1
|
Lu J, Zhou X, Zhu H, Zou M, Liu L, Li X, Gu M. POGZ targeted by LINC01355/miR-27b-3p retards thyroid cancer progression via interplaying with MAD2L2. 3 Biotech 2025; 15:79. [PMID: 40071126 PMCID: PMC11890915 DOI: 10.1007/s13205-025-04231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
UNLABELLED Despite the high morbidity of thyroid cancer (THCA), the underlying molecular pathology remains elusive. That autism-associated protein POGZ has recently been involved in tumorigenesis intrigues us exploring its relevant molecular regulatory network in THCA. Clinical characteristics and intermolecular relationships were dissected by bioinformatics. Interaction between POGZ and MAD2L2 was examined by Co-IP assay. Targeting relationships between miR-27b-3p and POGZ/LINC01355 was verified by sequence prediction and dual-luciferase reporter detection. Cellular effects of genes were assessed by CCK-8 assay, clone formation assay, and Transwell assay, and further confirmed by a tumor-bearing nude mice model. Our results demonstrated a decrease in POGZ expression in THCA tissues and cell lines, and an interaction between POGZ and MAD2L2 protein. POGZ inhibited both the proliferation and motility of THCA cells, with these effects being reversed upon MAD2L2 silencing. LINC01355 exhibited low expression level and a positive correlation with POGZ in THCA. Both miR-27b-3p and LINC01355 were identified as regulators of POGZ through targeting. Elevated miR-27b-3p suppressed POGZ expression. LINC01355 promoted POGZ and counteracted the inhibitory effects of miR-27b-3p. Furthermore, miR-27b-3p increased the proliferation and motility of THCA cells, an effect that was blocked by LINC01355. At the animal level, POGZ, LINC01355, and MAD2L2 all attenuated tumor growth in THCA. Collectively, POGZ restrains THCA growth by interacting with MAD2L2 protein, and POGZ modulation involves a complex interplay orchestrated by LINC01355-targeted miR-27b-3p. By reporting the first POGZ-focused ceRNA network involving noncoding RNA in THCA, our study paves the way for exploring POGZ-related pathways and developing new therapeutic strategies in cancer. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-025-04231-7.
Collapse
Affiliation(s)
- Jiancan Lu
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135 China
| | - Xinglu Zhou
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| | - Hongling Zhu
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| | - Mei Zou
- PharmaLegacy Laboratories, Shanghai, 201201 China
| | - Lianyong Liu
- Department of Endocrinology and Metabolism, Punan Hospital, Pudong New District, Shanghai, 200125 China
| | - Xiangqi Li
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| | - Mingjun Gu
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| |
Collapse
|
2
|
Blázquez A, Rodriguez-Revenga L, Alvarez-Mora MI, Calvo R. Clinical and genetic findings in autism spectrum disorders analyzed using exome sequencing. Front Psychiatry 2025; 16:1515793. [PMID: 40071278 PMCID: PMC11893851 DOI: 10.3389/fpsyt.2025.1515793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Autism spectrum disorder (ASD) refers to a group of complex neurodevelopmental disorders and is characterized by impaired reciprocal social interaction and communication, as well as the presence of restricted interests and stereotyped and repetitive behaviors. As a complex neurodevelopmental disorder, the phenotype and severity of autism are extremely heterogeneous, with differences from one patient to another. Chromosome microarray (CMA) and fragile X syndrome analyses has been used as a powerful tool to identify new candidate genes for ASD. METHODS In the present study, CMA was first used to scan for genome-wide copy number variants in the patient, and no clinically significant copy number variants were found. Exome sequencing (ES) was used for further genetic testing. RESULTS ES was performed on 20 subjects. Eighty percent of our sample presented intellectual disability. Other co-occurring clinical conditions included speech disorders, psychomotor delay, the presence of dysmorphic features and medical co-morbidities. A pathogenic variant was identified in 10 patients (ADNP, FBN1, WAC, ASXL3, NR4A2, ALX4, ANKRD1, POGZ, SHANK3 and BPTF). Patients with a positive finding in ES were more likely to present a dysmorphic trunk, more than three dysmorphic features, hypotonia, psychomotor delay and strabismus. CONCLUSIONS ES offers expanded diagnostic options for patients with ASD who are negative on CMA. However, further studies are needed for a better understanding of ASD etiology and also the different phenotypes.
