1
|
Matushkina N, Gorb SN, Krings W. Material composition of the endophytic ovipositor in the damselfly Calopteryx splendens (Odonata, Calopterygidae). JOURNAL OF INSECT PHYSIOLOGY 2025; 163:104813. [PMID: 40252915 DOI: 10.1016/j.jinsphys.2025.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Natural selection has favoured the incorporation of ions, including transition metals, in materials of various biological structures susceptible to mechanical fracture to enhance their failure and wear resistance. With regards to insects, only a few taxa have been investigated. The objective of this study was to analyse the biomechanical properties of the ovipositor in the damselfly Calopteryx splendens (Harris, 1780) (Odonata, Zygoptera, Calopterygidae) through nanoindentation and to ascertain the elemental composition gradient within the cuticle using energy-dispersive X-ray spectroscopy. This research represents the first report indicating that the damselfly ovipositor exhibits a gradient in the mechanical properties of the cuticle, with Young's modulus ranging from approximately 3.0 to 7.0 GPa and hardness from 0.1 to 0.3 GPa. These properties highly correlate with the contents of copper and magnesium, both of which increase in the distal direction. The results also suggests that the mechanical properties of the cuticle are significantly influenced by the degree of sclerotization revealed by confocal laser scanning microscopy. These findings propose that the material properties of the ovipositor cuticle in C. splendens may have adapted to enhance piercing capability and to reduce the risk of structural failure during insertion of eggs in plant substrates.
Collapse
Affiliation(s)
- Natalia Matushkina
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Hlushkova Avenue 2, 03127 Kyiv, Ukraine
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany; Department of Cariology, Endodontology and Periodontology, University of Leipzig, Liebigstraße 12, 04103 Leipzig, Germany; Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany; Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| |
Collapse
|
2
|
Andresen JL, Birkemoe T, Jensen KA, Morozova V, Oughton DH. Radiocaesium and radiostrontium transfer to an insect herbivore and an insect detritivore through holometabolous development: A comparison between the cabbage butterfly (Pieris brassicae) and the black soldier fly (Hermetia illucens). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178422. [PMID: 39824117 DOI: 10.1016/j.scitotenv.2025.178422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
The presence of the long-lived radionuclides 137Cs and 90Sr in ecosystems is a major environmental concern because bioavailable forms of the radionuclides are readily transferred to living organisms. The present study investigated how holometabolous insect development influences the fate of radiocaesium and radiostrontium by examining the behaviour of tracers (134Cs and 84Sr) and stable elements during the larval feeding stage (21-23 days old), the pupal stage, and the adult stage. We aimed to evaluate the degree to which an herbivore or a detritivore food chain could serve as transfer pathways to higher trophic levels in terms of accumulation potential, and during which stage of development the accumulation potential is highest. We used the Cabbage butterfly (Pieris brassicae) and the Black soldier fly (Hermetia illucens) as model insects in the herbivore food chain and the detritivore food chain, respectively. Both food chains showed similar patterns of radiocaesium transfer to the larvae, with concentration ratios of 0.26 to 1.15. Radiocaesium levels then gradually decreased during the transition from larva to adult. We also found strontium in the larvae of both model insects. However, while the transfer to P. brassicae was low and the majority of retained strontium was removed prior to the pupal stage, we found that strontium biomagnified in H. illucens larvae and pupae, showing high accumulation potentials. Overall, our results suggest that radiocaesium transfer to terrestrial holometabolous insects is predominantly determined by radiocaesium levels in their diet, whereas radiostrontium transfer is influenced by the insects' dietary need for calcium and the concentration of calcium in the diet.
Collapse
Affiliation(s)
- Jonas L Andresen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Tone Birkemoe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Karl A Jensen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Valeriia Morozova
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Deborah H Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Casadei-Ferreira A, Procópio Camacho G, van de Kamp T, Lattke JE, Machado Feitosa R, Economo EP. Evolution and functional implications of stinger shape in ants. Evolution 2024; 79:80-99. [PMID: 39367612 DOI: 10.1093/evolut/qpae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024]
Abstract
Trait diversification is often driven by underlying performance tradeoffs in the context of different selective pressures. Evolutionary changes in task specialization may influence how species respond to tradeoffs and alter diversification. We conducted this study to investigate the functional morphology, evolutionary history, and tempo and mode of evolution of the Hymenoptera stinger using Ectatomminae ants as a model clade. We hypothesized that a performance tradeoff surface underlies the diversity of stinger morphology and that shifts between predatory and omnivorous diets mediate the diversification dynamics of the trait. Shape variation was characterized by X-ray microtomography, and the correlation between shape and average values of von Mises stress, as a measure of yield failure criteria under loading conditions typical of puncture scenarios, was determined using finite element analysis. We observed that stinger elongation underlies most of the shape variation but found no evidence of biomechanical tradeoffs in the performance characteristics measured. In addition, omnivores have increased phenotypic shifts and accelerated evolution in performance metrics, suggesting the evolution of dietary flexibility releases selection pressure on a specific function, resulting in a greater phenotypic evolutionary rate. These results increase our understanding of the biomechanical basis of stinger shape, indicate that shape diversity is not the outcome of simple biomechanical optimization, and reveal connections between diet and trait diversification.
Collapse
Affiliation(s)
- Alexandre Casadei-Ferreira
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - John E Lattke
- Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Rodrigo Machado Feitosa
- Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
4
|
Roze M, Gorb SN, Zeimet T, Krings W. Mandible composition and properties in two selected praying mantises (Insecta, Mantodea). Anat Rec (Hoboken) 2024. [PMID: 39511980 DOI: 10.1002/ar.25602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Insects process their food with their cuticle-based mouthparts. These feeding structures reflect their diversity and can, in some cases, showcase adaptations in material composition, mechanical properties, and shape to suit their specific dietary preferences. To pave the way to deeply understand the interaction between mouthparts and food and to determine potential adaptations of the structures to the food, this study focuses on the mandibles of two praying mantis species. Gongylus gongylodes feeds mainly on Diptera, and Sphodromantis lineola forages on larger prey. Employing scanning electron microscopy, the mandibular morphologies were analyzed. The degree of the cuticle tanning was tested using confocal laser scanning microscopy. Furthermore, the contents of transition and alkaline earth metals in the mandible cuticle were studied using energy-dispersive X-ray spectroscopy and the mechanical properties tested by nanoindentation. We found that S. lineola mandibles show pronounced gradients of Young's modulus and hardness from the basis to the tip, which might be an adaptation against high stresses during biting and chewing. G. gongylodes, in contrast, did not show pronounced gradients, which may indicate that there is less stress involved in feeding-necessary to test in future studies. The mechanical properties of manidibles in both species are related to the degree of cuticle tanning but also positively correlate with the content of magnesium. These findings enrich our understanding of insect cuticle biology but also present new sets of data on praying mantis structures.
