (S.P.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope, Duarte, CA 91010, USA; (C.C.); (A.J.); (A.Y.); (Z.Z.); (S.C.); (S.D.); (Y.F.)
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
39
|
Giardino Torchia ML, Moody G. DIALing-up the preclinical characterization of gene-modified adoptive cellular immunotherapies. Front Immunol 2023; 14:1264882. [PMID: 38090585 PMCID: PMC10713823 DOI: 10.3389/fimmu.2023.1264882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The preclinical characterization of gene modified adoptive cellular immunotherapy candidates for clinical development often requires the use of mouse models. Gene-modified lymphocytes (GML) incorporating chimeric antigen receptors (CAR) and T-cell receptors (TCR) into immune effector cells require in vivo characterization of biological activity, mechanism of action, and preclinical safety. Typically, this characterization involves the assessment of dose-dependent, on-target, on-tumor activity in severely immunocompromised mice. While suitable for the purpose of evaluating T cell-expressed transgene function in a living host, this approach falls short in translating cellular therapy efficacy, safety, and persistence from preclinical models to humans. To comprehensively characterize cell therapy products in mice, we have developed a framework called "DIAL". This framework aims to enable an end-to-end understanding of genetically engineered cellular immunotherapies in vivo, from infusion to tumor clearance and long-term immunosurveillance. The acronym DIAL stands for Distribution, Infiltration, Accumulation, and Longevity, compartmentalizing the systemic attributes of gene-modified cellular therapy and providing a platform for optimization with the ultimate goal of improving therapeutic efficacy. This review will discuss both existent and emerging examples of DIAL characterization in mouse models, as well as opportunities for future development and optimization.
Collapse
Affiliation(s)
| | - Gordon Moody
- Cell Therapy Unit, Oncology Research, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
40
|
Li Z, Zhao L, Zhang Y, Zhu L, Mu W, Ge T, Jin J, Tan J, Cheng J, Wang J, Wang N, Zhou X, Chen L, Chang Z, Liu C, Bian Z, Liu B, Ye L, Lan Y, Huang L, Zhou J. Functional diversification and dynamics of CAR-T cells in patients with B-ALL. Cell Rep 2023; 42:113263. [PMID: 37851569 DOI: 10.1016/j.celrep.2023.113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/03/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Understanding of cellular evolution and molecular programs of chimeric antigen receptor-engineered (CAR)-T cells post-infusion is pivotal for developing better treatment strategies. Here, we construct a longitudinal high-precision single-cell transcriptomic landscape of 7,578 CAR-T cells from 26 patients with B cell acute lymphoblastic leukemia (B-ALL) post-infusion. We molecularly identify eight CAR-T cell subtypes, including three cytotoxic subtypes with distinct kinetics and three dual-identity subtypes with non-T cell characteristics. Remarkably, long-term remission is coincident with the dominance of cytotoxic subtypes, while leukemia progression is correlated with the emergence of subtypes with B cell transcriptional profiles, which have dysfunctional features and might predict relapse. We further validate in vitro that the generation of B-featured CAR-T cells is induced by excessive tumor antigen stimulation or suppressed TCR signaling, while it is relieved by exogenous IL-12. Moreover, we define transcriptional hallmarks of CAR-T cell subtypes and reveal their molecular changes along computationally inferred cellular evolution in vivo. Collectively, these results decipher functional diversification and dynamics of peripheral CAR-T cells post-infusion.
