1
|
Yakupova EI, Abramicheva PA, Rogachevsky VV, Shishkova EA, Bocharnikov AD, Plotnikov EY, Vikhlyantsev IM. Cardiac titin isoforms: Practice in interpreting results of electrophoretic analysis. Methods 2025; 236:17-25. [PMID: 39993454 DOI: 10.1016/j.ymeth.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025] Open
Abstract
The sarcomeric giant protein titin affects the passive elasticity of the heart muscle and is crucial for proper cardiac function, including diastolic relaxation of the left ventricle. A useful common method for studying titin is electrophoretic analysis which can be used to examine the distribution of its isoforms in the heart. There are 5 titin parameters that can be analyzed: the N2BA/N2B isoforms ratio, the T2/T1 bands ratio, Cronos isoform content, NT isoform content, the total titin-to-myosin heavy chain (TT/MHC) ratio. These parameters can only be assessed through electrophoresis of giant proteins. It is known that these parameters are related to various biomolecular processes in muscle cells, such as providing of elastic properties, turnover, contraction, and maintaining a highly ordered sarcomere structure. In this review, we discuss the diagnostic potential of electrophoretic visualization of cardiac titin changes in various human heart diseases and animal models of physiological adaptations or pathologies.
Collapse
Affiliation(s)
- Elmira I Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Polina A Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Vadim V Rogachevsky
- Institute of Cell Biophysics, Russian Academy of Science, Pushchino 142290 Moscow Region, Russia
| | - Elena A Shishkova
- Institute of Cell Biophysics, Russian Academy of Science, Pushchino 142290 Moscow Region, Russia
| | - Alexey D Bocharnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ivan M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia; Pushchino Branch of the Federal State Budgetary Educational Institution of Higher Education «Russian Biotechnological University (BIOTECH University)», Russia.
| |
Collapse
|
2
|
Ma H, Jin L, Zhao L, Yan C, Mi Z. Genetic and metabolic insights into sexual dimorphism in the flexor carpi radialis of Asiatic toads (Bufo gargarizans) associated with amplexus behavior. BMC Genomics 2025; 26:192. [PMID: 39994541 PMCID: PMC11853992 DOI: 10.1186/s12864-025-11392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/20/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Sexual dimorphism, a widespread phenomenon across the animal kingdom, encompasses differences between sexes in size, morphology, and physiological traits. In this study, we investigated sexual dimorphism in the flexor carpi radialis (FCR) muscle, which is critical for amplexus in Asiatic toads (Bufo gargarizans), using integrated transcriptomic and metabolomic approaches. RESULTS Male toads exhibited significantly larger FCR muscles, reflecting enhanced muscle function required for sustained amplexus. Transcriptomic analysis identified 818 differentially expressed genes (DEGs) between sexes, with 389 upregulated and 429 downregulated in males, predominantly associated with muscle contraction, sarcomere organization, and energy metabolism. Metabolomic profiling revealed 69 differentially expressed metabolites (DEMs), with male-biased enrichment in pathways involved in protein synthesis and degradation, energy metabolism, and material transport. Integrated analysis pinpointed key metabolic pathways-such as glycine, serine, and threonine metabolism; alanine, aspartate, and glutamate metabolism; fatty acid degradation; and the tricarboxylic acid (TCA) cycle-as central to the observed sexual dimorphism. Among these, the genes AGXT, ACADL, ACAT1, MDH2, and SUCLG2 emerged as pivotal regulators. CONCLUSIONS Collectively, these findings provide novel insights into the genetic and metabolic basis of sexual dimorphism in B. gargarizans, offering a deeper understanding of the evolutionary mechanisms driving sex-specific traits in vertebrates.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, 637009, China
- China West Normal University, Nanchong, 637009, China
| | - Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, 637009, China
- China West Normal University, Nanchong, 637009, China
| | - Li Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, 637009, China
- China West Normal University, Nanchong, 637009, China
| | - Chengzhi Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, 637009, China.
- China West Normal University, Nanchong, 637009, China.
| | - Zhiping Mi
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, 637009, China.
- China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
3
|
Zhang X, Avellaneda J, Spletter ML, Lemke SB, Mangeol P, Habermann BH, Schnorrer F. Mechanoresponsive regulation of myogenesis by the force-sensing transcriptional regulator Tono. Curr Biol 2024; 34:4143-4159.e6. [PMID: 39163855 DOI: 10.1016/j.cub.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.
Collapse
Affiliation(s)
- Xu Zhang
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; School of Life Science and Engineering, Foshan University, Foshan 52800, Guangdong, China
| | - Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; Department of Physiological Chemistry, Biomedical Center, Ludwig Maximilians University of Munich, Großhaderner Strasse, Martinsried, 82152 Munich, Germany; Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rockhill Road, Kansas City, MO 64110, USA
| | - Sandra B Lemke
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
4
|
Douvdevany G, Erlich I, Haimovich-Caspi L, Mashiah T, Prondzynski M, Pricolo MR, Alegre-Cebollada J, Linke WA, Carrier L, Kehat I. Imaging of Existing and Newly Translated Proteins Elucidates Mechanisms of Sarcomere Turnover. Circ Res 2024; 135:474-487. [PMID: 38962864 DOI: 10.1161/circresaha.123.323819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND How the sarcomeric complex is continuously turned over in long-living cardiomyocytes is unclear. According to the prevailing model of sarcomere maintenance, sarcomeres are maintained by cytoplasmic soluble protein pools with free recycling between pools and sarcomeres. METHODS We imaged and quantified the turnover of expressed and endogenous sarcomeric proteins, including the giant protein titin, in cardiomyocytes in culture and in vivo, at the single cell and at the single sarcomere level using pulse-chase labeling of Halo-tagged proteins with covalent ligands. RESULTS We disprove the prevailing protein pool model and instead show an ordered mechanism in which only newly translated proteins enter the sarcomeric complex while older ones are removed and degraded. We also show that degradation is independent of protein age and that proteolytic extraction is a rate-limiting step in the turnover. We show that replacement of sarcomeric proteins occurs at a similar rate within cells and across the heart and is slower in adult cells. CONCLUSIONS Our findings establish a unidirectional replacement model for cardiac sarcomeres subunit replacement and identify their turnover principles.
Collapse
Affiliation(s)
- Guy Douvdevany
- The Rappaport Family Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (G.D., I.E., L.H.-C., T.M., I.K.)
| | - Itai Erlich
- The Rappaport Family Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (G.D., I.E., L.H.-C., T.M., I.K.)
| | - Lilac Haimovich-Caspi
- The Rappaport Family Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (G.D., I.E., L.H.-C., T.M., I.K.)
| | - Tomer Mashiah
- The Rappaport Family Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (G.D., I.E., L.H.-C., T.M., I.K.)
| | - Maksymilian Prondzynski
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (M.P., L.C.)
- German Centre for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany (M.P., L.C.)
- Now with Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA (M.P.)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (M.R.P., J.A.-C.)
| | | | - Wolfgang A Linke
- Institute of Physiology II, University of Munster, Germany (W.A.L.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (M.P., L.C.)
- German Centre for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany (M.P., L.C.)
| | - Izhak Kehat
- The Rappaport Family Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (G.D., I.E., L.H.-C., T.M., I.K.)
| |
Collapse
|
5
|
Martin AA, Townsend D. Eating your heart out: endogenous proteases may contribute to atrial stunning following atrial fibrillation treatment. Am J Physiol Heart Circ Physiol 2024; 327:H504-H506. [PMID: 38995668 DOI: 10.1152/ajpheart.00450.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Ashley A Martin
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
6
|
Vahle B, Heilmann L, Schauer A, Augstein A, Jarabo MEP, Barthel P, Mangner N, Labeit S, Bowen TS, Linke A, Adams V. Modulation of Titin and Contraction-Regulating Proteins in a Rat Model of Heart Failure with Preserved Ejection Fraction: Limb vs. Diaphragmatic Muscle. Int J Mol Sci 2024; 25:6618. [PMID: 38928324 PMCID: PMC11203682 DOI: 10.3390/ijms25126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.