Collapse
Affiliation(s)
- Malo Roze
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Timo Zeimet
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
| | - Wencke Krings
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Sevarika M, Romani R. Ultrastructural Organization and Metal Elemental Composition of the Mandibles in Two Ladybird Species. INSECTS 2024; 15:403. [PMID: 38921118 PMCID: PMC11203409 DOI: 10.3390/insects15060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
The mandibles are among the most important appendages of insects' mouthparts. Their morpho-functional organization is correlated with the variation in dietary preferences. In this study, we investigated the ultrastructural organization and metal composition of the mandibles of two ladybird species with different dietary habits: Harmonia axyridis (an entomophagous species) and Subcoccinella vigintiquatuorpunctata (a phytophagous species). The ultrastructural organization was studied using Scanning and Transmission Electron Microscopy, whereas the metal composition was investigated using Energy-Dispersive X-ray spectroscopy (EDX). Significant differences were observed in the general organization and metal enrichment pattern between the two species. The mandibles of H. axyridis are large and present a molar part with two teeth, with the apical one showing a bifid apex. In contrast, S. vigintiquatuorpunctata exhibited a molar region with several teeth on its apical part. The study revealed significant differences in metal content between the teeth and the prostheca of H. axyridis. Mn was the most abundant element in teeth, whereas Cl was more abundant in the prostheca. In the case of S. vigintiquatuorpunctata, Si was the most abundant element in the prostheca, while Mn was more present in the teeth. A comparison between the two species revealed that both teeth and prostheca showed significant variation in the elemental composition. These findings underscore the role of dietary preferences in shaping the structural and metal composition variations in the mandibles of these two ladybird species.
Collapse
Affiliation(s)
- Milos Sevarika
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy;
| | | |
Collapse
|
6
|
Champer J, Schlenoff D. Battles between ants (Hymenoptera: Formicidae): a review. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:25. [PMID: 38913609 PMCID: PMC11195475 DOI: 10.1093/jisesa/ieae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
With their unique colony structure, competition between ants (Hymenoptera: Formicidae) can be particularly intense, with colonies potentially willing to sacrifice large number of individuals to obtain resources or territory under the right circumstances. In this review, we cover circumstances in which ant competition escalates into combat, battle strategies and tactics, and analysis methods for these battles. The trends for when colonies choose to fight can vary greatly dependent on the species and situation, which we review in detail. Because of their large group sizes, ant conflicts can follow different patterns than many other species, with a variety of specialist adaptations and battle strategies, such as specialized worker classes and the need to rapidly recruit large number of compatriots. These same large group sizes also can make ant fighting amenable to mathematical analysis, particularly in the context of Lanchester's laws that consider how total numbers influence the outcome of a confrontation. Yet, dynamic behavior can often disrupt idealized mathematical predictions in real-world scenarios, even though these can still shed light on the explanations for such behavior. We also systematically cover the literature on battles between groups of ants, presenting several other interesting studies on species with unique colony organization, such as army ants and leafcutter ants.
Collapse
Affiliation(s)
- Jackson Champer
- Center for Bioinformatics and Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Debra Schlenoff
- Department of Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
7
|
Klunk CL, Heethoff M, Hammel JU, Gorb SN, Krings W. Mechanical and elemental characterization of ant mandibles: consequences for bite mechanics. Interface Focus 2024; 14:20230056. [PMID: 38618235 PMCID: PMC11008963 DOI: 10.1098/rsfs.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
Mandible morphology has an essential role in biting performance, but the mandible cuticle can have regional differences in its mechanical properties. The effects of such a heterogeneous distribution of cuticle material properties in the mandible responses to biting loading are still poorly explored in chewing insects. Here, we tested the mechanical properties of mandibles of the ant species Formica cunicularia by nanoindentation and investigated the effects of the cuticular variation in Young's modulus (E) under bite loading with finite-element analysis (FEA). The masticatory margin of the mandible, which interacts with the food, was the hardest and stiffest region. To unravel the origins of the mechanical property gradients, we characterized the elemental composition by energy-dispersive X-ray spectroscopy. The masticatory margin possessed high proportions of Cu and Zn. When incorporated into the FEA, variation in E effectively changed mandible stress patterns, leading to a relatively higher concentration of stresses in the stiffer mandibular regions and leaving the softer mandible blade with relatively lower stress. Our results demonstrated the relevance of cuticle E heterogeneity in mandibles under bite loading, suggesting that the accumulation of transition metals such as Cu and Zn has a relevant correlation with the mechanical characteristics in F. cunicularia mandibles.
Collapse
Affiliation(s)
- Cristian L. Klunk
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Michael Heethoff
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
| |
Collapse
|
8
|
Krings W, Below P, Gorb SN. Mandible mechanical properties and composition of the larval Glossosoma boltoni (Trichoptera, Insecta). Sci Rep 2024; 14:4695. [PMID: 38409429 PMCID: PMC10897335 DOI: 10.1038/s41598-024-55211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Insect feeding structures, such as mandibles, interact with the ingesta (food or/and substrate) and can be adapted in morphology, composition of material and mechanical properties. The foraging on abrasive ingesta, as on algae covering rocks, is particularly challenging because the mandibles will be prone to wear and structural failure, thus suggesting the presence of mandibular adaptations to accompany this feeding behavior. Adaptations to this are well studied in the mouthparts of molluscs and sea urchins, but for insects there are large gaps in our knowledge. In this study, we investigated the mandibles of a grazing insect, the larvae of the trichopteran Glossosoma boltoni. Using scanning electron microscopy, wear was documented on the mandibles. The highest degree was identified on the medial surface of the sharp mandible tip. Using nanoindentation, the mechanical properties, such as hardness and Young's modulus, of the medial and lateral mandible cuticles were tested. We found, that the medial cuticle of the tip was significantly softer and more flexible than the lateral one. These findings indicate that a self-sharpening mechanism is present in the mandibles of this species, since the softer medial cuticle is probably abraded faster than the harder lateral one, leading to sharp mandible tips. To investigate the origins of these properties, we visualized the degree of tanning by confocal laser scanning microscopy. The autofluorescence signal related to the mechanical property gradients. The presence of transition and alkaline earth metals by energy dispersive X-ray spectroscopy was also tested. We found Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Si, and Zn in the cuticle, but the content was very low and did not correlate with the mechanical property values.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, 04103, Leipzig, Germany.