Collapse
Affiliation(s)
- Zongcheng Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| | - Lei Zhao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuanyuan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaoxi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhilin Chang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Zhilei Bian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
41
|
Sridaran D, Bradshaw E, DeSelm C, Pachynski R, Mahajan K, Mahajan NP. Prostate cancer immunotherapy: Improving clinical outcomes with a multi-pronged approach. Cell Rep Med 2023; 4:101199. [PMID: 37738978 PMCID: PMC10591038 DOI: 10.1016/j.xcrm.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Cancer immunotherapy has gained traction in recent years owing to remarkable tumor clearance in some patients. Despite the notable success of immune checkpoint blockade (ICB) in multiple malignancies, engagement of the immune system for targeted prostate cancer (PCa) therapy is still in its infancy. Multiple factors contribute to limited response, including the heterogeneity of PCa, the cold tumor microenvironment, and a low number of neoantigens. Significant effort is being invested in improving immune-based PCa therapies. This review is a summary of the status of immunotherapy in treating PCa, with a discussion of multiple immune modalities, including vaccines, adoptively transferred T cells, and bispecific T cell engagers, some of which are undergoing clinical trials. In addition, this review also focuses on emerging mechanism-based small-molecule tyrosine kinase inhibitors with immune modulatory properties that, either as single agents or in combination with other immunotherapies, have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Elliot Bradshaw
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Carl DeSelm
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Department of Radiation Oncology, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Russell Pachynski
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Division of Oncology, Department of Medicine, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
42
|
Wang T, Zhang K, You F, Ma R, Yang N, Tian S, An G, Yang L. Preconditioning of radiotherapy enhances efficacy of B7-H3-CAR-T in treating solid tumor models. Life Sci 2023; 331:122024. [PMID: 37574043 DOI: 10.1016/j.lfs.2023.122024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
AIMS Limited efficacy of chimeric antigen receptor T (CAR-T) cells in treating solid tumors is largely due to the antigen heterogeneity and immunosuppressive tumor microenvironment (TME). B7-H3 is over-expressed in most kind of solid tumors, making it a promising target for cancer treatment. This study aims to explore the effect of B7-H3-CAR-T therapy combined with radiotherapy in treating solid tumor models. METHODS Irradiated tumor cell lines were prepared and tested. A humanized B7-H3-CAR-T was constructed, and it was evaluated that B7-H3-CAR-T cytotoxicity against solid tumor models with preconditioning of radiotherapy in vitro and vivo. RESULTS Irradiation was found to increase expression level of B7-H3 in pancreatic cancer (PANC-1), colorectal cancer (HCT-15, SW620), acute myelocytic leukemia (AML-5), epidermoid carcinoma (KB) and glioma (U87-MG) human cell lines significantly. 6Gy irradiation was also found to up-regulate tumor-infiltration molecule like intracellular adhesion molecule-1 ICAM-1 or FAS in HCT-15 cells, supporting a possible synergistic enhancement effect of radiotherapy. In vitro and in vivo experiments demonstrated that irradiation indeed significantly enhanced the ability of B7-H3-CAR-T to infiltrate and kill tumors. Interestingly in dual-tumor mouse model study, not only tumor cells on irradiation side were eradicated completely, irradiation also enhanced CAR-T tumor-killing ability on non-irradiated side, confirming the abscopal effect of irradiation existed with CAR-T therapy. CONCLUSIONS Our results suggest that B7-H3-CAR-T therapy combined with radiotherapy may be a promising modality in treating solid tumors.
Collapse
Affiliation(s)
- Tian Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Kailu Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fengtao You
- PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Renyuxue Ma
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Nan Yang
- PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China
| | - Shuaiyu Tian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Gangli An
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Lin Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; PersonGen BioTherapeutics Co., Ltd., Suzhou, PR China.
| |
Collapse
|
43
|
Li H, Wang X, Wang Y, Li Y, Chen Y, Wong YT, He J, He ML. Secreted LRPAP1 binds and triggers IFNAR1 degradation to facilitate virus evasion from cellular innate immunity. Signal Transduct Target Ther 2023; 8:374. [PMID: 37743411 PMCID: PMC10518340 DOI: 10.1038/s41392-023-01630-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
The crucial role of interferon (IFN) signaling is well known in the restriction or eradication of pathogen invasion. Viruses take a variety of ways to antagonize host defense through eliminating IFN-signaling intracellularly for decades. However, the way by viruses target IFN-signaling extracellularly has not been discovered. Infection by both coronavirus SARS-CoV-2 and enterovirus 71 (EV71 or EV-A71) can cause severe diseases such as neurological disorders and even death in children.1-3 Here, we show evidence that the protease of SARS-CoV-2 (3CLpro) and EV71 (2Apro) upregulates the expression and secretion of LDL-receptor-related protein-associated protein 1 (LRPAP1). As a ligand, the N-terminus of secreted LRPAP1 binds with the extracellular domain of IFNAR1 that triggers the receptor ubiquitination and degradation and promotes virus infection both in vitro, ex vivo in the mouse brain, and in vivo in newborn mice. A small peptide from the N-terminus of LRPAP1 effectively binds and causes IFNAR1 degradation that enhances both DNA and RNA viral infections, including herpesvirus HSV-1, hepatitis B virus (HBV), EV71, and beta-coronavirus HCoV-OC43; whereas α2M, a LRPAP1 inhibitor, arrests virus infections by stabilizing IFNAR1. Our study demonstrates a new mechanism used by viruses for evading host cell immunity, supporting a strategy for developing pan-antiviral drugs.
