1
|
Thayer JA, Petersen JD, Huang X, Hawrot J, Ramos DM, Sekine S, Li Y, Ward ME, Narendra DP. Novel reporter of the PINK1-Parkin mitophagy pathway identifies its damage sensor in the import gate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639160. [PMID: 40027798 PMCID: PMC11870511 DOI: 10.1101/2025.02.19.639160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Damaged mitochondria can be cleared from the cell by mitophagy, using a pathway formed by the recessive Parkinson's disease genes PINK1 and Parkin. How mitochondrial damage is sensed by the PINK1-Parkin pathway, however, remains uncertain. Here, using a Parkin substrate-based reporter in genome-wide screens, we identified that diverse forms of mitochondrial damage converge on loss of mitochondrial membrane potential (MMP) to activate PINK1. Consistently, the MMP but not the presequence translocase-associated motor (PAM) import motor provided the essential driving force for endogenous PINK1 import through the inner membrane translocase TIM23. In the absence of TIM23, PINK1 arrested in the translocase of the outer membrane (TOM) during import. The energy-state outside of the mitochondria further modulated the pathway by controlling the rate of new PINK1 synthesis. Our results identify separation of PINK1 from TOM by the MMP, as the key damage-sensing switch in the PINK1-Parkin mitophagy pathway. Highlights MFN2-Halo is a quantitative single-cell reporter of PINK1-Parkin activation.Diverse forms of mitochondrial damage, identified in whole-genome screens, activate the PINK1-Parkin pathway by disrupting the mitochondrial membrane potential (MMP).The primary driving force for endogenous PINK1 import through the TIM23 translocase is the MMP with the PAM import motor playing a supporting role.Loss of TIM23 is sufficient to stabilize PINK1 in the TOM complex and activate Parkin.
Collapse
Affiliation(s)
- Julia A. Thayer
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer D. Petersen
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Equal-author contribution
| | - Xiaoping Huang
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Equal-author contribution
| | - James Hawrot
- Inherited Neurodegenerative Diseases Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neuroscience, Brown University, Providence, RI 02912,USA
| | - Daniel M. Ramos
- iPSC Neurodegenerative Disease Initiative, National Institute of Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiori Sekine
- Aging Institute, Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael E. Ward
- Inherited Neurodegenerative Diseases Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Derek P. Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Weber CM, Moiz B, Pena GS, Kheradmand M, Wunderler B, Kettula C, Sangha GS, Smith JC, Clyne AM. Impacts of APOE-ε4 and exercise training on brain microvascular endothelial cell barrier function and metabolism. EBioMedicine 2025; 111:105487. [PMID: 39647262 PMCID: PMC11667009 DOI: 10.1016/j.ebiom.2024.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/27/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND The APOE-ε4 genotype is the highest genetic risk factor for Alzheimer's disease (AD), and exercise training can reduce the risk of AD. Two early pathologies of AD are degradation of tight junctions between brain microvascular endothelial cells (BMEC) and brain glucose hypometabolism. Therefore, the objective of this work was to determine how the APOE-ε4 genotype and serum from exercise trained individuals impacts BMEC barrier function and metabolism. METHODS iPSC homozygous for the APOE-ε3 and APOE-ε4 alleles were differentiated to BMEC-like cells and used to measure barrier function and metabolism. To investigate exercise effects, serum was collected from older adults pre- and post- 6 months of exercise training (n = 9 participants per genotype). APOE-ε3 and APOE-ε4 BMEC were treated with genotype-matched serum, and then barrier function and metabolism were measured. FINDINGS APOE-ε4 genotype impaired BMEC barrier function and metabolism by reducing sirtuin 1 (SIRT1) levels by 27% (p = 0.0188) and baseline insulin signalling by 37% (p = 0.0186) compared to APOE-ε3 BMEC. Exercise-trained serum increased SIRT1 by 33% (p = 0.0043) in APOE-ε3 BMEC but decreased SIRT1 by 22% (p = 0.0004) in APOE ε4 BMEC. INTERPRETATION APOE-ε4 directly impairs glucose metabolism and barrier function. Serum from exercise trained individuals alters SIRT1 in a genotype-dependent manner but may require additional cues from exercise to decrease AD pathologies. FUNDING Brain and Behaviour Initiative at the University of Maryland through the Seed Grant Program, NSF-GRFP DGE 1840340, Fischell Fellowship in Biomedical Engineering, NSF CBET-2211966 and DGE-1632976, National Niemann-Pick Disease Foundation, University of Maryland ASPIRE Program, NIH R01HL165193, R01HL140239-01, and R01AG057552.