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Patrick Below
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|
9
|
Chavarría-Pizarro L, Núñez-Montero K, Gutiérrez-Araya M, Watson-Guido W, Rivera-Méndez W, Pizarro-Cerdá J. Novel strains of Actinobacteria associated with neotropical social wasps (Vespidae; Polistinae, Epiponini) with antimicrobial potential for natural product discovery. FEMS MICROBES 2024; 5:xtae005. [PMID: 38476864 PMCID: PMC10929769 DOI: 10.1093/femsmc/xtae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Antimicrobial resistance has been considered a public health threat. The World Health Organization has warned about the urgency of detecting new antibiotics from novel sources. Social insects could be crucial in the search for new antibiotic metabolites, as some of them survive in places that favor parasite development. Recent studies have shown the potential of social insects to produce antimicrobial metabolites (e.g. ants, bees, and termites). However, most groups of social wasps remain unstudied. Here, we explored whether Actinobacteria are associated with workers in the Neotropical Social Wasps (Epiponini) of Costa Rica and evaluated their putative inhibitory activity against other bacteria. Most isolated strains (67%) have antagonistic effects, mainly against Bacillus thuringensis and Escherichia coli ATCC 25992. Based on genome analysis, some inhibitory Actinobacteria showed biosynthetic gene clusters (BGCs) related to the production of antimicrobial molecules such as Selvamycin, Piericidin A1, and Nystatin. The Actinobacteria could be associated with social wasps to produce antimicrobial compounds. For these reasons, we speculate that Actinobacteria associated with social wasps could be a novel source of antimicrobial compounds, mainly against Gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Chavarría-Pizarro
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - Kattia Núñez-Montero
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
- Instituto de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida Alemania 1090, 4810101 Temuco, Chile
| | - Mariela Gutiérrez-Araya
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - William Watson-Guido
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - William Rivera-Méndez
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit - Institut Pasteur 28, rue du Docteur Roux - 75724 Paris Cedex 15, France
| |
Collapse
|
10
|
Rebora M, Salerno G, Piersanti S, Saitta V, Morelli Venturi D, Li C, Gorb S. The armoured cuticle of the black soldier fly Hermetia illucens. Sci Rep 2023; 13:22101. [PMID: 38092863 PMCID: PMC10719276 DOI: 10.1038/s41598-023-49549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
We characterise in detail the larval and pupal cuticle of the black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae), a key insect species in circular economy. In particular, we focus on ultrastructure using scanning and transmission electron microscopy, material characterization and composition (elements and minerals) with confocal laser scanning microscope, energy dispersive X-ray microanalysis, powder X-ray diffraction and mechanical properties with nanoindentation measurements. Calcium carbonate crystallizes on the epicuticle as blocks of calcite in the pupal cuticle. Calcium carbonate granules are stored in two specialised Malpighian tubules. CaCO3 is already present in the cuticle of young larval instars, but it is mainly in the form of amorphous calcium carbonate while the amount of calcite increases during larval development. The presence of calcite leads to cuticle hardening. Larval and pupal cuticles contain large amounts of resilin which guarantee cuticle flexibility.
Collapse
Affiliation(s)
- Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121, Perugia, Italy
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno, 06121, Perugia, Italy.
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121, Perugia, Italy
| | - Valerio Saitta
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno, 06121, Perugia, Italy
| | - Diletta Morelli Venturi
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121, Perugia, Italy
| | - Chuchu Li
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098, Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098, Kiel, Germany.
| |
Collapse
|
11
|
Qi H, Ma Z, Xu Z, Wang S, Ma Y, Wu S, Guo M. The Design and Experimental Validation of a Biomimetic Stubble-Cutting Device Inspired by a Leaf-Cutting Ant's Mandibles. Biomimetics (Basel) 2023; 8:555. [PMID: 37999196 PMCID: PMC10669215 DOI: 10.3390/biomimetics8070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Under the conditions of conservation tillage, the existence of the root-soil complex greatly increases the resistance and energy consumption of stubble-cutting blades, especially in Northeast China. In this research, the corn root-soil complex in Northeast China was selected as the research object. Based on the multi-toothed structure of the leaf-cutting ant's mandibles and the unique bite mode of its mandibles on leaves, a gear-tooth, double-disk, bionic stubble-cutting device (BSCD) was developed by using a combination of power cutting and passive cutting. The effects of rotary speed, tillage depth, and forward speed on the torque and power of the BSCD were analyzed using orthogonal tests, and the results showed that all of the factors had a large influence on the torque and power, in the order of tillage depth > rotary speed > forward speed. The performance of the BSCD and the traditional power straight blade (TPSB) was explored using comparative tests. It was found that the optimal stubble-cutting rate of the BSCD was 97.4%. Compared with the TPSB, the torque of the BSCD was reduced by 15.2-16.4%, and the power was reduced by 9.2-11.3%. The excellent performance of the BSCD was due to the multi-toothed structure of the cutting edge and the cutting mode.
Collapse
Affiliation(s)
- Hongyan Qi
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; (H.Q.); (Z.X.); (S.W.)
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zichao Ma
- Department of Mechanical Engineering, 137 Reber Building, The Pennsylvania State University, University Park, PA 16802-440, USA;
| | - Zihe Xu
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; (H.Q.); (Z.X.); (S.W.)
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Shuo Wang
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; (H.Q.); (Z.X.); (S.W.)
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Yunhai Ma
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; (H.Q.); (Z.X.); (S.W.)
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Siyang Wu
- The College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Mingzhuo Guo
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China; (H.Q.); (Z.X.); (S.W.)