Collapse
Affiliation(s)
- Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- CityU Shenzhen Research Institute, Nanshan, Shenzhen, China
| | - Xiong Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yin-Ting Wong
- Department of Neurosciences, City University of Hong Kong, Hong Kong, China
| | - Jufang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Department of Neurosciences, City University of Hong Kong, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- CityU Shenzhen Research Institute, Nanshan, Shenzhen, China.
| |
Collapse
|
44
|
Lara-Vega I, Correa-Lara MVM, Vega-López A. Effectiveness of radiotherapy and targeted radionuclide therapy for melanoma in preclinical mouse models: A combination treatments overview. Bull Cancer 2023; 110:912-936. [PMID: 37277266 DOI: 10.1016/j.bulcan.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Cutaneous melanoma is an aggressive and highly metastatic skin cancer. In recent years, immunotherapy and targeted small-molecule inhibitors have improved the overall survival of patients. Unfortunately, most patients in advanced stages of disease exhibit either intrinsically resistant or rapidly acquire resistance to these approved treatments. However, combination treatments have emerged to overcome resistance, and novel treatments based on radiotherapy (RT) and targeted radionuclide therapy (TRT) have been developed to treat melanoma in the preclinical mouse model, raising the question of whether synergy in combination therapies may motivate and increase their use as primary treatments for melanoma. To help clarify this question, we reviewed the studies in preclinical mouse models where they evaluated RT and TRT in combination with other approved and unapproved therapies from 2016 onwards, focusing on the type of melanoma model used (primary tumor and or metastatic model). PubMed® was the database in which the search was performed using mesh search algorithms resulting in 41 studies that comply with the inclusion rules of screening. Studies reviewed showed that synergy with RT or TRT had strong antitumor effects, such as tumor growth inhibition and fewer metastases, also exhibiting systemic protection. In addition, most studies were carried out on antitumor response for the implanted primary tumor, demonstrating that more studies are needed to evaluate these combined treatments in metastatic models on long-term protocols.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico
| | - Maximiliano V M Correa-Lara
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico
| | - Armando Vega-López
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico.
| |
Collapse
|
45
|
Jung IY, Bartoszek RL, Rech AJ, Collins SM, Ooi SK, Williams EF, Hopkins CR, Narayan V, Haas NB, Frey NV, Hexner EO, Siegel DL, Plesa G, Porter DL, Cantu A, Everett JK, Guedan S, Berger SL, Bushman FD, Herbst F, Fraietta JA. Type I Interferon Signaling via the EGR2 Transcriptional Regulator Potentiates CAR T Cell-Intrinsic Dysfunction. Cancer Discov 2023; 13:1636-1655. [PMID: 37011008 PMCID: PMC10330003 DOI: 10.1158/2159-8290.cd-22-1175] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown promise in treating hematologic cancers, but resistance is common and efficacy is limited in solid tumors. We found that CAR T cells autonomously propagate epigenetically programmed type I interferon signaling through chronic stimulation, which hampers antitumor function. EGR2 transcriptional regulator knockout not only blocks this type I interferon-mediated inhibitory program but also independently expands early memory CAR T cells with improved efficacy against liquid and solid tumors. The protective effect of EGR2 deletion in CAR T cells against chronic antigen-induced exhaustion can be overridden by interferon-β exposure, suggesting that EGR2 ablation suppresses dysfunction by inhibiting type I interferon signaling. Finally, a refined EGR2 gene signature is a biomarker for type I interferon-associated CAR T cell failure and shorter patient survival. These findings connect prolonged CAR T cell activation with deleterious immunoinflammatory signaling and point to an EGR2-type I interferon axis as a therapeutically amenable biological system. SIGNIFICANCE To improve CAR T cell therapy outcomes, modulating molecular determinants of CAR T cell-intrinsic resistance is crucial. Editing the gene encoding the EGR2 transcriptional regulator renders CAR T cells impervious to type I interferon pathway-induced dysfunction and improves memory differentiation, thereby addressing major barriers to progress for this emerging class of cancer immunotherapies. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- In-Young Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert L. Bartoszek
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J. Rech
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra M. Collins
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Soon-Keat Ooi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik F. Williams
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caitlin R. Hopkins
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek Narayan
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi B. Haas
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noelle V. Frey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth O. Hexner
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L. Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David L. Porter
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adrian Cantu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Guedan
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Spain
| | - Shelley L. Berger
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Friederike Herbst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A. Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lead Contact
| |
Collapse
|
46
|
Mamola JA, Chen CY, Currier MA, Cassady K, Lee DA, Cripe TP. Opportunities and challenges of combining adoptive cellular therapy with oncolytic virotherapy. Mol Ther Oncolytics 2023; 29:118-124. [PMID: 37250971 PMCID: PMC10209482 DOI: 10.1016/j.omto.2023.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
The use of oncolytic viruses (OVs) and adoptive cell therapies (ACT) have independently emerged as promising approaches for cancer immunotherapy. More recently, the combination of such agents to obtain a synergistic anticancer effect has gained attention, particularly in solid tumors, where immune-suppressive barriers of the microenvironment remain a challenge for desirable therapeutic efficacy. While adoptive cell monotherapies may be restricted by an immunologically cold or suppressive tumor microenvironment (TME), OVs can serve to prime the TME by eliciting a wave of cancer-specific immunogenic cell death and inducing enhanced antitumor immunity. While OV/ACT synergy is an attractive approach, immune-suppressive barriers remain, and methods should be considered to optimize approaches for such combination therapy. In this review, we summarize current approaches that aim to overcome these barriers to enable optimal synergistic antitumor effects.