Collapse
Affiliation(s)
- Callie M Weber
- Department of Bioengineering, University of Maryland; College Park, MD, 20742, United States
| | - Bilal Moiz
- Department of Bioengineering, University of Maryland; College Park, MD, 20742, United States
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD, 20742, United States
| | - Marzyeh Kheradmand
- Department of Bioengineering, University of Maryland; College Park, MD, 20742, United States
| | - Brooke Wunderler
- Department of Bioengineering, University of Maryland; College Park, MD, 20742, United States
| | - Claire Kettula
- Department of Bioengineering, University of Maryland; College Park, MD, 20742, United States
| | - Gurneet S Sangha
- Department of Bioengineering, University of Maryland; College Park, MD, 20742, United States
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, 20742, United States
| | - Alisa Morss Clyne
- Department of Bioengineering, University of Maryland; College Park, MD, 20742, United States.
| |
Collapse
|
3
|
Wang T, Fei J, Yu F, Xu X, Cui Y, Li J. Nanoarchitectonics of Vesicle Microreactors for Oscillating ATP Synthesis and Hydrolysis. Angew Chem Int Ed Engl 2024; 63:e202411981. [PMID: 39041718 DOI: 10.1002/anie.202411981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
We construct a compartmentalized nanoarchitecture to regulate bioenergy level. Glucose dehydrogenase, urease and nicotinamide adenine dinucleotide are encapsulated inside through liquid-liquid phase separation. ATPase and glucose transporter embedded in hybrid liposomes are attached at the surface. Glucose is transported and converted to gluconic acid catalyzed by glucose dehydrogenase, resulting in an outward proton gradient to drive ATPase for ATP synthesis. In parallel, urease catalyzes hydrolysis of urea to generate ammonia, which leads to an inward proton gradient to drive ATPase for ATP hydrolysis. These processes lead to a change of the direction of proton gradient, thus achieving artificial ATP oscillation. Importantly, the frequency and the amplitude of the oscillation can be programmed. The work explores nanoarchitectonics integrating multiple components to realize artificial and precise oscillation of bioenergy level.
Collapse
Affiliation(s)
- Tonghui Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Kim Y, Lee JM, Jang YN, Park AY, Kim S, Kim BJ, Lee JO. Irisin promotes hair growth and hair cycle transition by activating the GSK-3β/β-catenin pathway. Exp Dermatol 2024; 33:e15155. [PMID: 39133009 PMCID: PMC11605494 DOI: 10.1111/exd.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 08/13/2024]
Abstract
Hair loss affects men and women of all ages. Myokines, which are mainly secreted by skeletal muscles during exercise, have numerous health benefits. VEGF, IGF-1, FGF and irisin are reprehensive myokines. Although VEGF, IGF-1 and FGF are positively associated with hair growth, few studies have researched the effects of irisin on hair growth. Here, we investigated whether irisin promotes hair growth using in vitro, ex vivo and in vivo patch assays, as well as mouse models. We show that irisin increases proliferation, alkaline phosphatase (ALP) activity and mitochondrial membrane potential in human dermal papilla cells (hDPCs). Irisin activated the Wnt/β-catenin signalling pathway, thereby upregulating Wnt5a, Wnt10b and LEF-1, which play an important role in hair growth. Moreover, irisin enhanced human hair shaft elongation. In vivo, patch assays revealed that irisin promotes the generation of new hair follicles, accelerates entry into the anagen phase, and significantly increases hair growth in C57BL/6 mice. However, XAV939, a Wnt/β-catenin signalling inhibitor, suppressed the irisin-mediated increase in hair shaft and hair growth. These results indicate that irisin increases hair growth via the Wnt/β-catenin pathway and highlight its therapeutic potential in hair loss treatment.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Jung Min Lee
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
- Department of Medicine, Graduate SchoolChung‐Ang UniversitySeoulKorea
| | - You Na Jang
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - A. Yeon Park
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Su‐Young Kim
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
- Department of Medicine, Graduate SchoolChung‐Ang UniversitySeoulKorea
| | - Beom Joon Kim
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
- Department of Medicine, Graduate SchoolChung‐Ang UniversitySeoulKorea
| | - Jung Ok Lee
- Department of Dermatology, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
5
|
