1
|
Lesch KP, Gorbunov N. Antisocial personality disorder:Failure to balance excitation/inhibition? Neuropharmacology 2025; 268:110321. [PMID: 39855295 DOI: 10.1016/j.neuropharm.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
While healthy brain function relies on a dynamic but tightly regulated interaction between excitation (E) and inhibition (I), a spectrum of social cognition disorders, including antisocial behavior and antisocial personality disorder (ASPD), frequently ensuing from irregular neurodevelopment, may be associated with E/I imbalance and concomitant alterations in neural connectivity. Technological advances in the evaluation of structural and functional E/I balance proxies in clinical settings and in human cell culture models provide a general basis for identification of biomarkers providing a powerful concept for prevention and intervention across different dimensions of mental health and disease. In this perspective we outline a framework for research to characterize neurodevelopmental pathways to antisocial behavior and ASPD driven by (epi)genetic factors across life, and to identify molecular targets for preventing the detrimental effects of cognitive dysfunction and maladaptive social behavior, considering psychosocial experience; to validate signatures of E/I imbalance and altered myelination proxies as biomarkers of pathogenic neural circuitry mechanisms to determine etiological processes in the transition from mental health to antisocial behavior and ASPD and in the switch from prevention to treatment; to develop a neurobiologically-grounded integrative model of antisocial behavior and ASPD resultant of disrupted E/I balance, allowing to establish objective diagnoses and monitoring tools, to personalize prevention and therapeutic decisions, to predict treatment response, and thus counteract relapse; and finally, to promote transformation of dimensional disorder taxonomy and to enhance societal awareness and reception of the neurobiological basis of antisocial behavior and ASPD.
Collapse
Affiliation(s)
- Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Child- and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Hodebourg R, Scofield MD, Kalivas PW, Kuhn BN. Nonneuronal contributions to synaptic function. Neuron 2025:S0896-6273(25)00260-0. [PMID: 40311612 DOI: 10.1016/j.neuron.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
Synapses are elegantly integrated signaling hubs containing the canonical synaptic elements, neuronal pre- and postsynapses, along with other components of the neuropil, including perisynaptic astroglia and extracellular matrix proteins, as well as microglia and oligodendrocytes. Signaling within these multipartite hubs is essential for synaptic function and is often disrupted in neuropsychiatric disorders. We review data that have refined our understanding of how environmental stimuli shape signaling and synaptic plasticity within synapses. We propose working models that integrate what is known about how different cell types within the perisynaptic neuropil regulate synaptic functions and dysfunctions that are elicited by addictive drugs. While these working models integrate existing findings, they are constrained by a need for new technology. Accordingly, we propose directions for improving reagents and experimental approaches to better probe how signaling between cell types within perisynaptic ecosystems creates the synaptic plasticity necessary to establish and maintain adaptive and maladaptive behaviors.
Collapse
Affiliation(s)
- Ritchy Hodebourg
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesiology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29401, USA.
| | - Brittany N Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
3
|
Gamlin CR, Schneider-Mizell CM, Mallory M, Elabbady L, Gouwens N, Williams G, Mukora A, Dalley R, Bodor AL, Brittain D, Buchanan J, Bumbarger DJ, Joyce E, Kapner D, Kinn S, Mahalingam G, Seshamani S, Takeno M, Torres R, Yin W, Nicovich PR, Bae JA, Castro MA, Dorkenwald S, Halageri A, Jia Z, Jordan C, Kemnitz N, Lee K, Li K, Lu R, Macrina T, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Silversmith W, Turner NL, Wong W, Wu J, Yu SC, Berg J, Jarsky T, Lee B, Seung HS, Zeng H, Reid RC, Collman F, da Costa NM, Sorensen SA. Connectomics of predicted Sst transcriptomic types in mouse visual cortex. Nature 2025; 640:497-505. [PMID: 40205210 PMCID: PMC11981948 DOI: 10.1038/s41586-025-08805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/18/2025] [Indexed: 04/11/2025]
Abstract
Neural circuit function is shaped both by the cell types that comprise the circuit and the connections between them1. Neural cell types have previously been defined by morphology2,3, electrophysiology4, transcriptomic expression5,6, connectivity7-9 or a combination of such modalities10-12. The Patch-seq technique enables the characterization of morphology, electrophysiology and transcriptomic properties from individual cells13-15. These properties were integrated to define 28 inhibitory, morpho-electric-transcriptomic (MET) cell types in mouse visual cortex16, which do not include synaptic connectivity. Conversely, large-scale electron microscopy (EM) enables morphological reconstruction and a near-complete description of a neuron's local synaptic connectivity, but does not include transcriptomic or electrophysiological information. Here, we leveraged morphological information from Patch-seq to predict the transcriptomically defined cell subclass and/or MET-type of inhibitory neurons within a large-scale EM dataset. We further analysed Martinotti cells-a somatostatin (Sst)-positive17 morphological cell type18,19-which were classified successfully into Sst MET-types with distinct axon myelination and synaptic output connectivity patterns. We demonstrate that morphological features can be used to link cell types across experimental modalities, enabling further comparison of connectivity to gene expression and electrophysiology. We observe unique connectivity rules for predicted Sst cell types.
Collapse
Affiliation(s)
| | | | | | - Leila Elabbady
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | | | - Alice Mukora
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Emily Joyce
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Sam Kinn
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Wenjing Yin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Manuel A Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kai Li
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Shanka Subhra Mondal
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jim Berg
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | |
Collapse
|
4
|
Aníbal-Martínez M, Puche-Aroca L, Pérez-Montoyo E, Pumo G, Madrigal MP, Rodríguez-Malmierca LM, Martini FJ, Rijli FM, López-Bendito G. A prenatal window for enhancing spatial resolution of cortical barrel maps. Nat Commun 2025; 16:1955. [PMID: 40050657 PMCID: PMC11885613 DOI: 10.1038/s41467-025-57052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Precise mapping of peripheral inputs onto cortical areas is essential for accurate sensory processing. In the mouse primary somatosensory cortex, mystacial whiskers correspond to large, well-defined barrels, while upper lip whiskers form smaller, less distinct barrels. These differences are traditionally attributed to variations in whisker input type and receptor density, but prenatal activity and transcriptional programs also impact somatosensory map development independently of sensory experience. Here, we demonstrate that prenatal ablation of mystacial whiskers leads to a remapping of cortical territories, enhancing the functional and anatomical definition of upper lip whisker barrels. This reorganization occurs without altering peripheral receptor types. Instead, thalamic neurons that receive upper lip inputs adopt a mystacial-like transcriptional profile. Our findings unveil a regulated prenatal mechanism in the thalamus that ensures sufficient cortical barrel size and spatial resolution for sensory processing, irrespective of peripheral receptor type or density, highlighting a critical developmental process in sensory mapping.
Collapse
Affiliation(s)
- Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Lorenzo Puche-Aroca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Elena Pérez-Montoyo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Gabriele Pumo
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - M Pilar Madrigal
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), San Juan de Alicante, Alicante, Spain
| | - Luis M Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
5
|
Calabro FJ, LeCroy D, Foran W, Sydnor VJ, Parr AC, Constantinidis C, Luna B. Developmental decorrelation of local cortical activity through adolescence supports high-dimensional encoding and working memory. Dev Cogn Neurosci 2025; 73:101541. [PMID: 40086409 PMCID: PMC11951985 DOI: 10.1016/j.dcn.2025.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Adolescence is a key period for the maturation of cognitive control during which cortical circuitry is refined through processes such as synaptic pruning, but how these refinements modulate local functional dynamics to support cognition remains only partially characterized. Here, we used data from a longitudinal, adolescent cohort (N = 134 individuals ages 10-31 years, N = 202 total sessions) that completed MRI scans at ultra-high field (7 Tesla). We used resting state fMRI data to compute surface-based regional homogeneity (ReHo)-a measure of time-dependent correlations in fMRI activity between a vertex and its immediate neighbors-as an index of local functional connectivity across the cortex. We found widespread decreases in ReHo, suggesting increasing heterogeneity and specialization of functional circuits through adolescence. Decreases in ReHo included a spatial component which overlapped with sensorimotor and cingulo-opercular networks, in which ReHo decreases were associated with developmental stabilization of working memory performance. We show that decreases in ReHo are associated with higher intrinsic coding dimensionality, demonstrating how functional specialization of these circuits may confer computational benefits by facilitating increased capacity for encoding information. These results suggest a remodeling of cortical activity in adolescence through which local functional circuits become increasingly specialized, higher-dimensional, and more capable of supporting adult-like cognitive functioning.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dylan LeCroy
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Talidou A, Lefebvre J. Spatial Heterogeneity in Myelin Sheathing Impacts Signaling Reliability and Susceptibility to Injury. eNeuro 2025; 12:ENEURO.0402-24.2025. [PMID: 39870523 PMCID: PMC11839277 DOI: 10.1523/eneuro.0402-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/29/2025] Open
Abstract
Axons in the mammalian brain show significant diversity in myelination motifs, displaying spatial heterogeneity in sheathing along individual axons and across brain regions. However, its impact on neural signaling and susceptibility to injury remains poorly understood. To address this, we leveraged cable theory and developed model axons replicating the myelin sheath distributions observed experimentally in different regions of the mouse central nervous system. We examined how the spatial arrangement of myelin affects propagation and predisposition to conduction failure in axons with cortical versus callosal myelination motifs. Our results indicate that regional differences in myelination significantly influence conduction timing and signaling reliability. Sensitivity of action potential propagation to the specific positioning, lengths, and ordering of myelinated and exposed segments reveals non-linear and path-dependent conduction. Furthermore, myelination motifs impact signaling vulnerability to demyelination, with callosal motifs being particularly sensitive to myelin changes. These findings highlight the crucial role of myelinating glia in brain function and disease.