Collapse
Affiliation(s)
- Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Leonard Heilmann
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Norman Mangner
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| |
Collapse
|
7
|
Douglas CM, Bird JE, Kopinke D, Esser KA. An optimized approach to study nanoscale sarcomere structure utilizing super-resolution microscopy with nanobodies. PLoS One 2024; 19:e0300348. [PMID: 38687705 PMCID: PMC11060602 DOI: 10.1371/journal.pone.0300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/23/2024] [Indexed: 05/02/2024] Open
Abstract
The sarcomere is the fundamental contractile unit in skeletal muscle, and the regularity of its structure is critical for function. Emerging data demonstrates that nanoscale changes to the regularity of sarcomere structure can affect the overall function of the protein dense ~2μm sarcomere. Further, sarcomere structure is implicated in many clinical conditions of muscle weakness. However, our understanding of how sarcomere structure changes in disease, especially at the nanoscale, has been limited in part due to the inability to robustly detect and measure at sub-sarcomere resolution. We optimized several methodological steps and developed a robust pipeline to analyze sarcomere structure using structured illumination super-resolution microscopy in conjunction with commercially-available and fluorescently-conjugated Variable Heavy-Chain only fragment secondary antibodies (nanobodies), and achieved a significant increase in resolution of z-disc width (353nm vs. 62nm) compared to confocal microscopy. The combination of these methods provides a unique approach to probe sarcomere protein localization at the nanoscale and may prove advantageous for analysis of other cellular structures.
Collapse
Affiliation(s)
- Collin M. Douglas
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan E. Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
8
|
Zhu P, Li J, Yan F, Islam S, Lin X, Xu X. Allelic heterogeneity of TTNtv dilated cardiomyopathy can be modeled in adult zebrafish. JCI Insight 2024; 9:e175501. [PMID: 38412038 PMCID: PMC11128207 DOI: 10.1172/jci.insight.175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Allelic heterogeneity (AH) has been noted in truncational TTN-associated (TTNtv-associated) dilated cardiomyopathy (DCM); i.e., mutations affecting A-band-encoding exons are pathogenic, but those affecting Z-disc-encoding exons are likely benign. The lack of an in vivo animal model that recapitulates AH hinders the deciphering of the underlying mechanism. Here, we explored zebrafish as a candidate vertebrate model by phenotyping a collection of zebrafish ttntv alleles. We noted that cardiac function and sarcomere structure were more severely disrupted in ttntv-A than in ttntv-Z homozygous embryos. Consistently, cardiomyopathy-like phenotypes were present in ttntv-A but not ttntv-Z adult heterozygous mutants. The phenotypes observed in ttntv-A alleles were recapitulated in null mutants with the full titin-encoding sequences removed. Defective autophagic flux, largely due to impaired autophagosome-lysosome fusion, was also noted only in ttntv-A but not in ttntv-Z models. Moreover, we found that genetic manipulation of ulk1a restored autophagy flux and rescued cardiac dysfunction in ttntv-A animals. Together, our findings presented adult zebrafish as an in vivo animal model for studying AH in TTNtv DCM, demonstrated TTN loss of function is sufficient to trigger ttntv DCM in zebrafish, and uncovered ulk1a as a potential therapeutic target gene for TTNtv DCM.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Feixiang Yan
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahidul Islam
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology and
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Brangaccio JA, Phipps AM, Gemoets DE, Sniffen JM, Thompson AK. Variability of corticospinal and spinal reflex excitability for the ankle dorsiflexor tibialis anterior across repeated measurements in people with and without incomplete spinal cord injury. Exp Brain Res 2024; 242:727-743. [PMID: 38267736 PMCID: PMC10894771 DOI: 10.1007/s00221-024-06777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
To adequately evaluate the corticospinal and spinal plasticity in health and disease, it is essential to understand whether and to what extent the corticospinal and spinal responses fluctuate systematically across multiple measurements. Thus, in this study, we examined the session-to-session variability of corticospinal excitability for the ankle dorsiflexor tibialis anterior (TA) in people with and without incomplete spinal cord injury (SCI). In neurologically normal participants, the following measures were obtained across 4 days at the same time of day (N = 13) or 4 sessions over a 12-h period (N = 9, at 8:00, 12:00, 16:00, and 20:00): maximum voluntary contraction (MVC), maximum M-wave and H-reflex (Mmax and Hmax), motor evoked potential (MEP) amplitude, and silent period (SP) after MEP. In participants with chronic incomplete SCI (N = 17), the same measures were obtained across 4 days. We found no clear diurnal variation in the spinal and corticospinal excitability of the TA in individuals with no known neurological conditions, and no systematic changes in any experimental measures of spinal and corticospinal excitability across four measurement days in individuals with or without SCI. Overall, mean deviations across four sessions remained in a range of 5-13% for all measures in participants with or without SCI. The study shows the limited extent of non-systematic session-to-session variability in the TA corticospinal excitability in individuals with and without chronic incomplete SCI, supporting the utility of corticospinal and spinal excitability measures in mechanistic investigation of neuromodulation interventions. The information provided through this study may serve as the reference in evaluating corticospinal plasticity across multiple experimental sessions.
Collapse
Affiliation(s)
- J A Brangaccio
- National Center for Adaptive Neurotechnologies and Stratton VA Medical Center, Albany, NY, USA
| | - A M Phipps
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, MSC 700, Charleston, SC, 29425, USA
| | - D E Gemoets
- National Center for Adaptive Neurotechnologies and Stratton VA Medical Center, Albany, NY, USA
| | - J M Sniffen
- State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, MSC 700, Charleston, SC, 29425, USA.
| |
Collapse
|
10
|
Walter F, Seydewitz R, Mitterbach P, Siebert T, Böl M. On a three-dimensional model for the description of the passive characteristics of skeletal muscle tissue. Biomech Model Mechanobiol 2023; 22:1499-1514. [PMID: 36550242 PMCID: PMC10511390 DOI: 10.1007/s10237-022-01664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
In this work, a three-dimensional model was developed to describe the passive mechanical behaviour of anisotropic skeletal muscle tissue. To validate the model, orientation-dependent axial ([Formula: see text], [Formula: see text], [Formula: see text]) and semi-confined compression experiments (mode I, II, III) were performed on soleus muscle tissue from rabbits. In the latter experiments, specimen deformation is prescribed in the loading direction and prevented in an additional spatial direction, fibre compression at [Formula: see text] (mode I), fibre elongation at [Formula: see text] (mode II) and a neutral state of the fibres at [Formula: see text] where their length is kept constant (mode III). Overall, the model can adequately describe the mechanical behaviour with a relatively small number of model parameters. The stiffest tissue response during orientation-dependent axial compression ([Formula: see text] kPa) occurs when the fibres are oriented perpendicular to the loading direction ([Formula: see text]) and are thus stretched during loading. Semi-confined compression experiments yielded the stiffest tissue ([Formula: see text] kPa) in mode II when the muscle fibres are stretched. The extensive data set collected in this study allows to study the different error measures depending on the deformation state or the combination of deformation states.