Wang Z, Chen Z, Zhang Z, Wang H, Zhang H. Highly-ordered assembled organic fluorescent materials for high-resolution bio-sensing: a review. Biomater Sci 2024; 12:2019-2032. [PMID: 38469672 DOI: 10.1039/d3bm02070c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organic fluorescent materials (OFMs) play a crucial role in the development of biosensors, enabling the extraction of biochemical information within cells and organisms, extending to the human body. Concurrently, OFM biosensors contribute significantly to the progress of modern medical and biological research. However, the practical applications of OFM biosensors face challenges, including issues related to low resolution, dispersivity, and stability. To overcome these challenges, scientists have introduced interactive elements to enhance the order of OFMs. Highly-ordered assembled OFMs represent a novel material type applied to biosensors. In comparison to conventional fluorescent materials, highly-ordered assembled OFMs typically exhibit robust anti-diffusion properties, high imaging contrast, and excellent stability. This approach has emerged as a promising method for effectively tracking bio-signals, particularly in the non-invasive monitoring of chronic diseases. This review introduces several highly-ordered assembled OFMs used in biosensors and also discusses various interactions that are responsible for their assembly, such as hydrogen bonding, π-π interaction, dipole-dipole interaction, and ion electrostatic interaction. Furthermore, it delves into the various applications of these biosensors while addressing the drawbacks that currently limit their commercial application. This review aims to provide a theoretical foundation for designing high-performance, highly-ordered assembled OFM biosensors suitable for practical applications. Additionally, it sheds light on the evolving trends in OFM biosensors and their application fields, offering valuable insights into the future of this dynamic research area.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zilong Chen
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zhenhao Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| |
Collapse
|
6
|
Baghdassarian HM, Lewis NE. Resource allocation in mammalian systems. Biotechnol Adv 2024; 71:108305. [PMID: 38215956 PMCID: PMC11182366 DOI: 10.1016/j.biotechadv.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cells execute biological functions to support phenotypes such as growth, migration, and secretion. Complementarily, each function of a cell has resource costs that constrain phenotype. Resource allocation by a cell allows it to manage these costs and optimize their phenotypes. In fact, the management of resource constraints (e.g., nutrient availability, bioenergetic capacity, and macromolecular machinery production) shape activity and ultimately impact phenotype. In mammalian systems, quantification of resource allocation provides important insights into higher-order multicellular functions; it shapes intercellular interactions and relays environmental cues for tissues to coordinate individual cells to overcome resource constraints and achieve population-level behavior. Furthermore, these constraints, objectives, and phenotypes are context-dependent, with cells adapting their behavior according to their microenvironment, resulting in distinct steady-states. This review will highlight the biological insights gained from probing resource allocation in mammalian cells and tissues.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Karnan S, Hanamura I, Ota A, Vu LQ, Uchino K, Horio T, Murakami S, Mizuno S, Rahman ML, Wahiduzzaman M, Hasan MN, Biswas M, Hyodo T, Ito H, Suzuki A, Konishi H, Tsuzuki S, Hosokawa Y, Takami A. ARK5 enhances cell survival associated with mitochondrial morphological dynamics from fusion to fission in human multiple myeloma cells. Cell Death Discov 2024; 10:56. [PMID: 38282096 PMCID: PMC10822851 DOI: 10.1038/s41420-024-01814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
5' adenosine monophosphate-activated protein kinase-related kinase 5 (ARK5) is involved in mitochondrial ATP production and associated with poor prognosis of multiple myeloma (MM). However, the molecular mechanisms of ARK5 in MM remain largely unknown. This study examined the pathogenic role of ARK5 in mitochondria by using genetically modified isogenic cell clones with or without ARK5 in human myeloma cell lines, KMS-11 and Sachi, which overexpress ARK5. The biallelic knockout of ARK5 (ARK5-KO) inhibited cell proliferation, colony formation, and migration with increased apoptosis. Mitochondrial fusion was enhanced in ARK5-KO cells, unlike in ARK5 wild-type (ARK5-WT) cells, which exhibited increased mitochondrial fission. Furthermore, ARK5-KO cells demonstrated a lower phosphorylated dynamin-related protein 1 at serine 616, higher protein expression of mitofusin-1 (MFN1) and MFN2, optic atrophy 1 with a lower level of ATP, and higher levels of lactate and reactive oxygen species than ARK5-WT cells. Our findings suggest that ARK5-enhanced myeloma cells can survive associated mitochondrial fission and activity. This study first revealed the relationship between ARK5 and mitochondrial morphological dynamics. Thus, our outcomes show novel aspects of mitochondrial biology of ARK5, which can afford a more advanced treatment approach for unfavorable MM expressing ARK5.
