1
|
Yonk AJ, Linares-García I, Pasternak L, Juliani SE, Gradwell MA, George AJ, Margolis DJ. Role of posterior medial thalamus in the modulation of striatal circuitry and choice behavior. eLife 2025; 13:RP98563. [PMID: 40359003 PMCID: PMC12074639 DOI: 10.7554/elife.98563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
The posterior medial (POm) thalamus is heavily interconnected with sensory and motor circuitry and is likely involved in behavioral modulation and sensorimotor integration. POm provides axonal projections to the dorsal striatum, a hotspot of sensorimotor processing, yet the role of POm-striatal projections has remained undetermined. Using optogenetics with mouse brain slice electrophysiology, we found that POm provides robust synaptic input to direct and indirect pathway striatal spiny projection neurons (D1- and D2-SPNs, respectively) and parvalbumin-expressing fast spiking interneurons (PVs). During the performance of a whisker-based tactile discrimination task in head-restrained mice, POm-striatal projections displayed learning-related activation correlating with anticipatory, but not reward-related, pupil dilation. Inhibition of POm-striatal axons across learning caused slower reaction times and an increase in the number of training sessions for expert performance. Our data indicate that POm-striatal inputs provide a behaviorally relevant arousal-related signal, which may prime striatal circuitry for efficient integration of subsequent choice-related inputs.
Collapse
Affiliation(s)
- Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Logan Pasternak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Sofia E Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Mark A Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Arlene J George
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| |
Collapse
|
2
|
Sumser A, Isaías-Camacho EU, Mease RA, Groh A. Active and passive touch are differentially represented in the mouse somatosensory thalamus. PLoS Biol 2025; 23:e3003108. [PMID: 40198601 PMCID: PMC11978071 DOI: 10.1371/journal.pbio.3003108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Active and passive sensing strategies are integral to an animal's behavioral repertoire. Nevertheless, there is a lack of information regarding the neuronal circuitry that underpins these strategies, particularly at the thalamus level. We evaluated how active versus passive whisker deflections are represented in single neurons of the ventral posteromedial thalamus (VPM) and the posterior medial thalamus (POm) in awake mice. These are the first- and higher-order thalamic nuclei of the whisker system, respectively. VPM neurons robustly responded to both active and passive whisker deflections, while POm neurons showed a preference for passive deflections and responded poorly to active touches. This response disparity could not be explained by stimulus kinematics and only in part by the animal's voluntary whisking state. In contrast, cortical activity significantly influenced POm's responses to passive touch. Inhibition of the barrel cortex strongly attenuated whisker responses in POm and simultaneously increased the whisking phase coding. This suggests that POm receives touch information from the cortex which strongly adapts and is gated by rare events. Together, these findings suggest two thalamic relay streams, where VPM robustly relays both active and passive deflection, while POm's sensitivity requires top-down cortical involvement to signal salient events such as unexpected deflections, originating in the environment.
Collapse
Affiliation(s)
- Anton Sumser
- Division of Neuroscience, Faculty of Biology, LMU Munich, Martinsried, Germany
| | | | - Rebecca Audrey Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Alexander Groh
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Geng D, Li Y, Yang B, Zhang L, Gu H, Zhang T, Zhao Z, Liu H, Cui Q, Zheng R, Cao P, Zhang F. Cholecystokinin neurons in the spinal trigeminal nucleus interpolaris regulate mechanically evoked predatory hunting in male mice. Nat Commun 2025; 16:2544. [PMID: 40087271 PMCID: PMC11909130 DOI: 10.1038/s41467-025-57771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Predatory hunting plays a critical role in animal survival. Motion-related vibrissal somatosensory signaling is essential for prey detection and hunting in mice. However, little is known about the neural circuits that convert vibrissal somatosensory cues to trigger predatory hunting. Here, we report that mechanical force onto the vibrissal area of the male mice is a key stimulus for predatory hunting. Mechanically evoked predatory hunting was abrogated by the chemogenetic inactivation of cholecystokinin-positive (Cck+) neurons in the spinal trigeminal nucleus interpolaris (Sp5I). The Cck+ Sp5I neurons responded to the intensity of mechanical stimulus and sent neural signals to the superior colliculus that were relevant to stereotypical predatory hunting motor actions. Synaptic inactivation of the projections from Cck+ Sp5I neurons to the superior colliculus impaired mechanically evoked predatory attacks. Together, these data reveal a spinal trigeminal nucleus neural circuit that is specifically engaged in translating vibrissal somatosensory cues to provoke predatory hunting.
Collapse
Affiliation(s)
- Dandan Geng
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yaning Li
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Bo Yang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Li Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Huating Gu
- National Institute of Biological Sciences, Beijing, China
| | - Tianyun Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Zijie Zhao
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Hui Liu
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Qingzhuo Cui
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Rong Zheng
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Fan Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China.
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
4
|
Chu YW, Chinta S, Keri HVS, Beri S, Pluta SR. Stimulus selection enhances value-modulated somatosensory processing in the superior colliculus. PLoS Biol 2025; 23:e3003057. [PMID: 40163544 DOI: 10.1371/journal.pbio.3003057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/08/2025] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
A fundamental trait of intelligent behavior is the ability to respond selectively to stimuli with higher value. Where along the neural hierarchy does somatosensory processing transition from a map of stimulus location to a map of stimulus value? To address this question, we recorded single-unit activity from populations of neurons in somatosensory cortex (S1) and midbrain superior colliculus (SC) in mice conditioned to respond to a positive-valued stimulus and withhold responses to an adjacent, negative-valued stimulus. The stimulus preference of the S1 population was equally weighted towards either stimulus, in line with a somatotopic map. Surprisingly, we discovered a large population of SC neurons that were disproportionately biased towards the positive stimulus. This disproportionate bias was largely driven by enhanced spike suppression for the negative stimulus. Removing the opportunity for mice to behaviorally select the positive stimulus reduced positive stimulus bias and spontaneous firing rates in SC but not S1, suggesting that neural selectivity was augmented by task readiness. Similarly, the spontaneous firing rates of SC but not S1 neurons predicted reaction times, suggesting that SC neurons played a persistent role in perceptual decision-making. Taken together, these data indicate that the somatotopic map in S1 is transformed into a value-based map in SC that encodes stimulus priority.
Collapse
Affiliation(s)
- Yun Wen Chu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Hayagreev V S Keri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Shreya Beri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott R Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
5
|
Chen J, Yang L, Shen J, Lu J, Mo X, Huang L, Chen L, Yu C. Distinct Roles of Astrocytes and GABAergic Neurons in the Paraventricular Thalamic Nucleus in Modulating Diabetic Neuropathic Pain. J Neurosci 2025; 45:e1013242024. [PMID: 39622642 PMCID: PMC11841761 DOI: 10.1523/jneurosci.1013-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 02/21/2025] Open
Abstract
Diabetic neuropathic pain (DNP) is a common chronic complication of diabetes mellitus and a clinically common form of neuropathic pain. The thalamus is an important center for the conduction and modulation of nociceptive signals. The paraventricular thalamic nucleus (PVT) is an important midline nucleus of the thalamus involved in sensory processing, but the specific role of PVT astrocytes and GABAergic neurons in DNP remains unclear. Here, we examined the activity of PVT astrocytes and neurons at various time points during the development of DNP by fluorescence immunohistochemistry and found that the activity of PVT astrocytes was significantly increased while that of PVT neurons was significantly decreased 14 d after streptozotocin injection in male rats. The inhibition of PVT astrocytes by chemogenetic manipulation relieved mechanical allodynia in male DNP model rats, whereas the activation of PVT astrocytes induced mechanical allodynia in normal male rats. Interestingly, chemogenetic activation of GABAergic neurons in the PVT alleviated mechanical allodynia in male DNP model rats, whereas chemogenetic inhibition of GABAergic neurons in the PVT induced mechanical allodynia in normal male rats. These data demonstrate the distinct roles of PVT astrocytes and GABAergic neurons in modulating DNP, revealing the mechanism of DNP pathogenesis and the role of the PVT in pain modulation.
Collapse
Affiliation(s)
- Jian Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lan Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jinhuang Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jingshan Lu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou 350122, China
| | - Xiaona Mo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Linyi Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
6
|
Ohte N, Kimura T, Sekine R, Yoshizawa S, Furusho Y, Sato D, Nishiyama C, Hanashima C. Differential neurogenic patterns underlie the formation of primary and secondary areas in the developing somatosensory cortex. Cereb Cortex 2025; 35:bhae491. [PMID: 39756431 PMCID: PMC11795310 DOI: 10.1093/cercor/bhae491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
The cerebral cortex consists of hierarchically organized areas interconnected by reciprocal axonal projections. However, the coordination of neurogenesis to optimize neuronal production and wiring between distinct cortical areas remains largely unexplored. The somatosensory cortex plays a crucial role in processing tactile information, with inputs from peripheral sensory receptors relayed through the thalamus to the primary and secondary somatosensory areas. To investigate the dynamics of neurogenesis in cortical circuit formation, we employed temporal genetic fate mapping of glutamatergic neuron cohorts across the somatosensory cortices. Our analysis revealed that neuronal production in the secondary somatosensory cortex (S2) precedes that of the primary somatosensory cortex (S1) from the deep-layer neuron production period and terminates earlier. We further revealed a progressive decline in upper-layer neuron output in S2, attributed to the attenuation of the apical ventricular surface, resulting in a reduced number of upper-layer neurons within S2. These findings support the existence of a protomap mechanism governing the area-specific assembly of primary and secondary areas in the developing neocortex.