Collapse
Affiliation(s)
- Fabian Walter
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Robert Seydewitz
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
| | - Philipp Mitterbach
- Mechanical Engineering, Eindhoven University of Technology, NLD-5612, Eindhoven, The Netherlands
| | - Tobias Siebert
- Institute of Sport and Motion Science, University of Stuttgart, D-70569, Stuttgart, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
| |
Collapse
|
11
|
Gamble DT, Ross J, Khan H, Unger A, Cheyne L, Rudd A, Saunders F, Srivanasan J, Kamya S, Horgan G, Hannah A, Baliga S, Tocchetti CG, Urquhart G, Linke WA, Masannat Y, Mustafa A, Fuller M, Elsberger B, Sharma R, Dawson D. Impaired Cardiac and Skeletal Muscle Energetics Following Anthracycline Therapy for Breast Cancer. Circ Cardiovasc Imaging 2023; 16:e015782. [PMID: 37847761 PMCID: PMC10581415 DOI: 10.1161/circimaging.123.015782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Anthracycline-related cardiac toxicity is a recognized consequence of cancer therapies. We assess resting cardiac and skeletal muscle energetics and myocyte, sarcomere, and mitochondrial integrity in patients with breast cancer receiving epirubicin. METHODS In a prospective, mechanistic, observational, longitudinal study, we investigated chemotherapy-naive patients with breast cancer receiving epirubicin versus sex- and age-matched healthy controls. Resting energetic status of cardiac and skeletal muscle (phosphocreatine/gamma ATP and inorganic phosphate [Pi]/phosphocreatine, respectively) was assessed with 31P-magnetic resonance spectroscopy. Cardiac function and tissue characterization (magnetic resonance imaging and 2D-echocardiography), cardiac biomarkers (serum NT-pro-BNP and high-sensitivity troponin I), and structural assessments of skeletal muscle biopsies were obtained. All study assessments were performed before and after chemotherapy. RESULTS Twenty-five female patients with breast cancer (median age, 53 years) received a mean epirubicin dose of 304 mg/m2, and 25 age/sex-matched controls were recruited. Despite comparable baseline cardiac and skeletal muscle energetics with the healthy controls, after chemotherapy, patients with breast cancer showed a reduction in cardiac phosphocreatine/gamma ATP ratio (2.0±0.7 versus 1.1±0.5; P=0.001) and an increase in skeletal muscle Pi/phosphocreatine ratio (0.1±0.1 versus 0.2±0.1; P=0.022). This occurred in the context of increases in left ventricular end-systolic and end-diastolic volumes (P=0.009 and P=0.008, respectively), T1 and T2 mapping (P=0.001 and P=0.028, respectively) but with preserved left ventricular ejection fraction, mass and global longitudinal strain, and no change in cardiac biomarkers. There was preservation of the mitochondrial copy number in skeletal muscle biopsies but a significant increase in areas of skeletal muscle degradation (P=0.001) in patients with breast cancer following chemotherapy. Patients with breast cancer demonstrated a reduction in skeletal muscle sarcomere number from the prechemotherapy stage compared with healthy controls (P=0.013). CONCLUSIONS Contemporary doses of epirubicin for breast cancer treatment result in a significant reduction of cardiac and skeletal muscle high-energy 31P-metabolism alongside structural skeletal muscle changes. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04467411.
Collapse
Affiliation(s)
- David T. Gamble
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - James Ross
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Hilal Khan
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Andreas Unger
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Lesley Cheyne
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Amelia Rudd
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Fiona Saunders
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Janaki Srivanasan
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Sylvia Kamya
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen (G.H.)
| | - Andrew Hannah
- Department of Cardiology National Health Service (NHS) Grampian (A.H.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Santosh Baliga
- Department of Trauma and Orthopaedic Surgery (S.B.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy (C.G.T.)
| | - Gordon Urquhart
- Department of Oncology NHS Grampian (G.U., R.S.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Yazan Masannat
- Department of Breast Surgery NHS Grampian (Y.M., A.M., M.F., B.E.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Ahmed Mustafa
- Department of Breast Surgery NHS Grampian (Y.M., A.M., M.F., B.E.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Mairi Fuller
- Department of Breast Surgery NHS Grampian (Y.M., A.M., M.F., B.E.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Beatrix Elsberger
- Department of Breast Surgery NHS Grampian (Y.M., A.M., M.F., B.E.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Ravi Sharma
- Department of Oncology NHS Grampian (G.U., R.S.), Aberdeen Royal Infirmary, Foresterhill, Scotland, United Kingdom
| | - Dana Dawson
- Cardiology Research Group, Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, United Kingdom (D.T.G., J.R., H.K., L.C., A.R., F.S., J.S., S.K., D.D.)
| |
Collapse
|
12
|
Rodriguez Garcia M, Schmeckpeper J, Landim-Vieira M, Coscarella IL, Fang X, Ma W, Spran PA, Yuan S, Qi L, Kahmini AR, Shoemaker MB, Atkinson JB, Kekenes-Huskey PM, Irving TC, Chase PB, Knollmann BC, Pinto JR. Disruption of Z-Disc Function Promotes Mechanical Dysfunction in Human Myocardium: Evidence for a Dual Myofilament Modulatory Role by Alpha-Actinin 2. Int J Mol Sci 2023; 24:14572. [PMID: 37834023 PMCID: PMC10572656 DOI: 10.3390/ijms241914572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.
Collapse
Affiliation(s)
| | - Jeffrey Schmeckpeper
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Xuan Fang
- Department of Cell & Molecular Physiology, Loyola University, Chicago, IL 60660, USA
| | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Payton A. Spran
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shengyao Yuan
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Lin Qi
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Aida Rahimi Kahmini
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - M. Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James B. Atkinson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Thomas C. Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Björn C. Knollmann
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jose Renato Pinto
- Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
13
|
Park J, MacGavin S, Niederbrach L, Mchaourab HS. Interplay between Nrf2 and αB-crystallin in the lens and heart of zebrafish under proteostatic stress. Front Mol Biosci 2023; 10:1185704. [PMID: 37577747 PMCID: PMC10422029 DOI: 10.3389/fmolb.2023.1185704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
A coordinated oxidative stress response, partly triggered by the transcription factor Nrf2, protects cells from the continual production of reactive oxygen species. Left unbuffered, reactive oxygen species can lead to protein aggregation that has been implicated in a spectrum of diseases such as cataract of the ocular lens and myopathy of the heart. While proteostasis is maintained by diverse families of heat shock proteins, the interplay between the oxidative and proteostatic stress responses in the lens and heart has not been investigated. Capitalizing on multiple zebrafish lines that have compromised function of Nrf2 and/or the two zebrafish small heat shock proteins αBa- and αBb-crystallin, we uncovered a transcriptional relationship that leads to a substantial increase in αBb-crystallin transcripts in the heart in response to compromised function of Nrf2. In the lens, the concomitant loss of function of Nrf2 and αBa-crystallin leads to upregulation of the cholesterol biosynthesis pathway, thus mitigating the phenotypic consequences of the αBa-crystallin knockout. By contrast, abrogation of Nrf2 function accentuates the penetrance of a heart edema phenotype characteristic of embryos of αB-crystallin knockout lines. Multiple molecular pathways, such as genes involved in extracellular interactions and implicated in cardiomyopathy, are revealed from transcriptome profiling, thus identifying novel targets for further investigation. Together, our transcriptome/phenotypic analysis establishes an intersection between oxidative stress and chaperone responses in the lens and heart.