Collapse
Affiliation(s)
- Ana Blázquez
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Basic Clinal Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Laia Rodriguez-Revenga
- Department of Biochemistry and Molecular Genetics, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Research Group in New Therapeutic and Diagnostic Strategies in Liver Diseases Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - María I. Alvarez-Mora
- Department of Biochemistry and Molecular Genetics, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Research Group in New Therapeutic and Diagnostic Strategies in Liver Diseases Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Calvo
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Clémot-Dupont S, Lourenço Fernandes JA, Larrigan S, Sun X, Medisetti S, Stanley R, El Hankouri Z, Joshi SV, Picketts DJ, Shekhar K, Mattar P. The chromatin remodeler ADNP regulates neurodevelopmental disorder risk genes and neocortical neurogenesis. Proc Natl Acad Sci U S A 2025; 122:e2405981122. [PMID: 39808658 PMCID: PMC11760920 DOI: 10.1073/pnas.2405981122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo ADNP mutations lead to intellectual disability and autism spectrum disorder. However, germline Adnp knockout mice were previously shown to exhibit early embryonic lethality, obscuring subsequent roles for the ChAHP complex in neurogenesis. To circumvent this early developmental arrest, we generated a conditional Adnp mutant allele. Using single-cell transcriptomics, cut&run-seq, and histological approaches, we show that during neocortical development, Adnp orchestrates the production of late-born, upper-layer neurons through a two-step process. First, Adnp is required to sustain progenitor proliferation specifically during the developmental window for upper-layer cortical neurogenesis. Accordingly, we found that Adnp recruits the ChAHP subunit Chd4 to genes associated with progenitor proliferation. Second, in postmitotic differentiated neurons, we define a network of risk genes linked to NDDs that are regulated by Adnp and Chd4. Taken together, these data demonstrate that ChAHP is critical for driving the expansion of upper-layer cortical neurons and for regulating neuronal gene expression programs, suggesting that these processes may potentially contribute to NDD etiology.
Collapse
Affiliation(s)
- Samuel Clémot-Dupont
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - José Alex Lourenço Fernandes
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Sarah Larrigan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Xiaoqi Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Suma Medisetti
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Rory Stanley
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Ziyad El Hankouri
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Shrilaxmi V. Joshi
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA94720
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Pierre Mattar
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ONK1H 8L6
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONK1H 8M5
| |
Collapse
|
4
|
Yoshizaki Y, Ouchi Y, Kurniawan D, Yumoto E, Yoneyama Y, Rizqullah FR, Sato H, Sarholz MH, Natsume T, Kanemaki MT, Ikeda M, Ui A, Iemura K, Tanaka K. CHAMP1 premature termination codon mutations found in individuals with intellectual disability cause a homologous recombination defect through haploinsufficiency. Sci Rep 2024; 14:31904. [PMID: 39738383 PMCID: PMC11686235 DOI: 10.1038/s41598-024-83435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
CHAMP1 (chromosome alignment-maintaining phosphoprotein 1) plays a role in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). The CHAMP1 gene is one of the genes mutated in individuals with intellectual disability. The majority of the mutations are premature termination codon (PTC) mutations, while missense mutations have also been reported. How these mutations affect the functions of CHAMP1 has not been clarified yet. Here we investigated the effects of the CHAMP1 mutations on HR. In Epstein-Barr virus-induced lymphoblastoid cells and fibroblasts derived from individuals with CHAMP1 PTC mutations, truncated CHAMP1 proteins of the expected sizes were detected. When DSBs were induced in fibroblasts with PTC mutations, a defect in HR was detected. U2OS cells expressing the CHAMP1 mutants did not show an HR defect in the presence of endogenous wild-type (WT) CHAMP1, whereas they were unable to restore HR activity when CHAMP1 WT was depleted, suggesting that the PTC mutations are loss-of-function mutations. On the other hand, the CHAMP1 mutants with missense mutations restored HR activity when CHAMP1 WT was depleted. In DLD-1 cells, heterozygous depletion of CHAMP1 resulted in an HR defect, indicating haploinsufficiency. These results suggest that CHAMP1 PTC mutations cause an HR defect through a haploinsufficient mechanism, while CHAMP1 missense mutations do not affect the HR function of CHAMP1.
