1
|
Avalos-Padilla Y, Bouzón-Arnáiz I, Ramírez M, Camarero-Hoyos C, Orozco-Quer M, M. Arce E, Muñoz-Torrero D, Fernàndez-Busquets X. Overexpression in Plasmodium falciparum of an intrinsically disordered protein segment of PfUT impairs the parasite's proteostasis and reduces its growth rate. Front Cell Infect Microbiol 2025; 15:1565814. [PMID: 40433665 PMCID: PMC12106546 DOI: 10.3389/fcimb.2025.1565814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/14/2025] [Indexed: 05/29/2025] Open
Abstract
The proteome of Plasmodium falciparum exhibits a marked propensity for aggregation. This characteristic results from the parasite's AT-rich genome, which encodes numerous proteins with long asparagine-rich stretches and low structural complexity, which lead to abundant intrinsically disordered regions. While this poses challenges for the parasite, the propensity for protein aggregation may also serve functional roles, such as stress adaptation, and could therefore be exploited by targeting it as a potential vulnerable spot in the pathogen. Here, we overexpressed an aggregation-prone segment of the P. falciparum ubiquitin transferase (PfUTf), an E3 ubiquitin ligase protein that has been previously demonstrated to regulate the stability of parasite proteins involved in invasion, development and drug metabolism. Overexpression of PfUTf in P. falciparum had evident phenotypic effects observed by transmission electron microscopy and confocal fluorescence microscopy, increased endogenous protein aggregation, disrupted proteostasis, and caused significant growth impairment in the parasite. Combined with dihydroartemisinin treatment, PfUTf overexpression had a synergistic effect that further compromised the parasite´s viability, linking protein aggregation to proteasome dysfunction. Changes in the distribution of aggregation-prone proteins, shown by the altered subcellular fluorescent pattern of the new investigational aggregated protein dye and antiplasmodial compound YAT2150 in the overexpressing P. falciparum line, highlighted the critical balance between protein aggregation, stress responses, and parasite viability, suggesting proteostasis-targeting therapies as a good antimalarial strategy.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Bouzón-Arnáiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Miriam Ramírez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Claudia Camarero-Hoyos
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Doctoral School of Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Marc Orozco-Quer
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elsa M. Arce
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Balakrishnan A, Hunziker M, Tiwary P, Pandey V, Drew D, Billker O. A CRISPR homing screen finds a chloroquine resistance transporter-like protein of the Plasmodium oocyst essential for mosquito transmission of malaria. Nat Commun 2025; 16:3895. [PMID: 40274854 PMCID: PMC12022033 DOI: 10.1038/s41467-025-59099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Genetic screens with barcoded PlasmoGEM vectors have identified thousands of Plasmodium berghei gene functions in haploid blood stages, gametocytes and liver stages. However, the formation of diploid cells by fertilisation has hindered similar research on the parasites' mosquito stages. In this study, we develop a scalable genetic system that uses barcoded gene targeting vectors equipped with a CRISPR-mediated homing mechanism to generate homozygous loss-of-function mutants after one parent introduces a modified allele into the zygote. To achieve this, we use vectors additionally expressing a target gene specific gRNA. When integrated into one of the parental alleles it directs Cas9 to the intact allele after fertilisation, leading to its disruption. This homing strategy is 90% effective at generating homozygous gene editing of a fluorescence-tagged reporter locus in the oocyst. A pilot screen identifies PBANKA_0916000 as a chloroquine resistance transporter-like protein (CRTL) essential for oocyst growth and sporogony, pointing to an unexpected importance for malaria transmission of the poorly understood digestive vacuole of the oocyst that contains hemozoin granules. Homing screens provide a method for the systematic discovery of malaria transmission genes whose first essential functions are after fertilisation in the bloodmeal, enabling their potential as targets for transmission-blocking interventions to be assessed.
Collapse
Affiliation(s)
- Arjun Balakrishnan
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mirjam Hunziker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Puja Tiwary
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Vikash Pandey
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Oliver Billker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umea Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
3
|
Hirai M, Arai M, Hayamichi S, Uchida A, Sudo M, Kubota R, Shinzawa N, Mita T. Deletion of the chloroquine resistance transporter gene confers reduced piperaquine susceptibility to the rodent malaria parasite Plasmodium berghei. Antimicrob Agents Chemother 2025; 69:e0158924. [PMID: 39992104 PMCID: PMC11963562 DOI: 10.1128/aac.01589-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Malaria parasites acquire drug resistance through genetic changes, the mechanisms of which remain incompletely understood. Understanding the mechanisms of drug resistance is crucial for the development of effective treatments against malaria, and for this purpose, new genetic tools are needed. In a previous study, as a forward genetic tool, we developed the rodent malaria parasite Plasmodium berghei mutator (PbMut) line, which has a greatly increased rate of mutation accumulation and from which we isolated a mutant with reduced susceptibility to piperaquine (PPQ). We identified a mutation in the chloroquine resistance transporter (PbCRT N331I) as responsible for this phenotype. In the current study, we generated a marker-free PbMut to enable further genetic manipulation of the isolated mutants. Here, we screened again for PPQ-resistant mutants in marker-free PbMut and obtained a parasite population with reduced susceptibility to PPQ. Of five isolated clones, none had the mutation PbCRT N331I; rather, they possessed a nonsense mutation at amino acid 119 (PbCRT Y119*), which would truncate the protein before eight of its ten predicted transmembrane domains. The PbCRT orthologue in the human malaria parasite Plasmodium falciparum, PfCRT, is an essential membrane transporter. To address the essentiality of PbCRT, we successfully deleted the full PbCRT gene [PbCRT(-)] from wild-type parasites. PbCRT(-) parasites exhibited reduced susceptibility to PPQ, along with compromised fitness in mice and following transmission to mosquitoes. Taken together, our findings provide the first evidence that P. berghei can acquire reduced PPQ susceptibility through complete loss of PbCRT function.
Collapse
Affiliation(s)
- Makoto Hirai
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Bunkyo-ku Hongo, Tokyo, Japan
| | - Meiji Arai
- Department of International Medical Zoology, School of Medicine, Kagawa University, Kida, Kagawa, Japan
| | - Soki Hayamichi
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Bunkyo-ku Hongo, Tokyo, Japan
| | - Ayako Uchida
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Bunkyo-ku Hongo, Tokyo, Japan
| | - Megumi Sudo
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Bunkyo-ku Hongo, Tokyo, Japan
| | - Rie Kubota
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Bunkyo-ku Yushima, Tokyo, Japan
| | - Naoaki Shinzawa
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Bunkyo-ku Yushima, Tokyo, Japan
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Bunkyo-ku Hongo, Tokyo, Japan
| |
Collapse
|
4
|
Tanner JD, Richards SN, Corry B. Molecular basis of the functional conflict between chloroquine and peptide transport in the Malaria parasite chloroquine resistance transporter PfCRT. Nat Commun 2025; 16:2987. [PMID: 40140375 PMCID: PMC11947230 DOI: 10.1038/s41467-025-58244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key protein contributing to resistance against the antimalarial chloroquine (CQ). Mutations such as K76T enable PfCRT to transport CQ away from its target in the parasite's digestive vacuole, but this comes at a cost to its natural peptide transport function. This creates fitness costs which can drive changes to drug susceptibility in parasite populations, but the molecular basis of this is not well understood. To investigate, here we run 130 μs of molecular dynamics simulations of CQ-sensitive and CQ-resistant PfCRT isoforms with CQ and peptide substrates. We identify the CQ binding site and characterized diverse peptide binding modes. The K76T mutation allows CQ to access the binding site but disrupts peptide binding, highlighting the importance of cavity charge in determining substrate specificity. This study provides insight into PfCRT polyspecific peptide transport and will aid in rational, structure-based inhibitor design.
Collapse
Affiliation(s)
- John D Tanner
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sashika N Richards
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
5
|
Garnie LF, Egan TJ, Wicht KJ. Heme Detoxification in the Malaria Parasite Plasmodium falciparum: A Time-Dependent Basal-Level Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641703. [PMID: 40093040 PMCID: PMC11908274 DOI: 10.1101/2025.03.06.641703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Malaria is a deadly disease for which therapeutic options are threatened by the rise of antimalarial resistance. Inhibiting the formation of hemozoin (the product of heme detoxification) in the digestive vacuole (DV) is the mechanism of action of numerous antimalarial drugs, including those in development as new therapies. This drug target remains attractive as hemozoin is an abiotic and non-mutable molecule, unique to the parasite. The underlying parasite biology of the heme detoxification pathway is complex and requires a deeper understanding. This study focuses on the DV of Plasmodium falciparum, utilizing confocal microscopy, immunoblotting and cellular fractionation techniques to study its native state over time. Using parameters such as the uptake into and growth of the DV, relative abundance of plasmepsins (PMs) I and IV and basal levels of hemoglobin, heme and hemozoin, it was found that DV physiology in chloroquine (CQ)-sensitive NF54 parasites follows three distinct developmental phases: the lag-type growth (20 to 28 h), rapid growth phase (28 to 40 h) and the plateau (40 to 48 h). These phases hold specific characteristics with respect to the investigated parameters. In addition, key differences between CQ-sensitive NF54 and CQ-resistant Dd2 parasites were observed.
Collapse
Affiliation(s)
- Larnelle F Garnie
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Kathryn J Wicht
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Holistic Drug Discovery and Development (H3D) Center, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
6
|
Segovia X, Srivastava B, Serrato-Arroyo S, Guerrero A, Huijben S. Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management. Malar J 2025; 24:65. [PMID: 40025552 PMCID: PMC11871665 DOI: 10.1186/s12936-025-05286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Artemisinin-based combination therapy (ACT) remains a broadly effective anti-malarial drug combination, but the emergence of resistance is threatening its effectiveness. Limiting the spread of these drug-resistant parasites and delaying the emergence of resistance in new areas are of high priority. Understanding the evolution of resistance relies on discerning the fitness costs and benefits associated with resistance mutations. If the cost associated with resistance in an untreated host is sufficiently large relative to the benefit of resistance in a treated host, then the spread of resistance can be mitigated by ensuring sufficient hosts free from that active pharmaceutical ingredient. There is no straightforward way to measure these fitness costs, and each approach that has been used has its limitations. Here, the evidence of fitness costs as measured using field data, animal models, and in vitro models is reviewed for three of the main current or past first-line treatments for malaria: chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artemisinin derivatives (ART). Despite the difficulties of assessing fitness costs, there is a good amount of evidence of fitness costs in drug-resistant Plasmodium falciparum parasites. The most persuasive evidence comes from resistance reversal observed following the cessation of the use of chloroquine. Comparable evidence cannot be obtained for SP- and ART-resistant parasites, due to the absence of complete cessation of these drugs in the field. Data from in vitro and animal models are variable. While fitness costs are often observed, their presence is not universal across all resistant strains. The extent and nature of these fitness costs can vary greatly depending on the specific genetic factors involved and the ecological context in which the parasites evolve. As a result, it is essential to avoid making broad generalizations about the prevalence or impact of fitness costs in drug-resistant malaria parasites. Focusing on fitness costs as a vulnerability in resistant parasites can guide their evolutionary trajectory towards minimizing their fitness. By accurately predicting these costs, efforts to extend the effectiveness of anti-malarials can be enhanced, limiting resistance evolution and advancing malaria control and elimination goals.