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| |
Collapse
|
12
|
Wysokowski M, Luu RK, Arevalo S, Khare E, Stachowiak W, Niemczak M, Jesionowski T, Buehler MJ. Untapped Potential of Deep Eutectic Solvents for the Synthesis of Bioinspired Inorganic-Organic Materials. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7878-7903. [PMID: 37840775 PMCID: PMC10568971 DOI: 10.1021/acs.chemmater.3c00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Indexed: 10/17/2023]
Abstract
Since the discovery of deep eutectic solvents (DESs) in 2003, significant progress has been made in the field, specifically advancing aspects of their preparation and physicochemical characterization. Their low-cost and unique tailored properties are reasons for their growing importance as a sustainable medium for the resource-efficient processing and synthesis of advanced materials. In this paper, the significance of these designer solvents and their beneficial features, in particular with respect to biomimetic materials chemistry, is discussed. Finally, this article explores the unrealized potential and advantageous aspects of DESs, focusing on the development of biomineralization-inspired hybrid materials. It is anticipated that this article can stimulate new concepts and advances providing a reference for breaking down the multidisciplinary borders in the field of bioinspired materials chemistry, especially at the nexus of computation and experiment, and to develop a rigorous materials-by-design paradigm.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Rachel K. Luu
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Sofia Arevalo
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Eesha Khare
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Witold Stachowiak
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Michał Niemczak
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Teofil Jesionowski
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Markus J. Buehler
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Center
for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Polidori C, Gabrieli P, Arnoldi I, Negri A, Soresinetti L, Faggiana S, Ferrari A, Ronchetti F, Brilli M, Bandi C, Epis S. Morphological and molecular insights into the diversity of Leptoconops biting midges from a heavily infested Mediterranean area. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100142. [PMID: 37822789 PMCID: PMC10562859 DOI: 10.1016/j.crpvbd.2023.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
The genus Leptoconops Skuse (Diptera: Ceratopogonidae) are blood-sucking midges known to pester humans and domestic animals. In certain Mediterranean areas, midges occur in large numbers during summer and limit the use of recreational areas, also raising serious health and social concerns. Despite such impact, the diversity and distribution of Leptoconops in Maremma Regional Park (Tuscany Region, Italy), a heavily infested area, is not well known, and neither molecular nor detailed morphological studies exist. We sampled adult midge females in six areas and used high-resolution digital stereomicroscopy and scanning electron microscopy to identify species and investigate the morphology of structures involved in host searching/recognition (antennae and maxillary palps) and host attack (mouthparts). We also performed energy-dispersive X-ray spectroscopy to characterize the elemental composition of mouthparts. Finally, the cytochrome c oxidase subunit 1 (cox1) gene was amplified and sequenced, to confirm species identification of collected specimens. We identified two species: Leptoconops (L.) irritans Noé and Leptoconops (L.) noei Clastrier & Coluzzi, with the former being more frequently sampled than the latter and closer to sea coast and rivers. The antennal segments appeared slightly more globular in L. noei than in L. irritans. Five types of trichoid, basiconic and chaetic sensilla were found on the antennae, with some differences between the two species. Mouthparts had the labellum visibly larger in L. noei compared with L. irritans. The maxillary palps possessed a pit filled with bulb-shaped sensilla, which appeared denser in L. noei than in L. irritans. Mouthpart cuticle included Calcium (Ca) and Aluminum (Al) at small but significant concentrations (0.3-1.0%) in both species. Our results suggest that the limited but appreciable differences in sensory system between the studied species of Leptoconops and other Ceratopogonidae may reflect different host or habitat preferences, a scenario potentially suggested also by preliminarily data on their distribution in the studied area. The presence of Ca and Al in the cuticle of mouthparts may help host skin drilling during bite activity. Finally, the gene sequences obtained in this study provide a first reference for future investigations on the taxonomy and dispersal patterns of Leptoconops spp. in the Mediterranean area.
Collapse
Affiliation(s)
- Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, 20133, Italy
| | - Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, Milan, 20133, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133, Milan, Italy
| | - Irene Arnoldi
- Department of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, Milan, 20133, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133, Milan, Italy
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
- University School of Advanced Studies Pavia, IUSS, 27100, Pavia, Italy
| | - Agata Negri
- Department of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, Milan, 20133, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133, Milan, Italy
| | - Laura Soresinetti
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | | | - Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, 20133, Italy
| | - Federico Ronchetti
- Department of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, Milan, 20133, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133, Milan, Italy
| | - Matteo Brilli
- Department of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, Milan, 20133, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, Milan, 20133, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133, Milan, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, Milan, 20133, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133, Milan, Italy
| |
Collapse
|
14
|
Meng Y, Broom M, Li A. Impact of misinformation in the evolution of collective cooperation on networks. J R Soc Interface 2023; 20:20230295. [PMID: 37751874 PMCID: PMC10522409 DOI: 10.1098/rsif.2023.0295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Human societies are organized and developed through collective cooperative behaviours. Based on the information in their environment, individuals can form collective cooperation by strategically changing unfavourable surroundings and imitating superior behaviours. However, facing the rampant proliferation and spreading of misinformation, we still lack systematic investigations into the impact of misinformation on the evolution of collective cooperation. Here, we study this problem by classical evolutionary game theory. We find that the existence of misinformation generally impedes the emergence of collective cooperation on networks, although the level of cooperation is slightly higher for weak social cooperative dilemma below a proven threshold. We further show that this possible advantage diminishes as social connections become denser, suggesting that the detrimental effect of misinformation further increases when 'social viscosity' is low. Our results uncover the quantitative effect of misinformation on suppressing collective cooperation, and pave the way for designing possible mechanisms to improve collective cooperation.
Collapse
Affiliation(s)
- Yao Meng
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Mark Broom
- Department of Mathematics, City, University of London, Northampton Square, London EC1V 0HB, UK
| | - Aming Li
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
- Center for Multi-Agent Research, Institute for Artificial Intelligence, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
15
|
Fang Y, Lee S, Xu H, Farfan GA. Organic Controls over Biomineral Ca-Mg Carbonate Compositions and Morphologies. CRYSTAL GROWTH & DESIGN 2023; 23:4872-4882. [PMID: 37426546 PMCID: PMC10326858 DOI: 10.1021/acs.cgd.3c00102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Indexed: 07/11/2023]
Abstract
Calcium carbonate minerals, such as aragonite and calcite, are widespread in biomineral skeletons, shells, exoskeletons, and more. With rapidly increasing pCO2 levels linked to anthropogenic climate change, carbonate minerals face the threat of dissolution, especially in an acidifying ocean. Given the right conditions, Ca-Mg carbonates (especially disordered dolomite and dolomite) are alternative minerals for organisms to utilize, with the added benefit of being harder and more resistant to dissolution. Ca-Mg carbonate also holds greater potential for carbon sequestration due to both Ca and Mg cations being available to bond with the carbonate group (CO32-). However, Mg-bearing carbonates are relatively rare biominerals because the high kinetic energy barrier for the dehydration of the Mg2+-water complex severely restricts Mg incorporation in carbonates at Earth surface conditions. This work presents the first overview of the effects of the physiochemical properties of amino acids and chitins on the mineralogy, composition, and morphology of Ca-Mg carbonates in solutions and on solid surfaces. We discovered that acidic, negatively charged, hydrophilic amino acids (aspartic and glutamic) and chitins could induce the precipitation of high-magnesium calcite (HMC) and disordered dolomite in solution and on solid surfaces with these adsorbed biosubstrates via in vitro experiments. Thus, we expect that acidic amino acids and chitins are among the controlling factors in biomineralization used in different combinations to control the mineral phases, compositions, and morphologies of Ca-Mg carbonate biomineral crystals.