Collapse
Affiliation(s)
- Yujiro Yoshizaki
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Molecular Oncology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yunosuke Ouchi
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Molecular Oncology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Dicky Kurniawan
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Molecular Oncology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Eisuke Yumoto
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Molecular Oncology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Yoneyama
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Faiza Ramadhani Rizqullah
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiyori Sato
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mirjam Hanako Sarholz
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ayako Ui
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- IDAC Fellow Laboratory, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Molecular Oncology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
5
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: implications for brain development and autism. Transl Psychiatry 2024; 14:482. [PMID: 39632793 PMCID: PMC11618798 DOI: 10.1038/s41398-024-03179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 258 genes that have been reported to modulate fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. Notably, at least 40 genes that are known to regulate embryonic neurogenesis were dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or downregulated by VPA in the fetal brain and (b) associated with autism and/or known to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The genes meeting these criteria provide potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G Dorsey
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
| | - Evelina Mocci
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
- Institute for Genome Sciences University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Malcolm V Lane
- Translational Toxicology/Department of Epidemiology and Public Health University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce K Krueger
- Departments of Physiology and Psychiatry University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Heath J, Mirabelli C, Annis MG, Sabourin V, Hebert S, Findlay S, Kim H, Witcher M, Kleinman CL, Siegel PM, Orthwein A, Ursini-Siegel J. The Neurodevelopmental Protein POGZ Suppresses Metastasis in Triple-Negative Breast Cancer by Attenuating TGFβ Signaling. Cancer Res 2024; 84:3743-3760. [PMID: 39137399 DOI: 10.1158/0008-5472.can-23-3887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/03/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The pogo transposable element-derived zinc finger protein, POGZ, is notably associated with neurodevelopmental disorders through its role in gene transcription. Many proteins involved in neurological development are often dysregulated in cancer, suggesting a potential role for POGZ in tumor biology. Here, we provided experimental evidence that POGZ influences the growth and metastatic spread of triple-negative breast cancers (TNBC). In well-characterized models of TNBC, POGZ exerted a dual role, both as a tumor promoter and metastasis suppressor. Mechanistically, loss of POGZ potentiated TGFβ pathway activation to exert cytostatic effects while simultaneously increasing the mesenchymal and migratory properties of breast tumors. Although POGZ levels are elevated in human breast cancers, the most aggressive forms of TNBC tumors, including those with increased mesenchymal and metastatic properties, exhibit dampened POGZ levels, and low POGZ expression was associated with inferior clinical outcomes in these tumor types. Taken together, these data suggest that POGZ is a critical suppressor of the early stages of the metastatic cascade. Significance: The POGZ neurodevelopmental protein plays dual functions in triple-negative breast cancers as a tumor promoter and metastasis suppressor, inhibiting TGFβ-regulated EMT to limit breast cancer metastatic progression.
Collapse
Affiliation(s)
- John Heath
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Caitlynn Mirabelli
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Steven Hebert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - HaEun Kim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael Witcher
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Alexandre Orthwein
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Josie Ursini-Siegel
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
7
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
8
|
Tozkır J, Yıldırım G, Demir S, Palabıyık O, Görker I, Gürkan H. Investigation of Pogz Gene Variants in Non-Syndromic Autism Spectrum Disorder. Noro Psikiyatr Ars 2024; 67:208-212. [PMID: 39258134 PMCID: PMC11382568 DOI: 10.29399/npa.28625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/31/2023] [Indexed: 09/12/2024] Open
Abstract
Introduction Genetic factors play an important role in the etiopathogenesis of autism spectrum disorder (ASD). The Pogo Transposable Element with ZNF Domain protein (POGZ) gene (MIM*614787) has been reported to be one of the most frequently mutated genes associated with ASD. This study aims to analyze the exonic regions of the POGZ gene in individuals diagnosed with non-syndromic ASD. Methods Fifty-one non-syndromic cases diagnosed with ASD according to the DSM-V diagnostic criteria, aged 2-18 years, were included in the study. The healthy control group consisted of 50 children of similar age groups without neurodevelopmental problems. Amplicons produced using deep intronic primers covering the mRNA-encoded regions of the POGZ gene from at least 50 base pairs were sequenced by Next Generation Sequencing Analysis. Results No pathogenic or likely pathogenic variants reported in open-access databases (ClinVar, HGMD, etc.) were detected in the case group. In the ASD and healthy control groups, rs113396244, rs11204811, rs779479223, rs772352054, rs3831142, rs112072925, rs227453 and rs142860188 variants were determined. The rs3831142, rs112072925, rs2274535, rs142860188 variants were found statistically significant in the ASD group. The distribution of the cases with detected single nucleotide polymorphisms (SNPs) according to gender was not statistically significant. Conclusion The variants identified as statistically significant within the patient group are situated in regions that encompass both the HP1-ZNF and DDE domains of the protein. Given the crucial role that the DDE domain plays, particularly in fetal brain development and neurogenesis, these four variants may potentially possess modifying and/or predisposing effects in the context of ASD.