Collapse
Affiliation(s)
- Xyonane Segovia
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Sergio Serrato-Arroyo
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ashley Guerrero
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Hagenah LM, Yeo T, Schindler KA, Jeon JH, Bloxham TS, Small-Saunders JL, Mok S, Fidock DA. Plasmodium falciparum African PfCRT Mutant Isoforms Conducive to Piperaquine Resistance are Infrequent and Impart a Major Fitness Cost. J Infect Dis 2024:jiae617. [PMID: 39661643 DOI: 10.1093/infdis/jiae617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Piperaquine, used in combination with dihydroartemisinin, has been identified as a promising partner drug for uncomplicated treatment and chemoprevention of Plasmodium falciparum malaria in Africa. In light of the earlier spread of piperaquine resistance in Southeast Asia, mediated primarily by mutations in the drug efflux transporter PfCRT, we have explored whether PfCRT mutations would represent a probable path to piperaquine resistance becoming established in Africa. METHODS We edited PfCRT mutations known to mediate piperaquine resistance in Southeast Asia into P. falciparum asexual blood stage parasites expressing three prevalent African mutant PfCRT haplotypes. Gene-edited clones were profiled in antimalarial concentration-response and competitive fitness assays. RESULTS pfcrt-edited parasites expressing the contemporary Southeast Asian T93S or I218F mutations added to the GB4 and Cam783 haplotypes common in Africa did not mediate piperaquine resistance, with partial survival only at low drug concentrations. In contrast, parasites expressing these mutations on the rare PfCRT FCB haplotype, observed mostly in North-East Africa, acquired a moderate level of piperaquine resistance. Dd2GB4, Dd2Cam783, and Dd2FCB lines edited to express the T93S or I218F mutations showed increased susceptibility to chloroquine. Piperaquine-resistant African PfCRT isoforms conferred a substantial fitness cost, manifesting as reduced asexual blood stage parasite growth rates. CONCLUSIONS These findings suggest that piperaquine-resistant PfCRT mutations that emerged in Southeast Asia mediate resistance only in a limited subset of African PfCRT haplotypes, with fitness costs that we suspect would likely preclude dissemination in high-transmission malaria-endemic African regions.
Collapse
Affiliation(s)
- Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jin H Jeon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Talia S Bloxham
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Watson SJ, van der Watt ME, Theron A, Reader J, Tshabalala S, Erlank E, Koekemoer LL, Naude M, Stampolaki M, Adewole F, Sadowska K, Pérez-Lozano P, Turcu AL, Vázquez S, Ko J, Mazurek B, Singh D, Malwal SR, Njoroge M, Chibale K, Onajole OK, Kolocouris A, Oldfield E, Birkholtz LM. The Tuberculosis Drug Candidate SQ109 and Its Analogs Have Multistage Activity against Plasmodium falciparum. ACS Infect Dis 2024; 10:3358-3367. [PMID: 39143042 PMCID: PMC11406516 DOI: 10.1021/acsinfecdis.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Toward repositioning the antitubercular clinical candidate SQ109 as an antimalarial, analogs were investigated for structure-activity relationships for activity against asexual blood stages of the human malaria parasite Plasmodium falciparum pathogenic forms, as well as transmissible, sexual stage gametocytes. We show that equipotent activity (IC50) in the 100-300 nM range could be attained for both asexual and sexual stages, with the activity of most compounds retained against a multidrug-resistant strain. The multistage activity profile relies on high lipophilicity ascribed to the adamantane headgroup, and antiplasmodial activity is critically dependent on the diamine linker. Frontrunner compounds showed conserved activity against genetically diverse southern African clinical isolates. We additionally validated that this series could block transmission to mosquitoes, marking these compounds as novel chemotypes with multistage antiplasmodial activity.
Collapse
Affiliation(s)
| | | | - Anjo Theron
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | | | | | - Erica Erlank
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg 2000, South Africa
| | - Lizette L Koekemoer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg 2000, South Africa
| | | | - Marianna Stampolaki
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Feyisola Adewole
- Department of Biological, Physical and Health Sciences, College of Science, Health & Pharmacy, Roosevelt University, 425 South Wabash Avenue, Chicago, Illinois 60605, United States
| | - Katie Sadowska
- Department of Biological, Physical and Health Sciences, College of Science, Health & Pharmacy, Roosevelt University, 425 South Wabash Avenue, Chicago, Illinois 60605, United States
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Andreea L Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Jihee Ko
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ben Mazurek
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Capetown 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Capetown 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Centre, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Capetown 7701, South Africa
| | - Oluseye K Onajole
- Department of Biological, Physical and Health Sciences, College of Science, Health & Pharmacy, Roosevelt University, 425 South Wabash Avenue, Chicago, Illinois 60605, United States
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | |
Collapse
|
9
|
Sojka D, Šnebergerová P. Advances in protease inhibition-based chemotherapy: A decade of insights from Malaria research. ADVANCES IN PARASITOLOGY 2024; 126:205-227. [PMID: 39448191 DOI: 10.1016/bs.apar.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Over the last decade, research on the most studied parasite, Plasmodium falciparum, has disclosed significant findings in protease research. Detailed descriptions of the individual roles of protease isoenzymes from various protease classes encoded by the parasite genome have been elucidated, along with their functional and biochemical characterizations. These insights have enabled the development of innovative chemotherapy using low molecular weight inhibitors targeting specific molecular sites. Progress has been made in understanding the proteolytic cascade associated with the apical complex, particularly the roles of aspartyl proteases plasmepsins IX and X as master regulators. Additionally, advancements in direct and alternative methods of proteasome inhibition and expression regulation have been achieved. Research on digestive/food vacuole-associated proteases, with a focus on essential metalloproteases, has also seen significant developments. The rise of extensive genomic datasets and functional genomic tools for other parasitic organisms now allows these approaches to be applied to the study and treatment of other, less known parasitic diseases, aiming to uncover specific biological mechanisms and develop innovative, less toxic chemotherapies.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
| | - Pavla Šnebergerová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
10
|
Tran THT, Hien BTT, Dung NTL, Huong NT, Binh TT, Van Long N, Ton ND. Evaluation of Dihydroartemisinin-Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1013. [PMID: 38929629 PMCID: PMC11205605 DOI: 10.3390/medicina60061013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Malaria continues to be a significant global health challenge. The efficacy of artemisinin-based combination therapies (ACTs) has declined in many parts of the Greater Mekong Subregion, including Vietnam, due to the spread of resistant malaria strains. This study was conducted to assess the efficacy of the Dihydroartemisinin (DHA)-Piperaquine (PPQ) regimen in treating uncomplicated falciparum malaria and to conduct molecular surveillance of antimalarial drug resistance in Binh Phuoc and Dak Nong provinces. Materials and Methods: The study included 63 uncomplicated malaria falciparum patients from therapeutic efficacy studies (TES) treated following the WHO treatment guidelines (2009). Molecular marker analysis was performed on all 63 patients. Methods encompassed Sanger sequencing for pfK13 mutations and quantitative real-time PCR for the pfpm2 gene. Results: This study found a marked decrease in the efficacy of the DHA-PPQ regimen, with an increased rate of treatment failures at two study sites. Genetic analysis revealed a significant presence of pfK13 mutations and pfpm2 amplifications, indicating emerging resistance to artemisinin and its partner drug. Conclusions: The effectiveness of the standard DHA-PPQ regimen has sharply declined, with rising treatment failure rates. This decline necessitates a review and possible revision of national malaria treatment guidelines. Importantly, molecular monitoring and clinical efficacy assessments together provide a robust framework for understanding and addressing detection drug resistance in malaria.
Collapse
Affiliation(s)
- Thu Huyen Thi Tran
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Bui Thi Thu Hien
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Thi Lan Dung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Thi Huong
- National Burn Hospital, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tran Thanh Binh
- 103 Hospital, Vietnam Military Medical University, Hanoi 100000, Vietnam;
| | - Nguyen Van Long
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Dang Ton
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
11
|
Amador LA, Colón-Lorenzo EE, Rodríguez AD, Serrano AE. Probing the Antiplasmodial Properties of Plakortinic Acids C and D: An Uncommon Pair of Marine Peroxide-Polyketides Isolated from a Two-Sponge Association of Plakortis symbiotica and Xetospongia deweerdtae Collected near Puerto Rico. Life (Basel) 2024; 14:684. [PMID: 38929667 PMCID: PMC11204963 DOI: 10.3390/life14060684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Plakortinic acids C (1) and D (2), an unseparable pair of endoperoxide polyketides isolated and purified from the symbiotic association of Caribbean Sea sponges Plakortis symbiotica-Xestospongia deweerdtae, underwent in vitro evaluation for antiplasmodial activity against the malaria parasite Plasmodium berghei using a drug luminescence assay. Initial screening at 10 µM revealed 50% in vitro parasite growth inhibition. The title compounds displayed antiplasmodial activity with an EC50 of 5.3 µM toward P. berghei parasites. The lytic activity against erythrocytes was assessed through an erythrocyte cell lysis assay, which showed non-lytic activity at lower concentrations ranging from 1.95 to 3.91 µM. The antiplasmodial activity and the absence of hemolytic activity support the potential of plakortinic acids C (1) and D (2) as promising lead compounds. Moreover, drug-likeness (ADMET) properties assessed through the pkCSM server predicted high intestinal absorption, hepatic metabolism, and volume of distribution, indicating favorable pharmacokinetic profiles for oral administration. These findings suggest the potential suitability of these metabolites for further investigations of antiplasmodial activity in multiple parasitic stages in the mosquito and Plasmodium falciparum. Notably, this study represents the first report of a marine natural product exhibiting the unique 7,8-dioxatricyclo[4.2.2.02,5]dec-9-ene motif being evaluated against malaria.
Collapse
Affiliation(s)
- Luis A. Amador
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan 00926, Puerto Rico;
| | - Emilee E. Colón-Lorenzo
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan 00921, Puerto Rico;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan 00926, Puerto Rico;
| | - Adelfa E. Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan 00921, Puerto Rico;
| |
Collapse
|
12
|
Pintão AM, Santos T, Nogueira F. Antimalarial Activity of Aqueous Extracts of Nasturtium ( Tropaeolum majus L.) and Benzyl Isothiocyanate. Molecules 2024; 29:2316. [PMID: 38792178 PMCID: PMC11124403 DOI: 10.3390/molecules29102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Malaria remains an important and challenging infectious disease, and novel antimalarials are required. Benzyl isothiocyanate (BITC), the main breakdown product of benzyl glucosinolate, is present in all parts of Tropaeolum majus L. (T. majus) and has antibacterial and antiparasitic activities. To our knowledge, there is no information on the effects of BITC against malaria. The present study evaluates the antimalarial activity of aqueous extracts of BITC and T. majus seeds, leaves, and stems. We used flow cytometry to calculate the growth inhibition (GI) percentage of the extracts and BITC against unsynchronized cultures of the chloroquine-susceptible Plasmodium falciparum 3D7 - GFP strain. Extracts and/or compounds with at least 70% GI were validated by IC50 estimation against P. falciparum 3D7 - GFP and Dd2 (chloroquine-resistant strain) unsynchronized cultures by flow cytometry, and the resistance index (RI) was determined. T. majus aqueous extracts showed some antimalarial activity that was higher in seeds than in leaves or stems. BITC's GI was comparable to chloroquine's. BITC's IC50 was similar in both strains; thus, a cross-resistance absence with aminoquinolines was found (RI < 1). BITC presented features that could open new avenues for malaria drug discovery.