Collapse
Affiliation(s)
- Yihang Fang
- Department
of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Mineral Sciences, National Museum of
Natural History, Smithsonian Institution, Washington, District of Columbia 20560, United States
- Department
of Earth and Planetary Sciences, Washington
University in St. Louis, St. Louis, Missouri 63130, United States
| | - Seungyeol Lee
- USRA
Lunar and Planetary Institute, Houston, Texas 77058, United States
- ARES,
NASA Johnson Space Center, Houston, Texas 77058, United States
- Department
of Earth and Environmental Sciences, Chungbuk
National University, Cheongju 28644, Republic
of Korea
| | - Huifang Xu
- Department
of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gabriela A. Farfan
- Department
of Mineral Sciences, National Museum of
Natural History, Smithsonian Institution, Washington, District of Columbia 20560, United States
| |
Collapse
|
16
|
Yamamoto Y, Fujiwara Y. Calcium storage in Malpighian tubules and the putative use for pupal chamber formation in a wood-feeding insect. JOURNAL OF INSECT PHYSIOLOGY 2023:104534. [PMID: 37364813 DOI: 10.1016/j.jinsphys.2023.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Cerambycid beetles form a chamber to spend their pupal stages in various forms according to the species. The red-necked longhorn beetle Aromia bungii (Coleoptera: Cerambycidae), which is an invasive pest that severely damages Rosaceae trees, makes a pupal chamber at the end of a tunnel deep in the xylem. Beetle larvae and the closely related species form a calcareous lid at the entrance of a pupal chamber. Previous studies on the closely related species conducted more than century ago suggested that Malpighian tubules (MTs) play a vital role in calcium carbonate accumulation. However, the association between this Ca2+ accumulation and pupal chamber lid formation utilizing the possible calcium compounds stored in MTs have not yet been demonstrated. First, we artificially reared A. bungii larvae from eggs in host branches for 100 days and identified the larval developmental status and pupal chamber formation, using X-ray computed tomography. Second, we collected larvae from the branches and observed the internal organs by direct dissection under a microscope. Finally, we analyzed the elemental distribution, particularly calcium, in the larval gut with MTs, using energy dispersive X-ray fluorescence. The results suggest that immature larvae of A. bungii could accumulate Ca2+ in the MTs through wood tunneling and feeding activities. Ca2+ was stored at the proximal regions in two of the six MTs located posteriorly in the body. Additionally, larvae that formed a calcareous lid at the entrance of pupal chambers in the branches did not store Ca2+ in the MTs, suggesting that the larvae of A. bungii used the stored Ca2+ in their MTs for lid formation.
Collapse
Affiliation(s)
- Yuichi Yamamoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 442, Shakudo, Habikino, Osaka 583-0862, Japan.
| | - Yuko Fujiwara
- Laboratory of Wood Processing Division of Forestry and Biomaterials Science Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan
| |
Collapse
|
17
|
Püffel F, Meyer L, Imirzian N, Roces F, Johnston R, Labonte D. Developmental biomechanics and age polyethism in leaf-cutter ants. Proc Biol Sci 2023; 290:20230355. [PMID: 37312549 PMCID: PMC10265030 DOI: 10.1098/rspb.2023.0355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
Many social insects display age polyethism: young workers stay inside the nest, and only older workers forage. This behavioural transition is accompanied by genetic and physiological changes, but the mechanistic origin of it remains unclear. To investigate if the mechanical demands on the musculoskeletal system effectively prevent young workers from foraging, we studied the biomechanical development of the bite apparatus in Atta vollenweideri leaf-cutter ants. Fully matured foragers generated peak in vivo bite forces of around 100 mN, more than one order of magnitude in excess of those measured for freshly eclosed callows of the same size. This change in bite force was accompanied by a sixfold increase in the volume of the mandible closer muscle, and by a substantial increase of the flexural rigidity of the head capsule, driven by a significant increase in both average thickness and indentation modulus of the head capsule cuticle. Consequently, callows lack the muscle force capacity required for leaf-cutting, and their head capsule is so compliant that large muscle forces would be likely to cause damaging deformations. On the basis of these results, we speculate that continued biomechanical development post eclosion may be a key factor underlying age polyethism, wherever foraging is associated with substantial mechanical demands.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London, UK
| | - Lara Meyer
- Faculty of Nature and Engineering, City University of Applied Sciences Bremen, Bremen, Germany
| | - Natalie Imirzian
- Department of Bioengineering, Imperial College London, London, UK
| | - Flavio Roces
- Department of Behavioural Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | | | - David Labonte
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
18
|
Reiter KE, Perkovich C, Smith KN, Feng J, Kritsky G, Lehnert MS. Comparative Material and Mechanical Properties among Cicada Mouthparts: Cuticle Enhanced with Inorganic Elements Facilitates Piercing through Woody Stems for Feeding. BIOLOGY 2023; 12:biology12020207. [PMID: 36829484 PMCID: PMC9953083 DOI: 10.3390/biology12020207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Adult cicadas pierce woody stems with their mouthparts to feed on xylem, suggesting the presence of cuticular adaptations that could increase hardness and elastic modulus. We tested the following hypotheses: (a) the mouthpart cuticle includes inorganic elements, which augment the mechanical properties; (b) these elements are abundant in specific mouthpart structures and regions responsible for piercing wood; (c) there are correlations among elements, which could provide insights into patterns of element colocalization. We used scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to investigate mouthpart morphology and quantify the elemental composition of the cuticle among four cicada species, including periodical cicadas (Magicicada sp.). Nanoindentation was used to quantify hardness and elastic modulus of the mandibles. We found 12 inorganic elements, including colocalized manganese and zinc in the distal regions of the mandible, the structure most responsible for piercing through wood; nanoindentation determined that these regions were also significantly harder and had higher elastic modulus than other regions. Manganese and zinc abundance relates to increased hardness and stiffness as in the cuticle of other invertebrates; however, this is one of the first reports of cuticular metals among insects with piercing-sucking mouthparts (>100,000 described species). The present investigation provides insight into the feeding mechanism of cicadas, an important but understudied component of their life traits.