Collapse
Affiliation(s)
- Jülide Tozkır
- Trakya University Vocational School of Health Services, Edirne, Turkey
| | | | - Selma Demir
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Orkide Palabıyık
- Trakya University Vocational School of Health Services, Edirne, Turkey
| | - Işık Görker
- Trakya University Faculty of Medicine, Department of Child and Adolescent Psychiatry, Edirne, Turkey
| | - Hakan Gürkan
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| |
Collapse
|
9
|
Marquezini BP, Moysés-Oliveira M, Kloster A, Cunha L, Deconto TB, Mosini AC, Guerreiro P, Paschalidis M, Adami LNG, Andersen ML, Tufik S. Exploring the molecular pathways linking sleep phenotypes and POGZ-associated neurodevelopmental disorder. J Med Genet 2024; 61:586-589. [PMID: 38350721 DOI: 10.1136/jmg-2023-109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
Pogo transposable element-derived protein with ZNF domain (POGZ) gene encodes a chromatin regulator and rare variants on this gene have been associated with a broad spectrum of neurodevelopmental disorders, such as White-Sutton syndrome. Patient clinical manifestations frequently include developmental delay, autism spectrum disorder and obesity. Sleep disturbances are also commonly observed in these patients, yet the biological pathways which link sleep traits to the POGZ-associated syndrome remain unclear. We screened for sleep implications among individuals with causative POGZ variants previously described. Sleep disturbances were observed in 52% of patients, and being obese was not observed as a risk factor for sleep problems. Next, we identified genes associated with sleep-associated traits among the POGZ regulatory targets, aiming to uncover the molecular pathways that, when disrupted by POGZ loss of function, contribute to the aetiology of sleep phenotypes in these patients. The intersect between POGZ targets and sleep-related genes was used in a pathway enrichment analysis. Relevant pathways among these overlapping genes are involved in the regulation of circadian rhythm, tau protein binding, ATPase activator activity. This study may represent the beginning for novel functional investigations on shared molecular mechanisms between sleep disturbances and rare developmental syndromes related to POGZ and its regulatory targets.
Collapse
Affiliation(s)
| | | | - Anna Kloster
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - Lais Cunha
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | | | | | - Pedro Guerreiro
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - Mayara Paschalidis
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | | | - Monica Levy Andersen
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Tufik
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Hamada N, Nishijo T, Iwamoto I, Shifman S, Nagata KI. Analyses of Conditional Knockout Mice for Pogz, a Gene Responsible for Neurodevelopmental Disorders in Excitatory and Inhibitory Neurons in the Brain. Cells 2024; 13:540. [PMID: 38534384 PMCID: PMC10969489 DOI: 10.3390/cells13060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
POGZ (Pogo transposable element derived with ZNF domain) is known to function as a regulator of gene expression. While variations in the POGZ gene have been associated with intellectual disabilities and developmental delays in humans, the exact pathophysiological mechanisms remain unclear. To shed light on this, we created two lines of conditional knockout mice for Pogz, one specific to excitatory neurons (Emx1-Pogz mice) and the other to inhibitory neurons (Gad2-Pogz mice) in the brain. Emx1-Pogz mice showed a decrease in body weight, similar to total Pogz knockout mice. Although the two lines did not display significant morphological abnormalities in the telencephalon, impaired POGZ function affected the electrophysiological properties of both excitatory and inhibitory neurons differently. These findings suggest that these mouse lines could be useful tools for clarifying the precise pathophysiological mechanisms of neurodevelopmental disorders associated with POGZ gene abnormalities.