Collapse
Affiliation(s)
- Naoto Ohte
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Takayuki Kimura
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Rintaro Sekine
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Shoko Yoshizawa
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Yuta Furusho
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Daisuke Sato
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Chihiro Nishiyama
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, 650-0047, Kobe, Japan
| |
Collapse
|
7
|
Soumiya H, Mori S, Kageyama K, Kawakami M, Nara A, Furukawa S, Fukumitsu H. Distinct contributions of BDNF/MEK/ERK1/2 signaling pathway components to whisker-dependent tactile learning and memory. Brain Res 2025; 1848:149404. [PMID: 39694169 DOI: 10.1016/j.brainres.2024.149404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/24/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Whisker-mediated tactile perception is essential for rodent navigation, food acquisition, and social interactions. However, the molecular mechanisms underlying tactile information processing, learning, and memory have not been studied to the same extent as for other modalities. Using immunohistochemical staining, we investigated changes in regional c-Fos expression as an index of neuronal activity and phosphorylated (p)ERK1/2 as an index of ERK1/2 activity in mice trained on a tactile-cued 8-arm radial maze task. Over 12 trials, mice learned to selectively explore four baited arms covered with wire as the tactile cue while avoiding un-baited uncovered arms. The density of c-Fos+ cells was significantly higher in somatosensory cortex but not frontal cortex or amygdala of mice exposed to tactile cue - bait pairing compared to mice exposed to the same maze with all arms baited with or without tactile cues (unpaired conditions). The density of pERK1/2+ cells was also increased after paired trials 7 and 12 but not after paired trials 1 and 3 in frontal cortex, amygdala, and somatosensory cortex compared to mice exposed to the unpaired condition. The MEK1/2 inhibitor SL327 reduced c-Fos expression in frontal cortex and amygdala when applied during early trials, but impaired working memory when applied before later trials without affecting c-Fos expression. Heterozygous BDNF knockout mice exhibited impaired task learning and reduced pERK1/2 expression in frontal cortex and amygdala but not somatosensory cortex. These findings suggest that the BDNF/MEK/ERK1/2 pathway selectively promotes memory trace formation in frontal cortex and amygdala but not encoding in somatosensory cortex.
Collapse
Affiliation(s)
- Hitomi Soumiya
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Shingo Mori
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Kohta Kageyama
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Masateru Kawakami
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Aoi Nara
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501-1196, Japan.
| |
Collapse
|
8
|
Su C, Mendes-Platt RF, Alonso JM, Swadlow HA, Bereshpolova Y. Fast-Spike Interneurons in Visual Cortical Layer 5: Heterogeneous Response Properties Are Related to Thalamocortical Connectivity. J Neurosci 2025; 45:e1116242024. [PMID: 39667901 PMCID: PMC11756620 DOI: 10.1523/jneurosci.1116-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
Layer 4 (L4) of rabbit V1 contains fast-spike GABAergic interneurons (suspected inhibitory interneurons, SINs) that receive potent synaptic input from the LGN and generate fast, local feedforward inhibition. These cells display receptive fields with overlapping ON/OFF subregions, nonlinear spatial summation, very broad orientation/directional tuning, and high spontaneous and visually driven firing rates. Fast-spike interneurons are also found in Layer 5 (L5), which receives a much sparser input from the LGN, but the response properties and thalamocortical connectivity of L5 SINs are relatively unstudied. Here, we study L5 SINs in awake rabbits (both sexes) and compare their response properties with previously studied SINs of L4. We also assess thalamocortical connectivity of L5 SINs, examining cross-correlation of retinotopically aligned LGN-SIN spike trains and L5 SIN responses to electrical stimulation of the LGN. These analyses confirmed that many L5 SINs, like L4 SINs, receive a strong, fast monosynaptic drive from the LGN. Moreover, these LGN-connected L5 SINs had response properties similar to those of L4 SINs and were predominantly found in the upper half of L5. In contrast, L5 SINs with longer synaptic latencies to LGN stimulation displayed (1) sharper orientation tuning, (2) longer visual response latencies, (3) lower spontaneous and (4) visually driven firing rates, and (5) were found in the deeper half of L5. We suggest that the long-latency synaptic responses in such L5 SINs reflect a multisynaptic intracortical pathway that generates a different constellation of response properties than seen in L5 SINs that are driven directly by LGN input.
Collapse
Affiliation(s)
- Chuyi Su
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Jose-Manuel Alonso
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
- Department of Biological Sciences, SUNY-Optometry, New York, New York
| | - Harvey A Swadlow
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
- Department of Biological Sciences, SUNY-Optometry, New York, New York
| | - Yulia Bereshpolova
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
9
|
Sgourdou P, Schaffler M, Choi K, McCall NM, Burdge J, Williams J, Corder G, Fuccillo MV, Abdus-Saboor I, Epstein DJ. Impaired pain in mice lacking first-order posterior medial thalamic neurons. Pain 2025; 166:130-143. [PMID: 39190341 PMCID: PMC11649494 DOI: 10.1097/j.pain.0000000000003325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/04/2024] [Indexed: 08/28/2024]
Abstract
ABSTRACT The thalamus plays an important role in sensory and motor information processing by mediating communication between the periphery and the cerebral cortex. Alterations in thalamic development have profound consequences on sensory and motor function. In this study, we investigated a mouse model in which thalamic nuclei formation is disrupted because of the absence of Sonic hedgehog ( Shh ) expression from 2 key signaling centers that are required for embryonic forebrain development. The resulting defects observed in distinct thalamic sensory nuclei in Shh mutant embryos persisted into adulthood prompting us to examine their effect on behavioral responses to somatosensory stimulation. Our findings reveal a role for first-order posterior medial thalamic neurons and their projections to layer 4 of the secondary somatosensory cortex in the transmission of nociceptive information. Together, these results establish a connection between a neurodevelopmental lesion in the thalamus and a modality-specific disruption in pain perception.
Collapse
Affiliation(s)
- Paraskevi Sgourdou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104
| | - Melanie Schaffler
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Kyuhyun Choi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Nora M. McCall
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104
| | - Justin Burdge
- Department of Biology, University of Pennsylvania, 433 S University Ave, Philadelphia, PA 19104
- Zuckerman Mind Brain Behavior Institute, Department of Biological Sciences, Columbia University, Jerome L. Greene Center, 3227 Broadway, Quad 6C, New York, NY 10027
| | - Joelle Williams
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104
| | - Gregory Corder
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104
| | - Marc V. Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
| | - Ishmail Abdus-Saboor
- Department of Biology, University of Pennsylvania, 433 S University Ave, Philadelphia, PA 19104
- Zuckerman Mind Brain Behavior Institute, Department of Biological Sciences, Columbia University, Jerome L. Greene Center, 3227 Broadway, Quad 6C, New York, NY 10027
| | - Douglas J. Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104
| |
Collapse
|
10
|
Bricault S, Dawson M, Lee J, Desai M, Schwalm M, Chung KS, DeTienne E, Fagan E, Li N, Becker A, Muthupalani S, Fränken JP, Pinotsis DA, Jasanoff A. Peripheral contributions to resting state brain dynamics. Nat Commun 2024; 15:10820. [PMID: 39737991 PMCID: PMC11685439 DOI: 10.1038/s41467-024-55064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements. Resting state effects are mediated by the same peripheral and thalamic structures that relay responses to overt sensory stimuli. The impact of basal peripheral input is reduced in a rat model of autism, which displays both lower somatosensory functional connectivity and insensitivity to vibrissa inactivation. These results demonstrate the influence of extrinsic influences on resting state brain phenotypes in health and disease.
Collapse
Affiliation(s)
- Sarah Bricault
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
- Department of Biology, Massachusetts Institute of Technology, Cambridge, US
| | - Miranda Dawson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Jiyoung Lee
- Department of Neurobiology, Wellesley College, Wellesley, US
| | - Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Kevin Sunho Chung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Elizabeth DeTienne
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, US
| | - Erinn Fagan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | - Andrew Becker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US
| | | | - Jan-Philipp Fränken
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Dimitris A Pinotsis
- Center for Mathematical Neuroscience and Psychology, Department of Psychology, City, University of London, London, United Kingdom
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, US
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US.
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, US.
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, Cambridge, US.
| |
Collapse
|
11
|
Petty GH, Bruno RM. Attentional modulation of secondary somatosensory and visual thalamus of mice. eLife 2024; 13:RP97188. [PMID: 39601499 PMCID: PMC11602186 DOI: 10.7554/elife.97188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Each sensory modality has its own primary and secondary thalamic nuclei. While the primary thalamic nuclei are well understood to relay sensory information from the periphery to the cortex, the role of secondary sensory nuclei is elusive. We trained head-fixed mice to attend to one sensory modality while ignoring a second modality, namely to attend to touch and ignore vision, or vice versa. Arrays were used to record simultaneously from the secondary somatosensory thalamus (POm) and secondary visual thalamus (LP). In mice trained to respond to tactile stimuli and ignore visual stimuli, POm was robustly activated by touch and largely unresponsive to visual stimuli. A different pattern was observed when mice were trained to respond to visual stimuli and ignore touch, with POm now more robustly activated during visual trials. This POm activity was not explained by differences in movements (i.e. whisking, licking, pupil dilation) resulting from the two tasks. Post hoc histological reconstruction of array tracks through POm revealed that subregions varied in their degree of plasticity. LP exhibited similar phenomena. We conclude that behavioral training reshapes activity in secondary thalamic nuclei. Secondary nuclei respond to the same behaviorally relevant, reward-predicting stimuli regardless of stimulus modality.