Collapse
Affiliation(s)
- Ana Maria Pintão
- Egas Moniz School of Health & Science, University Campus, Quinta da Granja Monte da Caparica, 2829-511 Caparica, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, University Campus, Quinta da Granja Monte da Caparica, 2829-511 Caparica, Portugal
| | - Tiago Santos
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (T.S.); (F.N.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Fátima Nogueira
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (T.S.); (F.N.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
- LAQV-REQUIMTE, MolSyn, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| |
Collapse
|
13
|
Zhao H, Dong H, Zhao Q, Zhu S, Jia L, Zhang S, Feng Q, Yu Y, Wang J, Huang B, Han H. Integrated application of transcriptomics and metabolomics provides insight into the mechanism of Eimeria tenella resistance to maduramycin. Int J Parasitol Drugs Drug Resist 2024; 24:100526. [PMID: 38382267 PMCID: PMC10885789 DOI: 10.1016/j.ijpddr.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Avian coccidiosis, caused by Eimeria parasites, continues to devastate the poultry industry and results in significant economic losses. Ionophore coccidiostats, such as maduramycin and monensin, are widely used for prophylaxis of coccidiosis in poultry. Nevertheless, their efficacy has been challenged by widespread drug resistance. However, the underlying mechanisms have not been revealed. Understanding the targets and resistance mechanisms to anticoccidials is critical to combat this major parasitic disease. In the present study, maduramycin-resistant (MRR) and drug-sensitive (DS) sporozoites of Eimeria tenella were purified for transcriptomic and metabolomic analysis. The transcriptome analysis revealed 5016 differentially expressed genes (DEGs) in MRR compared to DS, and KEGG pathway enrichment analysis indicated that DEGs were involved in spliceosome, carbon metabolism, glycolysis, and biosynthesis of amino acids. In the untargeted metabolomics assay, 297 differentially expressed metabolites (DEMs) were identified in MRR compared to DS, and KEGG pathway enrichment analysis indicated that these DEMs were involved in 10 pathways, including fructose and mannose metabolism, cysteine and methionine metabolism, arginine and proline metabolism, and glutathione metabolism. Targeted metabolomic analysis revealed 14 DEMs in MRR compared to DS, and KEGG pathway analysis indicated that these DEMs were involved in 20 pathways, including fructose and mannose metabolism, glycolysis/gluconeogenesis, and carbon metabolism. Compared to DS, energy homeostasis and amino acid metabolism were differentially regulated in MRR. Our results provide gene and metabolite expression landscapes of E. tenella following maduramycin induction. This study is the first work involving integrated transcriptomic and metabolomic analyses to identify the key pathways to understand the molecular and metabolic mechanisms underlying drug resistance to polyether ionophores in coccidia.
Collapse
Affiliation(s)
- Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Liushu Jia
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Sishi Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Qian Feng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Jinwen Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China.
| |
Collapse
|
14
|
Wiser MF. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024; 13:182. [PMID: 38535526 PMCID: PMC10974218 DOI: 10.3390/pathogens13030182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid transporter has also been identified on the digestive vacuole membrane. The environment of the digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites. The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for the treatment of malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112-2824, USA
| |
Collapse
|
15
|
Florimond C, de Laval F, Early AM, Sauthier S, Lazrek Y, Pelleau S, Monteiro WM, Agranier M, Taudon N, Morin F, Magris M, Lacerda MVG, Viana GMR, Herrera S, Adhin MR, Ferreira MU, Woodrow CJ, Awab GR, Cox H, Ade MP, Mosnier E, Djossou F, Neafsey DE, Ringwald P, Musset L. Impact of piperaquine resistance in Plasmodium falciparum on malaria treatment effectiveness in The Guianas: a descriptive epidemiological study. THE LANCET. INFECTIOUS DISEASES 2024; 24:161-171. [PMID: 37858325 PMCID: PMC10808503 DOI: 10.1016/s1473-3099(23)00502-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Plasmodium falciparum is an apicomplexan parasite responsible for lethal cases of malaria. According to WHO recommendations, P falciparum cases are treated with artemisinin-based combination therapy including dihydroartemisinin-piperaquine. However, the emergence of resistant parasites against dihydroartemisinin-piperaquine was reported in southeast Asia in 2008 and, a few years later, suspected in South America. METHODS To characterise resistance emergence, a treatment efficacy study was performed on the reported patients infected with P falciparum and treated with dihydroartemisinin-piperaquine in French Guiana (n=6, 2016-18). Contemporary isolates collected in French Guiana were genotyped for P falciparum chloroquine resistance transporter (pfCRT; n=845) and pfpm2 and pfpm3 copy number (n=231), phenotyped using the in vitro piperaquine survival assay (n=86), and analysed through genomic studies (n=50). Additional samples from five Amazonian countries and one outside the region were genotyped (n=1440). FINDINGS In field isolates, 40 (47%) of 86 (95% CI 35·9-57·1) were resistant to piperaquine in vitro; these phenotypes were more associated with pfCRTC350R (ie, Cys350Arg) and pfpm2 and pfpm3 amplifications (Dunn test, p<0·001). Those markers were also associated with dihydroartemisinin-piperaquine treatment failure (n=3 [50%] of 6). A high prevalence of piperaquine resistance markers was observed in Suriname in 19 (83%) of 35 isolates and in Guyana in 579 (73%) of 791 isolates. The pfCRTC350R mutation emerged before pfpm2 and pfpm3 amplification in a temporal sequence different from southeast Asia, and in the absence of artemisinin partial resistance, suggesting a geographically distinctive epistatic relationship between these genetic markers. INTERPRETATION The high prevalence of piperaquine resistance markers in parasite populations of the Guianas, and the risk of associated therapeutic failures calls for caution on dihydroartemisinin-piperaquine use in the region. Furthermore, greater attention should be given to potential differences in genotype to phenotype mapping across genetically distinct parasite populations from different continents. FUNDING Pan American Health Organization and WHO, French Ministry for Research, European Commission, Santé publique France, Agence Nationale de la Recherche, Fundação de Amparo à Pesquisa do Estado do Amazonas, Ministry of Health of Brazil, Oswaldo Cruz Foundation, and National Institutes of Health. TRANSLATIONS For the French and Portuguese translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Celia Florimond
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Franck de Laval
- Service de Santé des Armées (SSA), Centre d'Epidémiologie et de Santé Publique des Armées (CESPA), Marseille, France; Sciences Economiques Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM), Aix Marseille University, INSERM, IRD, Marseille, France
| | - Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Swaélie Sauthier
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Yassamine Lazrek
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Stéphane Pelleau
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana; Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, Institut Pasteur, Université Paris Cité, Paris, France
| | - Wuelton M Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Maxime Agranier
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Nicolas Taudon
- Unité de développements analytiques et bioanalyse, Institut de recherche biomédicale des armées, Brétigny-sur-Orge, France
| | - François Morin
- Service de Santé des Armées (SSA), Centre d'Epidémiologie et de Santé Publique des Armées (CESPA), Marseille, France
| | - Magda Magris
- Amazonic Center for Research and Control of Tropical Diseases "Simón Bolívar", Puerto Ayacucho, Venezuela
| | - Marcus V G Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas & Maria Deane, Fiocruz, Manaus, Brazil
| | - Giselle M R Viana
- Laboratory of Basic Research in Malaria, Evandro Chagas Institute, Brazil Ministry of Health, Ananindeua, Brazil
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center, Cali, Colombia; Caucaseco Scientific Research Center, Cali, Colombia
| | - Malti R Adhin
- Department of Biochemistry Kernkampweg 5, Faculty of Medical Sciences, Anton de Kom Universiteit van Suriname, Paramaribo, Suriname
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Charles J Woodrow
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ghulam R Awab
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Ministry of Public Health, Kabul, Afghanistan
| | - Horace Cox
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Maria-Paz Ade
- Department of Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization/World Health Organization, Washington DC, USA
| | - Emilie Mosnier
- Sciences Economiques Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM), Aix Marseille University, INSERM, IRD, Marseille, France
| | - Félix Djossou
- Infectious and Tropical Diseases Unit, Cayenne General Hospital, Cayenne, French Guiana
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Lise Musset
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana.
| |
Collapse
|
16
|
Hagenah LM, Dhingra SK, Small-Saunders JL, Qahash T, Willems A, Schindler KA, Rangel GW, Gil-Iturbe E, Kim J, Akhundova E, Yeo T, Okombo J, Mancia F, Quick M, Roepe PD, Llinás M, Fidock DA. Additional PfCRT mutations driven by selective pressure for improved fitness can result in the loss of piperaquine resistance and altered Plasmodium falciparum physiology. mBio 2024; 15:e0183223. [PMID: 38059639 PMCID: PMC10790694 DOI: 10.1128/mbio.01832-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Our study leverages gene editing techniques in Plasmodium falciparum asexual blood stage parasites to profile novel mutations in mutant PfCRT, an important mediator of piperaquine resistance, which developed in Southeast Asian field isolates or in parasites cultured for long periods of time. We provide evidence that increased parasite fitness of these lines is the primary driver for the emergence of these PfCRT variants. These mutations differentially impact parasite susceptibility to piperaquine and chloroquine, highlighting the multifaceted effects of single point mutations in this transporter. Molecular features of drug resistance and parasite physiology were examined in depth using proteoliposome-based drug uptake studies and peptidomics, respectively. Energy minimization calculations, showing how these novel mutations might impact the PfCRT structure, suggested a small but significant effect on drug interactions. This study reveals the subtle interplay between antimalarial resistance, parasite fitness, PfCRT structure, and intracellular peptide availability in PfCRT-mediated parasite responses to changing drug selective pressures.
Collapse
Affiliation(s)
- Laura M. Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L. Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Tarrick Qahash
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andreas Willems
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, USA
| | - Kyra A. Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Gabriel W. Rangel
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Emiliya Akhundova
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
- Area Neuroscience - Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Paul D. Roepe
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, USA
| | - Manuel Llinás
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
17
|
Mok S, Yeo T, Hong D, Shears MJ, Ross LS, Ward KE, Dhingra SK, Kanai M, Bridgford JL, Tripathi AK, Mlambo G, Burkhard AY, Ansbro MR, Fairhurst KJ, Gil-Iturbe E, Park H, Rozenberg FD, Kim J, Mancia F, Fairhurst RM, Quick M, Uhlemann AC, Sinnis P, Fidock DA. Mapping the genomic landscape of multidrug resistance in Plasmodium falciparum and its impact on parasite fitness. SCIENCE ADVANCES 2023; 9:eadi2364. [PMID: 37939186 PMCID: PMC10631731 DOI: 10.1126/sciadv.adi2364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance in vitro and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping using 34 recombinant haplotypes, and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Davin Hong
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Leila S. Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kurt E. Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Kanai
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan R. Ansbro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kate J. Fairhurst
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Henshall IG, Spielmann T. Critical interdependencies between Plasmodium nutrient flux and drugs. Trends Parasitol 2023; 39:936-944. [PMID: 37716852 PMCID: PMC10580322 DOI: 10.1016/j.pt.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Nutrient import and waste efflux are critical dependencies for intracellular Plasmodium falciparum parasites. Nutrient transport proteins are often lineage specific and can provide unique targets for antimalarial drug development. P. falciparum nutrient transport pathways can be a double-edged sword for the parasite, not only mediating the import of nutrients and excretion of waste products but also providing an access route for drugs. Here we briefly summarise the nutrient acquisition pathways of intracellular P. falciparum blood-stage parasites and then highlight how these pathways influence many aspects relevant to antimalarial drugs, resulting in complex and often underappreciated interdependencies.