Collapse
Affiliation(s)
- Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (N.H.); (T.N.); (I.I.)
| | - Takuma Nishijo
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (N.H.); (T.N.); (I.I.)
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (N.H.); (T.N.); (I.I.)
| | - Sagiv Shifman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (N.H.); (T.N.); (I.I.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
11
|
Li H, Cui J, Hu C, Li H, Luo X, Hao Y. Identification and Analysis of ZIC-Related Genes in Cerebellum of Autism Spectrum Disorders. Neuropsychiatr Dis Treat 2024; 20:325-339. [PMID: 38410689 PMCID: PMC10895985 DOI: 10.2147/ndt.s444138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Objective Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with significant genetic heterogeneity. The ZIC gene family can regulate neurodevelopment, especially in the cerebellum, and has been implicated in ASD-like behaviors in mice. We performed bioinformatic analysis to identify the ZIC gene family in the ASD cerebellum. Methods We explored the roles of ZIC family genes in ASD by investigating (i) the association of ZIC genes with ASD risk genes from the Simons Foundation Autism Research Initiative (SFARI) database and ZIC genes in the brain regions of the Human Protein Atlas (HPA) database; (ii) co-expressed gene networks of genes positively and negatively correlated with ZIC1, ZIC2, and ZIC3, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and receiver operating characteristic (ROC) curve analysis of genes in these networks; and (iii) the relationship between ZIC1, ZIC2, ZIC3, and their related genes with cerebellar immune cells and stromal cells in ASD patients. Results (i) ZIC1, ZIC2, and ZIC3 were associated with neurodevelopmental disorders and risk genes related to ASD in the human cerebellum and (ii) ZIC1, ZIC2, and ZIC3 were highly expressed in the cerebellum, which may play a pathogenic role by affecting neuronal development and the cerebellar internal environment in patients with ASD, including immune cells, astrocytes, and endothelial cells. (iii) OLFM3, SLC27A4, GRB2, TMED1, NR2F1, and STRBP are closely related to ZIC1, ZIC2, and ZIC3 in ASD cerebellum and have good diagnostic accuracy. (iv) ASD mice in the maternal immune activation model demonstrated that Zic3 and Nr2f1 levels were decreased in the immune-activated cerebellum. Conclusion Our study supports the role of ZIC1, ZIC2, and ZIC3 in ASD pathogenesis and provides potential targets for early and accurate prediction of ASD.
Collapse
Affiliation(s)
- Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jinru Cui
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hao Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
12
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. RESEARCH SQUARE 2024:rs.3.rs-3684653. [PMID: 38260618 PMCID: PMC10802704 DOI: 10.21203/rs.3.rs-3684653/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 255 genes that have been reported to play fundamental roles in fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The set of genes meeting these criteria provides potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G. Dorsey
- Department of Pain and Translational Symptom Sciences, University of Maryland School of Nursing, Baltimore, MD 21201
| | - Evelina Mocci
- Department of Pain and Translational Symptom Sciences, University of Maryland School of Nursing, Baltimore, MD 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Malcolm V. Lane
- Translational Toxicology/Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Bruce K. Krueger
- Departments of Physiology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
13
|
Shen LP, Li W, Pei LZ, Yin J, Xie ST, Li HZ, Yan C, Wang JJ, Zhang Q, Zhang XY, Zhu JN. Oxytocin Receptor in Cerebellar Purkinje Cells Does Not Engage in Autism-Related Behaviors. CEREBELLUM (LONDON, ENGLAND) 2023; 22:888-904. [PMID: 36040660 DOI: 10.1007/s12311-022-01466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits. OXTR activation neither affects firing activities, intrinsic excitability, and synaptic transmission of normal PCs nor improves abnormal intrinsic excitability and synaptic transmission of PCs in maternal immune activation (MIA) mouse model of autism. Furthermore, blockage of OXTR in Crus I in wild-type mice does not induce autistic-like social, stereotypic, cognitive, and anxiety-like behaviors. These results suggest that oxytocin signaling in Crus I PCs seems to be uninvolved in ASD pathophysiology, and contribute to understanding of targets and mechanisms of oxytocin in ASD treatment.