Collapse
Affiliation(s)
- Gordon H Petty
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Department of Physiology, Anatomy, & Genetics, University of OxfordOxfordUnited Kingdom
| | - Randy M Bruno
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Department of Physiology, Anatomy, & Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
12
|
Yonk AJ, Linares-García I, Pasternak L, Juliani SE, Gradwell MA, George AJ, Margolis DJ. Role of Posterior Medial Thalamus in the Modulation of Striatal Circuitry and Choice Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586152. [PMID: 38585753 PMCID: PMC10996534 DOI: 10.1101/2024.03.21.586152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The posterior medial (POm) thalamus is heavily interconnected with sensory and motor circuitry and is likely involved in behavioral modulation and sensorimotor integration. POm provides axonal projections to the dorsal striatum, a hotspot of sensorimotor processing, yet the role of POm-striatal projections has remained undetermined. Using optogenetics with slice electrophysiology, we found that POm provides robust synaptic input to direct and indirect pathway striatal spiny projection neurons (D1- and D2-SPNs, respectively) and parvalbumin-expressing fast spiking interneurons (PVs). During the performance of a whisker-based tactile discrimination task, POm-striatal projections displayed learning-related activation correlating with anticipatory, but not reward-related, pupil dilation. Inhibition of POm-striatal axons across learning caused slower reaction times and an increase in the number of training sessions for expert performance. Our data indicate that POm-striatal inputs provide a behaviorally relevant arousal-related signal, which may prime striatal circuitry for efficient integration of subsequent choice-related inputs.
Collapse
Affiliation(s)
- Alex J. Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Logan Pasternak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Sofia E. Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Mark A. Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Arlene J. George
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
13
|
Petty GH, Bruno RM. Attentional modulation of secondary somatosensory and visual thalamus of mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586242. [PMID: 38585833 PMCID: PMC10996504 DOI: 10.1101/2024.03.22.586242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Each sensory modality has its own primary and secondary thalamic nuclei. While the primary thalamic nuclei are well understood to relay sensory information from the periphery to the cortex, the role of secondary sensory nuclei is elusive. We trained head-fixed mice to ateend to one sensory modality while ignoring a second modality, namely to ateend to touch and ignore vision, or vice versa. Arrays were used to record simultaneously from secondary somatosensory thalamus (POm) and secondary visual thalamus (LP). In mice trained to respond to tactile stimuli and ignore visual stimuli, POm was robustly activated by touch and largely unresponsive to visual stimuli. A different pateern was observed when mice were trained to respond to visual stimuli and ignore touch, with POm now more robustly activated during visual trials. This POm activity was not explained by differences in movements (i.e., whisking, licking, pupil dilation) resulting from the two tasks. Post hoc histological reconstruction of array tracks through POm revealed that subregions varied in their degree of plasticity. LP exhibited similar phenomena. We conclude that behavioral training reshapes activity in secondary thalamic nuclei. Secondary nuclei respond to the same behaviorally relevant, reward-predicting stimuli regardless of stimulus modality.
Collapse
Affiliation(s)
- Gordon H Petty
- Department of Neuroscience, Columbia University, New York, NY 10027 USA
- Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027 USA
- Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
14
|
Matin MH, Xiao S, Jayant K. Mild focal cooling selectively impacts computations in dendritic trees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621672. [PMID: 39553978 PMCID: PMC11565978 DOI: 10.1101/2024.11.02.621672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Focal cooling is a powerful technique to temporally scale neural dynamics. However, the underlying cellular mechanisms causing this scaling remain unresolved. Here, using targeted focal cooling (with a spatial resolution of 100 micrometers), dual somato-dendritic patch clamp recordings, two-photon calcium imaging, transmitter uncaging, and modeling we reveal that a 5°C drop can enhance synaptic transmission, plasticity, and input-output transformations in the distal apical tuft, but not in the basal dendrites of intrinsically bursting L5 pyramidal neurons. This enhancement depends on N-methyl-D-aspartate (NMDA) and Kv4.2, suggesting electrical structure modulation. Paradoxically, and despite the increase in tuft excitability, we observe a reduced rate of recovery from inactivation for apical Na+ channels, thereby regulating back-propagating action potential invasion, coincidence detection, and overall burst probability, resulting in an "apparent" slowing of somatic spike output. Our findings reveal a differential temperature sensitivity along the basal-tuft axis of L5 neurons analog modulates cortical output.
Collapse
|
15
|
Rubio-Teves M, Martín-Correa P, Alonso-Martínez C, Casas-Torremocha D, García-Amado M, Timonidis N, Sheiban FJ, Bakker R, Tiesinga P, Porrero C, Clascá F. Beyond Barrels: Diverse Thalamocortical Projection Motifs in the Mouse Ventral Posterior Complex. J Neurosci 2024; 44:e1096242024. [PMID: 39197940 PMCID: PMC11502235 DOI: 10.1523/jneurosci.1096-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Thalamocortical pathways from the rodent ventral posterior (VP) thalamic complex to the somatosensory cerebral cortex areas are a key model in modern neuroscience. However, beyond the intensively studied projection from medial VP (VPM) to the primary somatosensory area (S1), the wiring of these pathways remains poorly characterized. We combined micropopulation tract-tracing and single-cell transfection experiments to map the pathways arising from different portions of the VP complex in male mice. We found that pathways originating from different VP regions show differences in area/lamina arborization pattern and axonal varicosity size. Neurons from the rostral VPM subnucleus innervate trigeminal S1 in point-to-point fashion. In contrast, a caudal VPM subnucleus innervates heavily and topographically second somatosensory area (S2), but not S1. Neurons in a third, intermediate VPM subnucleus innervate through branched axons both S1 and S2, with markedly different laminar patterns in each area. A small anterodorsal subnucleus selectively innervates dysgranular S1. The parvicellular VPM subnucleus selectively targets the insular cortex and adjacent portions of S1 and S2. Neurons in the rostral part of the lateral VP nucleus (VPL) innervate spinal S1, while caudal VPL neurons simultaneously target S1 and S2. Rostral and caudal VP nuclei show complementary patterns of calcium-binding protein expression. In addition to the cortex, neurons in caudal VP subnuclei target the sensorimotor striatum. Our finding of a massive projection from VP to S2 separate from the VP projections to S1 adds critical anatomical evidence to the notion that different somatosensory submodalities are processed in parallel in S1 and S2.
Collapse
Affiliation(s)
- Mario Rubio-Teves
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - Pablo Martín-Correa
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - Carmen Alonso-Martínez
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - Diana Casas-Torremocha
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - María García-Amado
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - Nestor Timonidis
- Department of Neuroinformatics, Donders Centre for Neuroscience, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Francesco J Sheiban
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Rembrandt Bakker
- Department of Neuroinformatics, Donders Centre for Neuroscience, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
- Inst. of Neuroscience and Medicine (INM-6) and Inst. for Advanced Simulation (IAS-6) and JARA BRAIN Inst. I, Julich Research Centre, Jülich 52428, Germany
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Centre for Neuroscience, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - César Porrero
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - Francisco Clascá
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| |
Collapse
|
16
|
Liu Y, Bech P, Tamura K, Délez LT, Crochet S, Petersen CCH. Cell class-specific long-range axonal projections of neurons in mouse whisker-related somatosensory cortices. eLife 2024; 13:RP97602. [PMID: 39392390 PMCID: PMC11469677 DOI: 10.7554/elife.97602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Long-range axonal projections of diverse classes of neocortical excitatory neurons likely contribute to brain-wide interactions processing sensory, cognitive and motor signals. Here, we performed light-sheet imaging of fluorescently labeled axons from genetically defined neurons located in posterior primary somatosensory barrel cortex and supplemental somatosensory cortex. We used convolutional networks to segment axon-containing voxels and quantified their distribution within the Allen Mouse Brain Atlas Common Coordinate Framework. Axonal density was analyzed for different classes of glutamatergic neurons using transgenic mouse lines selectively expressing Cre recombinase in layer 2/3 intratelencephalic projection neurons (Rasgrf2-dCre), layer 4 intratelencephalic projection neurons (Scnn1a-Cre), layer 5 intratelencephalic projection neurons (Tlx3-Cre), layer 5 pyramidal tract projection neurons (Sim1-Cre), layer 5 projection neurons (Rbp4-Cre), and layer 6 corticothalamic neurons (Ntsr1-Cre). We found distinct axonal projections from the different neuronal classes to many downstream brain areas, which were largely similar for primary and supplementary somatosensory cortices. Functional connectivity maps obtained from optogenetic activation of sensory cortex and wide-field imaging revealed topographically organized evoked activity in frontal cortex with neurons located more laterally in somatosensory cortex signaling to more anteriorly located regions in motor cortex, consistent with the anatomical projections. The current methodology therefore appears to quantify brain-wide axonal innervation patterns supporting brain-wide signaling.
Collapse
Affiliation(s)
- Yanqi Liu
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Pol Bech
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Keita Tamura
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- International Research Center for Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Lucas T Délez
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Carl CH Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
17
|
Huang J, Crochet S, Sandi C, Petersen CC. Dopamine dynamics in nucleus accumbens across reward-based learning of goal-directed whisker-to-lick sensorimotor transformations in mice. Heliyon 2024; 10:e37831. [PMID: 39323852 PMCID: PMC11422591 DOI: 10.1016/j.heliyon.2024.e37831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The synaptic and neuronal circuit mechanisms underlying reward-based learning remain to be fully determined. In the mammalian brain, dopamine release in nucleus accumbens is thought to contribute importantly to reward signals for learning and promoting synaptic plasticity. Here, through longitudinal fiber photometry of a genetically-encoded fluorescent sensor, we investigated dopamine signals in the nucleus accumbens of thirsty head-restrained mice as they learned to lick a liquid reward spout in response to single deflections of the C2 whisker across varying reward contingencies. Reward delivery triggered by well-timed licking drove fast transient dopamine increases in nucleus accumbens. On the other hand, unrewarded licking was overall associated with reduced dopamine sensor fluorescence, especially in trials where reward was unexpectedly omitted. The dopamine reward signal upon liquid delivery decreased within individual sessions as mice became sated. As mice learned to lick the reward spout in response to whisker deflection, a fast transient sensory-evoked dopamine signal developed, correlating with the learning of the whisker detection task across consecutive training days, as well as within single learning sessions. The well-defined behavioral paradigm involving a unitary stimulus of a single whisker as a reward-predicting cue along with precisely quantified licking allows untangling of sensory, motor and reward-related dopamine signals and how they evolve across the learning of whisker-dependent goal-directed sensorimotor transformations. Our longitudinal measurements of dopamine dynamics across reward-based learning are overall consistent with the hypothesis that dopamine could play an important role as a reward signal for reinforcement learning.