Collapse
Affiliation(s)
- Afroditi Talidou
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Jérémie Lefebvre
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| |
Collapse
|
7
|
Sydnor VJ, Petrie D, McKeon SD, Famalette A, Foran W, Calabro FJ, Luna B. Heterochronous laminar maturation in the human prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635751. [PMID: 39975178 PMCID: PMC11838308 DOI: 10.1101/2025.01.30.635751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The human prefrontal cortex (PFC) exhibits markedly protracted developmental plasticity, yet whether reductions in plasticity occur synchronously across prefrontal cortical layers is unclear. Animal studies have shown that intracortical myelin consolidates neural circuits to close periods of plasticity. Here, we use quantitative myelin imaging collected from youth (ages 10-32 years) at ultra-high field (7T) to investigate whether deep and superficial PFC layers exhibit different timeframes of plasticity. We find that myelin matures along a deep-to-superficial axis in the PFC; this axis of maturational timing is expressed to a different extent in cytoarchitecturally distinct regions along the frontal cortical hierarchy. By integrating myelin mapping with electroencephalogram and cognitive phenotyping, we provide evidence that deep and superficial prefrontal myelin dissociably impact timescales of neural activity, task learning rates, and cognitive processing speed. Heterochronous maturation across deep and superficial layers is an underrecognized mechanism through which association cortex balances cognitively-relevant increases in circuit stability and efficiency with extended neuroplasticity.
Collapse
Affiliation(s)
- Valerie J. Sydnor
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
- The Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel Petrie
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
- The Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shane D. McKeon
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
- The Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
- The Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Onat F, Andersson M, Çarçak N. The Role of Glial Cells in the Pathophysiology of Epilepsy. Cells 2025; 14:94. [PMID: 39851521 PMCID: PMC11763453 DOI: 10.3390/cells14020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management. Astrocytes regulate neuronal homeostasis, excitability, and synaptic plasticity, playing key roles in maintaining the blood-brain barrier (BBB) and mediating neuroinflammatory responses. Dysregulated astrocyte functions, such as reactive astrogliosis, can lead to abnormal neuronal activity and seizure generation. They release gliotransmitters, cytokines, and chemokines that may exacerbate or mitigate seizures. Microglia, the innate immune cells of the CNS, contribute to neuroinflammation, glutamate excitotoxicity, and the balance between excitatory and inhibitory neurotransmission, underscoring their dual role in seizure promotion and protection. Meanwhile, oligodendrocytes, primarily involved in myelination, also modulate axonal excitability and contribute to the neuron-glia network underlying seizure pathogenesis. Understanding the dynamic interactions of glial cells with neurons provides promising avenues for novel epilepsy therapies. Targeting these cells may lead to improved seizure control and better clinical outcomes, offering hope for patients with refractory epilepsy.
Collapse
Affiliation(s)
- Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
| | - My Andersson
- Department of Experimental Medicine, Faculty of Medicine, Lund University, 221 00 Lund, Sweden;
| | - Nihan Çarçak
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34452 Istanbul, Türkiye
| |
Collapse
|
9
|
Kim W, Angulo MC. Unraveling the role of oligodendrocytes and myelin in pain. J Neurochem 2025; 169:e16206. [PMID: 39162089 PMCID: PMC11657919 DOI: 10.1111/jnc.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024]
Abstract
Oligodendrocytes, the myelin-producing cells in the central nervous system (CNS), are crucial for rapid action potential conduction and neuronal communication. While extensively studied for their roles in neuronal support and axonal insulation, their involvement in pain modulation is an emerging research area. This review explores the interplay between oligodendrocytes, myelination, and pain, focusing on neuropathic pain following peripheral nerve injury, spinal cord injury (SCI), chemotherapy, and HIV infection. Studies indicate that a decrease in oligodendrocytes and increased cytokine production by oligodendroglia in response to injury can induce or exacerbate pain. An increase in endogenous oligodendrocyte precursor cells (OPCs) may be a compensatory response to repair damaged oligodendrocytes. Exogenous OPC transplantation shows promise in alleviating SCI-induced neuropathic pain and enhancing remyelination. Additionally, oligodendrocyte apoptosis in brain regions such as the medial prefrontal cortex is linked to opioid-induced hyperalgesia, highlighting their role in central pain mechanisms. Chemotherapeutic agents disrupt oligodendrocyte differentiation, leading to persistent pain, while HIV-associated neuropathy involves up-regulation of oligodendrocyte lineage cell markers. These findings underscore the multifaceted roles of oligodendrocytes in pain pathways, suggesting that targeting myelination processes could offer new therapeutic strategies for chronic pain management. Further research should elucidate the underlying molecular mechanisms to develop effective pain treatments.
Collapse
Affiliation(s)
- Woojin Kim
- Department of Physiology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
- Korean Medicine‐Based Drug Repositioning Cancer Research Center, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - María Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, “Team: Interactions between Neurons and Oligodendroglia in Myelination and Myelin Repair”ParisFrance
- GHU PARIS Psychiatrie & NeurosciencesParisFrance
| |
Collapse
|
10
|
Gobbo D, Rieder P, Fang LP, Buttigieg E, Schablowski M, Damo E, Bosche N, Dallorto E, May P, Bai X, Kirchhoff F, Scheller A. Genetic Downregulation of GABA B Receptors from Oligodendrocyte Precursor Cells Protects Against Demyelination in the Mouse Spinal Cord. Cells 2024; 13:2014. [PMID: 39682762 PMCID: PMC11640606 DOI: 10.3390/cells13232014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
GABAergic signaling and GABAB receptors play crucial roles in regulating the physiology of oligodendrocyte-lineage cells, including their proliferation, differentiation, and myelination. Therefore, they are promising targets for studying how spinal oligodendrocyte precursor cells (OPCs) respond to injuries and neurodegenerative diseases like multiple sclerosis. Taking advantage of the temporally controlled and cell-specific genetic downregulation of GABAB receptors from OPCs, our investigation addresses their specific influence on OPC behavior in the gray and white matter of the mouse spinal cord. Our results show that, while GABAB receptors do not significantly alter spinal cord myelination under physiological conditions, they distinctly regulate the OPC differentiation and Ca2+ signaling. In addition, we investigate the impact of OPC-GABAB receptors in two models of toxic demyelination, namely, the cuprizone and the lysolecithin models. The genetic downregulation of OPC-GABAB receptors protects against demyelination and oligodendrocyte loss. Additionally, we observe the enhanced resilience to cuprizone-induced pathological alterations in OPC Ca2+ signaling. Our results provide valuable insights into the potential therapeutic implications of manipulating GABAB receptors in spinal cord OPCs and deepen our understanding of the interplay between GABAergic signaling and spinal cord OPCs, providing a basis for future research.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Li-Pao Fang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Emeline Buttigieg
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005 Marseille, France
| | - Moritz Schablowski
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Elisa Damo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Nathalie Bosche
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Eleonora Dallorto
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Pascal May
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
| | - Xianshu Bai
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
- Chengdu Center for Gender-Specific Biology and Medicine (CGBM Chengdu), Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany; (D.G.)
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| |
Collapse
|
11
|
Simons M, Gibson EM, Nave KA. Oligodendrocytes: Myelination, Plasticity, and Axonal Support. Cold Spring Harb Perspect Biol 2024; 16:a041359. [PMID: 38621824 PMCID: PMC11444305 DOI: 10.1101/cshperspect.a041359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The myelination of axons has evolved to enable fast and efficient transduction of electrical signals in the vertebrate nervous system. Acting as an electric insulator, the myelin sheath is a multilamellar membrane structure around axonal segments generated by the spiral wrapping and subsequent compaction of oligodendroglial plasma membranes. These oligodendrocytes are metabolically active and remain functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of metabolites and macromolecules to and from the internodal periaxonal space under the myelin sheath. Increasing evidence indicates that oligodendrocyte numbers, specifically in the forebrain, and myelin as a dynamic cellular compartment can both respond to physiological demands, collectively referred to as adaptive myelination. This review summarizes our current understanding of how myelin is generated, how its function is dynamically regulated, and how oligodendrocytes support the long-term integrity of myelinated axons.