Collapse
Affiliation(s)
- Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Zhu Pei
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Sun X, Zhang T, Tong B, Cheng L, Jiang W, Sun Y. POGZ suppresses 2C transcriptional program and retrotransposable elements. Cell Rep 2023; 42:112867. [PMID: 37494184 DOI: 10.1016/j.celrep.2023.112867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
The POGZ gene has been found frequently mutated in neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and intellectual disability (ID). We have recently shown that POGZ maintains mouse embryonic stem cells (ESCs). However, the exact mechanisms remain unclear. Here, we show that POGZ plays an important role in the maintenance of ESCs by silencing Dux and endogenous retroviruses (ERVs). POGZ maintains a silent chromatin state at Dux and ERVs by associating with and recruiting TRIM28 and SETDB1, and its loss leads to decreased levels of H3K9me3/H4K20me3, resulting in up-regulation of 2C transcripts and ESC transition to a 2C-like state. POGZ suppresses different classes of ERVs through direct (IAPEy, the intracisternal A-type particle elements) and indirect regulation (MERVL). Activation of POGZ-bound ERVs is associated with up-regulation of nearby neural disease genes such as Serpina3m. Our findings provide important insights into understanding the disease mechanism caused by POGZ dysfunction.
Collapse
Affiliation(s)
- Xiaoyun Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Bei Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Linxi Cheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yuhua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China.
| |
Collapse
|
15
|
Eskici N, Madhusudan S, Vaaralahti K, Yellapragada V, Gomez-Sanchez C, Kärkinen J, Almusa H, Brandstack N, Miettinen PJ, Wang Y, Raivio T. Congenital hypogonadotropic hypogonadism in a patient with a de novo POGZ mutation. Eur J Endocrinol 2023; 189:271-280. [PMID: 37619992 DOI: 10.1093/ejendo/lvad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Congenital hypogonadotropic hypogonadism (CHH) is a rare, genetically heterogeneous reproductive disorder caused by gonadotropin-releasing hormone (GnRH) deficiency. Approximately half of CHH patients also have decreased or absent sense of smell, that is, Kallmann syndrome (KS). We describe a patient with White-Sutton syndrome (developmental delay and autism spectrum disorder) and KS due to a heterozygous de novo mutation in POGZ (c.2857C>T, p.(Gln953*)), a gene encoding pogo transposable element derived with zinc finger domain, which acts as a transcriptomic regulator of neuronal networks. DESIGN AND METHODS We modeled the role of POGZ in CHH by generating 2 clonal human pluripotent stem cell lines with CRISPR/Cas9, carrying either the heterozygous patient mutation (H11 line) or a homozygous mutation (c.2803-2906del; p.E935Kfs*7 encoding a truncated POGZ protein; F6del line). RESULTS During the differentiation to GnRH neurons, neural progenitors derived from F6del line displayed severe proliferation defect, delayed wound-healing capacity, downregulation of intermediate progenitor neuron genes TBR1 and TBR2, and immature neuron markers PAX6 and TUBB3 and gave rise to fewer neurons with shorter neurites and less neurite branch points compared to the WT and H11 lines (P < .005). Both lines, however, could be successfully differentiated to GnRH neurons. CONCLUSIONS In conclusion, this is the first report on the overlap between White-Sutton syndrome and CHH. POGZ mutations do not hinder GnRH neuron formation but may cause CHH/KS by affecting the size and motility of the anterior neural progenitor pool and neurite outgrowth.