Collapse
Affiliation(s)
- Jun Huang
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C.H. Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
18
|
Sherman SM, Usrey WM. Transthalamic Pathways for Cortical Function. J Neurosci 2024; 44:e0909242024. [PMID: 39197951 PMCID: PMC11358609 DOI: 10.1523/jneurosci.0909-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
The cerebral cortex contains multiple, distinct areas that individually perform specific computations. A particular strength of the cortex is the communication of signals between cortical areas that allows the outputs of these compartmentalized computations to influence and build on each other, thereby dramatically increasing the processing power of the cortex and its role in sensation, action, and cognition. Determining how the cortex communicates signals between individual areas is, therefore, critical for understanding cortical function. Historically, corticocortical communication was thought to occur exclusively by direct anatomical connections between areas that often sequentially linked cortical areas in a hierarchical fashion. More recently, anatomical, physiological, and behavioral evidence is accumulating indicating a role for the higher-order thalamus in corticocortical communication. Specifically, the transthalamic pathway involves projections from one area of the cortex to neurons in the higher-order thalamus that, in turn, project to another area of the cortex. Here, we consider the evidence for and implications of having two routes for corticocortical communication with an emphasis on unique processing available in the transthalamic pathway and the consequences of disorders and diseases that affect transthalamic communication.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
19
|
Vattino LG, MacGregor CP, Liu CJ, Sweeney CG, Takesian AE. Primary auditory thalamus relays directly to cortical layer 1 interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603741. [PMID: 39071266 PMCID: PMC11275971 DOI: 10.1101/2024.07.16.603741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Inhibitory interneurons within cortical layer 1 (L1-INs) integrate inputs from diverse brain regions to modulate sensory processing and plasticity, but the sensory inputs that recruit these interneurons have not been identified. Here we used monosynaptic retrograde tracing and whole-cell electrophysiology to characterize the thalamic inputs onto two major subpopulations of L1-INs in the mouse auditory cortex. We find that the vast majority of auditory thalamic inputs to these L1-INs unexpectedly arise from the ventral subdivision of the medial geniculate body (MGBv), the tonotopically-organized primary auditory thalamus. Moreover, these interneurons receive robust functional monosynaptic MGBv inputs that are comparable to those recorded in the L4 excitatory pyramidal neurons. Our findings identify a direct pathway from the primary auditory thalamus to the L1-INs, suggesting that these interneurons are uniquely positioned to integrate thalamic inputs conveying precise sensory information with top-down inputs carrying information about brain states and learned associations.
Collapse
Affiliation(s)
- Lucas G. Vattino
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Cathryn P. MacGregor
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- These authors contributed equally to this work
| | - Christine Junhui Liu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Graduate Program in Speech and Hearing and Bioscience and Technologies, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| | - Carolyn G. Sweeney
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Anne E. Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Oram TB, Tenzer A, Saraf-Sinik I, Yizhar O, Ahissar E. Co-coding of head and whisker movements by both VPM and POm thalamic neurons. Nat Commun 2024; 15:5883. [PMID: 39003286 PMCID: PMC11246487 DOI: 10.1038/s41467-024-50039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Rodents continuously move their heads and whiskers in a coordinated manner while perceiving objects through whisker-touch. Studies in head-fixed rodents showed that the ventroposterior medial (VPM) and posterior medial (POm) thalamic nuclei code for whisker kinematics, with POm involvement reduced in awake animals. To examine VPM and POm involvement in coding head and whisker kinematics in awake, head-free conditions, we recorded thalamic neuronal activity and tracked head and whisker movements in male mice exploring an open arena. Using optogenetic tagging, we found that in freely moving mice, both nuclei equally coded whisker kinematics and robustly coded head kinematics. The fraction of neurons coding head kinematics increased after whisker trimming, ruling out whisker-mediated coding. Optogenetic activation of thalamic neurons evoked overt kinematic changes and increased the fraction of neurons leading changes in head kinematics. Our data suggest that VPM and POm integrate head and whisker information and can influence head kinematics during tactile perception.
Collapse
Affiliation(s)
- Tess Baker Oram
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Tenzer
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Ahissar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Liu Y, Feng H, Du J, Yang L, Xue H, Zhang J, Liang YY, Liu Y. Associations between accelerometer-measured circadian rest-activity rhythm, brain structural and genetic mechanisms, and dementia. Psychiatry Clin Neurosci 2024; 78:393-404. [PMID: 38676558 PMCID: PMC11498105 DOI: 10.1111/pcn.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024]
Abstract
AIM Knowledge of how circadian rhythm influences brain health remains limited. We aimed to investigate the associations of accelerometer-measured circadian rest-activity rhythm (CRAR) with incident dementia, cognitive dysfunction, and structural brain abnormalities in the general population and underlying biological mechanisms. METHODS Fifty-seven thousand five hundred and two participants aged over 60 years with accelerometer data were included to investigate the association of CRAR with incidental dementia. Non-parametric CRAR parameters were utilized, including activity level during active periods of the day (M10), activity level during rest periods of the day (L5), and the relative difference between the M10 and L5 (relative amplitude, RA). Associations of CRAR with cognitive dysfunction and brain structure were studied in a subset of participants. Neuroimaging-transcriptomics analysis was utilized to identify the underlying molecular mechanisms. RESULTS Over 6.86 (4.94-8.78) years of follow-up, 494 participants developed dementia. The risk of incident dementia was associated with decreasing M10 (hazard ratio [HR] 1.45; 95% conference interval [CI], 1.28-1.64) and RA (HR 1.37; 95% CI, 1.28-1.64), increasing L5 (HR 1.14, 95% CI 1.07-1.21) and advanced L5 onset time (HR 1.12; 95% CI, 1.02-1.23). The detrimental associations were exacerbated by APOE ε4 status and age (>65 years). Decreased RA was associated with lower processing speed (Beta -0.04; SE 0.011), predominantly mediated by abnormalities in subcortical regions and white matter microstructure. The genes underlying CRAR-related brain regional structure variation were enriched for synaptic function. CONCLUSIONS Our study underscores the potential of intervention targeting at maintaining a healthy CRAR pattern to prevent dementia risk.
Collapse
Affiliation(s)
- Yue Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalSouthern Medical UniversityGuangzhouChina
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hongliang Feng
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
| | - Jing Du
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
| | - Lulu Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalSouthern Medical UniversityGuangzhouChina
| | - Huachen Xue
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
| | - Jihui Zhang
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
| | - Yannis Yan Liang
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Institute of Psycho‐neuroscienceThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yaping Liu
- Center for Sleep and Circadian MedicineThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Department of Psychiatry, Faculty of MedicineThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
22
|
Sherman SM, Usrey WM. A Reconsideration of the Core and Matrix Classification of Thalamocortical Projections. J Neurosci 2024; 44:e0163242024. [PMID: 38866538 PMCID: PMC11170670 DOI: 10.1523/jneurosci.0163-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024] Open
Abstract
In 1998, Jones suggested a classification of thalamocortical projections into core and matrix divisions (Jones, 1998). In this classification, core projections are specific, topographical, innervate middle cortical layers, and serve to transmit specific information to the cortex for further analysis; matrix projections, in contrast, are diffuse, much less topographic, innervate upper layers, especially Layer 1, and serve a more global, modulatory function, such as affecting levels of arousal. This classification has proven especially influential in studies of thalamocortical relationships. Whereas it may be the case that a clear subset of thalamocortical connections fit the core motif, since they are specific, topographic, and innervate middle layers, we argue that there is no clear evidence for any single class that encompasses the remainder of thalamocortical connections as is claimed for matrix. Instead, there is great morphological variation in connections made by thalamocortical projections fitting neither a core nor matrix classification. We thus conclude that the core/matrix classification should be abandoned, because its application is not helpful in providing insights into thalamocortical interactions and can even be misleading. As one example of the latter, recent suggestions indicate that core projections are equivalent to first-order thalamic relays (i.e., those that relay subcortical information to the cortex) and matrix to higher-order relays (i.e., those that relay information from one cortical area to another), but available evidence does not support this relationship. All of this points to a need to replace the core/matrix grouping with a more complete classification of thalamocortical projections.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95616
| |
Collapse
|
23
|
Gardères PM, Le Gal S, Rousseau C, Mamane A, Ganea DA, Haiss F. Coexistence of state, choice, and sensory integration coding in barrel cortex LII/III. Nat Commun 2024; 15:4782. [PMID: 38839747 PMCID: PMC11153558 DOI: 10.1038/s41467-024-49129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
During perceptually guided decisions, correlates of choice are found as upstream as in the primary sensory areas. However, how well these choice signals align with early sensory representations, a prerequisite for their interpretation as feedforward substrates of perception, remains an open question. We designed a two alternative forced choice task (2AFC) in which male mice compared stimulation frequencies applied to two adjacent vibrissae. The optogenetic silencing of individual columns in the primary somatosensory cortex (wS1) resulted in predicted shifts of psychometric functions, demonstrating that perception depends on focal, early sensory representations. Functional imaging of layer II/III single neurons revealed mixed coding of stimuli, choices and engagement in the task. Neurons with multi-whisker suppression display improved sensory discrimination and had their activity increased during engagement in the task, enhancing selectively representation of the signals relevant to solving the task. From trial to trial, representation of stimuli and choice varied substantially, but mostly orthogonally to each other, suggesting that perceptual variability does not originate from wS1 fluctuations but rather from downstream areas. Together, our results highlight the role of primary sensory areas in forming a reliable sensory substrate that could be used for flexible downstream decision processes.