Collapse
Affiliation(s)
- Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 80802, Germany
- German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, Munich 81377, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford 94305, California, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37075, Germany
| |
Collapse
|
12
|
Andersen JV, Marian OC, Qvist FL, Westi EW, Aldana BI, Schousboe A, Don AS, Skotte NH, Wellendorph P. Deficient brain GABA metabolism leads to widespread impairments of astrocyte and oligodendrocyte function. Glia 2024; 72:1821-1839. [PMID: 38899762 DOI: 10.1002/glia.24585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
The neurometabolic disorder succinic semialdehyde dehydrogenase (SSADH) deficiency leads to great neurochemical imbalances and severe neurological manifestations. The cause of the disease is loss of function of the enzyme SSADH, leading to impaired metabolism of the principal inhibitory neurotransmitter GABA. Despite the known identity of the enzymatic deficit, the underlying pathology of SSADH deficiency remains unclear. To uncover new mechanisms of the disease, we performed an untargeted integrative analysis of cerebral protein expression, functional metabolism, and lipid composition in a genetic mouse model of SSADH deficiency (ALDH5A1 knockout mice). Our proteomic analysis revealed a clear regional vulnerability, as protein alterations primarily manifested in the hippocampus and cerebral cortex of the ALDH5A1 knockout mice. These regions displayed aberrant expression of proteins linked to amino acid homeostasis, mitochondria, glial function, and myelination. Stable isotope tracing in acutely isolated brain slices demonstrated an overall maintained oxidative metabolism of glucose, but a selective decrease in astrocyte metabolic activity in the cerebral cortex of ALDH5A1 knockout mice. In contrast, an elevated capacity of oxidative glutamine metabolism was observed in the ALDH5A1 knockout brain, which may serve as a neuronal compensation of impaired astrocyte glutamine provision. In addition to reduced expression of critical oligodendrocyte proteins, a severe depletion of myelin-enriched sphingolipids was found in the brains of ALDH5A1 knockout mice, suggesting degeneration of myelin. Altogether, our study highlights that impaired astrocyte and oligodendrocyte function is intimately linked to SSADH deficiency pathology, suggesting that selective targeting of glial cells may hold therapeutic potential in this disease.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oana C Marian
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Filippa L Qvist
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil W Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anthony S Don
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Niels H Skotte
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Marshall-Phelps KL, Almeida R. Axonal neurotransmitter release in the regulation of myelination. Biosci Rep 2024; 44:BSR20231616. [PMID: 39230890 PMCID: PMC11427734 DOI: 10.1042/bsr20231616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024] Open
Abstract
Myelination of axons is a key determinant of fast action potential propagation, axonal health and circuit function. Previously considered a static structure, it is now clear that myelin is dynamically regulated in response to neuronal activity in the central nervous system (CNS). However, how activity-dependent signals are conveyed to oligodendrocytes remains unclear. Here, we review the potential mechanisms by which neurons could communicate changing activity levels to myelin, with a focus on the accumulating body of evidence to support activity-dependent vesicular signalling directly onto myelin sheaths. We discuss recent in vivo findings of activity-dependent fusion of neurotransmitter vesicles from non-synaptic axonal sites, and how modulation of this vesicular fusion regulates the stability and growth of myelin sheaths. We also consider the potential mechanisms by which myelin could sense and respond to axon-derived signals to initiate remodelling, and the relevance of these adaptations for circuit function. We propose that axonal vesicular signalling represents an important and underappreciated mode of communication by which neurons can transmit activity-regulated signals to myelinating oligodendrocytes and, potentially, more broadly to other cell types in the CNS.
Collapse
Affiliation(s)
- Katy L.H. Marshall-Phelps
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
14
|
Santos E, Huffman WC, Fields RD. Recovery of node of ranvier structure in optic nerve under visual deprivation. Neurosci Res 2024; 206:35-40. [PMID: 38554941 DOI: 10.1016/j.neures.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Neural activity can increase the length of nodes of Ranvier (NOR) and slow impulse transmission; however, little is known about the biologically and clinically important recovery process. Sensory deprivation promotes neural plasticity in many phenomena, raising the question of whether recovery of NOR morphology is influenced by sensory deprivation. The results show that NOR gap length recovery in mouse optic nerve was not affected significantly by binocular visual deprivation imposed by maintaining mice in 24 hr dark for 30 days compared to mice recovering under normal visual experience. The findings provide insight into the cellular mechanism of NOR plasticity.
Collapse
Affiliation(s)
- Erin Santos
- Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH,USA
| | - William C Huffman
- Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH,USA
| | - R Douglas Fields
- Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH,USA.
| |
Collapse
|
15
|
Osso LA, Hughes EG. Dynamics of mature myelin. Nat Neurosci 2024; 27:1449-1461. [PMID: 38773349 PMCID: PMC11515933 DOI: 10.1038/s41593-024-01642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Myelin, which is produced by oligodendrocytes, insulates axons to facilitate rapid and efficient action potential propagation in the central nervous system. Traditionally viewed as a stable structure, myelin is now known to undergo dynamic modulation throughout life. This Review examines these dynamics, focusing on two key aspects: (1) the turnover of myelin, involving not only the renewal of constituents but the continuous wholesale replacement of myelin membranes; and (2) the structural remodeling of pre-existing, mature myelin, a newly discovered form of neural plasticity that can be stimulated by external factors, including neuronal activity, behavioral experience and injury. We explore the mechanisms regulating these dynamics and speculate that myelin remodeling could be driven by an asymmetry in myelin turnover or reactivation of pathways involved in myelin formation. Finally, we outline how myelin remodeling could have profound impacts on neural function, serving as an integral component of behavioral adaptation.
Collapse
Affiliation(s)
- Lindsay A Osso
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
16
|
Vélez-Uriza F, Ordaz RP, Garay E, Cisneros-Mejorado AJ, Arellano RO. N-butyl-β-carboline-3-carboxylate (β-CCB) systemic administration promotes remyelination in the cuprizone demyelinating model in mice. Sci Rep 2024; 14:13988. [PMID: 38886527 PMCID: PMC11183054 DOI: 10.1038/s41598-024-64501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Demyelination is generated in several nervous system illnesses. Developing strategies for effective clinical treatments requires the discovery of promyelinating drugs. Increased GABAergic signaling through γ-aminobutyric acid type A receptor (GABAAR) activation in oligodendrocytes has been proposed as a promyelinating condition. GABAAR expressed in oligodendroglia is strongly potentiated by n-butyl-β-carboline-3-carboxylate (β-CCB) compared to that in neurons. Here, mice were subjected to 0.3% cuprizone (CPZ) added in the food to induce central nervous system demyelination, a well-known model for multiple sclerosis. Then β-CCB (1 mg/Kg) was systemically administered to analyze the remyelination status in white and gray matter areas. Myelin content was evaluated using Black-Gold II (BGII) staining, immunofluorescence (IF), and magnetic resonance imaging (MRI). Evidence indicates that β-CCB treatment of CPZ-demyelinated animals promoted remyelination in several white matter structures, such as the fimbria, corpus callosum, internal capsule, and cerebellar peduncles. Moreover, using IF, it was observed that CPZ intake induced an increase in NG2+ and a decrease in CC1+ cell populations, alterations that were importantly retrieved by β-CCB treatment. Thus, the promyelinating character of β-CCB was confirmed in a generalized demyelination model, strengthening the idea that it has clinical potential as a therapeutic drug.
Collapse
Affiliation(s)
- Fidel Vélez-Uriza
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México
| | - Rainald Pablo Ordaz
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México
| | - Edith Garay
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México
| | - Abraham J Cisneros-Mejorado
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México.
| | - Rogelio O Arellano
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México.
| |
Collapse
|
17
|
Yalçın B, Pomrenze MB, Malacon K, Drexler R, Rogers AE, Shamardani K, Chau IJ, Taylor KR, Ni L, Contreras-Esquivel D, Malenka RC, Monje M. Myelin plasticity in the ventral tegmental area is required for opioid reward. Nature 2024; 630:677-685. [PMID: 38839962 PMCID: PMC11186775 DOI: 10.1038/s41586-024-07525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.
Collapse
Affiliation(s)
- Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Matthew B Pomrenze
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Karen Malacon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Abigail E Rogers
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Isabelle J Chau
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
18
|
Bragg-Gonzalo L, Aguilera A, González-Arias C, De León Reyes NS, Sánchez-Cruz A, Carballeira P, Leroy F, Perea G, Nieto M. Early cortical GABAergic interneurons determine the projection patterns of L4 excitatory neurons. SCIENCE ADVANCES 2024; 10:eadj9911. [PMID: 38728406 PMCID: PMC11086621 DOI: 10.1126/sciadv.adj9911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.
Collapse
Affiliation(s)
- Lorena Bragg-Gonzalo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alfonso Aguilera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Candela González-Arias
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Noelia S. De León Reyes
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Alonso Sánchez-Cruz
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Paula Carballeira
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Félix Leroy
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Gertrudis Perea
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Marta Nieto
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
19
|
Théberge S, Belliveau C, Xie D, Khalaf R, Perlman K, Rahimian R, Davoli MA, Turecki G, Mechawar N. Parvalbumin interneurons in human ventromedial prefrontal cortex: a comprehensive post-mortem study of myelination and perineuronal nets in neurotypical individuals and depressed suicides with and without a history of child abuse. Cereb Cortex 2024; 34:bhae197. [PMID: 38760318 PMCID: PMC11101286 DOI: 10.1093/cercor/bhae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Cortical parvalbumin interneurons (PV+) are major regulators of excitatory/inhibitory information processing, and their maturation is associated with the opening of developmental critical periods (CP). Recent studies reveal that cortical PV+ axons are myelinated, and that myelination along with perineuronal net (PNN) maturation around PV+ cells is associated with the closures of CP. Although PV+ interneurons are susceptible to early-life stress, their relationship between their myelination and PNN coverage remains unexplored. This study compared the fine features of PV+ interneurons in well-characterized human post-mortem ventromedial prefrontal cortex samples (n = 31) from depressed suicides with or without a history of child abuse (CA) and matched controls. In healthy controls, 81% of all sampled PV+ interneurons displayed a myelinated axon, while a subset (66%) of these cells also displayed a PNN, proposing a relationship between both attributes. Intriguingly, a 3-fold increase in the proportion of unmyelinated PV+ interneurons with a PNN was observed in CA victims, along with greater PV-immunofluorescence intensity in myelinated PV+ cells with a PNN. This study, which is the first to provide normative data on myelination and PNNs around PV+ interneurons in human neocortex, sheds further light on the cellular and molecular consequences of early-life adversity on cortical PV+ interneurons.