Collapse
Affiliation(s)
| | | | | | - Hassane S. Mchaourab
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
14
|
Dai Y, Ignatyeva N, Xu H, Wali R, Toischer K, Brandenburg S, Lenz C, Pronto J, Fakuade FE, Sossalla S, Zeisberg EM, Janshoff A, Kutschka I, Voigt N, Urlaub H, Rasmussen TB, Mogensen J, Lehnart SE, Hasenfuss G, Ebert A. An Alternative Mechanism of Subcellular Iron Uptake Deficiency in Cardiomyocytes. Circ Res 2023; 133:e19-e46. [PMID: 37313752 DOI: 10.1161/circresaha.122.321157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Systemic defects in intestinal iron absorption, circulation, and retention cause iron deficiency in 50% of patients with heart failure. Defective subcellular iron uptake mechanisms that are independent of systemic absorption are incompletely understood. The main intracellular route for iron uptake in cardiomyocytes is clathrin-mediated endocytosis. METHODS We investigated subcellular iron uptake mechanisms in patient-derived and CRISPR/Cas-edited induced pluripotent stem cell-derived cardiomyocytes as well as patient-derived heart tissue. We used an integrated platform of DIA-MA (mass spectrometry data-independent acquisition)-based proteomics and signaling pathway interrogation. We employed a genetic induced pluripotent stem cell model of 2 inherited mutations (TnT [troponin T]-R141W and TPM1 [tropomyosin 1]-L185F) that lead to dilated cardiomyopathy (DCM), a frequent cause of heart failure, to study the underlying molecular dysfunctions of DCM mutations. RESULTS We identified a druggable molecular pathomechanism of impaired subcellular iron deficiency that is independent of systemic iron metabolism. Clathrin-mediated endocytosis defects as well as impaired endosome distribution and cargo transfer were identified as a basis for subcellular iron deficiency in DCM-induced pluripotent stem cell-derived cardiomyocytes. The clathrin-mediated endocytosis defects were also confirmed in the hearts of patients with DCM with end-stage heart failure. Correction of the TPM1-L185F mutation in DCM patient-derived induced pluripotent stem cells, treatment with a peptide, Rho activator II, or iron supplementation rescued the molecular disease pathway and recovered contractility. Phenocopying the effects of the TPM1-L185F mutation into WT induced pluripotent stem cell-derived cardiomyocytes could be ameliorated by iron supplementation. CONCLUSIONS Our findings suggest that impaired endocytosis and cargo transport resulting in subcellular iron deficiency could be a relevant pathomechanism for patients with DCM carrying inherited mutations. Insight into this molecular mechanism may contribute to the development of treatment strategies and risk management in heart failure.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Nadezda Ignatyeva
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Hang Xu
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Ruheen Wali
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Karl Toischer
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Sören Brandenburg
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Christof Lenz
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Department of Clinical Chemistry, University Medical Center Goettingen, (C.L., H.U.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen (C.L., H.U.)
| | - Julius Pronto
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
| | - Funsho E Fakuade
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Samuel Sossalla
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
- Department for Internal Medicine II, University Medical Center Regensburg (S.S.)
| | - Elisabeth M Zeisberg
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Andreas Janshoff
- Institute for Physical Chemistry (A.J.), University of Goettingen, Germany
| | - Ingo Kutschka
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Department of Thoracic and Cardiovascular Surgery, University Medical Center Göttingen (I.K.)
| | - Niels Voigt
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Goettingen, (C.L., H.U.), University of Goettingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen (C.L., H.U.)
| | | | - Jens Mogensen
- Department of Cardiology, Aalborg University Hospital, Denmark (J.M.)
| | - Stephan E Lehnart
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Gerd Hasenfuss
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Antje Ebert
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| |
Collapse
|
15
|
Chatterjee N, Misra SK. Nanocarbon-Enforced Anisotropic MusCAMLR for Rapid Rescue of Mechanically Damaged Skeletal Muscles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257065 DOI: 10.1021/acsami.3c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mechanical damages to skeletal muscles could be detrimental to the active work hours and lifestyle of athletes, mountaineers, and security personnel. In this regard, the slowness of conventional treatment strategies and drug-associated side effects greatly demand the design and development of novel biomaterials, which can rescue such mechanically damaged skeletal muscles. To accomplish this demand, we have developed a musculoresponsive polymer-carbon composite for assisting myotubular regeneration (MusCAMLR). The MusCAMLR is enforced to attain anisotropic muscle-like characteristics while incorporating a smartly passivated nanoscale carbon material in the PNIPAM gel under physiological conditions as a stimulus, which is not achieved by the pristine nanocarbon system. The MusCAMLR establishes a specific mechanical interaction with muscle cells, supports myotube regeneration, maintains excellent mechanical similarity with the myotube, and restores the structural integrity and biochemical parameters of mechanically damaged muscles in a delayed onset muscle soreness (DOMS) rat model within a short period of 72 h. Concisely, this study discloses the potential of smartly passivated nanocarbon in generating an advanced biomaterial system, MusCAMLR, from a regularly used polymeric hydrogel system. This engineered polymer-carbon composite reveals its possible potential to be used as a nondrug therapeutic alternative for rescuing mechanically damaged muscles and probably can be extended for therapy of various other diseases including muscular dystrophy.
Collapse
Affiliation(s)
- Niranjan Chatterjee
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Santosh Kumar Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
16
|
Rashid MI, Ito T, Miya F, Shimojo D, Arimoto K, Onodera K, Okada R, Nagashima T, Yamamoto K, Khatun Z, Shimul RI, Niwa JI, Katsuno M, Sobue G, Okano H, Sakurai H, Shimizu K, Doyu M, Okada Y. Simple and efficient differentiation of human iPSCs into contractible skeletal muscles for muscular disease modeling. Sci Rep 2023; 13:8146. [PMID: 37231024 DOI: 10.1038/s41598-023-34445-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/30/2023] [Indexed: 05/27/2023] Open
Abstract
Pathophysiological analysis and drug discovery targeting human diseases require disease models that suitably recapitulate patient pathology. Disease-specific human induced pluripotent stem cells (hiPSCs) differentiated into affected cell types can potentially recapitulate disease pathology more accurately than existing disease models. Such successful modeling of muscular diseases requires efficient differentiation of hiPSCs into skeletal muscles. hiPSCs transduced with doxycycline-inducible MYOD1 (MYOD1-hiPSCs) have been widely used; however, they require time- and labor-consuming clonal selection, and clonal variations must be overcome. Moreover, their functionality should be carefully examined. Here, we demonstrated that bulk MYOD1-hiPSCs established with puromycin selection rather than G418 selection showed rapid and highly efficient differentiation. Interestingly, bulk MYOD1-hiPSCs exhibited average differentiation properties of clonally established MYOD1-hiPSCs, suggesting that it is possible to minimize clonal variations. Moreover, disease-specific hiPSCs of spinal bulbar muscular atrophy (SBMA) could be efficiently differentiated via this method into skeletal muscle that showed disease phenotypes, suggesting the applicability of this method for disease analysis. Finally, three-dimensional muscle tissues were fabricated from bulk MYOD1-hiPSCs, which exhibited contractile force upon electrical stimulation, indicating their functionality. Thus, our bulk differentiation requires less time and labor than existing methods, efficiently generates contractible skeletal muscles, and may facilitate the generation of muscular disease models.
Collapse
Affiliation(s)
- Muhammad Irfanur Rashid
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Takuji Ito
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Daisuke Shimojo
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kanae Arimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Kazunari Onodera
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, 466-8650, Japan
| | - Rina Okada
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Takunori Nagashima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Kazuki Yamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Zohora Khatun
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Rayhanul Islam Shimul
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Jun-Ichi Niwa
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, 466-8650, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, 466-8650, Japan
| | - Gen Sobue
- Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Manabu Doyu
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yohei Okada
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
- Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
17
|
Linke WA. Stretching the story of titin and muscle function. J Biomech 2023; 152:111553. [PMID: 36989971 DOI: 10.1016/j.jbiomech.2023.111553] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
The discovery of the giant protein titin, also known as connectin, dates almost half a century back. In this review, I recapitulate major advances in the discovery of the titin filaments and the recognition of their properties and function until today. I briefly discuss how our understanding of the layout and interactions of titin in muscle sarcomeres has evolved and review key facts about the titin sequence at the gene (TTN) and protein levels. I also touch upon properties of titin important for the stability of the contractile units and the assembly and maintenance of sarcomeric proteins. The greater part of my discussion centers around the mechanical function of titin in skeletal muscle. I cover milestones of research on titin's role in stretch-dependent passive tension development, recollect the reasons behind the enormous elastic diversity of titin, and provide an update on the molecular mechanisms of titin elasticity, details of which are emerging even now. I reflect on current knowledge of how muscle fibers behave mechanically if titin stiffness is removed and how titin stiffness can be dynamically regulated, such as by posttranslational modifications or calcium binding. Finally, I highlight novel and exciting, but still controversially discussed, insight into the role titin plays in active tension development, such as length-dependent activation and contraction from longer muscle lengths.