Collapse
Grants
- 19K08825, 22K08516[Hanamura] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K09292, 22K08985 [Karnan] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21K08426 [Ota] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya, 463-8521, Japan
| | - Lam Quang Vu
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kaori Uchino
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomohiro Horio
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Satsuki Murakami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Md Lutfur Rahman
- EuGEF Research Foundation, Chattogram, Bangladesh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Md Wahiduzzaman
- EuGEF Research Foundation, Chattogram, Bangladesh
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY, 11501, USA
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Mrityunjoy Biswas
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Atsushi Suzuki
- Hematology Medical Franchise, Department of Medical Affairs, Novartis Japan, Tokyo, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
8
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. Proc Natl Acad Sci U S A 2024; 121:e2307904121. [PMID: 38207075 PMCID: PMC10801874 DOI: 10.1073/pnas.2307904121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS-based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III, and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP, and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Adam L. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10021
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Graduate Program in Biomedical Sciences, University of California, San Francisco, CA94143
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, University of California, San Francisco, CA94158
| |
Collapse
|
9
|
Suganuma T, Workman JL. Chromatin balances cell redox and energy homeostasis. Epigenetics Chromatin 2023; 16:46. [PMID: 38017471 PMCID: PMC10683155 DOI: 10.1186/s13072-023-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Chromatin plays a central role in the conversion of energy in cells: alteration of chromatin structure to make DNA accessible consumes energy, and compaction of chromatin preserves energy. Alteration of chromatin structure uses energy sources derived from carbon metabolism such as ATP and acetyl-CoA; conversely, chromatin compaction and epigenetic modification feedback to metabolism and energy homeostasis by controlling gene expression and storing metabolites. Coordination of these dual chromatin events must be flexibly modulated in response to environmental changes such as during development and exposure to stress. Aging also alters chromatin structure and the coordination of metabolism, chromatin dynamics, and other cell processes. Noncoding RNAs and other RNA species that associate directly with chromatin or with chromatin modifiers contribute to spatiotemporal control of transcription and energy conversion. The time required for generating the large amounts of RNAs and chromatin modifiers observed in super-enhancers may be critical for regulation of transcription and may be impacted by aging. Here, taking into account these factors, we review alterations of chromatin that are fundamental to cell responses to metabolic changes due to stress and aging to maintain redox and energy homeostasis. We discuss the relationship between spatiotemporal control of energy and chromatin function, as this emerging concept must be considered to understand how cell homeostasis is maintained.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| |
Collapse
|
10
|
Ijurko C, Romo-González M, García-Calvo C, Sardina JL, Sánchez-Bernal C, Sánchez-Yagüe J, Elena-Herrmann B, Villaret J, Garrel C, Mondet J, Mossuz P, Hernández-Hernández Á. NOX2 control over energy metabolism plays a role in acute myeloid leukaemia prognosis and survival. Free Radic Biol Med 2023; 209:18-28. [PMID: 37806599 DOI: 10.1016/j.freeradbiomed.2023.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease, however the therapeutic approaches have hardly changed in the last decades. Metabolism rewiring and the enhanced production of reactive oxygen species (ROS) are hallmarks of cancer. A deeper understanding of these features could be instrumental for the development of specific AML-subtypes treatments. NADPH oxidases (NOX), the only cellular system specialised in ROS production, are also involved in leukemic metabolism control. NOX2 shows a variable expression in AML patients, so patients can be classified based on such difference. Here we have analysed whether NOX2 levels are important for AML metabolism control. The lack of NOX2 in AML cells slowdowns basal glycolysis and oxidative phosphorylation (OXPHOS), along with the accumulation of metabolites that feed such routes, and a sharp decrease of glutathione. In addition, we found changes in the expression of 725 genes. Among them, we have discovered a panel of 30 differentially expressed metabolic genes, whose relevance was validated in patients. This panel can segregate AML patients according to CYBB expression, and it can predict patient prognosis and survival. In summary, our data strongly support the relevance of NOX2 for AML metabolism, and highlights the potential of our discoveries in AML prognosis.