Collapse
Affiliation(s)
- Joseph A. Mamola
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Chun-Yu Chen
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mark A. Currier
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kevin Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| |
Collapse
|
47
|
Zhao Z, Cao L, Sun Z, Liu W, Li X, Fang K, Shang X, Hu J, Chen H, Lou Z, Qian P. A Structure-Guided Genetic Modification Strategy: Developing Seneca Valley Virus Therapy against Nonsensitive Nonsmall Cell Lung Carcinoma. J Virol 2023; 97:e0045923. [PMID: 37097154 PMCID: PMC10231241 DOI: 10.1128/jvi.00459-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Numerous studies have illustrated that the Seneca Valley virus (SVV) shows sufficient oncolytic efficacy targeting small cell lung cancer (SCLC). However, the therapeutics of nonsmall cell lung carcinoma (NSCLC, accounts for 85% of lung cancer cases) using oncolytic virus have been resisting due to the filtration of neutralizing antibody and limited reproduction capacity. Here, we employed structural biology and reverse genetics to optimize novel oncolytic SVV mutants (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related variant SVV-S177A/P60S) with increased infectivity and lower immunogenicity. The results of the NSCLC-bearing athymic mouse model demonstrated that wild-type (wt) SVV-HB extended the median overall survival (mOS) from 11 days in the PBS group to 19 days. Notably, the newly discovered mutations significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort. Taken together, we present a structure-guided genetic modification strategy for oncolytic SVV optimization and provide a candidate for developing oncolytic viral therapy against nonsensitive NSCLC. IMPORTANCE Nonsmall cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases (more than 1.85 million cases with 1.48 million deaths in 2020). In the present study, two novel oncolytic SVV mutants modified based on structural biology and reverse genetics (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related mutant SVV-S177A/P60S) with increased infectivity or lower immunogenicity significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort in the NSCLC-bearing athymic mouse model, which may provide the direction for modifying SVV to improve the effect of oncolysis.
Collapse
Affiliation(s)
- Zekai Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lin Cao
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology Nankai University, Tianjin, China
| | - Zixian Sun
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, China
| | - Wenqiang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kui Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianfei Shang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junjie Hu
- Hubei Colorectal Cancer Clinical Research Center, Hubei Cancer Hospital, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhiyong Lou
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
48
|
Long L, Gao J, Zhang R. PTTG1 Enhances Oncolytic Adenovirus 5 Entry into Pancreatic Adenocarcinoma Cells by Increasing CXADR Expression. Viruses 2023; 15:v15051153. [PMID: 37243239 DOI: 10.3390/v15051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) is overexpressed in various types of tumors and functions as an oncogene; it could also be a potential target in tumor therapy. Meanwhile, the high mortality of pancreatic adenocarcinoma (PAAD) largely depends on the limited effectiveness of therapy. Based on the promising potential of PTTG1 in cancer treatment, we explored the influence of PTTG1 on the treatment of PAAD in this study. The Cancer Genome Atlas Program (TCGA) data showed that higher expression of PTTG1 was associated with higher clinical stages and worse prognosis of pancreatic cancer. In addition, the CCK-8 assay showed that the IC50 of gemcitabine and 5-fluorouracil (5-FU) was increased in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells. The TIDE algorithm indicated that the immune checkpoint blockades' (ICBs) efficiency is poor in the PTTG1 high group. Furthermore, we found that the efficiency of OAd5 was enhanced in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells and poor in BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells. We used the OAd5 expressing GFP for transduction. As a result, the fluorescence intensity was enhanced in BxPC-3-PTTG1high and MIA PaCa-2-PTTG1high cells and decreased in BxPC-3-PTTG1low and MIA PaCa-2-PTTG1low cells 24 h after OAd5 transduction. The fluorescence intensity indicated that PTTG1 increased OAd5 entry. The flow cytometry assay showed that OAd5 receptor CXADR expression was enhanced by PTTG1. PTTG1 failed to further enhance OAd5 transduction in the case of CXADR knockdown. In summary, PTTG1 enhanced OAd5 transduction into pancreatic cancer cells by increasing CXADR expression on the cell surface.