Collapse
Affiliation(s)
- Pierre-Marie Gardères
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France.
- IZKF Aachen, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Sébastien Le Gal
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France
| | - Charly Rousseau
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France
| | - Alexandre Mamane
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France
| | - Dan Alin Ganea
- IZKF Aachen, Medical School, RWTH Aachen University, 52074, Aachen, Germany
- University of Basel, Department of Biomedicine, 4001, Basel, Switzerland
| | - Florent Haiss
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France.
| |
Collapse
|
24
|
Kanigowski D, Urban-Ciecko J. Conditioning and pseudoconditioning differently change intrinsic excitability of inhibitory interneurons in the neocortex. Cereb Cortex 2024; 34:bhae109. [PMID: 38572735 PMCID: PMC10993172 DOI: 10.1093/cercor/bhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Many studies indicate a broad role of various classes of GABAergic interneurons in the processes related to learning. However, little is known about how the learning process affects intrinsic excitability of specific classes of interneurons in the neocortex. To determine this, we employed a simple model of conditional learning in mice where vibrissae stimulation was used as a conditioned stimulus and a tail shock as an unconditioned one. In vitro whole-cell patch-clamp recordings showed an increase in intrinsic excitability of low-threshold spiking somatostatin-expressing interneurons (SST-INs) in layer 4 (L4) of the somatosensory (barrel) cortex after the conditioning paradigm. In contrast, pseudoconditioning reduced intrinsic excitability of SST-LTS, parvalbumin-expressing interneurons (PV-INs), and vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) with accommodating pattern in L4 of the barrel cortex. In general, increased intrinsic excitability was accompanied by narrowing of action potentials (APs), whereas decreased intrinsic excitability coincided with AP broadening. Altogether, these results show that both conditioning and pseudoconditioning lead to plastic changes in intrinsic excitability of GABAergic interneurons in a cell-specific manner. In this way, changes in intrinsic excitability can be perceived as a common mechanism of learning-induced plasticity in the GABAergic system.
Collapse
Affiliation(s)
- Dominik Kanigowski
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
25
|
Bordoni B, Escher AR. Motor Dysfunctions in Fibromyalgia Patients: The Importance of Breathing. Open Access Rheumatol 2024; 16:55-66. [PMID: 38476512 PMCID: PMC10929242 DOI: 10.2147/oarrr.s442327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
The classification of fibromyalgia (FM) is not always immediate and simple, with the time from the first diagnosis, compared to the onset of symptoms, of a few years. Currently, we do not have instrumental or biochemical tests considered as gold standards; the clinician will make a diagnosis of FM based on the patient's medical history and subjective assessment. The symptoms can involve physical, cognitive and psychological disorders, with the presence of pain of different origins and classifications: nociplastic, nociceptive and neuropathic pain. Among the symptoms highlighted, postural disorders and neuromotor uncoordination emerge, whose functional dysfunctions can increase the mortality and morbidity rate. An alteration of the diaphragm muscle could generate such functional motor problems. Considering that the current literature underestimates the importance of breathing in FM, the article aims to highlight the relationship between motor and diaphragmatic difficulties in the patient, soliciting new points of view for the clinical and therapeutic framework.
Collapse
Affiliation(s)
- Bruno Bordoni
- Dipartimento di Cardiologia, Fondazione Don Carlo Gnocchi IRCCS, Istituto di Ricovero e Cura, S Maria Nascente, Milano, 20100, Italia
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
26
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Carroll A, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The secondary somatosensory cortex gates mechanical and heat sensitivity. Nat Commun 2024; 15:1289. [PMID: 38346995 PMCID: PMC10861531 DOI: 10.1038/s41467-024-45729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
The cerebral cortex is vital for the processing and perception of sensory stimuli. In the somatosensory axis, information is received primarily by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted perception. This suggests that responsiveness to particular somatosensory stimuli occurs in a modality specific fashion and we sought to determine additional cortical substrates. In this work, we identify in a mouse model that inhibition of S2 output increases mechanical and heat, but not cooling sensitivity, in contrast to S1. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and heat sensitivity without affecting motor performance or anxiety. Taken together, we show that S2 is an essential cortical structure that governs mechanical and heat sensitivity.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aloe Carroll
- College of Sciences, Northeastern University, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Mukherjee A, Halassa MM. The Associative Thalamus: A Switchboard for Cortical Operations and a Promising Target for Schizophrenia. Neuroscientist 2024; 30:132-147. [PMID: 38279699 PMCID: PMC10822032 DOI: 10.1177/10738584221112861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Schizophrenia is a brain disorder that profoundly perturbs cognitive processing. Despite the success in treating many of its symptoms, the field lacks effective methods to measure and address its impact on reasoning, inference, and decision making. Prefrontal cortical abnormalities have been well documented in schizophrenia, but additional dysfunction in the interactions between the prefrontal cortex and thalamus have recently been described. This dysfunction may be interpreted in light of parallel advances in neural circuit research based on nonhuman animals, which show critical thalamic roles in maintaining and switching prefrontal activity patterns in various cognitive tasks. Here, we review this basic literature and connect it to emerging innovations in clinical research. We highlight the value of focusing on associative thalamic structures not only to better understand the very nature of cognitive processing but also to leverage these circuits for diagnostic and therapeutic development in schizophrenia. We suggest that the time is right for building close bridges between basic thalamic research and its clinical translation, particularly in the domain of cognition and schizophrenia.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael M Halassa
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
28
|
Kawatani M, Horio K, Ohkuma M, Li WR, Yamashita T. Interareal Synaptic Inputs Underlying Whisking-Related Activity in the Primary Somatosensory Barrel Cortex. J Neurosci 2024; 44:e1148232023. [PMID: 38050130 PMCID: PMC10860602 DOI: 10.1523/jneurosci.1148-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
Body movements influence brain-wide neuronal activities. In the sensory cortex, thalamocortical bottom-up inputs and motor-sensory top-down inputs are thought to affect the dynamics of membrane potentials (Vm ) of neurons and change their processing of sensory information during movements. However, direct perturbation of the axons projecting to the sensory cortex from other remote areas during movements has remained unassessed, and therefore the interareal circuits generating motor-related signals in sensory cortices remain unclear. Using a Gi/o -coupled opsin, eOPN3, we here inhibited interareal signals incoming to the whisker primary somatosensory barrel cortex (wS1) of awake male mice and tested their effects on whisking-related changes in neuronal activities in wS1. Spontaneous whisking in air induced the changes in spike rates of a subset of wS1 neurons, which were accompanied by depolarization and substantial reduction of slow-wave oscillatory fluctuations of Vm Despite an extensive innervation, inhibition of inputs from the whisker primary motor cortex (wM1) to wS1 did not alter the spike rates and Vm dynamics of wS1 neurons during whisking. In contrast, inhibition of axons from the whisker-related thalamus (wTLM) and the whisker secondary somatosensory cortex (wS2) to wS1 largely attenuated the whisking-related supra- and sub-threshold Vm dynamics of wS1 neurons. Notably, silencing inputs from wTLM markedly decreased the modulation depth of whisking phase-tuned neurons in wS1, while inhibiting wS2 inputs did not impact the whisking variable tuning of wS1 neurons. Thus, sensorimotor integration in wS1 during spontaneous whisking is predominantly facilitated by direct synaptic inputs from wTLM and wS2 rather than from wM1.
Collapse
Affiliation(s)
- Masahiro Kawatani
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Kayo Horio
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Mahito Ohkuma
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Wan-Ru Li
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
29
|
Brunner C, Montaldo G, Urban A. Functional ultrasound imaging of stroke in awake rats. eLife 2023; 12:RP88919. [PMID: 37988288 PMCID: PMC10662948 DOI: 10.7554/elife.88919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Anesthesia is a major confounding factor in preclinical stroke research as stroke rarely occurs in sedated patients. Moreover, anesthesia affects both brain functions and the stroke outcome acting as neurotoxic or protective agents. So far, no approaches were well suited to induce stroke while imaging hemodynamics along with simultaneous large-scale recording of brain functions in awake animals. For this reason, the first critical hours following the stroke insult and associated functional alteration remain poorly understood. Here, we present a strategy to investigate both stroke hemodynamics and stroke-induced functional alterations without the confounding effect of anesthesia, i.e., under awake condition. Functional ultrasound (fUS) imaging was used to continuously monitor variations in cerebral blood volume (CBV) in +65 brain regions/hemispheres for up to 3 hr after stroke onset. The focal cortical ischemia was induced using a chemo-thrombotic agent suited for permanent middle cerebral artery occlusion in awake rats and followed by ipsi- and contralesional whiskers stimulation to investigate on the dynamic of the thalamocortical functions. Early (0-3 hr) and delayed (day 5) fUS recording enabled to characterize the features of the ischemia (location, CBV loss), spreading depolarizations (occurrence, amplitude) and functional alteration of the somatosensory thalamocortical circuits. Post-stroke thalamocortical functions were affected at both early and later time points (0-3 hr and 5 days) after stroke. Overall, our procedure facilitates early, continuous, and chronic assessments of hemodynamics and cerebral functions. When integrated with stroke studies or other pathological analyses, this approach seeks to enhance our comprehension of physiopathologies towards the development of pertinent therapeutic interventions.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| | - Gabriel Montaldo
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| | - Alan Urban
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| |
Collapse
|
30
|
Domingues AV, Rodrigues AJ, Soares-Cunha C. A novel perspective on the role of nucleus accumbens neurons in encoding associative learning. FEBS Lett 2023; 597:2601-2610. [PMID: 37643893 DOI: 10.1002/1873-3468.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The nucleus accumbens (NAc) has been considered a key brain region for encoding reward/aversion and cue-outcome associations. These processes are encoded by medium spiny neurons that express either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). Despite the well-established role of NAc neurons in encoding reward/aversion, the underlying processing by D1-/D2-MSNs remains largely unknown. Recent electrophysiological, optogenetic and calcium imaging studies provided insight on the complex role of D1- and D2-MSNs in these behaviours and helped to clarify their involvement in associative learning. Here, we critically discuss findings supporting an intricate and complementary role of NAc D1- and D2-MSNs in associative learning, emphasizing the need for additional studies in order to fully understand the role of these neurons in behaviour.