Collapse
Affiliation(s)
- Stéphanie Théberge
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Dongyue Xie
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Roy Khalaf
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montréal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montréal, QC, Canada
| |
Collapse
|
20
|
Mercier O, Quilichini PP, Magalon K, Gil F, Ghestem A, Richard F, Boudier T, Cayre M, Durbec P. Transient demyelination causes long-term cognitive impairment, myelin alteration and network synchrony defects. Glia 2024; 72:960-981. [PMID: 38363046 DOI: 10.1002/glia.24513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
In the adult brain, activity-dependent myelin plasticity is required for proper learning and memory consolidation. Myelin loss, alteration, or even subtle structural modifications can therefore compromise the network activity, leading to functional impairment. In multiple sclerosis, spontaneous myelin repair process is possible, but it is heterogeneous among patients, sometimes leading to functional recovery, often more visible at the motor level than at the cognitive level. In cuprizone-treated mouse model, massive brain demyelination is followed by spontaneous and robust remyelination. However, reformed myelin, although functional, may not exhibit the same morphological characteristics as developmental myelin, which can have an impact on the activity of neural networks. In this context, we used the cuprizone-treated mouse model to analyze the structural, functional, and cognitive long-term effects of transient demyelination. Our results show that an episode of demyelination induces despite remyelination long-term cognitive impairment, such as deficits in spatial working memory, social memory, cognitive flexibility, and hyperactivity. These deficits were associated with a reduction in myelin content in the medial prefrontal cortex (mPFC) and hippocampus (HPC), as well as structural myelin modifications, suggesting that the remyelination process may be imperfect in these structures. In vivo electrophysiological recordings showed that the demyelination episode altered the synchronization of HPC-mPFC activity, which is crucial for memory processes. Altogether, our data indicate that the myelin repair process following transient demyelination does not allow the complete recovery of the initial myelin properties in cortical structures. These subtle modifications alter network features, leading to prolonged cognitive deficits in mice.
Collapse
Affiliation(s)
- Océane Mercier
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascale P Quilichini
- U1106 after INS, Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Karine Magalon
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Florian Gil
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Antoine Ghestem
- U1106 after INS, Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Richard
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Thomas Boudier
- Aix Marseille Univ, Turing Centre for Living Systems, Marseille, France
| | - Myriam Cayre
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascale Durbec
- UMR7288 after IBDM, Aix Marseille Univ, CNRS, IBDM, Marseille, France
| |
Collapse
|
21
|
Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol Life Sci 2024; 81:181. [PMID: 38615095 PMCID: PMC11016012 DOI: 10.1007/s00018-024-05222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.
Collapse
Affiliation(s)
- Hasni Khelfaoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Cristobal Ibaceta-Gonzalez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
- GHU-PARIS Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
22
|
Pascual-García M, Unkel M, Slotman JA, Bolleboom A, Bouwen B, Houtsmuller AB, Dirven C, Gao Z, Hijazi S, Kushner SA. Morphological correlates of pyramidal cell axonal myelination in mouse and human neocortex. Cereb Cortex 2024; 34:bhae147. [PMID: 38610088 PMCID: PMC11014882 DOI: 10.1093/cercor/bhae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024] Open
Abstract
The axons of neocortical pyramidal neurons are frequently myelinated. Heterogeneity in the topography of axonal myelination in the cerebral cortex has been attributed to a combination of electrophysiological activity, axonal morphology, and neuronal-glial interactions. Previously, we showed that axonal segment length and caliber are critical local determinants of fast-spiking interneuron myelination. However, the factors that determine the myelination of individual axonal segments along neocortical pyramidal neurons remain largely unexplored. Here, we used structured illumination microscopy to examine the extent to which axonal morphology is predictive of the topography of myelination along neocortical pyramidal neurons. We identified critical thresholds for axonal caliber and interbranch distance that are necessary, but not sufficient, for myelination of pyramidal cell axons in mouse primary somatosensory cortex (S1). Specifically, we found that pyramidal neuron axonal segments with a caliber < 0.24 μm or interbranch distance < 18.10 μm are rarely myelinated. Moreover, we further confirmed that these findings in mice are similar for human neocortical pyramidal cell myelination (caliber < 0.25 μm, interbranch distance < 19.00 μm), suggesting that this mechanism is evolutionarily conserved. Taken together, our findings suggest that axonal morphology is a critical correlate of the topography and cell-type specificity of neocortical myelination.
Collapse
Affiliation(s)
- Maria Pascual-García
- Department of Psychiatry, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Maurits Unkel
- Department of Psychiatry, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Johan A Slotman
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Anne Bolleboom
- Department of Neuroscience, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Neurosurgery, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Bibi Bouwen
- Department of Neuroscience, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Neurosurgery, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Clemens Dirven
- Department of Neurosurgery, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Sara Hijazi
- Department of Psychiatry, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
- SNF Center for Precision Psychiatry & Mental Health, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| |
Collapse
|
23
|
Kumar P, Goettemoeller AM, Espinosa-Garcia C, Tobin BR, Tfaily A, Nelson RS, Natu A, Dammer EB, Santiago JV, Malepati S, Cheng L, Xiao H, Duong DD, Seyfried NT, Wood LB, Rowan MJM, Rangaraju S. Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer's pathology. Nat Commun 2024; 15:2823. [PMID: 38561349 PMCID: PMC10985119 DOI: 10.1038/s41467-024-47028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Dysfunction in fast-spiking parvalbumin interneurons (PV-INs) may represent an early pathophysiological perturbation in Alzheimer's Disease (AD). Defining early proteomic alterations in PV-INs can provide key biological and translationally-relevant insights. We used cell-type-specific in-vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state PV-IN proteomes. PV-IN proteomic signatures include high metabolic and translational activity, with over-representation of AD-risk and cognitive resilience-related proteins. In bulk proteomes, PV-IN proteins were associated with cognitive decline in humans, and with progressive neuropathology in humans and the 5xFAD mouse model of Aβ pathology. PV-IN CIBOP in early stages of Aβ pathology revealed signatures of increased mitochondria and metabolism, synaptic and cytoskeletal disruption and decreased mTOR signaling, not apparent in whole-brain proteomes. Furthermore, we demonstrated pre-synaptic defects in PV-to-excitatory neurotransmission, validating our proteomic findings. Overall, in this study we present native-state proteomes of PV-INs, revealing molecular insights into their unique roles in cognitive resiliency and AD pathogenesis.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Annie M Goettemoeller
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, USA
| | - Claudia Espinosa-Garcia
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Brendan R Tobin
- Georgia W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Ali Tfaily
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ruth S Nelson
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Aditya Natu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Juliet V Santiago
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, USA
| | - Sneha Malepati
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lihong Cheng
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
| | - Hailian Xiao
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
| | - Duc D Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Levi B Wood
- Georgia W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
- School of Chemical and Biological Engineering, GeoInsrgia titute of Technology, Atlanta, GA, 30322, USA
| | - Matthew J M Rowan
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA.
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
24
|
Liu Y, Yuan J, Dong Y, Jiang S, Zhang M, Zhao X. Interaction between Oligodendrocytes and Interneurons in Brain Development and Related Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:3620. [PMID: 38612430 PMCID: PMC11011273 DOI: 10.3390/ijms25073620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
A variety of neurological and psychiatric disorders have recently been shown to be highly associated with the abnormal development and function of oligodendrocytes (OLs) and interneurons. OLs are the myelin-forming cells in the central nervous system (CNS), while interneurons are important neural types gating the function of excitatory neurons. These two types of cells are of great significance for the establishment and function of neural circuits, and they share similar developmental origins and transcriptional architectures, and interact with each other in multiple ways during development. In this review, we compare the similarities and differences in these two cell types, providing an important reference and further revealing the pathogenesis of related brain disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianghui Zhao
- Department of Neuroscience, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
25
|
Hill RA, Nishiyama A, Hughes EG. Features, Fates, and Functions of Oligodendrocyte Precursor Cells. Cold Spring Harb Perspect Biol 2024; 16:a041425. [PMID: 38052500 PMCID: PMC10910408 DOI: 10.1101/cshperspect.a041425] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are a central nervous system resident population of glia with a distinct molecular identity and an ever-increasing list of functions. OPCs generate oligodendrocytes throughout development and across the life span in most regions of the brain and spinal cord. This process involves a complex coordination of molecular checkpoints and biophysical cues from the environment that initiate the differentiation and integration of new oligodendrocytes that synthesize myelin sheaths on axons. Outside of their progenitor role, OPCs have been proposed to play other functions including the modulation of axonal and synaptic development and the participation in bidirectional signaling with neurons and other glia. Here, we review OPC identity and known functions and discuss recent findings implying other roles for these glial cells in brain physiology and pathology.
Collapse
Affiliation(s)
- Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
26
|
Milicevic KD, Barbeau BL, Lovic DD, Patel AA, Ivanova VO, Antic SD. Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 6:100121. [PMID: 38616956 PMCID: PMC11015061 DOI: 10.1016/j.crneur.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 04/16/2024] Open
Abstract
Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30-80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed Before Axon), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed After Axon), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses - autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.