Collapse
Affiliation(s)
- Lu Long
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Ruiyang Zhang
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
49
|
Moglan AM, Albaradie OA, Alsayegh FF, Alharbi HM, Samman YM, Jalal MM, Saeedi NH, Mahmoud AB, Alkayyal AA. Preclinical efficacy of oncolytic VSV-IFNβ in treating cancer: A systematic review. Front Immunol 2023; 14:1085940. [PMID: 37063914 PMCID: PMC10104167 DOI: 10.3389/fimmu.2023.1085940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundCancer incidence and mortality are increasing rapidly worldwide, necessitating further investigation into developing and optimizing emergent cancer therapies. Oncolytic viruses such as vesicular stomatitis virus encoding interferon β (VSV-IFNβ) have attracted considerable attention, as they offer great efficacy and safety profiles. This systematic review aimed to determine and compare the efficacy profile between VSV-IFNβ and non-treatment controls in preclinical cancer models.MethodologyThe Embase and Medline databases were systematically searched for relevant studies using related key terms and Medical Subject Headings (MeSH). Titles, abstracts, and full texts were screened, and data from eligible articles were extracted by two groups independently and in duplicate (two reviewers per group). Disagreements were resolved by a fifth independent reviewer. The included articles were all preclinical (translational) in vivo English studies that investigated and compared the efficacy profile between VSV-IFNβ and non-treatment controls in animal models. The risk of bias among the studies was assessed by two reviewers independently and in duplicate using SYRCLE’s risk-of-bias tool for animal studies; disparities were addressed by a third independent reviewer.ResultsAfter employing relevant MeSH and key terms, we identified 1598 articles. A total of 87 articles were either duplicates or conference proceedings and were thus excluded. Following title and abstract screening, 37 articles were included in the full-text assessment. Finally, 14 studies met the eligibility criteria. Forty-two experiments from the included studies examined the potential efficacy of VSV-IFNβ through different routes of administration, including intratumoral, intraperitoneal, and intravenous routes. Thirty-seven experiments reported positive outcomes. Meanwhile, five experiments reported negative outcomes, three and two of which examined intratumoral and intravenous VSV-IFNβ administration, respectively.ConclusionAlthough the majority of the included studies support the promising potential of VSV-IFNβ as an oncolytic virus, further research is necessary to ensure a safe and efficacious profile to translate its application into clinical trials.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022335418.
Collapse
Affiliation(s)
- Abdulaziz Molham Moglan
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Omar A. Albaradie
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Fares Fayez Alsayegh
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Hussam Mohsen Alharbi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Yahya Marwan Samman
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Mohammed M. Jalal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Nizar H. Saeedi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| |
Collapse
|
50
|
Wu YY, Sun TK, Chen MS, Munir M, Liu HJ. Oncolytic viruses-modulated immunogenic cell death, apoptosis and autophagy linking to virotherapy and cancer immune response. Front Cell Infect Microbiol 2023; 13:1142172. [PMID: 37009515 PMCID: PMC10050605 DOI: 10.3389/fcimb.2023.1142172] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Recent reports have revealed that oncolytic viruses (OVs) play a significant role in cancer therapy. The infection of OVs such as oncolytic vaccinia virus (OVV), vesicular stomatitis virus (VSV), parvovirus, mammalian reovirus (MRV), human adenovirus, Newcastle disease virus (NDV), herpes simplex virus (HSV), avian reovirus (ARV), Orf virus (ORFV), inactivated Sendai virus (ISV), enterovirus, and coxsackievirus offer unique opportunities in immunotherapy through diverse and dynamic pathways. This mini-review focuses on the mechanisms of OVs-mediated virotherapy and their effects on immunogenic cell death (ICD), apoptosis, autophagy and regulation of the immune system.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Te-Kai Sun
- Tsairder Boitechnology Co. Ltd., Taichung, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Muhammad Munir
- Department of Biomedical and Life Sciences, Lancaster University, Lancashire, United Kingdom
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Hung-Jen Liu,
| |
Collapse
|