Collapse
Affiliation(s)
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
19
|
Coonahan E, Gage H, Chen D, Noormahomed EV, Buene TP, Mendes de Sousa I, Akrami K, Chambal L, Schooley RT, Winzeler EA, Cowell AN. Whole-genome surveillance identifies markers of Plasmodium falciparum drug resistance and novel genomic regions under selection in Mozambique. mBio 2023; 14:e0176823. [PMID: 37750720 PMCID: PMC10653802 DOI: 10.1128/mbio.01768-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Malaria is a devastating disease caused by Plasmodium parasites. The evolution of parasite drug resistance continues to hamper progress toward malaria elimination, and despite extensive efforts to control malaria, it remains a leading cause of death in Mozambique and other countries in the region. The development of successful vaccines and identification of molecular markers to track drug efficacy are essential for managing the disease burden. We present an analysis of the parasite genome in Mozambique, a country with one of the highest malaria burdens globally and limited available genomic data, revealing current selection pressure. We contribute additional evidence to limited prior studies supporting the effectiveness of SWGA in producing reliable genomic data from complex clinical samples. Our results provide the identity of genomic loci that may be associated with current antimalarial drug use, including artemisinin and lumefantrine, and reveal selection pressure predicted to compromise the efficacy of current vaccine candidates.
Collapse
Affiliation(s)
- Erin Coonahan
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Hunter Gage
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Daisy Chen
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Emilia Virginia Noormahomed
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Titos Paulo Buene
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Irina Mendes de Sousa
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Biological Sciences Department, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Kevan Akrami
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucia Chambal
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Department of Internal Medicine, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Maputo Central Hospital, Maputo, Mozambique
| | - Robert T. Schooley
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Annie N. Cowell
- School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
20
|
Berger F, Gomez GM, Sanchez CP, Posch B, Planelles G, Sohraby F, Nunes-Alves A, Lanzer M. pH-dependence of the Plasmodium falciparum chloroquine resistance transporter is linked to the transport cycle. Nat Commun 2023; 14:4234. [PMID: 37454114 PMCID: PMC10349806 DOI: 10.1038/s41467-023-39969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The chloroquine resistance transporter, PfCRT, of the human malaria parasite Plasmodium falciparum is sensitive to acidic pH. Consequently, PfCRT operates at 60% of its maximal drug transport activity at the pH of 5.2 of the digestive vacuole, a proteolytic organelle from which PfCRT expels drugs interfering with heme detoxification. Here we show by alanine-scanning mutagenesis that E207 is critical for pH sensing. The E207A mutation abrogates pH-sensitivity, while preserving drug substrate specificity. Substituting E207 with Asp or His, but not other amino acids, restores pH-sensitivity. Molecular dynamics simulations and kinetics analyses suggest an allosteric binding model in which PfCRT can accept both protons and chloroquine in a partial noncompetitive manner, with increased proton concentrations decreasing drug transport. Further simulations reveal that E207 relocates from a peripheral to an engaged location during the transport cycle, forming a salt bridge with residue K80. We propose that the ionized carboxyl group of E207 acts as a hydrogen acceptor, facilitating transport cycle progression, with pH sensing as a by-product.
Collapse
Affiliation(s)
- Fiona Berger
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Guillermo M Gomez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Britta Posch
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Gabrielle Planelles
- INSERM, Centre de Recherche des Cordeliers, Unité 1138, CNRS ERL8228, Université Pierre et Marie Curie and Université Paris-Descartes, Paris, 75006, France
| | - Farzin Sohraby
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Ariane Nunes-Alves
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Amambua-Ngwa A, Button-Simons KA, Li X, Kumar S, Brenneman KV, Ferrari M, Checkley LA, Haile MT, Shoue DA, McDew-White M, Tindall SM, Reyes A, Delgado E, Dalhoff H, Larbalestier JK, Amato R, Pearson RD, Taylor AB, Nosten FH, D'Alessandro U, Kwiatkowski D, Cheeseman IH, Kappe SHI, Avery SV, Conway DJ, Vaughan AM, Ferdig MT, Anderson TJC. Chloroquine resistance evolution in Plasmodium falciparum is mediated by the putative amino acid transporter AAT1. Nat Microbiol 2023; 8:1213-1226. [PMID: 37169919 PMCID: PMC10322710 DOI: 10.1038/s41564-023-01377-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
Malaria parasites break down host haemoglobin into peptides and amino acids in the digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine (CQ) resistance transporter, pfcrt, located in the digestive vacuole membrane, confer CQ resistance in Plasmodium falciparum, and typically also affect parasite fitness. However, the role of other parasite loci in the evolution of CQ resistance is unclear. Here we use a combination of population genomics, genetic crosses and gene editing to demonstrate that a second vacuolar transporter plays a key role in both resistance and compensatory evolution. Longitudinal genomic analyses of the Gambian parasites revealed temporal signatures of selection on a putative amino acid transporter (pfaat1) variant S258L, which increased from 0% to 97% in frequency between 1984 and 2014 in parallel with the pfcrt1 K76T variant. Parasite genetic crosses then identified a chromosome 6 quantitative trait locus containing pfaat1 that is selected by CQ treatment. Gene editing demonstrated that pfaat1 S258L potentiates CQ resistance but at a cost of reduced fitness, while pfaat1 F313S, a common southeast Asian polymorphism, reduces CQ resistance while restoring fitness. Our analyses reveal hidden complexity in CQ resistance evolution, suggesting that pfaat1 may underlie regional differences in the dynamics of resistance evolution, and modulate parasite resistance or fitness by manipulating the balance between both amino acid and drug transport.
Collapse
Affiliation(s)
- Alfred Amambua-Ngwa
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marco Ferrari
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meseret T Haile
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Douglas A Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sarah M Tindall
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elizabeth Delgado
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Haley Dalhoff
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - James K Larbalestier
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | - Alexander B Taylor
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, Antonio, TX, USA
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Umberto D'Alessandro
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Ian H Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David J Conway
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
22
|
Mok S, Yeo T, Hong D, Shears MJ, Ross LS, Ward KE, Dhingra SK, Kanai M, Bridgford JL, Tripathi AK, Mlambo G, Burkhard AY, Fairhurst KJ, Gil-Iturbe E, Park H, Rozenberg FD, Kim J, Mancia F, Quick M, Uhlemann AC, Sinnis P, Fidock DA. Mapping the genomic landscape of multidrug resistance in Plasmodium falciparum and its impact on parasite fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543338. [PMID: 37398288 PMCID: PMC10312498 DOI: 10.1101/2023.06.02.543338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Davin Hong
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Melanie J Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Leila S Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
| | - Kurt E Ward
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Satish K Dhingra
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
| | - Mariko Kanai
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Jessica L Bridgford
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Abhai K Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Anna Y Burkhard
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
| | - Kate J Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Felix D Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
23
|
Gomez GM, D’Arrigo G, Sanchez CP, Berger F, Wade RC, Lanzer M. PfCRT mutations conferring piperaquine resistance in falciparum malaria shape the kinetics of quinoline drug binding and transport. PLoS Pathog 2023; 19:e1011436. [PMID: 37285379 PMCID: PMC10281575 DOI: 10.1371/journal.ppat.1011436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/20/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023] Open
Abstract
The chloroquine resistance transporter (PfCRT) confers resistance to a wide range of quinoline and quinoline-like antimalarial drugs in Plasmodium falciparum, with local drug histories driving its evolution and, hence, the drug transport specificities. For example, the change in prescription practice from chloroquine (CQ) to piperaquine (PPQ) in Southeast Asia has resulted in PfCRT variants that carry an additional mutation, leading to PPQ resistance and, concomitantly, to CQ re-sensitization. How this additional amino acid substitution guides such opposing changes in drug susceptibility is largely unclear. Here, we show by detailed kinetic analyses that both the CQ- and the PPQ-resistance conferring PfCRT variants can bind and transport both drugs. Surprisingly, the kinetic profiles revealed subtle yet significant differences, defining a threshold for in vivo CQ and PPQ resistance. Competition kinetics, together with docking and molecular dynamics simulations, show that the PfCRT variant from the Southeast Asian P. falciparum strain Dd2 can accept simultaneously both CQ and PPQ at distinct but allosterically interacting sites. Furthermore, combining existing mutations associated with PPQ resistance created a PfCRT isoform with unprecedented non-Michaelis-Menten kinetics and superior transport efficiency for both CQ and PPQ. Our study provides additional insights into the organization of the substrate binding cavity of PfCRT and, in addition, reveals perspectives for PfCRT variants with equal transport efficiencies for both PPQ and CQ.
Collapse
Affiliation(s)
- Guillermo M. Gomez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Giulia D’Arrigo
- Molecular and Cellular Modelling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg, Heidelberg, Germany
| | - Cecilia P. Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Fiona Berger
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modelling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg, Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
24
|
Kumar S, Kapkoti DS, Mina PR, Gupta M, Kumar R, Kumar P, Pathak P, Bhakuni RS, Rout P, Pal A, Darokar MP. Effect of liquiritigenin on chloroquine accumulation in digestive vacuole leading to apoptosis-like death of chloroquine-resistant P. falciparum. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154738. [PMID: 36940579 DOI: 10.1016/j.phymed.2023.154738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Malaria remains one of the major health concerns, especially in tropical countries. Although drugs such as artemisinin-based combinations are efficient for treating Plasmodium falciparum, the growing threat from multi-drug resistance has become a major challenge. Thus, there is a constant need to identify and validate new combinations to sustain current disease control strategies to overcome the challenge of drug resistance in the malaria parasites. To meet this demand, liquiritigenin (LTG) has been found to positively interact in combination with the existing clinically used drug chloroquine (CQ), which has become unfunctional due to acquired drug resistance. PURPOSE To evaluate the best interaction between LTG and CQ against CQ- resistant strain of P. falciparum. Furthermore, the in vivo antimalarial efficacy and possible mechanism of action of the best combination was also assessed. METHODS The in vitro anti-plasmodial potential of LTG against CQ- resistant strain K1 of P. falciparum was tested using Giemsa staining method. The behaviour of the combinations was evaluated using the fix ratio method and evaluated the interaction of LTG and CQ by calculating the fractional inhibitory concentration index (FICI). Oral toxicity study was carried out in a mice model. In vivo antimalarial efficacy of LTG alone and in combination with CQ was evaluated using a four-day suppression test in a mouse model. The effect of LTG on CQ accumulation was measured using HPLC and the rate of alkalinization of the digestive vacuole. Cytosolic Ca2+ level, mitochondrial membrane potential, caspase-like activity, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and Annexin V Apoptosis assay to assess anti-plasmodial potential. Proteomics analysis was evaluated by LC-MS/MS analysis. RESULTS LTG possesses anti-plasmodial activity on its own and it showed to be an adjuvant of CQ. In in vitro studies, LTG showed synergy with CQ only in the ratio (CQ: LTG-1:4) against CQ-resistant strain (K1) of P. falciparum. Interestingly, in vivo studies, LTG in combination with CQ showed higher chemo-suppression and enhanced mean survival time at much lower concentrations compared to individual doses of LTG and CQ against CQ- resistant strain (N67) of Plasmodium yoelli nigeriensis. LTG was found to increase the CQ accumulation into digestive vacuole, reducing the rate of alkalinization, in turn increasing cytosolic Ca2+ level, loss of mitochondrial potential, caspase-3 activity, DNA damage and externalization of phosphatidylserine of the membrane (in vitro). These observations indicate the involvement of apoptosis-like death of P. falciparum that might be due to the accumulation of CQ. CONCLUSION LTG showed synergy with CQ in the ratio LTG: CQ, 4:1) in vitro and was able to curtail the IC50 of CQ and LTG. Interestingly, in vivo in combination with CQ, LTG showed higher chemo-suppression as well as enhanced mean survival time at a much lower concentrations of both the partners as compared to an individual dose of CQ and LTG. Thus, synergistic drug combination offers the possibility to enhance CQ efficacy in chemotherapy.