Collapse
Affiliation(s)
- Katarina D. Milicevic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Brianna L. Barbeau
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Darko D. Lovic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Aayushi A. Patel
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Violetta O. Ivanova
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Srdjan D. Antic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| |
Collapse
|
27
|
Fang LP, Bai X. Implications of Olig2 silencing in oligodendrocyte precursor cells. Neural Regen Res 2023; 18:2649-2650. [PMID: 37449605 DOI: 10.4103/1673-5374.373666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Li-Pao Fang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| |
Collapse
|
28
|
Tokatly Latzer I, Hanson E, Bertoldi M, García-Cazorla À, Tsuboyama M, MacMullin P, Rotenberg A, Roullet JB, Pearl PL. Autism spectrum disorder and GABA levels in children with succinic semialdehyde dehydrogenase deficiency. Dev Med Child Neurol 2023; 65:1596-1606. [PMID: 37246331 DOI: 10.1111/dmcn.15659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
AIM To elucidate the etiological aspects of autism spectrum disorder (ASD) in succinic semialdehyde dehydrogenase deficiency (SSADHD), related to dysregulation of γ-aminobutyric acid (GABA) and the imbalance of excitatory and inhibitory neurotransmission. METHOD In this prospective, international study, individuals with SSADHD underwent neuropsychological assessments, as well as biochemical, neurophysiological, and neuroimaging evaluations. RESULTS Of the 29 individuals (17 females) enrolled (median age [IQR] 10 years 5 months [5 years 11 months-18 years 1 month]), 16 were diagnosed with ASD. ASD severity significantly increased with age (r = 0.67, p < 0.001) but was inversely correlated with plasma GABA (r = -0.67, p < 0.001) and γ-hydroxybutyrate levels (r = -0.538, p = 0.004), and resting motor threshold as measured by transcranial magnetic stimulation (r = -0.44, p = 0.03). A discriminative analysis indicated that an age older than 7 years 2 months (p = 0.004) and plasma GABA levels less than 2.47 μM (p = 0.01) are the threshold values beyond which the likelihood of ASD presenting in individuals with SSADHD is increased. INTERPRETATION ASD is prevalent but not universal in SSADHD, and it can be predicted by lower levels of plasma GABA and GABA-related metabolites. ASD severity in SSADHD increases with age and the loss of cortical inhibition. These findings add insight into the pathophysiology of ASD and may facilitate its early diagnosis and intervention in individuals with SSADHD.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ellen Hanson
- Human Neurobehavioral Core Services, Division of Neurology, Boston Children's Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, MA, USA
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Àngeles García-Cazorla
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Melissa Tsuboyama
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul MacMullin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Hijazi S, Smit AB, van Kesteren RE. Fast-spiking parvalbumin-positive interneurons in brain physiology and Alzheimer's disease. Mol Psychiatry 2023; 28:4954-4967. [PMID: 37419975 PMCID: PMC11041664 DOI: 10.1038/s41380-023-02168-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Fast-spiking parvalbumin (PV) interneurons are inhibitory interneurons with unique morphological and functional properties that allow them to precisely control local circuitry, brain networks and memory processing. Since the discovery in 1987 that PV is expressed in a subset of fast-spiking GABAergic inhibitory neurons, our knowledge of the complex molecular and physiological properties of these cells has been expanding. In this review, we highlight the specific properties of PV neurons that allow them to fire at high frequency and with high reliability, enabling them to control network oscillations and shape the encoding, consolidation and retrieval of memories. We next discuss multiple studies reporting PV neuron impairment as a critical step in neuronal network dysfunction and cognitive decline in mouse models of Alzheimer's disease (AD). Finally, we propose potential mechanisms underlying PV neuron dysfunction in AD and we argue that early changes in PV neuron activity could be a causal step in AD-associated network and memory impairment and a significant contributor to disease pathogenesis.
Collapse
Affiliation(s)
- Sara Hijazi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Chitu V, Biundo F, Oppong-Asare J, Gökhan Ş, Aguilan JT, Dulski J, Wszolek ZK, Sidoli S, Stanley ER. Prophylactic effect of chronic immunosuppression in a mouse model of CSF-1 receptor-related leukoencephalopathy. Glia 2023; 71:2664-2678. [PMID: 37519044 PMCID: PMC10529087 DOI: 10.1002/glia.24446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Mutations leading to colony-stimulating factor-1 receptor (CSF-1R) loss-of-function or haploinsufficiency cause CSF1R-related leukoencephalopathy (CRL), an adult-onset disease characterized by loss of myelin and neurodegeneration, for which there is no effective therapy. Symptom onset usually occurs in the fourth decade of life and the penetrance of disease in carriers is high. However, familial studies have identified a few carriers of pathogenic CSF1R mutations that remain asymptomatic even in their seventh decade of life, raising the possibility that the development and severity of disease might be influenced by environmental factors. Here we report new cases in which long-term glucocorticoid treatment is associated with asymptomatic status in elder carriers of pathogenic CSF-1R mutations. The main objective of the present study was to investigate the link between chronic immunosuppression initiated pre-symptomatically and resistance to the development of symptomatic CRL, in the Csf1r+/- mouse model. We show that chronic prednisone administration prevents the development of memory, motor coordination and social interaction deficits, as well as the demyelination, neurodegeneration and microgliosis associated with these deficits. These findings are in agreement with the preliminary clinical observations and support the concept that pre-symptomatic immunosuppression is protective in patients carrying pathogenic CSF1R variants associated with CRL. Proteomic analysis of microglia and oligodendrocytes indicates that prednisone suppresses processes involved in microglial activation and alleviates senescence and improves fitness of oligodendrocytes. This analysis also identifies new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jude Oppong-Asare
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Jennifer T. Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaroslaw Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | | | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
31
|
Pinatel D, Pearlstein E, Bonetto G, Goutebroze L, Karagogeos D, Crepel V, Faivre-Sarrailh C. A class-specific effect of dysmyelination on the excitability of hippocampal interneurons. eLife 2023; 12:e86469. [PMID: 37843188 PMCID: PMC10617988 DOI: 10.7554/elife.86469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023] Open
Abstract
The role of myelination for axonal conduction is well-established in projection neurons but little is known about its significance in GABAergic interneurons. Myelination is discontinuous along interneuron axons and the mechanisms controlling myelin patterning and segregation of ion channels at the nodes of Ranvier have not been elucidated. Protein 4.1B is implicated in the organization of the nodes of Ranvier as a linker between paranodal and juxtaparanodal membrane proteins to the spectrin cytoskeleton. In the present study, 4.1B KO mice are used as a genetic model to analyze the functional role of myelin in Lhx6-positive parvalbumin (PV) and somatostatin (SST) neurons, two major classes of GABAergic neurons in the hippocampus. We show that 4.1B-deficiency induces disruption of juxtaparanodal K+ channel clustering and mislocalization of nodal or heminodal Na+ channels. Strikingly, 4.1B-deficiency causes loss of myelin in GABAergic axons in the hippocampus. In particular, stratum oriens SST cells display severe axonal dysmyelination and a reduced excitability. This reduced excitability is associated with a decrease in occurrence probability of small amplitude synaptic inhibitory events on pyramidal cells. In contrast, stratum pyramidale fast-spiking PV cells do not appear affected. In conclusion, our results indicate a class-specific effect of dysmyelination on the excitability of hippocampal interneurons associated with a functional alteration of inhibitory drive.
Collapse
Affiliation(s)
| | | | | | - Laurence Goutebroze
- INSERM, Institut du Fer à Moulin, Sorbonne Université, Faculté des Sciences et IngénierieParisFrance
| | - Domna Karagogeos
- Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of CreteHeraklionGreece
| | | | | |
Collapse
|
32
|
Yamada J, Maeda S, Tojo M, Hayashida M, Iinuma KM, Jinno S. Altered regulation of oligodendrocytes associated with parvalbumin neurons in the ventral hippocampus underlies fear generalization in male mice. Neuropsychopharmacology 2023; 48:1668-1679. [PMID: 37277574 PMCID: PMC10516901 DOI: 10.1038/s41386-023-01611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Fear generalization is a neurobiological process by which an organism interprets a novel stimulus as threatening because of its similarity to previously learned fear-inducing stimuli. Because recent studies have suggested that the communication between oligodendrocyte precursor cells (OPCs) and parvalbumin (PV)-expressing GABAergic neurons (PV neurons) may play critical roles in stress-related disorders, we examined the involvement of these cells in fear generalization. We first tested the behavioral characteristics of mouse models for conventional fear conditioning (cFC) and modified FC (mFC) with severe electric foot shocks and found that fear generalization was observed in mice treated with mFC but not in mice treated with cFC. The expression levels of genes related to OPCs, oligodendrocytes (OLs), and myelin in the ventral hippocampus were lower in mFC mice than in cFC mice. The densities of OPCs and OLs were decreased in the ventral hippocampus of mFC mice compared to cFC mice. The myelination ratios of PV neurons in the ventral hippocampus were lower in mFC mice than in cFC mice. The chemogenetic activation of PV neurons in the ventral hippocampus of mFC mice reduced fear generalization. The expression levels of genes related to OPCs, OLs, and myelin were recovered following the activation of PV neurons. Finally, the myelination ratios of PV neurons were increased after the activation of PV neurons. Our results suggest that altered regulation of OLs specifically associated with axons of PV neurons in the ventral hippocampus may underlie the generalization of remote fear memory following severe stress exposure.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Shoichiro Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miori Tojo
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miyuki Hayashida
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kyoko M Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
33
|
Fang LP, Bai X. Oligodendrocyte precursor cells: the multitaskers in the brain. Pflugers Arch 2023; 475:1035-1044. [PMID: 37401986 PMCID: PMC10409806 DOI: 10.1007/s00424-023-02837-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
In the central nervous system, oligodendrocyte precursor cells (OPCs) are recognized as the progenitors responsible for the generation of oligodendrocytes, which play a critical role in myelination. Extensive research has shed light on the mechanisms underlying OPC proliferation and differentiation into mature myelin-forming oligodendrocytes. However, recent advances in the field have revealed that OPCs have multiple functions beyond their role as progenitors, exerting control over neural circuits and brain function through distinct pathways. This review aims to provide a comprehensive understanding of OPCs by first introducing their well-established features. Subsequently, we delve into the emerging roles of OPCs in modulating brain function in both healthy and diseased states. Unraveling the cellular and molecular mechanisms by which OPCs influence brain function holds great promise for identifying novel therapeutic targets for central nervous system diseases.