Collapse
Affiliation(s)
- Kristen E. Reiter
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
| | - Cynthia Perkovich
- Biology and Toxicology Department, Ashland University, Ashland, OH 44805, USA
| | - Katelynne N. Smith
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
| | - Jiansheng Feng
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | - Gene Kritsky
- Department of Biology, Mount St. Joseph University, Cincinnati, OH 45233, USA
| | - Matthew S. Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA
- Correspondence:
| |
Collapse
|
19
|
Tan Q, Li X, Sun P, Zhao J, Yang Q, Wang L, Deng Y, Shen G. Fluorescent carbon dots from water hyacinth as detection sensors for ferric ions: the preparation and optimisation using response surface methodology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3573-3582. [PMID: 36043469 DOI: 10.1039/d2ay01182d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The search for alternatives to chemicals from natural products as precursors for the preparation of highly doped carbon dots (CDs) remains challenging. Novel CDs (W-CDs) were synthesised using a one-step pyrolysis method with wastewater hyacinth as the sole carbon and nitrogen source at a mild temperature without using any surface-activating reagents or salt. The obtained W-CDs emitted strong blue fluorescence under 365 nm UV light excitation, with a quantum yield of 15.12%. The Box-Behnken design of the response surface methodology was applied to optimize the W-CD preparation conditions, including the reaction temperature, reaction time and weight of water hyacinths. The temperature was found to be the most important factor affecting the fluorescence intensity of the W-CDs. Additionally, the fluorescence sensor based on W-CDs demonstrated excellent selectivity towards ferric (Fe) ions, with a limit of detection of 2.35 μM. The fluorescent sensor was successfully applied for detecting Fe3+ in real water samples with a recovery of 97.80-103.10%. Hence, the pyrolysis of water hyacinth is proven to be a rapid, effective and green approach for CDs and provides a novel method for recycling water hyacinth.
Collapse
Affiliation(s)
- Qiren Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoying Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Jie Zhao
- Shanghai Pudong Agriculture Technology Extension Centre, Shanghai 201201, China
| | - Qinyan Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lumei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Yun Deng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| |
Collapse
|
20
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
21
|
Exceptional properties of hyper-resistant armor of a hydrothermal vent crab. Sci Rep 2022; 12:11816. [PMID: 35821397 PMCID: PMC9276715 DOI: 10.1038/s41598-022-15982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Animals living in extreme environments, such as hydrothermal vents, would be expected to have evolved protective shells or exoskeletons to maintain homeostasis. The outer part of the exoskeleton of vent crabs (Austinograea sp.) in the Indian Ocean hydrothermal vent was one of the hardest (approximately 7 GPa) biological materials ever reported. To explore the exoskeletal characteristics of vent crabs which enable them to adapt to severe environments, a comparative analysis was conducted with the Asian paddle crab (Charybdis japonica) living in coastal areas. Nanoindentation, thermogravimetric analysis, scanning electron microscopy, energy dispersive x-ray analysis, and Raman spectroscopy were used to analyze the mechanical properties, thermal stability, structure, surface components, and the composition of compounds, respectively. Though both species have four-layered exoskeletons, the outermost layer of the vent crab, a nano-granular structure, was much thicker than that of the coastal crab. The proportions of aluminum and sulfur that constitute the epicuticle of the exoskeleton were higher in the vent crab than in the coastal crab. There was a lack of water or volatile substances, lots of CaCO3, and no carotenoid-based compounds in the exoskeleton of the vent crab. These might have improved the mechanical properties and thermal stability of the hydrothermal species.
Collapse
|
22
|
Jiang H, Tomaschek F, Drew Muscente A, Niu C, Nyunt TT, Fang Y, Schmidt U, Chen J, Lönartz M, Mähler B, Wappler T, Jarzembowski EA, Szwedo J, Zhang H, Rust J, Wang B. Widespread mineralization of soft-bodied insects in Cretaceous amber. GEOBIOLOGY 2022; 20:363-376. [PMID: 35212124 DOI: 10.1111/gbi.12488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Fossilized tree resin, or amber, commonly contains fossils of animals, plants and microorganisms. These inclusions have generally been interpreted as hollow moulds or mummified remains coated or filled with carbonaceous material. Here, we provide the first report of calcified and silicified insects in amber from the mid-Cretaceous Kachin (Burmese) amber. Data from light microscopy, scanning electron microscopy (SEM), energy-dispersive and wavelength-dispersive X-ray spectroscopy (EDX and WDX), X-ray micro-computed tomography (Micro-CT) and Raman spectroscopy show that these Kachin fossils owe their preservation to multiple diagenetic mineralization processes. The labile tissues (e.g. eyes, wings and trachea) mainly consist of calcite, chalcedony and quartz with minor amounts of carbonaceous material, pyrite, iron oxide and phyllosilicate minerals. Calcite, quartz and chalcedony also occur in cracks as void-filling cements, indicating that the minerals formed from chemical species that entered the fossil inclusions through cracks in the resin. The results demonstrate that resin and amber are not always closed systems. Fluids (e.g. sediment pore water, diagenetic fluid and ground water) at different burial stages have chances to interact with amber throughout its geological history and affect the preservational quality and morphological fidelity of its fossil inclusions.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Frank Tomaschek
- Section Geochemistry/Petrology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Changtai Niu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
- University of Science and Technology of China, Hefei, China
| | - Thet Tin Nyunt
- Department of Geological Survey and Mineral Exploration, Myanmar Gems Museum, Ministry of Natural Resources and Environmental Conservation, Nay Pyi Taw, Myanmar
| | - Yan Fang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | | | - Jun Chen
- Institute of Geology and Paleontology, Linyi University, Linyi, China
| | - Mara Lönartz
- Section Geochemistry/Petrology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute of Energy and Climate Research (IEK-6): Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bastian Mähler
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Torsten Wappler
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Natural History Department, Hessisches Landesmuseum Darmstadt, Darmstadt, Germany
| | - Edmund A Jarzembowski
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Jacek Szwedo
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Department of Invertebrate Zoology and Parasitology, University of Gdańsk, Gdańsk, Poland
| | - Haichun Zhang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Jes Rust
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
23
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
24
|
Qin D, He Z, Li P, Zhang S. Liquid-Liquid Phase Separation in Nucleation Process of Biomineralization. Front Chem 2022; 10:834503. [PMID: 35186885 PMCID: PMC8854647 DOI: 10.3389/fchem.2022.834503] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Biomineralization is a typical interdisciplinary subject attracting biologists, chemists, and geologists to figure out its potential mechanism. A mounting number of studies have revealed that the classical nucleation theory is not suitable for all nucleation process of biominerals, and phase-separated structures such as polymer-induced liquid precursors (PILPs) play essential roles in the non-classical nucleation processes. These structures are able to play diverse roles biologically or pathologically, and could also give inspiring clues to bionic applications. However, a lot of confusion and dispute occurred due to the intricacy and interdisciplinary nature of liquid precursors. Researchers in different fields may have different opinions because the terminology and current state of understanding is not common knowledge. As a result, our team reviewed the most recent articles focusing on the nucleation processes of various biominerals to clarify the state-of-the-art understanding of some essential concepts and guide the newcomers to enter this intricate but charming field.