Collapse
Affiliation(s)
- Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
31
|
Markicevic M, Sturman O, Bohacek J, Rudin M, Zerbi V, Fulcher BD, Wenderoth N. Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions. eLife 2023; 12:e78620. [PMID: 37824184 PMCID: PMC10569790 DOI: 10.7554/elife.78620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Understanding how the brain's macroscale dynamics are shaped by underlying microscale mechanisms is a key problem in neuroscience. In animal models, we can now investigate this relationship in unprecedented detail by directly manipulating cellular-level properties while measuring the whole-brain response using resting-state fMRI. Here, we focused on understanding how blood-oxygen-level-dependent (BOLD) dynamics, measured within a structurally well-defined striato-thalamo-cortical circuit in mice, are shaped by chemogenetically exciting or inhibiting D1 medium spiny neurons (MSNs) of the right dorsomedial caudate putamen (CPdm). We characterize changes in both the BOLD dynamics of individual cortical and subcortical brain areas, and patterns of inter-regional coupling (functional connectivity) between pairs of areas. Using a classification approach based on a large and diverse set of time-series properties, we found that CPdm neuromodulation alters BOLD dynamics within thalamic subregions that project back to dorsomedial striatum. In the cortex, changes in local dynamics were strongest in unimodal regions (which process information from a single sensory modality) and weakened along a hierarchical gradient towards transmodal regions. In contrast, a decrease in functional connectivity was observed only for cortico-striatal connections after D1 excitation. Our results show that targeted cellular-level manipulations affect local BOLD dynamics at the macroscale, such as by making BOLD dynamics more predictable over time by increasing its self-correlation structure. This contributes to ongoing attempts to understand the influence of structure-function relationships in shaping inter-regional communication at subcortical and cortical levels.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale UniversityNew HavenUnited States
| | - Oliver Sturman
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Johannes Bohacek
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Markus Rudin
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- Institute for Biomedical Engineering, University and ETH ZurichZurichSwitzerland
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFLLausanneSwitzerland
- CIBM Centre for Biomedical ImagingLausanneSwitzerland
| | - Ben D Fulcher
- School of Physics, The University of SydneyCamperdownAustralia
| | - Nicole Wenderoth
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE)SingaporeSingapore
| |
Collapse
|
32
|
Ahn SJ, Anfray A, Anrather J, Iadecola C. Calcium transients in nNOS neurons underlie distinct phases of the neurovascular response to barrel cortex activation in awake mice. J Cereb Blood Flow Metab 2023; 43:1633-1647. [PMID: 37149758 PMCID: PMC10581240 DOI: 10.1177/0271678x231173175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
Neuronal nitric oxide (NO) synthase (nNOS), a Ca2+ dependent enzyme, is expressed by distinct populations of neocortical neurons. Although neuronal NO is well known to contribute to the blood flow increase evoked by neural activity, the relationships between nNOS neurons activity and vascular responses in the awake state remain unclear. We imaged the barrel cortex in awake, head-fixed mice through a chronically implanted cranial window. The Ca2+ indicator GCaMP7f was expressed selectively in nNOS neurons using adenoviral gene transfer in nNOScre mice. Air-puffs directed at the contralateral whiskers or spontaneous motion induced Ca2+ transients in 30.2 ± 2.2% or 51.6 ± 3.3% of nNOS neurons, respectively, and evoked local arteriolar dilation. The greatest dilatation (14.8 ± 1.1%) occurred when whisking and motion occurred simultaneously. Ca2+ transients in individual nNOS neurons and local arteriolar dilation showed various degrees of correlation, which was strongest when the activity of whole nNOS neuron ensemble was examined. We also found that some nNOS neurons became active immediately prior to arteriolar dilation, while others were activated gradually after arteriolar dilatation. Discrete nNOS neuron subsets may contribute either to the initiation or to the maintenance of the vascular response, suggesting a previously unappreciated temporal specificity to the role of NO in neurovascular coupling.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
33
|
Ueta Y, Miyata M. Functional and structural synaptic remodeling mechanisms underlying somatotopic organization and reorganization in the thalamus. Neurosci Biobehav Rev 2023; 152:105332. [PMID: 37524138 DOI: 10.1016/j.neubiorev.2023.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
34
|
Rowland JM, van der Plas TL, Loidolt M, Lees RM, Keeling J, Dehning J, Akam T, Priesemann V, Packer AM. Propagation of activity through the cortical hierarchy and perception are determined by neural variability. Nat Neurosci 2023; 26:1584-1594. [PMID: 37640911 PMCID: PMC10471496 DOI: 10.1038/s41593-023-01413-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Brains are composed of anatomically and functionally distinct regions performing specialized tasks, but regions do not operate in isolation. Orchestration of complex behaviors requires communication between brain regions, but how neural dynamics are organized to facilitate reliable transmission is not well understood. Here we studied this process directly by generating neural activity that propagates between brain regions and drives behavior, assessing how neural populations in sensory cortex cooperate to transmit information. We achieved this by imaging two densely interconnected regions-the primary and secondary somatosensory cortex (S1 and S2)-in mice while performing two-photon photostimulation of S1 neurons and assigning behavioral salience to the photostimulation. We found that the probability of perception is determined not only by the strength of the photostimulation but also by the variability of S1 neural activity. Therefore, maximizing the signal-to-noise ratio of the stimulus representation in cortex relative to the noise or variability is critical to facilitate activity propagation and perception.
Collapse
Affiliation(s)
- James M Rowland
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Thijs L van der Plas
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Matthias Loidolt
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert M Lees
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Science and Technology Facilities Council, Octopus Imaging Facility, Research Complex at Harwell, Harwell Campus, Oxfordshire, UK
| | - Joshua Keeling
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jonas Dehning
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. RESEARCH SQUARE 2023:rs.3.rs-2976953. [PMID: 37461707 PMCID: PMC10350168 DOI: 10.21203/rs.3.rs-2976953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
Affiliation(s)
- Daniel G. Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Kiritani T, Pala A, Gasselin C, Crochet S, Petersen CCH. Membrane potential dynamics of excitatory and inhibitory neurons in mouse barrel cortex during active whisker sensing. PLoS One 2023; 18:e0287174. [PMID: 37311008 DOI: 10.1371/journal.pone.0287174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Neocortical neurons can increasingly be divided into well-defined classes, but their activity patterns during quantified behavior remain to be fully determined. Here, we obtained membrane potential recordings from various classes of excitatory and inhibitory neurons located across different cortical depths in the primary whisker somatosensory barrel cortex of awake head-restrained mice during quiet wakefulness, free whisking and active touch. Excitatory neurons, especially those located superficially, were hyperpolarized with low action potential firing rates relative to inhibitory neurons. Parvalbumin-expressing inhibitory neurons on average fired at the highest rates, responding strongly and rapidly to whisker touch. Vasoactive intestinal peptide-expressing inhibitory neurons were excited during whisking, but responded to active touch only after a delay. Somatostatin-expressing inhibitory neurons had the smallest membrane potential fluctuations and exhibited hyperpolarising responses at whisking onset for superficial, but not deep, neurons. Interestingly, rapid repetitive whisker touch evoked excitatory responses in somatostatin-expressing inhibitory neurons, but not when the intercontact interval was long. Our analyses suggest that distinct genetically-defined classes of neurons at different subpial depths have differential activity patterns depending upon behavioral state providing a basis for constraining future computational models of neocortical function.
Collapse
Affiliation(s)
- Taro Kiritani
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aurélie Pala
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Célia Gasselin
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
37
|
Ahissar E, Nelinger G, Assa E, Karp O, Saraf-Sinik I. Thalamocortical loops as temporal demodulators across senses. Commun Biol 2023; 6:562. [PMID: 37237075 DOI: 10.1038/s42003-023-04881-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Sensory information is coded in space and in time. The organization of neuronal activity in space maintains straightforward relationships with the spatial organization of the perceived environment. In contrast, the temporal organization of neuronal activity is not trivially related to external features due to sensor motion. Still, the temporal organization shares similar principles across sensory modalities. Likewise, thalamocortical circuits exhibit common features across senses. Focusing on touch, vision, and audition, we review their shared coding principles and suggest that thalamocortical systems include circuits that allow analogous recoding mechanisms in all three senses. These thalamocortical circuits constitute oscillations-based phase-locked loops, that translate temporally-coded sensory information to rate-coded cortical signals, signals that can integrate information across sensory and motor modalities. The loop also allows predictive locking to the onset of future modulations of the sensory signal. The paper thus suggests a theoretical framework in which a common thalamocortical mechanism implements temporal demodulation across senses.