Collapse
Affiliation(s)
- Li-Pao Fang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421 Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421 Homburg, Germany
| |
Collapse
|
34
|
Gerevich Z, Kovács R, Liotta A, Hasam-Henderson LA, Weh L, Wallach I, Berndt N. Metabolic implications of axonal demyelination and its consequences for synchronized network activity: An in silico and in vitro study. J Cereb Blood Flow Metab 2023; 43:1571-1587. [PMID: 37125487 PMCID: PMC10414014 DOI: 10.1177/0271678x231170746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023]
Abstract
Myelination enhances the conduction velocity of action potentials (AP) and increases energy efficiency. Thick myelin sheaths are typically found on large-distance axonal connections or in fast-spiking interneurons, which are critical for synchronizing neuronal networks during gamma-band oscillations. Loss of myelin sheath is associated with multiple alterations in axonal architecture leading to impaired AP propagation. While numerous studies are devoted to the effects of demyelination on conduction velocity, the metabolic effects and the consequences for network synchronization have not been investigated. Here we present a unifying computational model for electrophysiology and metabolism of the myelinated axon. The computational model suggested that demyelination not only decreases the AP speed but AP propagation in demyelinated axons requires compensatory processes like mitochondrial mass increase and a switch from saltatory to continuous propagation to rescue axon functionality at the cost of reduced AP propagation speed and increased energy expenditure. Indeed, these predictions were proven to be true in a culture model of demyelination where the pharmacologically-induced loss of myelin was associated with increased oxygen consumption rates, and a significant broadening of bandwidth as well as a decrease in the power of gamma oscillations.
Collapse
Affiliation(s)
- Zoltan Gerevich
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kovács
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agustin Liotta
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Anesthesiology and Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Luisa A Hasam-Henderson
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ludwig Weh
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
35
|
Patt L, Tascio D, Domingos C, Timmermann A, Jabs R, Henneberger C, Steinhäuser C, Seifert G. Impact of Developmental Changes of GABA A Receptors on Interneuron-NG2 Glia Transmission in the Hippocampus. Int J Mol Sci 2023; 24:13490. [PMID: 37686294 PMCID: PMC10488269 DOI: 10.3390/ijms241713490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
NG2 glia receive synaptic input from neurons, but the functional impact of this glial innervation is not well understood. In the developing cerebellum and somatosensory cortex the GABAergic input might regulate NG2 glia differentiation and myelination, and a switch from synaptic to extrasynaptic neuron-glia signaling was reported in the latter region. Myelination in the hippocampus is sparse, and most NG2 glia retain their phenotype throughout adulthood, raising the question of the properties and function of neuron-NG2 glia synapses in that brain region. Here, we compared spontaneous and evoked GABAA receptor-mediated currents of NG2 glia in juvenile and adult hippocampi of mice of either sex and assessed the mode of interneuron-glial signaling changes during development. With patch-clamp and pharmacological analyses, we found a decrease in innervation of hippocampal NG2 glia between postnatal days 10 and 60. At the adult stage, enhanced activation of extrasynaptic receptors occurred, indicating a spillover of GABA. This switch from synaptic to extrasynaptic receptor activation was accompanied by downregulation of γ2 and upregulation of the α5 subunit. Molecular analyses and high-resolution expansion microscopy revealed mechanisms of glial GABAA receptor trafficking and clustering. We found that gephyrin and radixin are organized in separate clusters along glial processes. Surprisingly, the developmental loss of γ2 and postsynaptic receptors were not accompanied by altered glial expression of scaffolding proteins, auxiliary receptor subunits or postsynaptic interaction proteins. The GABAergic input to NG2 glia might contribute to the release of neurotrophic factors from these cells and influence neuronal synaptic plasticity.
Collapse
Affiliation(s)
- Linda Patt
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Dario Tascio
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Catia Domingos
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (L.P.); (D.T.); (C.D.); (A.T.); (R.J.); (C.H.)
| |
Collapse
|
36
|
Stoufflet J, Tielens S, Nguyen L. Shaping the cerebral cortex by cellular crosstalk. Cell 2023; 186:2733-2747. [PMID: 37352835 DOI: 10.1016/j.cell.2023.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
The cerebral cortex is the brain's outermost layer. It is responsible for processing motor and sensory information that support high-level cognitive abilities and shape personality. Its development and functional organization strongly rely on cell communication that is established via an intricate system of diffusible signals and physical contacts during development. Interfering with this cellular crosstalk can cause neurodevelopmental disorders. Here, we review how crosstalk between migrating cells and their environment influences cerebral cortex development, ranging from neurogenesis to synaptogenesis and assembly of cortical circuits.
Collapse
Affiliation(s)
- Julie Stoufflet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Sylvia Tielens
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium.
| |
Collapse
|
37
|
Kumar P, Goettemoeller AM, Espinosa-Garcia C, Tobin BR, Tfaily A, Nelson RS, Natu A, Dammer EB, Santiago JV, Malepati S, Cheng L, Xiao H, Duong D, Seyfried NT, Wood LB, Rowan MJ, Rangaraju S. Native-state proteomics of Parvalbumin interneurons identifies novel molecular signatures and metabolic vulnerabilities to early Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541038. [PMID: 37292756 PMCID: PMC10245729 DOI: 10.1101/2023.05.17.541038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the earliest pathophysiological perturbations in Alzheimer's Disease (AD) may arise from dysfunction of fast-spiking parvalbumin (PV) interneurons (PV-INs). Defining early protein-level (proteomic) alterations in PV-INs can provide key biological and translationally relevant insights. Here, we use cell-type-specific in vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state proteomes of PV interneurons. PV-INs exhibited proteomic signatures of high metabolic, mitochondrial, and translational activity, with over-representation of causally linked AD genetic risk factors. Analyses of bulk brain proteomes indicated strong correlations between PV-IN proteins with cognitive decline in humans, and with progressive neuropathology in humans and mouse models of Aβ pathology. Furthermore, PV-IN-specific proteomes revealed unique signatures of increased mitochondrial and metabolic proteins, but decreased synaptic and mTOR signaling proteins in response to early Aβ pathology. PV-specific changes were not apparent in whole-brain proteomes. These findings showcase the first native state PV-IN proteomes in mammalian brain, revealing a molecular basis for their unique vulnerabilities in AD.
Collapse
|
38
|
Hirota Y, Sakakibara Y, Takei K, Nishijima R, Sekiya M, Iijima KM. Alzheimer's Disease-Related Phospho-Tau181 Signals Are Localized to Demyelinated Axons of Parvalbumin-Positive GABAergic Interneurons in an App Knock-In Mouse Model of Amyloid-β Pathology. J Alzheimers Dis 2023:JAD230121. [PMID: 37212118 DOI: 10.3233/jad-230121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND The tau protein phosphorylated at Thr181 (p-tau181) in cerebrospinal fluid and blood is a sensitive biomarker for Alzheimer's disease (AD). Increased p-tau181 levels correlate well with amyloid-β (Aβ) pathology and precede neurofibrillary tangle formation in the early stage of AD; however, the relationship between p-tau181 and Aβ-mediated pathology is less well understood. We recently reported that p-tau181 represents axonal abnormalities in mice with Aβ pathology (AppNLGF). However, from which neuronal subtype(s) these p-tau181-positive axons originate remains elusive. OBJECTIVE The main purpose of this study is to differentiate neuronal subtype(s) and elucidate damage associated with p-tau181-positive axons by immunohistochemical analysis of AppNLGF mice brains. METHODS Colocalization between p-tau181 and (1) unmyelinated axons positive for vesicular acetylcholine transporter or norepinephrine transporter and (2) myelinated axons positive for vesicular glutamate transporter, vesicular GABA transporter, or parvalbumin in the brains of 24-month-old AppNLGF and control mice without Aβ pathology were analyzed. The density of these axons was also compared. RESULTS Unmyelinated axons of cholinergic or noradrenergic neurons did not overlap with p-tau181. By contrast, p-tau181 signals colocalized with myelinated axons of parvalbumin-positive GABAergic interneurons but not of glutamatergic neurons. Interestingly, the density of unmyelinated axons was significantly decreased in AppNLGF mice, whereas that of glutamatergic, GABAergic, or p-tau181-positive axons was less affected. Instead, myelin sheaths surrounding p-tau181-positive axons were significantly reduced in AppNLGF mice. CONCLUSION This study demonstrates that p-tau181 signals colocalize with axons of parvalbumin-positive GABAergic interneurons with disrupted myelin sheaths in the brains of a mouse model of Aβ pathology.
Collapse
Affiliation(s)
- Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
39
|
Hong SB. Brain regional homogeneity and its association with age and intelligence in typically developing youth. Asian J Psychiatr 2023; 82:103497. [PMID: 36764248 DOI: 10.1016/j.ajp.2023.103497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Accelerated synaptic pruning and weakening of short-range functional connectivity are characteristic of adolescent brain development. Based on these structural microscopic and system-level functional changes, it was hypothesized that regional homogeneity (ReHo) may decrease with age in the developing brain, and a differential association between ReHo and cognitive performance was expected to depend on age. ReHo maps of typically developing participants were provided by the Attention-Deficit/Hyperactivity Disorder (ADHD)-200 Preprocessed repository. Intelligence quotient was evaluated using the Wechsler Intelligence Scale for Chinese Children-Revised and Wechsler Abbreviated Scale of Intelligence at Peking University and New York University, respectively. Correlations between ReHo and age were examined, along with the interaction effects of ReHo and age on intelligence quotient (IQ), in 121 typically developing youth aged 8-14 years. Of the 400 ROIs tested, ReHo in 105 brain regions was significantly correlated with age (p < 0.05, false discovery rate-corrected), among which 102 showed that ReHo decreased with age. In addition, ReHo in 18 brain regions was negatively correlated with age at Bonferroni-corrected thresholds (p < 0.05), and most associations were observed in the prefrontal cortex. The interaction analyses suggested that higher ReHo was associated with higher IQ in children, whereas this association was attenuated or reversed in adolescents (p < 0.05, uncorrected). ReHo decreased with age in the developing brain and was differentially associated with intelligence in children and adolescents.