Collapse
Affiliation(s)
| | | | - Peng Li
- *Correspondence: Peng Li, ; Shutian Zhang,
| | | |
Collapse
|
25
|
Fang Y, Zhang F, Farfan GA, Xu H. Low-Temperature Synthesis of Disordered Dolomite and High-Magnesium Calcite in Ethanol-Water Solutions: The Solvation Effect and Implications. ACS OMEGA 2022; 7:281-292. [PMID: 35036699 PMCID: PMC8757334 DOI: 10.1021/acsomega.1c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
How dolomite [CaMg(CO3)2] forms is still underdetermined, despite over a century of efforts. Challenges to synthesizing dolomite at low temperatures have hindered our understanding of sedimentary dolomite formation. Unlike calcium, magnesium's high affinity toward water results in kinetic barriers from hydration shells that prevent anhydrous Ca-Mg carbonate growth. Previous synthesis studies show that adding low-dielectric-constant materials, such as dioxane, dissolved sulfide, and dissolved silica, can catalyze the formation of disordered dolomite. Also, polar hydrophilic amino acids and polysaccharides, which are very common in biomineralizing organisms, could have a positive role in stimulating Mg-rich carbonate precipitation. Here, we show that disordered dolomite and high-magnesium calcite can be precipitated at room temperature by partially replacing water with ethanol (which has a lower dielectric constant) and bypassing the hydration barrier. Increasing the ethanol volume percentage of ethanol results in higher Mg incorporation into the calcite structure. When the ethanol volume percentage increases to 75 vol %, disordered dolomite (>60 mol % MgCO3) can rapidly precipitate from a solution with [Mg2+] and [Ca2+] mimicking seawater. Thus, our results suggest that the hydration barrier is the critical kinetic inhibitor to primary dolomite precipitation. Ethanol synthesis experiments may provide insights into other materials that share similar properties to promote high-Mg calcite precipitation in sedimentary and biomineral environments.
Collapse
Affiliation(s)
- Yihang Fang
- NASA
Astrobiology Institute, Department of Geoscience, University of Wisconsin−Madison, 1215 W Dayton Street, Madison, Wisconsin 53706, United States
- Department
of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, District of Columbia 20560, United States
| | - Fangfu Zhang
- NASA
Astrobiology Institute, Department of Geoscience, University of Wisconsin−Madison, 1215 W Dayton Street, Madison, Wisconsin 53706, United States
| | - Gabriela A. Farfan
- Department
of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, District of Columbia 20560, United States
| | - Huifang Xu
- NASA
Astrobiology Institute, Department of Geoscience, University of Wisconsin−Madison, 1215 W Dayton Street, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Kertmen A, Petrenko I, Schimpf C, Rafaja D, Petrova O, Sivkov V, Nekipelov S, Fursov A, Stelling AL, Heimler K, Rogoll A, Vogt C, Ehrlich H. Calcite Nanotuned Chitinous Skeletons of Giant Ianthella basta Marine Demosponge. Int J Mol Sci 2021; 22:ijms222212588. [PMID: 34830470 PMCID: PMC8621073 DOI: 10.3390/ijms222212588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Marine sponges were among the first multicellular organisms on our planet and have survived to this day thanks to their unique mechanisms of chemical defense and the specific design of their skeletons, which have been optimized over millions of years of evolution to effectively inhabit the aquatic environment. In this work, we carried out studies to elucidate the nature and nanostructural organization of three-dimensional skeletal microfibers of the giant marine demosponge Ianthella basta, the body of which is a micro-reticular, durable structure that determines the ideal filtration function of this organism. For the first time, using the battery of analytical tools including three-dimensional micro—X-ray Fluorescence (3D-µXRF), X-ray diffraction (XRD), infra-red (FTIR), Raman and Near Edge X-ray Fine Structure (NEXAFS) spectroscopy, we have shown that biomineral calcite is responsible for nano-tuning the skeletal fibers of this sponge species. This is the first report on the presence of a calcitic mineral phase in representatives of verongiid sponges which belong to the class Demospongiae. Our experimental data suggest a possible role for structural amino polysaccharide chitin as a template for calcification. Our study suggests further experiments to elucidate both the origin of calcium carbonate inside the skeleton of this sponge and the mechanisms of biomineralization in the surface layers of chitin microfibers saturated with bromotyrosines, which have effective antimicrobial properties and are responsible for the chemical defense of this organism. The discovery of the calcified phase in the chitinous template of I. basta skeleton is expected to broaden the knowledge in biomineralization science where the calcium carbonate is regarded as a valuable material for applications in biomedicine, environmental science, and even in civil engineering.
Collapse
Affiliation(s)
- Ahmet Kertmen
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (A.K.); (I.P.)
| | - Iaroslav Petrenko
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (A.K.); (I.P.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, Raum 307, 09599 Freiberg, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner Str. 5, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner Str. 5, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Olga Petrova
- Institute of Physics and Mathematics of Federal Research Centre Komi Science Center Ural Division of the Russian Academy of Sciences (IPM FRC Komi SC UrB RAS), 167982 Syktyvkar, Russia; (O.P.); (V.S.); (S.N.)
| | - Viktor Sivkov
- Institute of Physics and Mathematics of Federal Research Centre Komi Science Center Ural Division of the Russian Academy of Sciences (IPM FRC Komi SC UrB RAS), 167982 Syktyvkar, Russia; (O.P.); (V.S.); (S.N.)
| | - Sergey Nekipelov
- Institute of Physics and Mathematics of Federal Research Centre Komi Science Center Ural Division of the Russian Academy of Sciences (IPM FRC Komi SC UrB RAS), 167982 Syktyvkar, Russia; (O.P.); (V.S.); (S.N.)