Collapse
Affiliation(s)
- Saurabh Kumar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Deepak Singh Kapkoti
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Pooja Rani Mina
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Madhuri Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ravi Kumar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Parmanand Kumar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Priyanka Pathak
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - R S Bhakuni
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Prasant Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anirban Pal
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India.
| | - Mahendra P Darokar
- Bioprospection and Product Development Division, CSIR- Central Institute of Medicinal and Aromatic Plants, Lucknow, India.
| |
Collapse
|
25
|
Wells M, Hambye S, Blankert B. Preliminary insight into the potential antiplasmodial activity and cytotoxicity of Bufo bufo and Incilius alvarius poison. Toxicon 2023; 227:107092. [PMID: 36967019 DOI: 10.1016/j.toxicon.2023.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
The rise and spread of resistant Plasmodium falciparum strains are responsible for an increase in therapeutic failures in many of the regions endemic with malaria. The need for new therapeutic candidates is now more urgent than ever. Animal venoms have long been considered as interesting resources to exploit in terms of potential therapeutic candidates. Among these, the cutaneous secretions of toads constitute a rich and diverse source of bioactive molecules. We focused on two different species: Bufo bufo and Incilius alvarius. The dried secretions underwent a solvent-based extraction and were submitted to a systematic bio-guided fractionation approach using preparative thin-layer chromatography. Initial crude extracts were tested in vitro for their antiplasmodial activity. Based on these results, only crude extracts displaying IC50 < 100 μg/mL were considered for further fractionation. All extracts and fractions, including those that did not display antiplasmodial properties, were characterized by chromatographic (LC-UV/MS) and spectrometric techniques (HRMS). Antiplasmodial activity was evaluated in vitro using a chloroquine-sensitive strain (3D7) and a resistant one (W2). Toxicity was assessed on normal human cells for the samples displaying IC50 < 100 μg/mL. Crude extracts from Bufo bufo secretions exhibited no appreciable antiplasmodial activities. However, the methanol and dichloromethane extracts from Incilius alvarius secretions gave IC50 of (34 ± 4) μg/mL and (50 ± 1) μg/mL respectively when tested on W2 strain. No significant effect was observed on 3D7. This poison would warrant further investigation in terms of its antiplasmodial potential. Following preliminary characterization, it was revealed that the fractions of interest contained mainly bufotoxins, bufagins and alkaloids.
Collapse
|
26
|
Anand A, Chandana M, Ghosh S, Das R, Singh N, Vaishalli PM, Gantasala NP, Padmanaban G, Nagaraj VA. Significance of Plasmodium berghei Amino Acid Transporter 1 in Food Vacuole Functionality and Its Association with Cerebral Pathogenesis. Microbiol Spectr 2023; 11:e0494322. [PMID: 36976018 PMCID: PMC10101031 DOI: 10.1128/spectrum.04943-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and in vivo animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed in vivo characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. IMPORTANCE Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | |
Collapse
|
27
|
Kehrer J, Pietsch E, Heinze J, Spielmann T, Frischknecht F. Clearing of hemozoin crystals in malaria parasites enables whole-cell STED microscopy. J Cell Sci 2023; 136:286288. [PMID: 36511329 DOI: 10.1242/jcs.260399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Malaria is a devastating mosquito-borne parasitic disease that manifests when Plasmodium parasites replicate within red blood cells. During the development within the red blood cell, the parasite digests hemoglobin and crystalizes the otherwise toxic heme. The resulting hemozoin crystals limit imaging by STED nanoscopy owing to their high light-absorbing capacity, which leads to immediate cell destruction upon contact with the laser. Here, we establish CUBIC-P-based clearing of hemozoin crystals, enabling whole-cell STED nanoscopy of parasites within red blood cells. Hemozoin-cleared infected red blood cells could reliably be stained with antibodies, and hence proteins in the hemozoin-containing digestive vacuole membrane, as well as in secretory vesicles of gametocytes, could be imaged at high resolution. Thus, this process is a valuable tool to study and understand parasite biology and the potential molecular mechanisms mediating drug resistance. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.,German Center for Infection Research, DZIF, partner site Heidelberg, 69120 Heidelberg, Germany.,Infectious Diseases Imaging Platform, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Emma Pietsch
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Julia Heinze
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.,German Center for Infection Research, DZIF, partner site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Wells M, Fossépré M, Hambye S, Surin M, Blankert B. Uncovering the antimalarial potential of toad venoms through a bioassay-guided fractionation process. Int J Parasitol Drugs Drug Resist 2022; 20:97-107. [PMID: 36343571 PMCID: PMC9772263 DOI: 10.1016/j.ijpddr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Malaria remains to date one of the most devastating parasitic diseases worldwide. The fight against this disease is rendered more difficult by the emergence and spread of drug-resistant strains. The need for new therapeutic candidates is now greater than ever. In this study, we investigated the antiplasmodial potential of toad venoms. The wide array of bioactive compounds present in Bufonidae venoms has allowed researchers to consider many potential therapeutic applications, especially for cancers and infectious diseases. We focused on small molecules, namely bufadienolides, found in the venom of Rhinella marina (L.). The developed bio-guided fractionation process includes a four solvent-system extraction followed by fractionation using flash chromatography. Sub-fractions were obtained through preparative TLC. All samples were characterized using chromatographic and spectrometric techniques and then underwent testing on in vitro Plasmodium falciparum cultures. Two strains were considered: 3D7 (chloroquine-sensitive) and W2 (chloroquine-resistant). This strategy highlighted a promising activity for one compound named resibufogenin. With IC50 values of (29 ± 8) μg/mL and (23 ± 1) μg/mL for 3D7 and W2 respectively, this makes it an interesting candidate for further investigation. A molecular modelling approach proposed a potential binding mode of resibufogenin to Plasmodium falciparum adenine-triphosphate 4 pump as antimalarial drug target.
Collapse
Affiliation(s)
- Mathilde Wells
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Faculty of Sciences, Research Institute for Biosciences and Research Institute for Materials, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Stéphanie Hambye
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Faculty of Sciences, Research Institute for Biosciences and Research Institute for Materials, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Bertrand Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium.
| |
Collapse
|
29
|
Wicht KJ, Small-Saunders JL, Hagenah LM, Mok S, Fidock DA. Mutant PfCRT Can Mediate Piperaquine Resistance in African Plasmodium falciparum With Reduced Fitness and Increased Susceptibility to Other Antimalarials. J Infect Dis 2022; 226:2021-2029. [PMID: 36082431 PMCID: PMC9704436 DOI: 10.1093/infdis/jiac365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Additional therapeutic strategies could benefit efforts to reverse the recent increase in malaria cases in sub-Saharan Africa, which mostly affects young children. A primary candidate is dihydroartemisinin + piperaquine (DHA + PPQ), which is effective for uncomplicated malaria treatment, seasonal malaria chemoprevention, and intermittent preventive treatment. In Southeast Asia, Plasmodium falciparum parasites acquired PPQ resistance, mediated primarily by mutations in the P falciparum chloroquine resistance transporter PfCRT. The recent emergence in Africa of DHA-resistant parasites creates an imperative to assess whether PPQ resistance could emerge in African parasites with distinct PfCRT isoforms. METHODS We edited 2 PfCRT mutations known to mediate high-grade PPQ resistance in Southeast Asia into GB4 parasites from Gabon. Gene-edited clones were profiled in antimalarial concentration-response and fitness assays. RESULTS The PfCRT F145I mutation mediated moderate PPQ resistance in GB4 parasites but with a substantial fitness cost. No resistance was observed with the PfCRT G353V mutant. Both edited clones became significantly more susceptible to amodiaquine, chloroquine, and quinine. CONCLUSIONS A single PfCRT mutation can mediate PPQ resistance in GB4 parasites, but with a growth defect that may preclude its spread without further genetic adaptations. Our findings support regional use of drug combinations that exert opposing selective pressures on PfCRT.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L Small-Saunders
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York , New York, USA
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York , New York, USA
| |
Collapse
|
30
|
Stasic AJ, Moreno SNJ, Carruthers VB, Dou Z. The Toxoplasma plant-like vacuolar compartment (PLVAC). J Eukaryot Microbiol 2022; 69:e12951. [PMID: 36218001 PMCID: PMC10576567 DOI: 10.1111/jeu.12951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. T. gondii shares several characteristics with plants including a nonphotosynthetic plastid termed apicoplast and a multivesicular organelle that was named the plant-like vacuole (PLV) or vacuolar compartment (VAC). The name plant-like vacuole was selected based on its resemblance in composition and function to plant vacuoles. The name VAC represents its general vacuolar characteristics. We will refer to the organelle as PLVAC in this review. New findings in recent years have revealed that the PLVAC represents the lysosomal compartment of T. gondii which has adapted peculiarities to fulfill specific Toxoplasma needs. In this review, we discuss the composition and functions of the PLVAC highlighting its roles in ion storage and homeostasis, endocytosis, exocytosis, and autophagy.
Collapse
Affiliation(s)
- Andrew J Stasic
- Department of Microbiology, Heartland FPG, Carmel, Indiana, USA
| | - Silvia N J Moreno
- Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
| | - Vern B Carruthers
- Department of Microbiology & Immunology, University of Michigan Medical School, Michigan, Ann Arbor, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, South Carolina, Clemson, USA
| |
Collapse
|
31
|
Nair S, Li X, Nkhoma SC, Anderson T. Fitness Costs of pfhrp2 and pfhrp3 Deletions Underlying Diagnostic Evasion in Malaria Parasites. J Infect Dis 2022; 226:1637-1645. [PMID: 35709327 PMCID: PMC10205895 DOI: 10.1093/infdis/jiac240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Rapid diagnostic tests based on detection of histidine-rich proteins (HRPs) are widely used for malaria diagnosis, but parasites carrying pfhrp deletions can evade detection and are increasing in frequency in some countries. Models aim to predict conditions under which pfhrp2 and/or pfhrp3 deletions will increase, but a key parameter-the fitness cost of deletions-is unknown. METHODS We removed pfhrp2 and/or pfhrp3 from a Malawian parasite clone using gene editing approaches) and measured fitness costs by conducting pairwise competition experiments. RESULTS We observed significant fitness costs of 0.087 ± 0.008 (1 standard error) per asexual cycle for pfhrp2 deletion and 0.113 ± 0.008 for the pfhrp2/3 double deletion, relative to the unedited progenitor parasite. Selection against deletions is strong and comparable to that resulting from drug resistance mutations. CONCLUSIONS Prior modeling suggested that diagnostic selection may drive increased frequency of pfhrp deletions only when fitness costs are mild. Our experiments show that costs of pfhrp deletions are higher than these thresholds, but modeling and empirical results can be reconciled if the duration of infection is short. These results may inform future modeling to understand why pfhrp2/3 deletions are increasing in some locations (Ethiopia and Eritrea) but not in others (Mekong region).