Collapse
Affiliation(s)
- Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Clara García-Calvo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - José Luis Sardina
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Carmen Sánchez-Bernal
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Jesús Sánchez-Yagüe
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Bénédicte Elena-Herrmann
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, GEMELI Platform, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Joran Villaret
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, GEMELI Platform, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Catherine Garrel
- Department of Biochemistry, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043, Grenoble, CEDEX 9, France
| | - Julie Mondet
- Team "Epigenetic Regulations", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700, Grenoble, France; Department of Molecular Pathology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043, Grenoble, CEDEX 9, France
| | - Pascal Mossuz
- Team "Epigenetic Regulations", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700, Grenoble, France; Department of Biological Hematology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043, Grenoble, CEDEX 9, France
| | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain.
| |
Collapse
|
11
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562276. [PMID: 37904938 PMCID: PMC10614765 DOI: 10.1101/2023.10.14.562276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS- based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Adam L. Orr
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA
| |
Collapse
|
12
|
Li H, Guglielmetti C, Sei YJ, Zilberter M, Le Page LM, Shields L, Yang J, Nguyen K, Tiret B, Gao X, Bennett N, Lo I, Dayton TL, Kampmann M, Huang Y, Rathmell JC, Vander Heiden M, Chaumeil MM, Nakamura K. Neurons require glucose uptake and glycolysis in vivo. Cell Rep 2023; 42:112335. [PMID: 37027294 PMCID: PMC10556202 DOI: 10.1016/j.celrep.2023.112335] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Neurons require large amounts of energy, but whether they can perform glycolysis or require glycolysis to maintain energy remains unclear. Using metabolomics, we show that human neurons do metabolize glucose through glycolysis and can rely on glycolysis to supply tricarboxylic acid (TCA) cycle metabolites. To investigate the requirement for glycolysis, we generated mice with postnatal deletion of either the dominant neuronal glucose transporter (GLUT3cKO) or the neuronal-enriched pyruvate kinase isoform (PKM1cKO) in CA1 and other hippocampal neurons. GLUT3cKO and PKM1cKO mice show age-dependent learning and memory deficits. Hyperpolarized magnetic resonance spectroscopic (MRS) imaging shows that female PKM1cKO mice have increased pyruvate-to-lactate conversion, whereas female GLUT3cKO mice have decreased conversion, body weight, and brain volume. GLUT3KO neurons also have decreased cytosolic glucose and ATP at nerve terminals, with spatial genomics and metabolomics revealing compensatory changes in mitochondrial bioenergetics and galactose metabolism. Therefore, neurons metabolize glucose through glycolysis in vivo and require glycolysis for normal function.
Collapse
Affiliation(s)
- Huihui Li
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Yoshitaka J Sei
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Lauren Shields
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joyce Yang
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kevin Nguyen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brice Tiret
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA
| | - Neal Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Talya L Dayton
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin Kampmann
- Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Bennett NK, Nakaoka HJ, Laurent D, Okimoto RA, Sei Y, Horvai AE, Bivona TG, ten Hoeve J, Graeber TG, Nakamura K, Nakamura JL. Primary and metastatic tumors exhibit systems-level differences in dependence on mitochondrial respiratory function. PLoS Biol 2022; 20:e3001753. [PMID: 36137002 PMCID: PMC9498964 DOI: 10.1371/journal.pbio.3001753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
The Warburg effect, aerobic glycolysis, is a hallmark feature of cancer cells grown in culture. However, the relative roles of glycolysis and respiratory metabolism in supporting in vivo tumor growth and processes such as tumor dissemination and metastatic growth remain poorly understood, particularly on a systems level. Using a CRISPRi mini-library enriched for mitochondrial ribosomal protein and respiratory chain genes in multiple human lung cancer cell lines, we analyzed in vivo metabolic requirements in xenograft tumors grown in distinct anatomic contexts. While knockdown of mitochondrial ribosomal protein and respiratory chain genes (mito-respiratory genes) has little impact on growth in vitro, tumor cells depend heavily on these genes when grown in vivo as either flank or primary orthotopic lung tumor xenografts. In contrast, respiratory function is comparatively dispensable for metastatic tumor growth. RNA-Seq and metabolomics analysis of tumor cells expressing individual sgRNAs against mito-respiratory genes indicate overexpression of glycolytic genes and increased sensitivity of glycolytic inhibition compared to control when grown in vitro, but when grown in vivo as primary tumors these cells down-regulate glycolytic mechanisms. These studies demonstrate that discrete perturbations of mitochondrial respiratory chain function impact in vivo tumor growth in a context-specific manner with differential impacts on primary and metastatic tumors.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, United States of America
| | - Hiroki J. Nakaoka
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, United States of America
| | - Danny Laurent
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, United States of America
| | - Ross A. Okimoto
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Yoshitaka Sei
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, United States of America
| | - Andrew E. Horvai
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Johanna ten Hoeve
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, United States of America
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Jean L. Nakamura
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
14
|
Mei M, Mu L, Wang Y, Liang S, Zhao Q, Huang L, She G, Shi W. Simultaneous Monitoring of the Adenosine Triphosphate Levels in the Cytoplasm and Nucleus of a Single Cell with a Single Nanowire-Based Fluorescent Biosensor. Anal Chem 2022; 94:11813-11820. [PMID: 35925790 DOI: 10.1021/acs.analchem.2c02030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simultaneous monitoring of the ATP levels at various sites of a single cell is crucial for revealing the ATP-related processes and diseases. In this work, we rationally fabricated single nanowire-based fluorescence biosensors, by which the ATP levels of the cytoplasm and nucleus in a single cell can be simultaneously monitored with a high spatial resolution. Utilizing the as-fabricated single nanowire biosensor, we demonstrated that the ATP levels of the cytoplasm were around 20-30% lower than that of the nucleus in both L929 and HeLa cells. Observing the ATP fluctuation of the cytoplasm and nucleus of the L929 and HeLa cells stimulated by Ca2+, oligomycin, or under cisplatin-induced apoptosis, we found that the ATP levels at two cellular sites exhibited discriminative changes, revealing the different mechanisms of the ATP at these two cellular sites in response to the stimulations.