Collapse
Affiliation(s)
- Ehud Ahissar
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel.
| | - Guy Nelinger
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Eldad Assa
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Ofer Karp
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| |
Collapse
|
38
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541449. [PMID: 37293011 PMCID: PMC10245795 DOI: 10.1101/2023.05.19.541449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
|
39
|
Lee C, Côté SL, Raman N, Chaudhary H, Mercado BC, Chen SX. Whole-brain mapping of long-range inputs to the VIP-expressing inhibitory neurons in the primary motor cortex. Front Neural Circuits 2023; 17:1093066. [PMID: 37275468 PMCID: PMC10237295 DOI: 10.3389/fncir.2023.1093066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The primary motor cortex (MOp) is an important site for motor skill learning. Interestingly, neurons in MOp possess reward-related activity, presumably to facilitate reward-based motor learning. While pyramidal neurons (PNs) and different subtypes of GABAergic inhibitory interneurons (INs) in MOp all undergo cell-type specific plastic changes during motor learning, the vasoactive intestinal peptide-expressing inhibitory interneurons (VIP-INs) in MOp have been shown to preferentially respond to reward and play a critical role in the early phases of motor learning by triggering local circuit plasticity. To understand how VIP-INs might integrate various streams of information, such as sensory, pre-motor, and reward-related inputs, to regulate local plasticity in MOp, we performed monosynaptic rabies tracing experiments and employed an automated cell counting pipeline to generate a comprehensive map of brain-wide inputs to VIP-INs in MOp. We then compared this input profile to the brain-wide inputs to somatostatin-expressing inhibitory interneurons (SST-INs) and parvalbumin-expressing inhibitory interneurons (PV-INs) in MOp. We found that while all cell types received major inputs from sensory, motor, and prefrontal cortical regions, as well as from various thalamic nuclei, VIP-INs received more inputs from the orbital frontal cortex (ORB) - a region associated with reinforcement learning and value predictions. Our findings provide insight on how the brain leverages microcircuit motifs by both integrating and partitioning different streams of long-range input to modulate local circuit activity and plasticity.
Collapse
Affiliation(s)
- Candice Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sandrine L. Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nima Raman
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hritvic Chaudhary
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bryan C. Mercado
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Simon X. Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
40
|
Yan Y, Zhu M, Cao X, Xu G, Shen W, Li F, Zhang J, Luo L, Zhang X, Zhang D, Liu T. Thalamocortical Circuit Controls Neuropathic Pain via Up-regulation of HCN2 in the Ventral Posterolateral Thalamus. Neurosci Bull 2023; 39:774-792. [PMID: 36538279 PMCID: PMC10169982 DOI: 10.1007/s12264-022-00989-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
The thalamocortical (TC) circuit is closely associated with pain processing. The hyperpolarization-activated cyclic nucleotide-gated (HCN) 2 channel is predominantly expressed in the ventral posterolateral thalamus (VPL) that has been shown to mediate neuropathic pain. However, the role of VPL HCN2 in modulating TC circuit activity is largely unknown. Here, by using optogenetics, neuronal tracing, electrophysiological recordings, and virus knockdown strategies, we showed that the activation of VPL TC neurons potentiates excitatory synaptic transmission to the hindlimb region of the primary somatosensory cortex (S1HL) as well as mechanical hypersensitivity following spared nerve injury (SNI)-induced neuropathic pain in mice. Either pharmacological blockade or virus knockdown of HCN2 (shRNA-Hcn2) in the VPL was sufficient to alleviate SNI-induced hyperalgesia. Moreover, shRNA-Hcn2 decreased the excitability of TC neurons and synaptic transmission of the VPL-S1HL circuit. Together, our studies provide a novel mechanism by which HCN2 enhances the excitability of the TC circuit to facilitate neuropathic pain.
Collapse
Affiliation(s)
- Yi Yan
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Mengye Zhu
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Xuezhong Cao
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Gang Xu
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Wei Shen
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Fan Li
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Jinjin Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Lingyun Luo
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China
| | - Xuexue Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China.
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China.
| | - Daying Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, 330006, China.
- Key Laboratory of Neuropathic Pain, Healthcare Commission of Jiangxi Province, Nanchang, 330006, China.
| | - Tao Liu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
41
|
Banerjee A, Wang BA, Teutsch J, Helmchen F, Pleger B. Analogous cognitive strategies for tactile learning in the rodent and human brain. Prog Neurobiol 2023; 222:102401. [PMID: 36608783 DOI: 10.1016/j.pneurobio.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Evolution has molded individual species' sensory capacities and abilities. In rodents, who mostly inhabit dark tunnels and burrows, the whisker-based somatosensory system has developed as the dominant sensory modality, essential for environmental exploration and spatial navigation. In contrast, humans rely more on visual and auditory inputs when collecting information from their surrounding sensory space in everyday life. As a result of such species-specific differences in sensory dominance, cognitive relevance and capacities, the evidence for analogous sensory-cognitive mechanisms across species remains sparse. However, recent research in rodents and humans yielded surprisingly comparable processing rules for detecting tactile stimuli, integrating touch information into percepts, and goal-directed rule learning. Here, we review how the brain, across species, harnesses such processing rules to establish decision-making during tactile learning, following canonical circuits from the thalamus and the primary somatosensory cortex up to the frontal cortex. We discuss concordances between empirical and computational evidence from micro- and mesoscopic circuit studies in rodents to findings from macroscopic imaging in humans. Furthermore, we discuss the relevance and challenges for future cross-species research in addressing mutual context-dependent evaluation processes underpinning perceptual learning.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom.
| | - Bin A Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany.
| | - Jasper Teutsch
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Switzerland
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany
| |
Collapse
|
42
|
English G, Ghasemi Nejad N, Sommerfelt M, Yanik MF, von der Behrens W. Bayesian surprise shapes neural responses in somatosensory cortical circuits. Cell Rep 2023; 42:112009. [PMID: 36701237 DOI: 10.1016/j.celrep.2023.112009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/16/2022] [Accepted: 12/31/2022] [Indexed: 01/26/2023] Open
Abstract
Numerous psychophysical studies show that Bayesian inference governs sensory decision-making; however, the specific neural circuitry underlying this probabilistic mechanism remains unclear. We record extracellular neural activity along the somatosensory pathway of mice while delivering sensory stimulation paradigms designed to isolate the response to the surprise generated by Bayesian inference. Our results demonstrate that laminar cortical circuits in early sensory areas encode Bayesian surprise. Systematic sensitivity to surprise is not identified in the somatosensory thalamus, rather emerging in the primary (S1) and secondary (S2) somatosensory cortices. Multiunit spiking activity and evoked potentials in layer 6 of these regions exhibit the highest sensitivity to surprise. Gamma power in S1 layer 2/3 exhibits an NMDAR-dependent scaling with surprise, as does alpha power in layers 2/3 and 6 of S2. These results show a precise spatiotemporal neural representation of Bayesian surprise and suggest that Bayesian inference is a fundamental component of cortical processing.
Collapse
Affiliation(s)
- Gwendolyn English
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland; ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland.
| | - Newsha Ghasemi Nejad
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland; ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland
| | - Marcel Sommerfelt
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland; ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland; ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
43
|
Xi K, Xiao H, Huang X, Yuan Z, Liu M, Mao H, Liu H, Ma G, Cheng Z, Xie Y, Liu Y, Feng D, Wang W, Guo B, Wu S. Reversal of hyperactive higher-order thalamus attenuates defensiveness in a mouse model of PTSD. SCIENCE ADVANCES 2023; 9:eade5987. [PMID: 36735778 PMCID: PMC9897664 DOI: 10.1126/sciadv.ade5987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a highly prevalent and debilitating psychiatric disease often accompanied by severe defensive behaviors, preventing individuals from integrating into society. However, the neural mechanisms of defensiveness in PTSD remain largely unknown. Here, we identified that the higher-order thalamus, the posteromedial complex of the thalamus (PoM), was overactivated in a mouse model of PTSD, and suppressing PoM activity alleviated excessive defensive behaviors. Moreover, we found that diminished thalamic inhibition derived from the thalamic reticular nucleus was the major cause of thalamic hyperactivity in PTSD mice. Overloaded thalamic innervation to the downstream cortical area, frontal association cortex, drove abnormal defensiveness. Overall, our study revealed that the malfunction of the higher-order thalamus mediates defensive behaviors and highlighted the thalamocortical circuit as a potential target for treating PTSD-related overreactivity symptoms.
Collapse
Affiliation(s)
- Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Xin Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Ziduo Yuan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Mingyue Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Guaiguai Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Medical School, Yan’an University, Yan’an 716000, China
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
44
|
Hemodynamic transient and functional connectivity follow structural connectivity and cell type over the brain hierarchy. Proc Natl Acad Sci U S A 2023; 120:e2202435120. [PMID: 36693103 PMCID: PMC9945945 DOI: 10.1073/pnas.2202435120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neural circuit of the brain is organized as a hierarchy of functional units with wide-ranging connections that support information flow and functional connectivity. Studies using MRI indicate a moderate coupling between structural and functional connectivity at the system level. However, how do connections of different directions (feedforward and feedback) and regions with different excitatory and inhibitory (E/I) neurons shape the hemodynamic activity and functional connectivity over the hierarchy are unknown. Here, we used functional MRI to detect optogenetic-evoked and resting-state activities over a somatosensory pathway in the mouse brain in relation to axonal projection and E/I distribution. Using a highly sensitive ultrafast imaging, we identified extensive activation in regions up to the third order of axonal projections following optogenetic excitation of the ventral posteriomedial nucleus of the thalamus. The evoked response and functional connectivity correlated with feedforward projections more than feedback projections and weakened with the hierarchy. The hemodynamic response exhibited regional and hierarchical differences, with slower and more variable responses in high-order areas and bipolar response predominantly in the contralateral cortex. Electrophysiological recordings suggest that these reflect differences in neural activity rather than neurovascular coupling. Importantly, the positive and negative parts of the hemodynamic response correlated with E/I neuronal densities, respectively. Furthermore, resting-state functional connectivity was more associated with E/I distribution, whereas stimulus-evoked effective connectivity followed structural wiring. These findings indicate that the structure-function relationship is projection-, cell-type- and hierarchy-dependent. Hemodynamic transients could reflect E/I activity and the increased complexity of hierarchical processing.