Collapse
Affiliation(s)
- Shalini Nair
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Standwell C Nkhoma
- BEI Resources, American Type Culture Collection, Manassas, Virginia, USA
| | - Tim Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
32
|
Okombo J, Mok S, Qahash T, Yeo T, Bath J, Orchard LM, Owens E, Koo I, Albert I, Llinás M, Fidock DA. Piperaquine-resistant PfCRT mutations differentially impact drug transport, hemoglobin catabolism and parasite physiology in Plasmodium falciparum asexual blood stages. PLoS Pathog 2022; 18:e1010926. [PMID: 36306287 PMCID: PMC9645663 DOI: 10.1371/journal.ppat.1010926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The emergence of Plasmodium falciparum parasite resistance to dihydroartemisinin + piperaquine (PPQ) in Southeast Asia threatens plans to increase the global use of this first-line antimalarial combination. High-level PPQ resistance appears to be mediated primarily by novel mutations in the P. falciparum chloroquine resistance transporter (PfCRT), which enhance parasite survival at high PPQ concentrations in vitro and increase the risk of dihydroartemisinin + PPQ treatment failure in patients. Using isogenic Dd2 parasites expressing contemporary pfcrt alleles with differential in vitro PPQ susceptibilities, we herein characterize the molecular and physiological adaptations that define PPQ resistance in vitro. Using drug uptake and cellular heme fractionation assays we report that the F145I, M343L, and G353V PfCRT mutations differentially impact PPQ and chloroquine efflux. These mutations also modulate proteolytic degradation of host hemoglobin and the chemical inactivation of reactive heme species. Peptidomic analyses reveal significantly higher accumulation of putative hemoglobin-derived peptides in the PPQ-resistant mutant PfCRT isoforms compared to parental PPQ-sensitive Dd2. Joint transcriptomic and metabolomic profiling of late trophozoites from PPQ-resistant or -sensitive isogenic lines reveals differential expression of genes involved in protein translation and cellular metabolism. PPQ-resistant parasites also show increased susceptibility to an inhibitor of the P. falciparum M17 aminopeptidase that operates on short globin-derived peptides. These results reveal unique physiological changes caused by the gain of PPQ resistance and highlight the potential therapeutic value of targeting peptide metabolism in P. falciparum.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Tarrick Qahash
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jade Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Edward Owens
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
33
|
Ward KE, Fidock DA, Bridgford JL. Plasmodium falciparum resistance to artemisinin-based combination therapies. Curr Opin Microbiol 2022; 69:102193. [PMID: 36007459 PMCID: PMC9847095 DOI: 10.1016/j.mib.2022.102193] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Multidrug-resistant Plasmodium falciparum parasites are a major threat to public health in intertropical regions. Understanding the mechanistic basis, origins, and spread of resistance can inform strategies to mitigate its impact and reduce the global burden of malaria. The recent emergence in Africa of partial resistance to artemisinins, the core component of first-line combination therapies, is particularly concerning. Here, we review recent advances in elucidating the mechanistic basis of artemisinin resistance, driven primarily by point mutations in P. falciparum Kelch13, a key regulator of hemoglobin endocytosis and parasite response to artemisinin-induced stress. We also review resistance to partner drugs, including piperaquine and mefloquine, highlighting a key role for plasmepsins 2/3 and the drug and solute transporters P. falciparum chloroquine-resistance transporter and P. falciparum multidrug-resistance protein-1.
Collapse
Affiliation(s)
- Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
34
|
Edgar RCS, Siddiqui G, Hjerrild K, Malcolm TR, Vinh NB, Webb CT, Holmes C, MacRaild CA, Chernih HC, Suen WW, Counihan NA, Creek DJ, Scammells PJ, McGowan S, de Koning-Ward TF. Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway. eLife 2022; 11:e80813. [PMID: 36097817 PMCID: PMC9470162 DOI: 10.7554/elife.80813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, remains a global health threat as parasites continue to develop resistance to antimalarial drugs used throughout the world. Accordingly, drugs with novel modes of action are desperately required to combat malaria. P. falciparum parasites infect human red blood cells where they digest the host's main protein constituent, hemoglobin. Leucine aminopeptidase PfA-M17 is one of several aminopeptidases that have been implicated in the last step of this digestive pathway. Here, we use both reverse genetics and a compound specifically designed to inhibit the activity of PfA-M17 to show that PfA-M17 is essential for P. falciparum survival as it provides parasites with free amino acids for growth, many of which are highly likely to originate from hemoglobin. We further show that loss of PfA-M17 results in parasites exhibiting multiple digestive vacuoles at the trophozoite stage. In contrast to other hemoglobin-degrading proteases that have overlapping redundant functions, we validate PfA-M17 as a potential novel drug target.
Collapse
Affiliation(s)
- Rebecca CS Edgar
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | | | - Tess R Malcolm
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Natalie B Vinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Chaille T Webb
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Clare Holmes
- CSIRO Australian Centre for Disease PreparednessGeelongAustralia
| | - Christopher A MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Hope C Chernih
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Willy W Suen
- CSIRO Australian Centre for Disease PreparednessGeelongAustralia
| | - Natalie A Counihan
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| |
Collapse
|
35
|
Sanchez CP, Manson EDT, Moliner Cubel S, Mandel L, Weidt SK, Barrett MP, Lanzer M. The Knock-Down of the Chloroquine Resistance Transporter PfCRT Is Linked to Oligopeptide Handling in Plasmodium falciparum. Microbiol Spectr 2022; 10:e0110122. [PMID: 35867395 PMCID: PMC9431119 DOI: 10.1128/spectrum.01101-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The chloroquine resistance transporter, PfCRT, is an essential factor during intraerythrocytic development of the human malaria parasite Plasmodium falciparum. PfCRT resides at the digestive vacuole of the parasite, where hemoglobin taken up by the parasite from its host cell is degraded. PfCRT can acquire several mutations that render PfCRT a drug transporting system expelling compounds targeting hemoglobin degradation from the digestive vacuole. The non-drug related function of PfCRT is less clear, although a recent study has suggested a role in oligopeptide transport based on studies conducted in a heterologous expression system. The uncertainty about the natural function of PfCRT is partly due to a lack of a null mutant and a dearth of functional assays in the parasite. Here, we report on the generation of a conditional PfCRT knock-down mutant in P. falciparum. The mutant accumulated oligopeptides 2 to at least 8 residues in length under knock-down conditions, as shown by comparative global metabolomics. The accumulated oligopeptides were structurally diverse, had an isoelectric point between 4.0 and 5.4 and were electrically neutral or carried a single charge at the digestive vacuolar pH of 5.2. Fluorescently labeled dipeptides and live cell imaging identified the digestive vacuole as the compartment where oligopeptides accumulated. Our findings suggest a function of PfCRT in oligopeptide transport across the digestive vacuolar membrane in P. falciparum and associated with it a role in nutrient acquisition and the maintenance of the colloid osmotic balance. IMPORTANCE The chloroquine resistance transporter, PfCRT, is important for the survival of the human malaria parasite Plasmodium falciparum. It increases the tolerance to many antimalarial drugs, and it is essential for the development of the parasite within red blood cells. While we understand the role of PfCRT in drug resistance in ever increasing detail, the non-drug resistance functions are still debated. Identifying the natural substrate of PfCRT has been hampered by a paucity of functional assays to test putative substrates in the parasite system and the absence of a parasite mutant deficient for the PfCRT encoding gene. By generating a conditional PfCRT knock-down mutant, together with comparative metabolomics and uptake studies using fluorescently labeled oligopeptides, we could show that PfCRT is an oligopeptide transporter. The oligopeptides were structurally diverse and were electrically neutral or carried a single charge. Our data support a function of PfCRT in oligopeptide transport.
Collapse
Affiliation(s)
- Cecilia P. Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Sonia Moliner Cubel
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Stefan K. Weidt
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
- The Wellcome Centre for Integrative Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Wunderlich J. Updated List of Transport Proteins in Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:926541. [PMID: 35811673 PMCID: PMC9263188 DOI: 10.3389/fcimb.2022.926541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria remains a leading cause of death and disease in many tropical and subtropical regions of the world. Due to the alarming spread of resistance to almost all available antimalarial drugs, novel therapeutic strategies are urgently needed. As the intracellular human malaria parasite Plasmodium falciparum depends entirely on the host to meet its nutrient requirements and the majority of its transmembrane transporters are essential and lack human orthologs, these have often been suggested as potential targets of novel antimalarial drugs. However, membrane proteins are less amenable to proteomic tools compared to soluble parasite proteins, and have thus not been characterised as well. While it had been proposed that P. falciparum had a lower number of transporters (2.5% of its predicted proteome) in comparison to most reference genomes, manual curation of information from various sources led to the identification of 197 known and putative transporter genes, representing almost 4% of all parasite genes, a proportion that is comparable to well-studied metazoan species. This transporter list presented here was compiled by collating data from several databases along with extensive literature searches, and includes parasite-encoded membrane-resident/associated channels, carriers, and pumps that are located within the parasite or exported to the host cell. It provides updated information on the substrates, subcellular localisation, class, predicted essentiality, and the presence or absence of human orthologs of P. falciparum transporters to quickly identify essential proteins without human orthologs for further functional characterisation and potential exploitation as novel drug targets.
Collapse
Affiliation(s)
- Juliane Wunderlich
- Max Planck Institute for Infection Biology, Berlin, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- *Correspondence: Juliane Wunderlich,
| |
Collapse
|
37
|
Chowdhary S, Shalini, Mosnier J, Fonta I, Pradines B, Cele N, Seboletswe P, Singh P, Kumar V. Synthesis, Anti-Plasmodial Activities, and Mechanistic Insights of 4-Aminoquinoline-Triazolopyrimidine Hybrids. ACS Med Chem Lett 2022; 13:1068-1076. [DOI: 10.1021/acsmedchemlett.2c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Shefali Chowdhary
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherché Biomédicale des Armées, Marseille 13262, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille 13262, France
- IHU Méditerranée Infection, Marseille 13262, France
- Centre National de Reference du Paludisme, Marseille 13262, France
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Pule Seboletswe
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban South Africa
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
38
|
Gao P, Liu YQ, Xiao W, Xia F, Chen JY, Gu LW, Yang F, Zheng LH, Zhang JZ, Zhang Q, Li ZJ, Meng YQ, Zhu YP, Tang H, Shi QL, Guo QY, Zhang Y, Xu CC, Dai LY, Wang JG. Identification of antimalarial targets of chloroquine by a combined deconvolution strategy of ABPP and MS-CETSA. Mil Med Res 2022; 9:30. [PMID: 35698214 PMCID: PMC9195458 DOI: 10.1186/s40779-022-00390-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a devastating infectious disease that disproportionally threatens hundreds of millions of people in developing countries. In the history of anti-malaria campaign, chloroquine (CQ) has played an indispensable role, however, its mechanism of action (MoA) is not fully understood. METHODS We used the principle of photo-affinity labeling and click chemistry-based functionalization in the design of a CQ probe and developed a combined deconvolution strategy of activity-based protein profiling (ABPP) and mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) that identified the protein targets of CQ in an unbiased manner in this study. The interactions between CQ and these identified potential protein hits were confirmed by biophysical and enzymatic assays. RESULTS We developed a novel clickable, photo-affinity chloroquine analog probe (CQP) which retains the antimalarial activity in the nanomole range, and identified a total of 40 proteins that specifically interacted and photo-crosslinked with CQP which was inhibited in the presence of excess CQ. Using MS-CETSA, we identified 83 candidate interacting proteins out of a total of 3375 measured parasite proteins. At the same time, we identified 8 proteins as the most potential hits which were commonly identified by both methods. CONCLUSIONS We found that CQ could disrupt glycolysis and energy metabolism of malarial parasites through direct binding with some of the key enzymes, a new mechanism that is different from its well-known inhibitory effect of hemozoin formation. This is the first report of identifying CQ antimalarial targets by a parallel usage of labeled (ABPP) and label-free (MS-CETSA) methods.