Collapse
Affiliation(s)
- Mingliang Mei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaowen Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lushan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
15
|
Li C, Wang X, Chen T, Li W, Zhou X, Wang L, Yang Q. Huaier Induces Immunogenic Cell Death Via CircCLASP1/PKR/eIF2α Signaling Pathway in Triple Negative Breast Cancer. Front Cell Dev Biol 2022; 10:913824. [PMID: 35784473 PMCID: PMC9243662 DOI: 10.3389/fcell.2022.913824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal breast cancer subtype owing to the lack of targeted therapeutic strategies. Immunogenic cell death (ICD), a modality of regulated cancer cell death, offered a novel option for TNBC via augmenting tumor immunogenic microenvironment. However, few ICD-inducing agents are currently available. Here, we showed that Trametes robiniophila Murr (Huaier) triggered ICD in TNBC cells by promoting cell surface calreticulin (CRT) exposure, and increasing release of adenosine triphosphate (ATP) and high-mobility group protein B1 (HMGB1). Co-culturing with Huaier-treated TNBC cells efficiently enhanced the maturation of dendritic cells (DCs), which was further validated via cell-based vaccination assay. In the xenograft mouse model, oral administration of Huaier led to tumor-infiltrating lymphocytes (TILs) accumulation and significantly delayed tumor growth. Besides, depletion of endogenous T cells obviously abrogated the effect. Mechanically, Huaier could elicit endoplasmic reticulum (ER) stress-associated ICD through eIF2α signaling pathway. Further studies revealed that circCLASP1 was involved in the Huaier-induced immunogenicity by binding with PKR in the cytoplasm and thus blocking its degradation. Taken together, we highlighted an essential role of circCLASP1/PKR/eIF2α axis in Huaier-induced ICD. The findings of our study carried significant translational potential that Huaier might serve as a promising option to achieve long-term tumor remission in patients with TNBC.
Collapse
Affiliation(s)
- Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhao Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianyong Zhou
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lishui Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lishui Wang, ; Qifeng Yang,
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Research Institute of Breast Cancer, Shandong University, Jinan, China
- *Correspondence: Lishui Wang, ; Qifeng Yang,
| |
Collapse
|
16
|
Ma L, Hao Y, Liu X, Shao L, Wang H, Zhou H, Zhang D, Zhu T, Ding Q, Ma L. Proteomic and Phosphoproteomic Analyses Reveal a Complex Network Regulating Pollen Abortion and Potential Candidate Proteins in TCMS Wheat. Int J Mol Sci 2022; 23:6428. [PMID: 35742874 PMCID: PMC9224247 DOI: 10.3390/ijms23126428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Thermosensitive sterile lines are natural materials for exploring the effects of anther development on male fertility. To study the possible molecular mechanisms regulating protein activity during the induction of male sterility, proteomic and phosphoproteomic analyses with tandem mass tags (TMTs) were used to study the binucleate anther of the thermosensitive sterile wheat line YS3038. A total of 9072 proteins, including 5019 phosphoproteins, were identified. Enrichment analyses of differentially abundant proteins (DAPs) and phosphoproteins (DAPPs) in metabolic pathways showed that both were mainly related to energy metabolism. Soluble sugar and ATP content were significantly decreased, free fatty acid content was significantly increased, and ROS was abnormally accumulated in male sterile YS3038-A. In addition, 233 kinase-substrate pairs involved in potential phosphorylation control networks were predicted to regulate fertility. Candidate proteins were identified, and a quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to validate the TMT results. TaPDCD5 is likely to be involved in fertility conversion of YS3038 by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS). Our data provide new insights into the mechanism of TCMS, which has value for identifying potential candidate proteins associated with the formation or abortion of pollen and promotion of wheat heterosis utilization.