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, Raum 307, 09599 Freiberg, Germany;
| | - Allison L. Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA;
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Hermann Ehrlich
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland; (A.K.); (I.P.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, Raum 307, 09599 Freiberg, Germany;
- Correspondence:
| |
Collapse
|
27
|
Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021; 164:401-432. [PMID: 34233014 PMCID: PMC8517599 DOI: 10.1111/imm.13390] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Christa Heryanto
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Taha Bassal
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationGuizhou UniversityGuiyangChina
| | - Gianluca Tettamanti
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Amr Mohamed
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| |
Collapse
|
28
|
Crumière AJJ, James A, Lannes P, Mallett S, Michelsen A, Rinnan R, Shik JZ. The multidimensional nutritional niche of fungus-cultivar provisioning in free-ranging colonies of a neotropical leafcutter ant. Ecol Lett 2021; 24:2439-2451. [PMID: 34418263 PMCID: PMC9292433 DOI: 10.1111/ele.13865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
Foraging trails of leafcutter colonies are iconic scenes in the Neotropics, with ants collecting freshly cut plant fragments to provision a fungal food crop. We hypothesised that the fungus‐cultivar's requirements for macronutrients and minerals govern the foraging niche breadth of Atta colombica leafcutter ants. Analyses of plant fragments carried by foragers showed how nutrients from fruits, flowers and leaves combine to maximise cultivar performance. While the most commonly foraged leaves delivered excess protein relative to the cultivar's needs, in vitro experiments showed that the minerals P, Al and Fe may expand the leafcutter foraging niche by enhancing the cultivar's tolerance to protein‐biased substrates. A suite of other minerals reduces cultivar performance in ways that may render plant fragments with optimal macronutrient blends unsuitable for provisioning. Our approach highlights how the nutritional challenges of provisioning a mutualist can govern the multidimensional realised niche available to a generalist insect herbivore.
Collapse
Affiliation(s)
- Antonin J J Crumière
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Aidan James
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pol Lannes
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Mallett
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Michelsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Riikka Rinnan
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Z Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| |
Collapse
|
29
|
deVries MS, Lowder KB, Taylor JRA. From Telson to Attack in Mantis Shrimp: Bridging Biomechanics and Behavior in Crustacean Contests. Integr Comp Biol 2021; 61:643-654. [PMID: 33974067 DOI: 10.1093/icb/icab064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the spirit of this symposium on the physical mechanisms of behavior, we review mantis shrimp ritualized fighting, from the telson to the attack, as an inspiring example of how the integration of biomechanics and behavioral research can yield a penetrating narrative for how animals accomplish important activities, including agonistic actions. Resolving conflicts with conspecifics over valuable resources is an essential task for animals, and this takes an unusual form in mantis shrimp due to their powerful raptorial appendages. Decades of field and laboratory research have provided key insights into the natural agonistic interactions of diverse mantis shrimp species, including how they use their raptorial weapons against one another in telson sparring matches over cavities. These insights provided the foundation for functional morphologists, biomechanists, and engineers to work through different levels of organization: from the kinematics of how the appendages move to the elastic mechanisms that power the strike, and down to the structure, composition, and material properties that transmit and protect against high-impact forces. Completing this narrative are studies on the defensive telson and how this structure is biomechanically matched to the weapon and the role it plays in ritualized fighting. The biomechanical understanding of the weapon and defense in mantis shrimp has, in turn, enabled a better understanding of whether mantis shrimp assess one another during contests and encouraged questions of evolutionary drivers on both the arsenal and behavior. Altogether, the body of research focused on mantis shrimp has presented perhaps the most comprehensive understanding of fighting, weapons, and defenses among crustaceans, from morphology and biomechanics to behavior and evolution. While this multi-level analysis of ritualized fighting in mantis shrimp is comprehensive, we implore the need to include additional levels of analysis to obtain a truly holistic understanding of this and other crustacean agonistic interactions. Specifically, both molting and environmental conditions are often missing from the narrative, yet they greatly affect crustacean weapons, defenses, and behavior. Applying this approach more broadly would generate a similarly profound understanding of how crustaceans carry out a variety of important tasks in diverse habitats.
Collapse
Affiliation(s)
- Maya S deVries
- Department of Biological Sciences, San José State University, San Jose, CA 95192, USA
| | | | - Jennifer R A Taylor
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Valencia-Giraldo SM, Niño-Castro A, López-Peña A, Trejos-Vidal D, Correa-Bueno O, Montoya-Lerma J. Immunity and survival response of Atta cephalotes (Hymenoptera: Myrmicinae) workers to Metarhizium anisopliae infection: Potential role of their associated microbiota. PLoS One 2021; 16:e0247545. [PMID: 33626077 PMCID: PMC7904218 DOI: 10.1371/journal.pone.0247545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Abstract
Leaf-cutting ants of the genera Atta and Acromyrmex are at constant risk of epizootics due to their dense living conditions and frequent social interactions between genetically related individuals. To help mitigate the risk of epizootics, these ants display individual and collective immune responses, including associations with symbiotic bacteria that can enhance their resistance to pathogenic infections. For example, Acromyrmex spp. harbor actinobacteria that control infection by Escovopsis in their fungal gardens. Although Atta spp. do not maintain symbiosis with protective actinobacteria, the evidence suggests that these insects are colonized by bacterial microbiota that may play a role in their defense against pathogens. The potential role of the bacterial microbiome of Atta workers in enhancing host immunity remains unexplored. We evaluated multiple parameters of the individual immunity of Atta cephalotes (Linnaeus, 1758) workers, including hemocyte count, encapsulation response, and the antimicrobial activity of the hemolymph in the presence or absence of bacterial microbiota. Experiments were performed on ants reared under standard conditions as well as on ants previously exposed to the entomopathogenic fungus Metharrizium anisopliae. Furthermore, the effects of the presence/absence of bacteria on the survival of workers exposed to M. anisopliae were evaluated. The bacterial microbiota associated with A. cephalotes workers does not modulate the number of hemocytes under control conditions or under conditions of exposure to the fungal pathogen. In addition, infection by M. anisopliae, but not microbiota, increases the encapsulation response. Similarly, the exposure of workers to this fungus led to increased hemolymph antimicrobial activity. Conversely, the removal of bacterial microbiota did not have a significant impact on the survival of workers with M. anisopliae. Our results suggest that the bacterial microbiota associated with the cuticle of A. cephalotes workers does not play a role as a modulator of innate immunity, either at baseline or after exposure to the entomopathogen M. anisopliae. Further, upon infection, workers rely on mechanisms of humoral immunity to respond to this threat. Overall, our findings indicate that the bacterial microbiota associated with A. cephalotes workers does not play a defensive role.
Collapse
Affiliation(s)
| | - Andrea Niño-Castro
- Department of Biology, Universidad del Valle, Cali, Valle del Cauca, Colombia
- * E-mail: (SMVG); (ANC)
| | - Andrea López-Peña
- Department of Biology, Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Danna Trejos-Vidal
- Department of Biology, Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Odair Correa-Bueno
- Center for the Study of Social Insects (CEIS), São Paulo State University (UNESP), Campus Rio Claro, Rio Claro, São Paulo, Brazil
| | - James Montoya-Lerma
- Department of Biology, Universidad del Valle, Cali, Valle del Cauca, Colombia
| |
Collapse
|