Collapse
Affiliation(s)
- Peng Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan-Qing Liu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Xiao
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xia
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jia-Yun Chen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Wei Gu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fan Yang
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Liu-Hai Zheng
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Jun-Zhe Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qian Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhi-Jie Li
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yu-Qing Meng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yong-Ping Zhu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Tang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiao-Li Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu-Yan Guo
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng-Chao Xu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ling-Yun Dai
- Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| | - Ji-Gang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Department of Geriatrics, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
39
|
Leussa ANN, Rautenbach M. Antiplasmodial Cyclodecapeptides from Tyrothricin Share a Target with Chloroquine. Antibiotics (Basel) 2022; 11:antibiotics11060801. [PMID: 35740207 PMCID: PMC9219824 DOI: 10.3390/antibiotics11060801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
Previous research found that the six major cyclodecapeptides from the tyrothricin complex, produced by Brevibacillus parabrevis, showed potent activity against chloroquine sensitive (CQS) Plasmodium falciparum. The identity of the aromatic residues in the aromatic dipeptide unit in cyclo-(D-Phe1-Pro2-(Phe3/Trp3)-D-Phe4/D-Trp4)-Asn5-Gln6-(Tyr7/Phe7/Trp7)-Val8-(Orn9/Lys9)-Leu10 was proposed to have an important role in activity. CQS and resistant (CQR) P. falciparum strains were challenged with three representative cyclodecapeptides. Our results confirmed that cyclodecapeptides from tyrothricin had significantly higher antiplasmodial activity than the analogous gramicidin S, rivaling that of CQ. However, the previously hypothesized size and hydrophobicity dependent activity for these peptides did not hold true for P. falciparum strains, other than for the CQS 3D7 strain. The Tyr7 in tyrocidine A (TrcA) with Phe3-D-Phe4 seem to be related with loss in activity correlating with CQ antagonism and resistance, indicating a shared target and/or resistance mechanism in which the phenolic groups play a role. Phe7 in phenycidine A, the second peptide containing Phe3-D-Phe4, also showed CQ antagonism. Conversely, Trp7 in tryptocidine C (TpcC) with Trp3-D-Trp4 showed improved peptide selectivity and activity towards the more resistant strains, without overt antagonism towards CQ. However, TpcC lead to similar parasite stage inhibition and parasite morphology changes than previously observed for TrcA. The disorganization of chromatin packing and neutral lipid structures, combined with amorphous hemozoin crystals, could account for halted growth in late trophozoite/early schizont stage and the nanomolar non-lytic activity of these peptides. These targets related to CQ antagonism, changes in neural lipid distribution, leading to hemozoin malformation, indicate that the tyrothricin cyclodecapeptides and CQ share a target in the malaria parasite. The differing activities of these cyclic peptides towards CQS and CQR P. falciparum strains could be due to variable target interaction in multiple modes of activity. This indicated that the cyclodecapeptide activity and parasite resistance response depended on the aromatic residues in positions 3, 4 and 7. This new insight on these natural cyclic decapeptides could also benefit the design of unique small peptidomimetics in which activity and resistance can be modulated.
Collapse
|
40
|
Kumar S, Li X, McDew-White M, Reyes A, Delgado E, Sayeed A, Haile MT, Abatiyow BA, Kennedy SY, Camargo N, Checkley LA, Brenneman KV, Button-Simons KA, Duraisingh MT, Cheeseman IH, Kappe SHI, Nosten F, Ferdig MT, Vaughan AM, Anderson TJC. A Malaria Parasite Cross Reveals Genetic Determinants of Plasmodium falciparum Growth in Different Culture Media. Front Cell Infect Microbiol 2022; 12:878496. [PMID: 35711667 PMCID: PMC9197316 DOI: 10.3389/fcimb.2022.878496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022] Open
Abstract
What genes determine in vitro growth and nutrient utilization in asexual blood-stage malaria parasites? Competition experiments between NF54, clone 3D7, a lab-adapted African parasite, and a recently isolated Asian parasite (NHP4026) reveal contrasting outcomes in different media: 3D7 outcompetes NHP4026 in media containing human serum, while NHP4026 outcompetes 3D7 in media containing AlbuMAX, a commercial lipid-rich bovine serum formulation. To determine the basis for this polymorphism, we conducted parasite genetic crosses using humanized mice and compared genome-wide allele frequency changes in three independent progeny populations cultured in media containing human serum or AlbuMAX. This bulk segregant analysis detected three quantitative trait loci (QTL) regions [on chromosome (chr) 2 containing aspartate transaminase AST; chr 13 containing EBA-140; and chr 14 containing cysteine protease ATG4] linked with differential growth in serum or AlbuMAX in each of the three independent progeny pools. Selection driving differential growth was strong (s = 0.10 – 0.23 per 48-hour lifecycle). We conducted validation experiments for the strongest QTL on chr 13: competition experiments between ΔEBA-140 and 3D7 wildtype parasites showed fitness reversals in the two medium types as seen in the parental parasites, validating this locus as the causative gene. These results (i) demonstrate the effectiveness of bulk segregant analysis for dissecting fitness traits in P. falciparum genetic crosses, and (ii) reveal intimate links between red blood cell invasion and nutrient composition of growth media. Use of parasite crosses combined with bulk segregant analysis will allow systematic dissection of key nutrient acquisition/metabolism and red blood cell invasion pathways in P. falciparum.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Marina McDew-White
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ann Reyes
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Elizabeth Delgado
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Abeer Sayeed
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Spencer Y. Kennedy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Lisa A. Checkley
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Katelyn V. Brenneman
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Katrina A. Button-Simons
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Manoj T. Duraisingh
- Immunology and Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Ian H. Cheeseman
- Program in Host Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Oxford, United Kingdom
| | - Michael T. Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- *Correspondence: Ashley M. Vaughan, ; Tim J. C. Anderson,
| | - Tim J. C. Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Ashley M. Vaughan, ; Tim J. C. Anderson,
| |
Collapse
|
41
|
Silva M, Malmberg M, Otienoburu SD, Björkman A, Ngasala B, Mårtensson A, Gil JP, Veiga MI. Plasmodium falciparum Drug Resistance Genes pfmdr1 and pfcrt In Vivo Co-Expression During Artemether-Lumefantrine Therapy. Front Pharmacol 2022; 13:868723. [PMID: 35685627 PMCID: PMC9171324 DOI: 10.3389/fphar.2022.868723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Artemisinin-based combination therapies (ACTs) are the global mainstay treatment of uncomplicated Plasmodium falciparum infections. PfMDR1 and PfCRT are two transmembrane transporters, associated with sensitivity to several antimalarials, found in the parasite food vacuole. Herein, we explore if their relatedness extends to overlapping patterns of gene transcriptional activity before and during ACT administration. Methods: In a clinical trial performed in Tanzania, we explored the pfmdr1 and pfcrt transcription levels from 48 patients with uncomplicated P. falciparum malaria infections who underwent treatment with artemether-lumefantrine (AL). Samples analyzed were collected before treatment initiation and during the first 24 h of treatment. The frequency of PfMDR1 N86Y and PfCRT K76T was determined through PCR-RFLP or direct amplicon sequencing. Gene expression was analyzed by real-time quantitative PCR. Results: A wide range of pre-treatment expression levels was observed for both genes, approximately 10-fold for pfcrt and 50-fold for pfmdr1. In addition, a significant positive correlation demonstrates pfmdr1 and pfcrt co-expression. After AL treatment initiation, pfmdr1 and pfcrt maintained the positive co-expression correlation, with mild downregulation throughout the 24 h post-treatment. Additionally, a trend was observed for PfMDR1 N86 alleles and higher expression before treatment initiation. Conclusion:pfmdr1 and pfcrt showed significant co-expression patterns in vivo, which were generally maintained during ACT treatment. This observation points to relevant related roles in the normal parasite physiology, which seem essential to be maintained when the parasite is exposed to drug stress. In addition, keeping the simultaneous expression of both transporters might be advantageous for responding to the drug action.
Collapse
Affiliation(s)
- M. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| | - M. Malmberg
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S. D. Otienoburu
- College of STEM, Johnson C. Smith University, Charlotte, NC, United States
| | - A. Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B. Ngasala
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - A. Mårtensson
- Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - J. P. Gil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Biodiversity, Functional & Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
- *Correspondence: J. P. Gil,
| | - M. I. Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
42
|
Murithi JM, Deni I, Pasaje CFA, Okombo J, Bridgford JL, Gnädig NF, Edwards RL, Yeo T, Mok S, Burkhard AY, Coburn-Flynn O, Istvan ES, Sakata-Kato T, Gomez-Lorenzo MG, Cowell AN, Wicht KJ, Le Manach C, Kalantarov GF, Dey S, Duffey M, Laleu B, Lukens AK, Ottilie S, Vanaerschot M, Trakht IN, Gamo FJ, Wirth DF, Goldberg DE, Odom John AR, Chibale K, Winzeler EA, Niles JC, Fidock DA. The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chem Biol 2022; 29:824-839.e6. [PMID: 34233174 PMCID: PMC8727639 DOI: 10.1016/j.chembiol.2021.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.