Collapse
Affiliation(s)
- Liting Ma
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (L.M.); (Y.H.); (X.L.); (L.S.); (H.W.); (H.Z.); (D.Z.); (T.Z.)
| | - Yuran Hao
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (L.M.); (Y.H.); (X.L.); (L.S.); (H.W.); (H.Z.); (D.Z.); (T.Z.)
| | - Xiaorong Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (L.M.); (Y.H.); (X.L.); (L.S.); (H.W.); (H.Z.); (D.Z.); (T.Z.)
| | - Leilei Shao
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (L.M.); (Y.H.); (X.L.); (L.S.); (H.W.); (H.Z.); (D.Z.); (T.Z.)
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (L.M.); (Y.H.); (X.L.); (L.S.); (H.W.); (H.Z.); (D.Z.); (T.Z.)
| | - Hao Zhou
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (L.M.); (Y.H.); (X.L.); (L.S.); (H.W.); (H.Z.); (D.Z.); (T.Z.)
| | - Dazhong Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (L.M.); (Y.H.); (X.L.); (L.S.); (H.W.); (H.Z.); (D.Z.); (T.Z.)
| | - Ting Zhu
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (L.M.); (Y.H.); (X.L.); (L.S.); (H.W.); (H.Z.); (D.Z.); (T.Z.)
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling 712100, China;
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (L.M.); (Y.H.); (X.L.); (L.S.); (H.W.); (H.Z.); (D.Z.); (T.Z.)
| |
Collapse
|
17
|
Azimzadeh M, Khashayar P, Amereh M, Tasnim N, Hoorfar M, Akbari M. Microfluidic-Based Oxygen (O 2) Sensors for On-Chip Monitoring of Cell, Tissue and Organ Metabolism. BIOSENSORS 2021; 12:bios12010006. [PMID: 35049634 PMCID: PMC8774018 DOI: 10.3390/bios12010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 05/08/2023]
Abstract
Oxygen (O2) quantification is essential for assessing cell metabolism, and its consumption in cell culture is an important indicator of cell viability. Recent advances in microfluidics have made O2 sensing a crucial feature for organ-on-chip (OOC) devices for various biomedical applications. OOC O2 sensors can be categorized, based on their transducer type, into two main groups, optical and electrochemical. In this review, we provide an overview of on-chip O2 sensors integrated with the OOC devices and evaluate their advantages and disadvantages. Recent innovations in optical O2 sensors integrated with OOCs are discussed in four main categories: (i) basic luminescence-based sensors; (ii) microparticle-based sensors; (iii) nano-enabled sensors; and (iv) commercial probes and portable devices. Furthermore, we discuss recent advancements in electrochemical sensors in five main categories: (i) novel configurations in Clark-type sensors; (ii) novel materials (e.g., polymers, O2 scavenging and passivation materials); (iii) nano-enabled electrochemical sensors; (iv) novel designs and fabrication techniques; and (v) commercial and portable electrochemical readouts. Together, this review provides a comprehensive overview of the current advances in the design, fabrication and application of optical and electrochemical O2 sensors.
Collapse
Affiliation(s)
- Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 89195-999, Iran;
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 89195-999, Iran
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 89165-887, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, 9050 Ghent, Belgium;
| | - Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Nishat Tasnim
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence: (M.H.); (M.A.)