Collapse
Affiliation(s)
- Wolfgang A Linke
- Institute of Physiology II, University of Münster, Germany; Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany; German Centre for Cardiovascular Research, Berlin, Germany.
| |
Collapse
|
18
|
Wu Z, Lu M, Liu D, Shi Y, Ren J, Wang S, Jing Y, Zhang S, Zhao Q, Li H, Yu Z, Liu Z, Bi S, Wei T, Yang YG, Xiao J, Belmonte JCI, Qu J, Zhang W, Ci W, Liu GH. m 6A epitranscriptomic regulation of tissue homeostasis during primate aging. NATURE AGING 2023:10.1038/s43587-023-00393-2. [PMID: 37118553 DOI: 10.1038/s43587-023-00393-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/03/2023] [Indexed: 04/30/2023]
Abstract
How N6-methyladenosine (m6A), the most abundant mRNA modification, contributes to primate tissue homeostasis and physiological aging remains elusive. Here, we characterize the m6A epitranscriptome across the liver, heart and skeletal muscle in young and old nonhuman primates. Our data reveal a positive correlation between m6A modifications and gene expression homeostasis across tissues as well as tissue-type-specific aging-associated m6A dynamics. Among these tissues, skeletal muscle is the most susceptible to m6A loss in aging and shows a reduction in the m6A methyltransferase METTL3. We further show that METTL3 deficiency in human pluripotent stem cell-derived myotubes leads to senescence and apoptosis, and identify NPNT as a key element downstream of METTL3 involved in myotube homeostasis, whose expression and m6A levels are both decreased in senescent myotubes. Our study provides a resource for elucidating m6A-mediated mechanisms of tissue aging and reveals a METTL3-m6A-NPNT axis counteracting aging-associated skeletal muscle degeneration.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Mingming Lu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Shi
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sheng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhao
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongyu Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zihui Yu
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zunpeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijia Bi
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tuo Wei
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yun-Gui Yang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Weimin Ci
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Schueder F, Mangeol P, Chan EH, Rees R, Schünemann J, Jungmann R, Görlich D, Schnorrer F. Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nanoarchitecture in flight muscles. eLife 2023; 12:e79344. [PMID: 36645127 PMCID: PMC9886278 DOI: 10.7554/elife.79344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023] Open
Abstract
Sarcomeres are the force-producing units of all striated muscles. Their nanoarchitecture critically depends on the large titin protein, which in vertebrates spans from the sarcomeric Z-disc to the M-band and hence links actin and myosin filaments stably together. This ensures sarcomeric integrity and determines the length of vertebrate sarcomeres. However, the instructive role of titins for sarcomeric architecture outside of vertebrates is not as well understood. Here, we used a series of nanobodies, the Drosophila titin nanobody toolbox, recognising specific domains of the two Drosophila titin homologs Sallimus and Projectin to determine their precise location in intact flight muscles. By combining nanobodies with DNA-PAINT super-resolution microscopy, we found that, similar to vertebrate titin, Sallimus bridges across the flight muscle I-band, whereas Projectin is located at the beginning of the A-band. Interestingly, the ends of both proteins overlap at the I-band/A-band border, revealing a staggered organisation of the two Drosophila titin homologs. This architecture may help to stably anchor Sallimus at the myosin filament and hence ensure efficient force transduction during flight.
Collapse
Affiliation(s)
- Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Eunice HoYee Chan
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Renate Rees
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | | | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| |
Collapse
|
20
|
Brendecke E, Tsitlakidis S, Götze M, Hagmann S, Ates F. Quantifying the effects of achilles tendon lengthening surgery: An intraoperative approach. Front Physiol 2023; 14:1143292. [PMID: 36950296 PMCID: PMC10025307 DOI: 10.3389/fphys.2023.1143292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Achilles tendon lengthening (ATL) is frequently used in the treatment of foot deformities. However, there is currently no objective method to determine the optimal muscle length during surgery. We developed an intraoperative approach to evaluate the passive and active forces of the triceps surae muscle group before and after ATL and aimed to test the following hypotheses: 1) the ankle passive range of motion (ROM) increases, 2) passive muscle forces decrease post-ATL, and 3) forces measured from patients with non-neurological and neurological conditions demonstrate different characteristics. Passive forces at various ankle joint positions were measured in ten patients (11.3 ± 3.0 years old) pre- and post-ATL using a force transducer attached to the Achilles tendon. In six patients, active isometric forces were measured by stimulating the triceps surae supramaximally. Passive forces decreased by 94.3% (p < 0.0001), and ROM increased by 89.4% (p < 0.0001) post-ATL. The pre-ATL passive forces were 70.8% ± 15.1% lower in patients with idiopathic foot deformities than in patients with neurological conditions (p < 0.001). The peak active force of 209.8 ± 114.3 N was achieved at an ankle angle of 38.3° ± 16.0°, where the passive force was 6.3 ± 6.7 N. The inter-individual variability was substantial in both groups. In conclusion, the hypotheses posed were supported. The present findings suggest that muscle passive and active force production as well as the inter-individual variability should be considered when planning further treatment.
Collapse
Affiliation(s)
- Elena Brendecke
- Clinic of Orthopedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Stuttgart, Germany
| | - Stefanos Tsitlakidis
- Clinic of Orthopedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Marco Götze
- Clinic of Orthopedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Hagmann
- Clinic of Orthopedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Filiz Ates
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Stuttgart, Germany
- *Correspondence: Filiz Ates,
| |
Collapse
|
21
|
Park S, Jeong S, Nam YH, Yum Y, Jung SC. Transplantation of Differentiated Tonsil-Derived Mesenchymal Stem Cells Ameliorates Murine Duchenne Muscular Dystrophy via Autophagy Activation. Tissue Eng Regen Med 2022; 19:1283-1294. [PMID: 36318366 PMCID: PMC9679082 DOI: 10.1007/s13770-022-00489-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Skeletal muscles play many important roles in the human body and any malfunction or disorder of the skeletal muscles can lead to a reduced quality of life. Some skeletal dysfunctions are acquired, such as sarcopenia but others are congenital. Duchenne muscular dystrophy (DMD) is one of the most common forms of hereditary muscular dystrophy and is caused by a deficiency of the protein, Dystrophin. Currently, there is no clear treatment for DMD, there are only methods that can alleviate the symptoms of the disease. Mesenchymal stem cells, including tonsil-derived mesenchymal stem cells (TMSCs) have been shown to differentiate into skeletal muscle cells (TMSC-myocyte) and can be one of the resources for the treatment of DMD. Skeletal muscle cell characteristics of TMSC-myocytes have been confirmed through changes in morphology and expression of skeletal muscle markers such as Myogenin, Myf6, and MYH families after differentiation. MEOTHDS Based on these characteristics, TMSC-myocytes have been transplanted into mdx mice, a mouse model of DMD, to investigate whether they can help improve the symptoms of DMD. The red fluorescent protein gene was transduced into TMSC (TMSC-R) for tracking transplanted cells. RESULTS Prior to transplantation (TP), it was confirmed whether TMSC-R-myocytes had the same differentiation potential as TMSC-myocytes. Increased expression of dystrophin and autophagy markers in the TP group compared with the sham group was confirmed in the gastrocnemius muscle 12 weeks after TP. CONCLUSION These results demonstrate muscle regeneration and functional recovery of mdx via autophagy activation following TMSC-myocyte TP.
Collapse
Affiliation(s)
- Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Soyeon Jeong
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 07804, Republic of Korea.
| |
Collapse
|
22
|
Hessel AL, Ma W, Mazara N, Rice PE, Nissen D, Gong H, Kuehn M, Irving T, Linke WA. Titin force in muscle cells alters lattice order, thick and thin filament protein formation. Proc Natl Acad Sci U S A 2022; 119:e2209441119. [PMID: 36409887 PMCID: PMC9860331 DOI: 10.1073/pnas.2209441119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle force production is increased at longer compared to shorter muscle lengths because of length-dependent priming of thick filament proteins in the contractile unit before contraction. Using small-angle X-ray diffraction in combination with a mouse model that specifically cleaves the stretch-sensitive titin protein, we found that titin cleavage diminished the length-dependent priming of the thick filament. Strikingly, a titin-sensitive, length-dependent priming was also present in thin filaments, which seems only possible via bridge proteins between thick and thin filaments in resting muscle, potentially myosin-binding protein C. We further show that these bridges can be forcibly ruptured via high-speed stretches. Our results advance a paradigm shift to the fundamental regulation of length-dependent priming, with titin as the key driver.