Collapse
Affiliation(s)
- James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nina F. Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rachel L. Edwards
- Division of Infectious Diseases, Allergy and Immunology, Center for Vaccine Development, St. Louis University, St. Louis, MO 63104, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Olivia Coburn-Flynn
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eva S. Istvan
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomoyo Sakata-Kato
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | | | - Annie N. Cowell
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Kathryn J. Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA,Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Le Manach
- Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gavreel F. Kalantarov
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maëlle Duffey
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Amanda K. Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Sabine Ottilie
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ilya N. Trakht
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francisco-Javier Gamo
- Global Health Pharma Research Unit, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Daniel E. Goldberg
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kelly Chibale
- Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Elizabeth A. Winzeler
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author
| |
Collapse
|
43
|
Nair S, Li X, Arya GA, McDew-White M, Ferrari M, Anderson T. Nutrient Limitation Magnifies Fitness Costs of Antimalarial Drug Resistance Mutations. Antimicrob Agents Chemother 2022; 66:e0152921. [PMID: 35465723 PMCID: PMC9112896 DOI: 10.1128/aac.01529-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Drug resistance mutations tend to disrupt key physiological processes and frequently carry fitness costs, which are a central determinant of the rate of spread of these mutations in natural populations. Head-to-head competition assays provide a standard approach to measuring fitness for malaria parasites. These assays typically use a standardized culture medium containing RPMI 1640, which has a 1.4- to 5.5-fold higher concentration of amino acids than human blood. In this rich medium, we predict that fitness costs will be underestimated because resource competition is weak. We tested this prediction using an artemisinin-sensitive parasite edited to contain kelch-C580Y or R561H mutations conferring resistance to artemisinin or synonymous control mutations. We examined the impact of these single amino acid mutations on fitness, using replicated head-to-head competition experiments conducted in media containing (i) normal RPMI, (ii) modified RPMI with reduced amino acid concentration, (iii) RPMI containing only isoleucine, or (iv) 3-fold diluted RPMI. We found a significant 1.3- to 1.4-fold increase in fitness costs measured in modified and isoleucine-only media relative to normal media, while fitness costs were 2.5-fold higher in diluted media. We conclude that fitness costs are strongly affected by media composition and will be significantly underestimated in normal RPMI. Several components differed between media, including pABA and sodium bicarbonate concentrations, so we cannot directly determine which is responsible. Elevated fitness costs in nature will limit spread of artemisinin (ART) resistance but will also promote evolution of compensatory mutations that restore fitness and can be exploited to maximize selection in laboratory experiments.
Collapse
Affiliation(s)
- Shalini Nair
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Grace A. Arya
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marco Ferrari
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Tim Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
44
|
Mechanistic basis for multidrug resistance and collateral drug sensitivity conferred to the malaria parasite by polymorphisms in PfMDR1 and PfCRT. PLoS Biol 2022; 20:e3001616. [PMID: 35507548 PMCID: PMC9067703 DOI: 10.1371/journal.pbio.3001616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 01/16/2023] Open
Abstract
Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite’s susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite’s susceptibility to lumefantrine and mefloquine—a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite’s digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine’s access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.
Collapse
|
45
|
Lopes EA, Mestre R, Fontinha D, Legac J, Pei JV, Sanches-Vaz M, Mori M, Lehane AM, Rosenthal PJ, Prudêncio M, Santos MM. Discovery of spirooxadiazoline oxindoles with dual-stage antimalarial activity. Eur J Med Chem 2022; 236:114324. [DOI: 10.1016/j.ejmech.2022.114324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022]
|
46
|
Matz JM. Plasmodium’s bottomless pit: properties and functions of the malaria parasite's digestive vacuole. Trends Parasitol 2022; 38:525-543. [DOI: 10.1016/j.pt.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
|
47
|
Small-Saunders JL, Hagenah LM, Wicht KJ, Dhingra SK, Deni I, Kim J, Vendome J, Gil-Iturbe E, Roepe PD, Mehta M, Mancia F, Quick M, Eppstein MJ, Fidock DA. Evidence for the early emergence of piperaquine-resistant Plasmodium falciparum malaria and modeling strategies to mitigate resistance. PLoS Pathog 2022; 18:e1010278. [PMID: 35130315 PMCID: PMC8853508 DOI: 10.1371/journal.ppat.1010278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/17/2022] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Multidrug-resistant Plasmodium falciparum parasites have emerged in Cambodia and neighboring countries in Southeast Asia, compromising the efficacy of first-line antimalarial combinations. Dihydroartemisinin + piperaquine (PPQ) treatment failure rates have risen to as high as 50% in some areas in this region. For PPQ, resistance is driven primarily by a series of mutant alleles of the P. falciparum chloroquine resistance transporter (PfCRT). PPQ resistance was reported in China three decades earlier, but the molecular driver remained unknown. Herein, we identify a PPQ-resistant pfcrt allele (China C) from Yunnan Province, China, whose genotypic lineage is distinct from the PPQ-resistant pfcrt alleles currently observed in Cambodia. Combining gene editing and competitive growth assays, we report that PfCRT China C confers moderate PPQ resistance while re-sensitizing parasites to chloroquine (CQ) and incurring a fitness cost that manifests as a reduced rate of parasite growth. PPQ transport assays using purified PfCRT isoforms, combined with molecular dynamics simulations, highlight differences in drug transport kinetics and in this transporter’s central cavity conformation between China C and the current Southeast Asian PPQ-resistant isoforms. We also report a novel computational model that incorporates empirically determined fitness landscapes at varying drug concentrations, combined with antimalarial susceptibility profiles, mutation rates, and drug pharmacokinetics. Our simulations with PPQ-resistant or -sensitive parasite lines predict that a three-day regimen of PPQ combined with CQ can effectively clear infections and prevent the evolution of PfCRT variants. This work suggests that including CQ in combination therapies could be effective in suppressing the evolution of PfCRT-mediated multidrug resistance in regions where PPQ has lost efficacy. The recent emergence of Plasmodium falciparum parasite resistance to the antimalarial drug piperaquine (PPQ) has contributed to frequent treatment failures across Southeast Asia, originating in Cambodia. Here, we show that earlier reports of PPQ resistance in Yunnan Province, China could be explained by the unique China C variant of the P. falciparum chloroquine resistance transporter PfCRT. Gene-edited parasites show a loss of fitness and parasite resensitization to the chemically related former first-line antimalarial chloroquine, while acquiring PPQ resistance via drug efflux. Molecular features of drug resistance were examined using biochemical assays to measure mutant PfCRT-mediated drug transport and molecular dynamics simulations with the recently solved PfCRT structure to assess changes in the central drug-binding cavity. We also describe a new computational model that incorporates parasite mutation rates, fitness costs, antimalarial susceptibilities, and drug pharmacological profiles to predict how infections with parasite strains expressing distinct PfCRT variants can evolve and be selected in response to different drug pressures and regimens. Simulations predict that a three-day regimen of PPQ plus chloroquine would be fully effective at preventing recrudescence of drug-resistant infections.
Collapse
Affiliation(s)
- Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Jeremie Vendome
- Schrödinger, Inc., New York, New York, United States of America
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Paul D Roepe
- Department of Chemistry, Georgetown University, Washington, DC, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Monica Mehta
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- Center for Molecular Recognition, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Margaret J Eppstein
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont, United States of America
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
- Translational Global Infectious Diseases Research Center, University of Vermont, Burlington, Vermont, United States of America
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
48
|
Smirnova M, Goracci L, Cruciani G, Federici L, Declèves X, Chapy H, Cisternino S. Pharmacophore-Based Discovery of Substrates of a Novel Drug/Proton-Antiporter in the Human Brain Endothelial hCMEC/D3 Cell Line. Pharmaceutics 2022; 14:pharmaceutics14020255. [PMID: 35213988 PMCID: PMC8875908 DOI: 10.3390/pharmaceutics14020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
A drug/proton-antiporter, whose the molecular structure is still unknown, was previously evidenced at the blood-brain barrier (BBB) by functional experiments. The computational method could help in the identification of substrates of this solute carrier (SLC) transporter. Two pharmacophore models for substrates of this transporter using the FLAPpharm approach were developed. The trans-stimulation potency of 40 selected compounds for already known specific substrates ([3H]-clonidine) were determined and compared in the human brain endothelial cell line hCMEC/D3. Results. The two pharmacophore models obtained were used as templates to screen xenobiotic and endogenous compounds from four databases (e.g., Specs), and 45 hypothetical new candidates were tested to determine their substrate capacity. Psychoactive drugs such as antidepressants (e.g., imipramine, desipramine), antipsychotics/neuroleptics such as phenothiazine derivatives (chlorpromazine), sedatives anti-histamine-H1 drugs (promazine, promethazine, triprolidine, pheniramine), opiates/opioids (e.g., hydrocodone), trihexyphenidyl and sibutramine were correctly predicted as proton-antiporter substrates. The best performing pharmacophore model for the proton-antiporter substrates appeared as a good predictor of known substrates and allowed the identification of new substrate compounds. This model marks a new step in the characterization of this drug/proton-antiporter and will be of great use in uncovering its substrates and designing chemical entities with an improved influx capability to cross the BBB.
Collapse
Affiliation(s)
- Maria Smirnova
- Université de Paris, INSERM UMR_S1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.S.); (L.F.); (X.D.); (H.C.)
| | - Laura Goracci
- Biology and Biotechnology, Department of Chemistry, University of Perugia, 06123 Perugia, Italy; (L.G.); (G.C.)
| | - Gabriele Cruciani
- Biology and Biotechnology, Department of Chemistry, University of Perugia, 06123 Perugia, Italy; (L.G.); (G.C.)
| | - Laetitia Federici
- Université de Paris, INSERM UMR_S1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.S.); (L.F.); (X.D.); (H.C.)
| | - Xavier Declèves
- Université de Paris, INSERM UMR_S1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.S.); (L.F.); (X.D.); (H.C.)
- Biologie du Médicament et Toxicologie, AP-HP, Hôpital Cochin, 75014 Paris, France
| | - Hélène Chapy
- Université de Paris, INSERM UMR_S1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.S.); (L.F.); (X.D.); (H.C.)
| | - Salvatore Cisternino
- Université de Paris, INSERM UMR_S1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.S.); (L.F.); (X.D.); (H.C.)
- Service Pharmacie, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
- Correspondence: ; Tel.: +33-1-44-495-191
| |
Collapse
|
49
|
Edgar RCS, Counihan NA, McGowan S, de Koning-Ward TF. Methods Used to Investigate the Plasmodium falciparum Digestive Vacuole. Front Cell Infect Microbiol 2022; 11:829823. [PMID: 35096663 PMCID: PMC8794586 DOI: 10.3389/fcimb.2021.829823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum malaria remains a global health problem as parasites continue to develop resistance to all antimalarials in use. Infection causes clinical symptoms during the intra-erythrocytic stage of the lifecycle where the parasite infects and replicates within red blood cells (RBC). During this stage, P. falciparum digests the main constituent of the RBC, hemoglobin, in a specialized acidic compartment termed the digestive vacuole (DV), a process essential for survival. Many therapeutics in use target one or multiple aspects of the DV, with chloroquine and its derivatives, as well as artemisinin, having mechanisms of action within this organelle. In order to better understand how current therapeutics and those under development target DV processes, techniques used to investigate the DV are paramount. This review outlines the involvement of the DV in therapeutics currently in use and focuses on the range of techniques that are currently utilized to study this organelle including microscopy, biochemical analysis, genetic approaches and metabolomic studies. Importantly, continued development and application of these techniques will aid in our understanding of the DV and in the development of new therapeutics or therapeutic partners for the future.
Collapse
Affiliation(s)
- Rebecca C. S. Edgar
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Natalie A. Counihan
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Monash University, Clayton, VIC, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
50
|
Hai Y, Cai ZM, Li PJ, Wei MY, Wang CY, Gu YC, Shao CL. Trends of antimalarial marine natural products: progresses, challenges and opportunities. Nat Prod Rep 2022; 39:969-990. [DOI: 10.1039/d1np00075f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides an overview of the antimalarial marine natural products, focusing on their chemistry, malaria-related targets and mechanisms, and highlighting their potential for drug development.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zi-Mu Cai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Peng-Jie Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| |
Collapse
|