Collapse
Affiliation(s)
- Soon-Beom Hong
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Gamlin CR, Schneider-Mizell CM, Mallory M, Elabbady L, Gouwens N, Williams G, Mukora A, Dalley R, Bodor A, Brittain D, Buchanan J, Bumbarger D, Kapner D, Kinn S, Mahalingam G, Seshamani S, Takeno M, Torres R, Yin W, Nicovich PR, Bae JA, Castro MA, Dorkenwald S, Halageri A, Jia Z, Jordan C, Kemnitz N, Lee K, Li K, Lu R, Macrina T, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Silversmith W, Turner NL, Wong W, Wu J, Yu S, Berg J, Jarsky T, Lee B, Seung HS, Zeng H, Reid RC, Collman F, da Costa NM, Sorensen SA. Integrating EM and Patch-seq data: Synaptic connectivity and target specificity of predicted Sst transcriptomic types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533857. [PMID: 36993629 PMCID: PMC10055412 DOI: 10.1101/2023.03.22.533857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neural circuit function is shaped both by the cell types that comprise the circuit and the connections between those cell types 1 . Neural cell types have previously been defined by morphology 2, 3 , electrophysiology 4, 5 , transcriptomic expression 6-8 , connectivity 9-13 , or even a combination of such modalities 14-16 . More recently, the Patch-seq technique has enabled the characterization of morphology (M), electrophysiology (E), and transcriptomic (T) properties from individual cells 17-20 . Using this technique, these properties were integrated to define 28, inhibitory multimodal, MET-types in mouse primary visual cortex 21 . It is unknown how these MET-types connect within the broader cortical circuitry however. Here we show that we can predict the MET-type identity of inhibitory cells within a large-scale electron microscopy (EM) dataset and these MET-types have distinct ultrastructural features and synapse connectivity patterns. We found that EM Martinotti cells, a well defined morphological cell type 22, 23 known to be Somatostatin positive (Sst+) 24, 25 , were successfully predicted to belong to Sst+ MET-types. Each identified MET-type had distinct axon myelination patterns and synapsed onto specific excitatory targets. Our results demonstrate that morphological features can be used to link cell type identities across imaging modalities, which enables further comparison of connectivity in relation to transcriptomic or electrophysiological properties. Furthermore, our results show that MET-types have distinct connectivity patterns, supporting the use of MET-types and connectivity to meaningfully define cell types.
Collapse
|
41
|
Ghirardini E, Sagona G, Marquez-Galera A, Calugi F, Navarron CM, Cacciante F, Chen S, Di Vetta F, Dadà L, Mazziotti R, Lupori L, Putignano E, Baldi P, Lopez-Atalaya JP, Pizzorusso T, Baroncelli L. Cell-specific vulnerability to metabolic failure: the crucial role of parvalbumin expressing neurons in creatine transporter deficiency. Acta Neuropathol Commun 2023; 11:34. [PMID: 36882863 PMCID: PMC9990224 DOI: 10.1186/s40478-023-01533-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Mutations in the solute carrier family 6-member 8 (Slc6a8) gene, encoding the protein responsible for cellular creatine (Cr) uptake, cause Creatine Transporter Deficiency (CTD), an X-linked neurometabolic disorder presenting with intellectual disability, autistic-like features, and epilepsy. The pathological determinants of CTD are still poorly understood, hindering the development of therapies. In this study, we generated an extensive transcriptomic profile of CTD showing that Cr deficiency causes perturbations of gene expression in excitatory neurons, inhibitory cells, and oligodendrocytes which result in remodeling of circuit excitability and synaptic wiring. We also identified specific alterations of parvalbumin-expressing (PV+) interneurons, exhibiting a reduction in cellular and synaptic density, and a hypofunctional electrophysiological phenotype. Mice lacking Slc6a8 only in PV+ interneurons recapitulated numerous CTD features, including cognitive deterioration, impaired cortical processing and hyperexcitability of brain circuits, demonstrating that Cr deficit in PV+ interneurons is sufficient to determine the neurological phenotype of CTD. Moreover, a pharmacological treatment targeted to restore the efficiency of PV+ synapses significantly improved cortical activity in Slc6a8 knock-out animals. Altogether, these data demonstrate that Slc6a8 is critical for the normal function of PV+ interneurons and that impairment of these cells is central in the disease pathogenesis, suggesting a novel therapeutic venue for CTD.
Collapse
Affiliation(s)
- Elsa Ghirardini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone (PI), Italy. .,Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.
| | - Giulia Sagona
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Angel Marquez-Galera
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramon Y Cajal, S/N, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francesco Calugi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Via Di San Salvi 12, 50135, Florence, Italy.,BIO@SNS Lab, Scuola Normale Superiore Di Pisa, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Carmen M Navarron
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramon Y Cajal, S/N, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francesco Cacciante
- BIO@SNS Lab, Scuola Normale Superiore Di Pisa, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Siwei Chen
- Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, CA, 92697-3435, USA
| | - Federica Di Vetta
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Lorenzo Dadà
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Via Di San Salvi 12, 50135, Florence, Italy
| | - Leonardo Lupori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone (PI), Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Pierre Baldi
- Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, CA, 92697-3435, USA
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramon Y Cajal, S/N, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.,BIO@SNS Lab, Scuola Normale Superiore Di Pisa, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Laura Baroncelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone (PI), Italy.,Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
42
|
Ziminski JJ, Frangou P, Karlaftis VM, Emir U, Kourtzi Z. Microstructural and neurochemical plasticity mechanisms interact to enhance human perceptual decision-making. PLoS Biol 2023; 21:e3002029. [PMID: 36897881 PMCID: PMC10032544 DOI: 10.1371/journal.pbio.3002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/22/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023] Open
Abstract
Experience and training are known to boost our skills and mold the brain's organization and function. Yet, structural plasticity and functional neurotransmission are typically studied at different scales (large-scale networks, local circuits), limiting our understanding of the adaptive interactions that support learning of complex cognitive skills in the adult brain. Here, we employ multimodal brain imaging to investigate the link between microstructural (myelination) and neurochemical (GABAergic) plasticity for decision-making. We test (in males, due to potential confounding menstrual cycle effects on GABA measurements in females) for changes in MRI-measured myelin, GABA, and functional connectivity before versus after training on a perceptual decision task that involves identifying targets in clutter. We demonstrate that training alters subcortical (pulvinar, hippocampus) myelination and its functional connectivity to visual cortex and relates to decreased visual cortex GABAergic inhibition. Modeling interactions between MRI measures of myelin, GABA, and functional connectivity indicates that pulvinar myelin plasticity interacts-through thalamocortical connectivity-with GABAergic inhibition in visual cortex to support learning. Our findings propose a dynamic interplay of adaptive microstructural and neurochemical plasticity in subcortico-cortical circuits that supports learning for optimized decision-making in the adult human brain.
Collapse
Affiliation(s)
- Joseph J Ziminski
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Polytimi Frangou
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Vasilis M Karlaftis
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Uzay Emir
- Purdue University School of Health Sciences, West Lafayette, Indiana, United States of America
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Liu Y, Shen X, Zhang Y, Zheng X, Cepeda C, Wang Y, Duan S, Tong X. Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells. Glia 2023; 71:1383-1401. [PMID: 36799296 DOI: 10.1002/glia.24343] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 02/18/2023]
Abstract
The mammalian brain is a complex organ comprising neurons, glia, and more than 1 × 1014 synapses. Neurons are a heterogeneous group of electrically active cells, which form the framework of the complex circuitry of the brain. However, glial cells, which are primarily divided into astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte precursor cells (OPCs), constitute approximately half of all neural cells in the mammalian central nervous system (CNS) and mainly provide nutrition and tropic support to neurons in the brain. In the last two decades, the concept of "tripartite synapses" has drawn great attention, which emphasizes that astrocytes are an integral part of the synapse and regulate neuronal activity in a feedback manner after receiving neuronal signals. Since then, synaptic modulation by glial cells has been extensively studied and substantially revised. In this review, we summarize the latest significant findings on how glial cells, in particular, microglia and OL lineage cells, impact and remodel the structure and function of synapses in the brain. Our review highlights the cellular and molecular aspects of neuron-glia crosstalk and provides additional information on how aberrant synaptic communication between neurons and glia may contribute to neural pathologies.