Collapse
|
45
|
Matteucci G, Guyoton M, Mayrhofer JM, Auffret M, Foustoukos G, Petersen CCH, El-Boustani S. Cortical sensory processing across motivational states during goal-directed behavior. Neuron 2022; 110:4176-4193.e10. [PMID: 36240769 DOI: 10.1016/j.neuron.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/25/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Behavioral states can influence performance of goal-directed sensorimotor tasks. Yet, it is unclear how altered neuronal sensory representations in these states relate to task performance and learning. We trained water-restricted mice in a two-whisker discrimination task to study cortical circuits underlying perceptual decision-making under different levels of thirst. We identified somatosensory cortices as well as the premotor cortex as part of the circuit necessary for task execution. Two-photon calcium imaging in these areas identified populations selective to sensory or motor events. Analysis of task performance during individual sessions revealed distinct behavioral states induced by decreasing levels of thirst-related motivation. Learning was better explained by improvements in motivational state control rather than sensorimotor association. Whisker sensory representations in the cortex were altered across behavioral states. In particular, whisker stimuli could be better decoded from neuronal activity during high task performance states, suggesting that state-dependent changes of sensory processing influence decision-making.
Collapse
Affiliation(s)
- Giulio Matteucci
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Maëlle Guyoton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Johannes M Mayrhofer
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Georgios Foustoukos
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| | - Sami El-Boustani
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland; Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
46
|
Qi J, Ye C, Naskar S, Inácio AR, Lee S. Posteromedial thalamic nucleus activity significantly contributes to perceptual discrimination. PLoS Biol 2022; 20:e3001896. [PMID: 36441759 PMCID: PMC9731480 DOI: 10.1371/journal.pbio.3001896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/08/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022] Open
Abstract
Higher-order sensory thalamic nuclei are densely connected with multiple cortical and subcortical areas, yet the role of these nuclei remains elusive. The posteromedial thalamic nucleus (POm), the higher-order thalamic nucleus in the rodent somatosensory system, is an anatomical hub broadly connected with multiple sensory and motor brain areas yet weakly responds to passive sensory stimulation and whisker movements. To understand the role of POm in sensory perception, we developed a self-initiated, two-alternative forced-choice task in freely moving mice during active sensing. Using optogenetic and chemogenetic manipulation, we show that POm plays a significant role in sensory perception and the projection from the primary somatosensory cortex to POm is critical for the contribution of POm in sensory perception during active sensing.
Collapse
Affiliation(s)
- Jia Qi
- Unit on Functional Neural Circuits, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Changquan Ye
- Unit on Functional Neural Circuits, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shovan Naskar
- Unit on Functional Neural Circuits, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana R. Inácio
- Unit on Functional Neural Circuits, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Xue J, Qian D, Zhang B, Yang J, Li W, Bao Y, Qiu S, Fu Y, Wang S, Yuan TF, Lu W. Midbrain dopamine neurons arbiter OCD-like behavior. Proc Natl Acad Sci U S A 2022; 119:e2207545119. [PMID: 36343236 PMCID: PMC9674233 DOI: 10.1073/pnas.2207545119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/28/2022] [Indexed: 08/19/2023] Open
Abstract
The neurobiological understanding of obsessive-compulsive disorder (OCD) includes dysregulated frontostriatal circuitry and altered monoamine transmission. Repetitive stereotyped behavior (e.g., grooming), a featured symptom in OCD, has been proposed to be associated with perturbed dopamine (DA) signaling. However, the precise brain circuits participating in DA's control over this behavioral phenotype remain elusive. Here, we identified that DA neurons in substantia nigra pars compacta (SNc) orchestrate ventromedial striatum (VMS) microcircuits as well as lateral orbitofrontal cortex (lOFC) during self-grooming behavior. SNc-VMS and SNc-lOFC dopaminergic projections modulate grooming behaviors and striatal microcircuit function differentially. Specifically, the activity of the SNc-VMS pathway promotes grooming via D1 receptors, whereas the activity of the SNc-lOFC pathway suppresses grooming via D2 receptors. SNc DA neuron activity thus controls the OCD-like behaviors via both striatal and cortical projections as dual gating. These results support both pharmacological and brain-stimulation treatments for OCD.
Collapse
Affiliation(s)
- Jinwen Xue
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Dandan Qian
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Bingqian Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jingxuan Yang
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Wei Li
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yifei Bao
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Shi Qiu
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yi Fu
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Shaoli Wang
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wei Lu
- Minister of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
48
|
Choi S, Zeng H, Chen Y, Sobczak F, Qian C, Yu X. Laminar-specific functional connectivity mapping with multi-slice line-scanning fMRI. Cereb Cortex 2022; 32:4492-4501. [PMID: 35107125 PMCID: PMC9574235 DOI: 10.1093/cercor/bhab497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Despite extensive studies detecting laminar functional magnetic resonance imaging (fMRI) signals to illustrate the canonical microcircuit, the spatiotemporal characteristics of laminar-specific information flow across cortical regions remain to be fully investigated in both evoked and resting conditions at different brain states. Here, we developed a multislice line-scanning fMRI (MS-LS) method to detect laminar fMRI signals in adjacent cortical regions with high spatial (50 μm) and temporal resolution (100 ms) in anesthetized rats. Across different trials, we detected either laminar-specific positive or negative blood-oxygen-level-dependent (BOLD) responses in the surrounding cortical region adjacent to the most activated cortex under the evoked condition. Specifically, in contrast to typical Layer (L) 4 correlation across different regions due to the thalamocortical projections for trials with positive BOLD, a strong correlation pattern specific in L2/3 was detected for trials with negative BOLD in adjacent regions, which indicated brain state-dependent laminar-fMRI responses based on corticocortical interaction. Also, in resting-state (rs-) fMRI study, robust lag time differences in L2/3, 4, and 5 across multiple cortices represented the low-frequency rs-fMRI signal propagation from caudal to rostral slices. In summary, our study provided a unique laminar fMRI mapping scheme to better characterize trial-specific intra- and inter-laminar functional connectivity in evoked and resting-state MS-LS.
Collapse
Affiliation(s)
- Sangcheon Choi
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Hang Zeng
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Filip Sobczak
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
49
|
Grienberger C, Giovannucci A, Zeiger W, Portera-Cailliau C. Two-photon calcium imaging of neuronal activity. NATURE REVIEWS. METHODS PRIMERS 2022; 2:67. [PMID: 38124998 PMCID: PMC10732251 DOI: 10.1038/s43586-022-00147-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/23/2023]
Abstract
In vivo two-photon calcium imaging (2PCI) is a technique used for recording neuronal activity in the intact brain. It is based on the principle that, when neurons fire action potentials, intracellular calcium levels rise, which can be detected using fluorescent molecules that bind to calcium. This Primer is designed for scientists who are considering embarking on experiments with 2PCI. We provide the reader with a background on the basic concepts behind calcium imaging and on the reasons why 2PCI is an increasingly powerful and versatile technique in neuroscience. The Primer explains the different steps involved in experiments with 2PCI, provides examples of what ideal preparations should look like and explains how data are analysed. We also discuss some of the current limitations of the technique, and the types of solutions to circumvent them. Finally, we conclude by anticipating what the future of 2PCI might look like, emphasizing some of the analysis pipelines that are being developed and international efforts for data sharing.
Collapse
Affiliation(s)
- Christine Grienberger
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Andrea Giovannucci
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
50
|
Cai L, Yang JW, Wang CF, Chou SJ, Luhmann HJ, Karayannis T. Identification of a Developmental Switch in Information Transfer between Whisker S1 and S2 Cortex in Mice. J Neurosci 2022; 42:4435-4448. [PMID: 35501157 PMCID: PMC9172289 DOI: 10.1523/jneurosci.2246-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
The whiskers of rodents are a key sensory organ that provides critical tactile information for animal navigation and object exploration throughout life. Previous work has explored the developmental sensory-driven activation of the primary sensory cortex processing whisker information (wS1), also called barrel cortex. This body of work has shown that the barrel cortex is already activated by sensory stimuli during the first postnatal week. However, it is currently unknown when over the course of development these stimuli begin being processed by higher-order cortical areas, such as secondary whisker somatosensory area (wS2). Here we investigate the developmental engagement of wS2 by whisker stimuli and the emergence of corticocortical communication from wS1 to wS2. Using in vivo wide-field imaging and multielectrode recordings in control and conditional KO mice of either sex with thalamocortical innervation defects, we find that wS1 and wS2 are able to process bottom-up information coming from the thalamus from birth. We also identify that it is only at the end of the first postnatal week that wS1 begins to provide functional excitation into wS2, switching to more inhibitory actions after the second postnatal week. Therefore, we have uncovered a developmental window when information transfer between wS1 and wS2 reaches mature function.SIGNIFICANCE STATEMENT At the end of the first postnatal week, the primary whisker somatosensory area starts providing excitatory input to the secondary whisker somatosensory area 2. This excitatory drive weakens during the second postnatal week and switches to inhibition in the adult.
Collapse
Affiliation(s)
- Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zürich, CH-8057, Zürich, Switzerland
| | - Jenq-Wei Yang
- Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zürich, CH-8057, Zürich, Switzerland
- Institute of Physiology, University Medical Center, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Chia-Fang Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zürich, CH-8057, Zürich, Switzerland
| |
Collapse
|