Collapse
Affiliation(s)
- Anthony L. Hessel
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Nicole Mazara
- School of Kinesiology, University of British Columbia, Vancouver, CanadaV6T 1Z1
| | - Paige E. Rice
- Department of Biological Sciences, Northern Arizona University, FlagstaffAZ 86011
| | - Devin Nissen
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Henry Gong
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Michel Kuehn
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| | - Thomas Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL 60616
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster, Muenster, 48149Germany
| |
Collapse
|
23
|
Koser F, Hobbach AJ, Abdellatif M, Herbst V, Türk C, Reinecke H, Krüger M, Sedej S, Linke WA. Acetylation and phosphorylation changes to cardiac proteins in experimental HFpEF due to metabolic risk reveal targets for treatment. Life Sci 2022; 309:120998. [PMID: 36179815 DOI: 10.1016/j.lfs.2022.120998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
AIMS Despite the high prevalence of heart failure with preserved ejection fraction (HFpEF), the pathomechanisms remain elusive and specific therapy is lacking. Disease-causing factors include metabolic risk, notably obesity. However, proteomic changes in HFpEF are poorly understood, hampering therapeutic strategies. We sought to elucidate how metabolic syndrome affects cardiac protein expression, phosphorylation and acetylation in the Zucker diabetic fatty/Spontaneously hypertensive heart failure F1 (ZSF1) rat HFpEF model, and to evaluate changes regarding their potential for treatment. MAIN METHODS ZSF1 obese and lean rats were fed a Purina diet up to the onset of HFpEF in the obese animals. We quantified the proteome, phosphoproteome and acetylome of ZSF1 obese versus lean heart tissues by mass spectrometry and singled out targets for site-specific evaluation. KEY FINDINGS The acetylome of ZSF1 obese versus lean hearts was more severely altered (21 % of proteins changed) than the phosphoproteome (9 %) or proteome (3 %). Proteomic alterations, confirmed by immunoblotting, indicated low-grade systemic inflammation and endothelial remodeling in obese hearts, but low nitric oxide-dependent oxidative/nitrosative stress. Altered acetylation in ZSF1 obese hearts mainly affected pathways important for metabolism, energy production and mechanical function, including hypo-acetylation of mechanical proteins but hyper-acetylation of proteins regulating fatty acid metabolism. Hypo-acetylation and hypo-phosphorylation of elastic titin in ZSF1 obese hearts could explain myocardial stiffening. SIGNIFICANCE Cardiometabolic syndrome alters posttranslational modifications, notably acetylation, in experimental HFpEF. Pathway changes implicate a HFpEF signature of low-grade inflammation, endothelial dysfunction, metabolic and mechanical impairment, and suggest titin stiffness and mitochondrial metabolism as promising therapeutic targets.
Collapse
Affiliation(s)
- Franziska Koser
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | | | - Viktoria Herbst
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging- Associated Diseases, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Holger Reinecke
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging- Associated Diseases, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany.
| |
Collapse
|
24
|
Mao Q, Acharya A, Rodríguez-delaRosa A, Marchiano F, Dehapiot B, Al Tanoury Z, Rao J, Díaz-Cuadros M, Mansur A, Wagner E, Chardes C, Gupta V, Lenne PF, Habermann BH, Theodoly O, Pourquié O, Schnorrer F. Tension-driven multi-scale self-organisation in human iPSC-derived muscle fibers. eLife 2022; 11:76649. [PMID: 35920628 PMCID: PMC9377800 DOI: 10.7554/elife.76649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. More efficient myofiber bundling accelerates the speed of sarcomerogenesis suggesting that tension generated by bundling promotes sarcomerogenesis. We tested this hypothesis by directly probing tension and found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro. A failure in stable myofiber attachment results in a collapse of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.
Collapse
Affiliation(s)
- Qiyan Mao
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Achyuth Acharya
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | | | - Fabio Marchiano
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Benoit Dehapiot
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Ziad Al Tanoury
- Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | - Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | | | - Arian Mansur
- Harvard Stem Cell Institute, Boston, United States
| | - Erica Wagner
- Department of Pathology, Brigham and Women's Hospital, Boston, United States
| | - Claire Chardes
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Vandana Gupta
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
| | - Pierre-François Lenne
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Bianca H Habermann
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| | - Olivier Theodoly
- Turing Centre for Living Systems, Aix Marseille University, CNRS, LAI, Marseille, France
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Frank Schnorrer
- Turing Centre for Living Systems, Aix Marseille University, CNRS, IDBM, Marseille, France
| |
Collapse
|
25
|
Ichimura E, Ojima K, Muroya S, Kobayashi K, Nishimura T. Thick filament-associated myosin undergoes frequent replacement at the tip of the thick filament. FEBS Open Bio 2022; 12:852-863. [PMID: 35138697 PMCID: PMC8972040 DOI: 10.1002/2211-5463.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myosin plays a fundamental role in muscle contraction. Approximately 300 myosins form a bipolar thick filament, in which myosin is continuously replaced by protein turnover. However, it is unclear how rapidly this process occurs and whether the myosin exchange rate differs depending on the region of the thick filament. To answer this question, we first measured myosin release and insertion rates over a short period and monitored myotubes expressing a photoconvertible fluorescence protein-tagged myosin, which enabled us to monitor myosin release and insertion simultaneously. About 20% of myosins were replaced within 10 min, while 70% of myosins were exchanged over 10 h with symmetrical and biphasic alteration of myosin release and insertion rates. Next, a fluorescence pulse-chase assay was conducted to investigate whether myosin is incorporated into specific regions in the thick filament. Newly synthesized myosin was located at the tip of the thick filament rather than the center in the first 7 min of pulse-chase labeling and was observed in the remainder of the thick filament by 30 min. These results suggest that the myosin replacement rate differs depending on the regions of the thick filament. We concluded that myosin release and insertion occur concurrently and that myosin is more frequently exchanged at the tip of the thick filament.