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Correspondence: (M.H.); (M.A.)
| |
Collapse
|
18
|
Andreidesz K, Szabo A, Kovacs D, Koszegi B, Bagone Vantus V, Vamos E, Isbera M, Kalai T, Bognar Z, Kovacs K, Gallyas F. Cytostatic Effect of a Novel Mitochondria-Targeted Pyrroline Nitroxide in Human Breast Cancer Lines. Int J Mol Sci 2021; 22:ijms22169016. [PMID: 34445722 PMCID: PMC8396499 DOI: 10.3390/ijms22169016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondria have emerged as a prospective target to overcome drug resistance that limits triple-negative breast cancer therapy. A novel mitochondria-targeted compound, HO-5114, demonstrated higher cytotoxicity against human breast cancer lines than its component-derivative, Mito-CP. In this study, we examined HO-5114′s anti-neoplastic properties and its effects on mitochondrial functions in MCF7 and MDA-MB-231 human breast cancer cell lines. At a 10 µM concentration and within 24 h, the drug markedly reduced viability and elevated apoptosis in both cell lines. After seven days of exposure, even at a 75 nM concentration, HO-5114 significantly reduced invasive growth and colony formation. A 4 h treatment with 2.5 µM HO-5114 caused a massive loss of mitochondrial membrane potential, a decrease in basal and maximal respiration, and mitochondrial and glycolytic ATP production. However, reactive oxygen species production was only moderately elevated by HO-5114, indicating that oxidative stress did not significantly contribute to the drug’s anti-neoplastic effect. These data indicate that HO-5114 may have potential for use in the therapy of triple-negative breast cancer; however, the in vivo toxicity and anti-neoplastic effectiveness of the drug must be determined to confirm its potential.
Collapse
Affiliation(s)
- Kitti Andreidesz
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Dominika Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Balazs Koszegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Viola Bagone Vantus
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Eszter Vamos
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Mostafa Isbera
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (M.I.); (T.K.)
| | - Tamas Kalai
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (M.I.); (T.K.)
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Zita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
- Correspondence: ; Tel.: +36-72-536-278
| |
Collapse
|
19
|
Kim NH, Kim BW, Moon H, Yoo H, Kang RH, Hur JK, Oh Y, Kim BM, Kim D. AIEgen-based nanoprobe for the ATP sensing and imaging in cancer cells and embryonic stem cells. Anal Chim Acta 2021; 1152:338269. [PMID: 33648642 DOI: 10.1016/j.aca.2021.338269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A turn-on fluorescent nanoprobe (named AAP-1), based on an aggregation-induced emission luminogen (AIEgen), is disclosed for the detection of adenosine triphosphate (ATP), which is an essential element in the biological system. Organic fluorophore (named TPE-TA) consists of tetraphenylethylene (TPE, sensing and signaling moiety) and mono-triamine (TA, sensing moiety), and it forms an aggregated form in aqueous media as a nanoprobe AAP-1. The nanoprobe AAP-1 has multiple electrostatic interactions as well as hydrophobic interactions with ATP, and it displays superior selectivity toward ATP, reliable sensitivity, with a detection limit around 0.275 ppb, and fast responsive (signal within 10 s). Such a fluorescent probe to monitor ATP has been actively pursued throughout fundamental and translational research areas. In vitro assay and a successful cellular ATP imaging application was demonstrated in cancer cells and embryonic stem cells. We expect that our work warrants further ATP-related studies throughout a variety of fields.
Collapse
Affiliation(s)
- Na Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hajung Yoo
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Junho K Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
20
|
Involvement of Mitochondrial Mechanisms in the Cytostatic Effect of Desethylamiodarone in B16F10 Melanoma Cells. Int J Mol Sci 2020; 21:ijms21197346. [PMID: 33027919 PMCID: PMC7582344 DOI: 10.3390/ijms21197346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022] Open
Abstract
Previously, we showed that desethylamiodarone (DEA), a major metabolite of the widely used antiarrhythmic drug amiodarone, has direct mitochondrial effects. We hypothesized that these effects account for its observed cytotoxic properties and ability to limit in vivo metastasis. Accordingly, we examined DEA’s rapid (3–12 h) cytotoxicity and its early (3–6 h) effects on various mitochondrial processes in B16F10 melanoma cells. DEA did not affect cellular oxygen radical formation, as determined using two fluorescent dyes. However, it did decrease the mitochondrial transmembrane potential, as assessed by JC-1 dye and fluorescence microscopy. It also induced mitochondrial fragmentation, as visualized by confocal fluorescence microscopy. DEA decreased maximal respiration, ATP production, coupling efficiency, glycolysis, and non-mitochondrial oxygen consumption measured by a Seahorse cellular energy metabolism analyzer. In addition, it induced a cyclosporine A–independent mitochondrial permeability transition, as determined by Co2+-mediated calcein fluorescence quenching measured using a high-content imaging system. DEA also caused outer mitochondrial membrane permeabilization, as assessed by the immunoblot analysis of cytochrome C, apoptosis inducing factor, Akt, phospho-Akt, Bad, and phospho-Bad. All of these data supported our initial hypothesis.
Collapse
|