Collapse
Affiliation(s)
- Yao Liu
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Shen
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Zhang
- College of Basic Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Zheng
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yao Wang
- Department of Assisted Reproduction, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shumin Duan
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Xiaoping Tong
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| |
Collapse
|
44
|
Ahmed NY, Knowles R, Liu L, Yan Y, Li X, Schumann U, Wang Y, Sontani Y, Reynolds N, Natoli R, Wen J, Del Pino I, Mi D, Dehorter N. Developmental deficits of MGE-derived interneurons in the Cntnap2 knockout mouse model of autism spectrum disorder. Front Cell Dev Biol 2023; 11:1112062. [PMID: 36819097 PMCID: PMC9930104 DOI: 10.3389/fcell.2023.1112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Interneurons are fundamental cells for maintaining the excitation-inhibition balance in the brain in health and disease. While interneurons have been shown to play a key role in the pathophysiology of autism spectrum disorder (ASD) in adult mice, little is known about how their maturation is altered in the developing striatum in ASD. Here, we aimed to track striatal developing interneurons and elucidate the molecular and physiological alterations in the Cntnap2 knockout mouse model. Using Stereo-seq and single-cell RNA sequencing data, we first characterized the pattern of expression of Cntnap2 in the adult brain and at embryonic stages in the medial ganglionic eminence (MGE), a transitory structure producing most cortical and striatal interneurons. We found that Cntnap2 is enriched in the striatum, compared to the cortex, particularly in the developing striatal cholinergic interneurons. We then revealed enhanced MGE-derived cell proliferation, followed by increased cell loss during the canonical window of developmental cell death in the Cntnap2 knockout mice. We uncovered specific cellular and molecular alterations in the developing Lhx6-expressing cholinergic interneurons of the striatum, which impacts interneuron firing properties during the first postnatal week. Overall, our work unveils some of the mechanisms underlying the shift in the developmental trajectory of striatal interneurons which greatly contribute to the ASD pathogenesis.
Collapse
Affiliation(s)
- Noorya Yasmin Ahmed
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Rhys Knowles
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Lixinyu Liu
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Yiming Yan
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohan Li
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ulrike Schumann
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Yumeng Wang
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Yovina Sontani
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Nathan Reynolds
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Riccardo Natoli
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Jiayu Wen
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Isabel Del Pino
- Institute of Neurosciences, Spanish National Research Council (CSIC), Sant Joan d’Alacant, Spain
| | - Da Mi
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nathalie Dehorter
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia,*Correspondence: Nathalie Dehorter,
| |
Collapse
|
45
|
de Carvalho Borges B, Meng X, Long P, Kanold PO, Corfas G. Loss of oligodendrocyte ErbB receptor signaling leads to hypomyelination, reduced density of parvalbumin-expressing interneurons, and inhibitory function in the auditory cortex. Glia 2023; 71:187-204. [PMID: 36052476 PMCID: PMC9771935 DOI: 10.1002/glia.24266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022]
Abstract
For a long time, myelin was thought to be restricted to excitatory neurons, and studies on dysmyelination focused primarily on excitatory cells. Recent evidence showed that axons of inhibitory neurons in the neocortex are also myelinated, but the role of myelin on inhibitory circuits remains unknown. Here we studied the impact of mild hypomyelination on both excitatory and inhibitory connectivity in the primary auditory cortex (A1) with well-characterized mouse models of hypomyelination due to loss of oligodendrocyte ErbB receptor signaling. Using laser-scanning photostimulation, we found that mice with mild hypomyelination have reduced functional inhibitory connections to A1 L2/3 neurons without changes in excitatory connections, resulting in altered excitatory/inhibitory balance. These effects are not associated with altered expression of GABAergic and glutamatergic synaptic components, but with reduced density of parvalbumin-positive (PV+ ) neurons, axons, and synaptic terminals, which reflect reduced PV expression by interneurons rather than PV+ neuronal loss. While immunostaining shows that hypomyelination occurs in both PV+ and PV- axons, there is a strong correlation between MBP and PV expression, suggesting that myelination influences PV expression. Together, the results indicate that mild hypomyelination impacts A1 neuronal networks, reducing inhibitory activity, and shifting networks towards excitation.
Collapse
Affiliation(s)
- Beatriz de Carvalho Borges
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205,Department of Biology, University of Maryland, College Park, MD 20742
| | - Patrick Long
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Patrick Oliver Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205,Department of Biology, University of Maryland, College Park, MD 20742
| | - Gabriel Corfas
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
46
|
Kole K, Voesenek BJB, Brinia ME, Petersen N, Kole MHP. Parvalbumin basket cell myelination accumulates axonal mitochondria to internodes. Nat Commun 2022; 13:7598. [PMID: 36494349 PMCID: PMC9734141 DOI: 10.1038/s41467-022-35350-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Parvalbumin-expressing (PV+) basket cells are fast-spiking inhibitory interneurons that exert critical control over local circuit activity and oscillations. PV+ axons are often myelinated, but the electrical and metabolic roles of interneuron myelination remain poorly understood. Here, we developed viral constructs allowing cell type-specific investigation of mitochondria with genetically encoded fluorescent probes. Single-cell reconstructions revealed that mitochondria selectively cluster to myelinated segments of PV+ basket cells, confirmed by analyses of a high-resolution electron microscopy dataset. In contrast to the increased mitochondrial densities in excitatory axons cuprizone-induced demyelination abolished mitochondrial clustering in PV+ axons. Furthermore, with genetic deletion of myelin basic protein the mitochondrial clustering was still observed at internodes wrapped by noncompacted myelin, indicating that compaction is dispensable. Finally, two-photon imaging of action potential-evoked calcium (Ca2+) responses showed that interneuron myelination attenuates both the cytosolic and mitochondrial Ca2+ transients. These findings suggest that oligodendrocyte ensheathment of PV+ axons assembles mitochondria to branch selectively fine-tune metabolic demands.
Collapse
Affiliation(s)
- Koen Kole
- grid.418101.d0000 0001 2153 6865Axonal Signaling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Bas J. B. Voesenek
- grid.418101.d0000 0001 2153 6865Axonal Signaling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Maria E. Brinia
- grid.418101.d0000 0001 2153 6865Axonal Signaling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands ,grid.5216.00000 0001 2155 0800Medical School, National Kapodistrian University of Athens, Athens, 11527 Greece
| | - Naomi Petersen
- grid.418101.d0000 0001 2153 6865Axonal Signaling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Maarten H. P. Kole
- grid.418101.d0000 0001 2153 6865Axonal Signaling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands ,grid.5477.10000000120346234Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
47
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
48
|
Abstract
Within the past decade, multiple lines of evidence have converged to identify a critical role for activity-regulated myelination in tuning the function of neural networks. In this Review, we provide an overview of accumulating evidence that activity-regulated myelination is required for brain adaptation and learning across multiple domains. We then discuss dysregulation of activity-dependent myelination in the context of neurological disease, a novel frontier with the potential to uncover new mechanisms of disease pathogenesis and to develop new therapeutic strategies. Alterations in myelination and neural network function can result from deficient myelin plasticity that impairs neurological function or from maladaptive myelination, in which intact activity-dependent myelination contributes to the disease process by promoting pathological patterns of neuronal activity. These emerging mechanisms suggest new avenues for therapeutic intervention that could more fully address the complex interactions between neurons and oligodendroglia.
Collapse
|
49
|
Effects of Visual Deprivation on Remodeling of Nodes of Ranvier in Optic Nerve. eNeuro 2022; 9:ENEURO.0194-22.2022. [PMID: 36302632 PMCID: PMC9651206 DOI: 10.1523/eneuro.0194-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Oligodendrocytes, the myelinating cells of the CNS, promote rapid action potential conduction along axons. Changes in the geometry of gaps between myelin segments, known as nodes of Ranvier, affect the conduction speed of neuronal impulses and can ultimately alter neural synchronization and circuit function. In contrast to synaptic plasticity, much less is known about how neural activity may affect node of Ranvier structure. Recently, perinodal astrocytes have been shown to remodel nodes of Ranvier by regulating thrombin proteolysis, but it is not known whether neural activity influences this process. To test this hypothesis, we used transgenic mice with astrocytic expression of a dominant-negative vesicle-associated membrane protein 2 ([gfap]dnVAMP2) to reduce exocytosis of thrombin inhibitors, modulating astrocytic regulation of paranodal loop attachment to induce nodal remodeling, under normal conditions and in adult mice maintained in darkness from postnatal day 40 (P40) to P70. This mechanism of nodal lengthening proceeded normally following binocular visual deprivation (BVD). The effect of BVD on nodal plasticity in animals with unimpaired astrocyte function has not been previously investigated. We find that when exocytosis from astrocytes was unimpaired, nodal gap length was not altered by BVD in adult mice. We conclude that if perinodal astrocytes participate in activity-dependent myelin remodeling through exocytosis, then, as with synaptic plasticity in the visual system, the process must be driven by alterations in neuronal firing other than those produced by BVD.
Collapse
|
50
|
Oligodendroglia are emerging players in several forms of learning and memory. Commun Biol 2022; 5:1148. [PMID: 36309567 PMCID: PMC9617857 DOI: 10.1038/s42003-022-04116-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
Synaptic plasticity is the fundamental cellular mechanism of learning and memory, but recent research reveals that myelin-forming glia, oligodendrocytes (OL), are also involved. They contribute in ways that synaptic plasticity cannot, and the findings have not been integrated into the established conceptual framework used in the field of learning and memory. OLs and their progenitors are involved in long-term memory, memory consolidation, working memory, and recall in associative learning. They also contribute to short-term memory and non-associative learning by affecting synaptic transmission, intrinsic excitability of axons, and neural oscillations. Oligodendroglial involvement expands the field beyond synaptic plasticity to system-wide network function, where precise spike time arrival and neural oscillations are critical in information processing, storage, and retrieval. A Perspective highlights current evidence that supports oligodendrocytes and their progenitors’ involvement in cognition and proposes that our understanding of learning and memory can be expanded beyond the classic view of synaptic plasticity to a system-wide network function.
Collapse
|