Collapse
Affiliation(s)
- Emi Ichimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Koichi Ojima
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland Science, NAROTsukubaJapan
| | - Susumu Muroya
- Muscle Biology Research UnitDivision of Animal Products ResearchInstitute of Livestock and Grassland Science, NAROTsukubaJapan
| | - Ken Kobayashi
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Takanori Nishimura
- Research Faculty of AgricultureGraduate School of AgricultureHokkaido UniversitySapporoJapan
| |
Collapse
|
26
|
Wang X, Lin J, Li Z, Ma Y, Zhang X, He Q, Wu Q, Yan Y, Wei W, Yao X, Li C, Li W, Xie S, Hu Y, Zhang S, Hong Y, Li X, Chen W, Duan W, Ouyang H. Identification of an Ultrathin Osteochondral Interface Tissue with Specific Nanostructure at the Human Knee Joint. NANO LETTERS 2022; 22:2309-2319. [PMID: 35238577 DOI: 10.1021/acs.nanolett.1c04649] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cartilage adheres to subchondral bone via a specific osteochondral interface tissue where forces are transferred from soft cartilage to hard bone without conferring fatigue damage over a lifetime of load cycles. However, the fine structure and mechanical properties of the osteochondral interface tissue remain unclear. Here, we identified an ultrathin ∼20-30 μm graded calcified region with two-layered micronano structures of osteochondral interface tissue in the human knee joint, which exhibited characteristic biomolecular compositions and complex nanocrystals assembly. Results from finite element simulations revealed that within this region, an exponential increase of modulus (3 orders of magnitude) was conducive to force transmission. Nanoscale heterogeneity in the hydroxyapatite, coupled with enrichment of elastic-responsive protein-titin, which is usually present in muscle, endowed the osteochondral tissue with excellent mechanical properties. Collectively, these results provide novel insights into the potential design for high-performance interface materials for osteochondral interface regeneration.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Zonghao Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yuanzhu Ma
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Qin Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
| | - Yiyang Yan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Chenglin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Wenyue Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yejun Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Weiqiu Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Wangping Duan
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine & Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group, Hangzhou (CorMed), Hangzhou 310058, China
| |
Collapse
|
27
|
Fomin A, Gärtner A, Cyganek L, Tiburcy M, Tuleta I, Wellers L, Folsche L, Hobbach AJ, von Frieling-Salewsky M, Unger A, Hucke A, Koser F, Kassner A, Sielemann K, Streckfuß-Bömeke K, Hasenfuss G, Goedel A, Laugwitz KL, Moretti A, Gummert JF, Dos Remedios CG, Reinecke H, Knöll R, van Heesch S, Hubner N, Zimmermann WH, Milting H, Linke WA. Truncated titin proteins and titin haploinsufficiency are targets for functional recovery in human cardiomyopathy due to TTN mutations. Sci Transl Med 2021; 13:eabd3079. [PMID: 34731013 DOI: 10.1126/scitranslmed.abd3079] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Andrey Fomin
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Lukas Cyganek
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany.,Stem Cell Unit, University Medical Center, 37075 Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center, 37075 Göttingen, Germany
| | - Malte Tiburcy
- German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center, 37075 Göttingen, Germany
| | - Izabela Tuleta
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, 48149 University Hospital Münster, Münster, Germany
| | - Luisa Wellers
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Lina Folsche
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, 48149 University Hospital Münster, Münster, Germany
| | | | - Andreas Unger
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Anna Hucke
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Franziska Koser
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Astrid Kassner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Katharina Sielemann
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Katrin Streckfuß-Bömeke
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany
| | - Gerd Hasenfuss
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany
| | - Alexander Goedel
- First Medical Department, Cardiology, Technical University of Munich, 81675 Munich, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Munich, Germany.,Department of Cell and Molecular Biology, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Karl-Ludwig Laugwitz
- First Medical Department, Cardiology, Technical University of Munich, 81675 Munich, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Munich, Germany.,Munich Heart Alliance, 80802 Munich, Germany
| | - Alessandra Moretti
- First Medical Department, Cardiology, Technical University of Munich, 81675 Munich, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Munich, Germany.,Munich Heart Alliance, 80802 Munich, Germany
| | - Jan F Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany.,Department of Cardio-Thoracic Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | | | - Holger Reinecke
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, 48149 University Hospital Münster, Münster, Germany
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, S-17177 Stockholm, Sweden.,Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Sebastiaan van Heesch
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Berlin, Germany.,Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, Netherlands
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Berlin, Germany.,Charité-Universitätsmedizin, 10117 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany
| | - Wolfram H Zimmermann
- German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center, 37075 Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, 37073 Göttingen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Wolfgang A Linke
- Clinic for Cardiology and Pneumology, University Medical Center, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research, 10785 Berlin, partner site Göttingen, Germany.,Institute of Physiology II, University of Münster, 48149 Münster, Germany
| |
Collapse
|
28
|
Loescher CM, Hobbach AJ, Linke WA. Titin (TTN): from molecule to modifications, mechanics and medical significance. Cardiovasc Res 2021; 118:2903-2918. [PMID: 34662387 PMCID: PMC9648829 DOI: 10.1093/cvr/cvab328] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
The giant sarcomere protein titin is a major determinant of cardiomyocyte stiffness and contributor to cardiac strain sensing. Titin-based forces are highly regulated in health and disease, which aids in the regulation of myocardial function, including cardiac filling and output. Due to the enormous size, complexity, and malleability of the titin molecule, titin properties are also vulnerable to dysregulation, as observed in various cardiac disorders. This review provides an overview of how cardiac titin properties can be changed at a molecular level, including the role isoform diversity and post-translational modifications (acetylation, oxidation, and phosphorylation) play in regulating myocardial stiffness and contractility. We then consider how this regulation becomes unbalanced in heart disease, with an emphasis on changes in titin stiffness and protein quality control. In this context, new insights into the key pathomechanisms of human cardiomyopathy due to a truncation in the titin gene (TTN) are discussed. Along the way, we touch on the potential for titin to be therapeutically targeted to treat acquired or inherited cardiac conditions, such as HFpEF or TTN-truncation cardiomyopathy.
Collapse
Affiliation(s)
- Christine M Loescher
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| |
Collapse
|
29
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
30
|
Abstract
The sarcomeric titin springs and accessory proteins modulate muscle force and mechanical signaling at the N2A signalosome.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| |
Collapse
|
31
|
van der Pijl RJ, van den Berg M, van de Locht M, Shen S, Bogaards SJP, Conijn S, Langlais P, Hooijman PE, Labeit S, Heunks LMA, Granzier H, Ottenheijm CAC. Muscle ankyrin repeat protein 1 (MARP1) locks titin to the sarcomeric thin filament and is a passive force regulator. J Gen Physiol 2021; 153:212403. [PMID: 34152365 PMCID: PMC8222902 DOI: 10.1085/jgp.202112925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Muscle ankyrin repeat protein 1 (MARP1) is frequently up-regulated in stressed muscle, but its effect on skeletal muscle function is poorly understood. Here, we focused on its interaction with the titin–N2A element, found in titin’s molecular spring region. We show that MARP1 binds to F-actin, and that this interaction is stronger when MARP1 forms a complex with titin–N2A. Mechanics and super-resolution microscopy revealed that MARP1 “locks” titin–N2A to the sarcomeric thin filament, causing increased extension of titin’s elastic PEVK element and, importantly, increased passive force. In support of this mechanism, removal of thin filaments abolished the effect of MARP1 on passive force. The clinical relevance of this mechanism was established in diaphragm myofibers of mechanically ventilated rats and of critically ill patients. Thus, MARP1 regulates passive force by locking titin to the thin filament. We propose that in stressed muscle, this mechanism protects the sarcomere from mechanical damage.
Collapse
Affiliation(s)
- Robbert J van der Pijl
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Marloes van den Berg
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Martijn van de Locht
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Sylvia J P Bogaards
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Stefan Conijn
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Paul Langlais
- Division of Endocrinology, University of Arizona, Tucson, AZ
| | - Pleuni E Hooijman
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Leo M A Heunks
- Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ
| |
Collapse
|
32
|
Metronomic 5-Fluorouracil Delivery Primes Skeletal Muscle for Myopathy but Does Not Cause Cachexia. Pharmaceuticals (Basel) 2021; 14:ph14050478. [PMID: 34067869 PMCID: PMC8156038 DOI: 10.3390/ph14050478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal myopathy encompasses both atrophy and dysfunction and is a prominent event in cancer and chemotherapy-induced cachexia. Here, we investigate the effects of a chemotherapeutic agent, 5-fluorouracil (5FU), on skeletal muscle mass and function, and whether small-molecule therapeutic candidate, BGP-15, could be protective against the chemotoxic challenge exerted by 5FU. Additionally, we explore the molecular signature of 5FU treatment. Male Balb/c mice received metronomic tri-weekly intraperitoneal delivery of 5FU (23 mg/kg), with and without BGP-15 (15 mg/kg), 6 times in total over a 15 day treatment period. We demonstrated that neither 5FU, nor 5FU combined with BGP-15, affected body composition indices, skeletal muscle mass or function. Adjuvant BGP-15 treatment did, however, prevent the 5FU-induced phosphorylation of p38 MAPK and p65 NF-B subunit, signalling pathways involved in cell stress and inflammatory signalling, respectively. This as associated with mitoprotection. 5FU reduced the expression of the key cytoskeletal proteins, desmin and dystrophin, which was not prevented by BGP-15. Combined, these data show that metronomic delivery of 5FU does not elicit physiological consequences to skeletal muscle mass and function but is implicit in priming skeletal muscle with a molecular signature for myopathy. BGP-15 has modest protective efficacy against the molecular changes induced by 5FU.
Collapse
|
33
|
Goossens C, Weckx R, Derde S, Van Helleputte L, Schneidereit D, Haug M, Reischl B, Friedrich O, Van Den Bosch L, Van den Berghe G, Langouche L. Impact of prolonged sepsis on neural and muscular components of muscle contractions in a mouse model. J Cachexia Sarcopenia Muscle 2021; 12:443-455. [PMID: 33465304 PMCID: PMC8061378 DOI: 10.1002/jcsm.12668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged critically ill patients frequently develop debilitating muscle weakness that can affect both peripheral nerves and skeletal muscle. In-depth knowledge on the temporal contribution of neural and muscular components to muscle weakness is currently incomplete. METHODS We used a fluid-resuscitated, antibiotic-treated, parenterally fed murine model of prolonged (5 days) sepsis-induced muscle weakness (caecal ligation and puncture; n = 148). Electromyography (EMG) measurements were performed in two nerve-muscle complexes, combined with histological analysis of neuromuscular junction denervation, axonal degeneration, and demyelination. In situ muscle force measurements distinguished neural from muscular contribution to reduced muscle force generation. In myofibres, imaging and biomechanics were combined to evaluate myofibrillar contractile calcium sensitivity, sarcomere organization, and fibre structural properties. Myosin and actin protein content and titin gene expression were measured on the whole muscle. RESULTS Five days of sepsis resulted in increased EMG latency (P = 0.006) and decreased EMG amplitude (P < 0.0001) in the dorsal caudal tail nerve-tail complex, whereas only EMG amplitude was affected in the sciatic nerve-gastrocnemius muscle complex (P < 0.0001). Myelin sheath abnormalities (P = 0.2), axonal degeneration (number of axons; P = 0.4), and neuromuscular junction denervation (P = 0.09) were largely absent in response to sepsis, but signs of axonal swelling [higher axon area (P < 0.0001) and g-ratio (P = 0.03)] were observed. A reduction in maximal muscle force was present after indirect nerve stimulation (P = 0.007) and after direct muscle stimulation (P = 0.03). The degree of force reduction was similar with both stimulations (P = 0.2), identifying skeletal muscle, but not peripheral nerves, as the main contributor to muscle weakness. Myofibrillar calcium sensitivity of the contractile apparatus was unaffected by sepsis (P ≥ 0.6), whereas septic myofibres displayed disorganized sarcomeres (P < 0.0001) and altered myofibre axial elasticity (P < 0.0001). Septic myofibres suffered from increased rupturing in a passive stretching protocol (25% more than control myofibres; P = 0.04), which was associated with impaired myofibre active force generation (P = 0.04), linking altered myofibre integrity to function. Sepsis also caused a reduction in muscle titin gene expression (P = 0.04) and myosin and actin protein content (P = 0.05), but not the myosin-to-actin ratio (P = 0.7). CONCLUSIONS Prolonged sepsis-induced muscle weakness may predominantly be related to a disruption in myofibrillar cytoarchitectural structure, rather than to neural abnormalities.
Collapse
Affiliation(s)
- Chloë Goossens
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ruben Weckx
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lawrence Van Helleputte
- Experimental Neurology and Leuven Brain Institute, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Haug
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ludo Van Den Bosch
- Experimental Neurology and Leuven Brain Institute, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med 2021; 6:17. [PMID: 33772028 PMCID: PMC7997931 DOI: 10.1038/s41536-021-00127-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
One major cause of traumatic injury is firearm-related wounds (i.e., ballistic trauma), common in both civilian and military populations, which is increasing in prevalence and has serious long-term health and socioeconomic consequences worldwide. Common primary injuries of ballistic trauma include soft-tissue damage and loss, haemorrhage, bone fracture, and pain. The majority of injuries are of musculoskeletal origin and located in the extremities, such that skeletal muscle offers a major therapeutic target to aid recovery and return to normal daily activities. However, the underlying pathophysiology of skeletal muscle ballistic trauma remains poorly understood, with limited evidence-based treatment options. As such, this review will address the topic of firearm-related skeletal muscle injury and regeneration. We first introduce trauma ballistics and the immediate injury of skeletal muscle, followed by detailed coverage of the underlying biological mechanisms involved in regulating skeletal muscle dysfunction following injury, with a specific focus on the processes of muscle regeneration, muscle wasting and vascular impairments. Finally, we evaluate novel approaches for minimising muscle damage and enhancing muscle regeneration after ballistic trauma, which may have important relevance for primary care in victims of violence.
Collapse
Affiliation(s)
- Anselmo Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, UK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
35
|
Urinary Titin N-Fragment as a Biomarker of Muscle Atrophy, Intensive Care Unit-Acquired Weakness, and Possible Application for Post-Intensive Care Syndrome. J Clin Med 2021; 10:jcm10040614. [PMID: 33561946 PMCID: PMC7915692 DOI: 10.3390/jcm10040614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Titin is a giant protein that functions as a molecular spring in sarcomeres. Titin interconnects the contraction of actin-containing thin filaments and myosin-containing thick filaments. Titin breaks down to form urinary titin N-fragments, which are measurable in urine. Urinary titin N-fragment was originally reported to be a useful biomarker in the diagnosis of muscle dystrophy. Recently, the urinary titin N-fragment has been increasingly gaining attention as a novel biomarker of muscle atrophy and intensive care unit-acquired weakness in critically ill patients, in whom titin loss is a possible pathophysiology. Furthermore, several studies have reported that the urinary titin N-fragment also reflected muscle atrophy and weakness in patients with chronic illnesses. It may be used to predict the risk of post-intensive care syndrome or to monitor patients' condition after hospital discharge for better nutritional and rehabilitation management. We provide several tips on the use of this promising biomarker in post-intensive care syndrome.
Collapse
|
36
|
Douglas CM, Hesketh SJ, Esser KA. Time of Day and Muscle Strength: A Circadian Output? Physiology (Bethesda) 2021; 36:44-51. [PMID: 33325817 PMCID: PMC8425416 DOI: 10.1152/physiol.00030.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022] Open
Abstract
For more than 20 years, physiologists have observed a morning-to-evening increase in human muscle strength. Recent data suggest that time-of-day differences are the result of intrinsic, nonneural, muscle factors. We evaluate circadian clock data sets from human and mouse circadian studies and highlight possible mechanisms through which the muscle circadian clock may contribute to time-of-day muscle strength outcomes.
Collapse
Affiliation(s)
- Collin M Douglas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FloridaMyology Institute, University of Florida, Gainesville, Florida
| | - Stuart J Hesketh
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FloridaMyology Institute, University of Florida, Gainesville, Florida
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FloridaMyology Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
37
|
Li Y, Hessel AL, Unger A, Ing D, Recker J, Koser F, Freundt JK, Linke WA. Graded titin cleavage progressively reduces tension and uncovers the source of A-band stability in contracting muscle. eLife 2020; 9:64107. [PMID: 33357376 PMCID: PMC7781594 DOI: 10.7554/elife.64107] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
The giant muscle protein titin is a major contributor to passive force; however, its role in active force generation is unresolved. Here, we use a novel titin-cleavage (TC) mouse model that allows specific and rapid cutting of elastic titin to quantify how titin-based forces define myocyte ultrastructure and mechanics. We show that under mechanical strain, as TC doubles from heterozygous to homozygous TC muscles, Z-disks become increasingly out of register while passive and active forces are reduced. Interactions of elastic titin with sarcomeric actin filaments are revealed. Strikingly, when titin-cleaved muscles contract, myosin-containing A-bands become split and adjacent myosin filaments move in opposite directions while also shedding myosins. This establishes intact titin filaments as critical force-transmission networks, buffering the forces observed by myosin filaments during contraction. To perform this function, elastic titin must change stiffness or extensible length, unveiling its fundamental role as an activation-dependent spring in contracting muscle.
Collapse
Affiliation(s)
- Yong Li
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - David Ing
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Jannik Recker
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Franziska Koser
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Johanna K Freundt
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| |
Collapse
|