Collapse
Affiliation(s)
- Nazli Eskici
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Venkatram Yellapragada
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Celia Gomez-Sanchez
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Juho Kärkinen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki 00014, Finland
| | - Nina Brandstack
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki 00014, Finland
| | - Päivi J Miettinen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| |
Collapse
|
16
|
Bohlen JF, Cleary CM, Das D, Sripathy SR, Sadowski N, Shim G, Kenney RF, Buchler IP, Banerji T, Scanlan TS, Mulkey DK, Maher BJ. Promyelinating drugs promote functional recovery in an autism spectrum disorder mouse model of Pitt-Hopkins syndrome. Brain 2023; 146:3331-3346. [PMID: 37068912 PMCID: PMC10393406 DOI: 10.1093/brain/awad057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 04/19/2023] Open
Abstract
Pitt-Hopkins syndrome is an autism spectrum disorder caused by autosomal dominant mutations in the human transcription factor 4 gene (TCF4). One pathobiological process caused by murine Tcf4 mutation is a cell autonomous reduction in oligodendrocytes and myelination. In this study, we show that the promyelinating compounds, clemastine, sobetirome and Sob-AM2 are effective at restoring myelination defects in a Pitt-Hopkins syndrome mouse model. In vitro, clemastine treatment reduced excess oligodendrocyte precursor cells and normalized oligodendrocyte density. In vivo, 2-week intraperitoneal administration of clemastine also normalized oligodendrocyte precursor cell and oligodendrocyte density in the cortex of Tcf4 mutant mice and appeared to increase the number of axons undergoing myelination, as EM imaging of the corpus callosum showed a significant increase in the proportion of uncompacted myelin and an overall reduction in the g-ratio. Importantly, this treatment paradigm resulted in functional rescue by improving electrophysiology and behaviour. To confirm behavioural rescue was achieved via enhancing myelination, we show that treatment with the thyroid hormone receptor agonist sobetirome or its brain penetrating prodrug Sob-AM2, was also effective at normalizing oligodendrocyte precursor cell and oligodendrocyte densities and behaviour in the Pitt-Hopkins syndrome mouse model. Together, these results provide preclinical evidence that promyelinating therapies may be beneficial in Pitt-Hopkins syndrome and potentially other neurodevelopmental disorders characterized by dysmyelination.
Collapse
Affiliation(s)
- Joseph F Bohlen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Colin M Cleary
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Debamitra Das
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Srinidhi Rao Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Norah Sadowski
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Rakaia F Kenney
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Ingrid P Buchler
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Tapasree Banerji
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas S Scanlan
- Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
17
|
Xi K, Cai SQ, Yan HF, Tian Y, Cai J, Yang XM, Wang JM, Xing GG. CSMD3 Deficiency Leads to Motor Impairments and Autism-Like Behaviors via Dysfunction of Cerebellar Purkinje Cells in Mice. J Neurosci 2023; 43:3949-3969. [PMID: 37037606 PMCID: PMC10219040 DOI: 10.1523/jneurosci.1835-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Mutations of CUB and sushi multiple domains 3 (CSMD3) gene have been reported in individuals with ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain unexplored. Here, using male CSMD3 knock-out (CSMD3 -/-) mice, we found that genetic deletion of CSMD3 produced core autistic-like symptoms (social interaction deficits, restricted interests, and repetitive and stereotyped behaviors) and motor dysfunction in mice, indicating that the CSMD3 gene can be considered as a candidate for ASD. Moreover, we discovered that the ablation of CSMD3 in mice led to abnormal cerebellar Purkinje cell (PC) morphology in Crus I/II lobules, including aberrant developmental dendritogenesis and spinogenesis of PCs. Furthermore, combining in vivo fiber photometry calcium imaging and ex vivo electrophysiological recordings, we showed that the CSMD3 -/- mice exhibited an increased neuronal activity (calcium fluorescence signals) in PCs of Crus I/II lobules in response to movement activity, as well as an enhanced intrinsic excitability of PCs and an increase of excitatory rather than inhibitory synaptic input to the PCs, and an impaired long-term depression at the parallel fiber-PC synapse. These results suggest that CSMD3 plays an important role in the development of cerebellar PCs. Loss of CSMD3 causes abnormal PC morphology and dysfunction in the cerebellum, which may underlie the pathogenesis of motor deficits and core autistic-like symptoms in CSMD3 -/- mice. Our findings provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD. Recently, a novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains (CSMDs) has been identified as a candidate gene for ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain largely unknown. Here, we unravel that loss of CSMD3 results in abnormal morphology, increased intrinsic excitabilities, and impaired synaptic plasticity in cerebellar PCs, subsequently leading to motor deficits and ASD-like behaviors in mice. These results provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.
Collapse
Affiliation(s)
- Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Si-Qing Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Hui-Fang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jing-Min Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
- Second Affiliated Hospital of Xinxiang Medical University, Henan 453002, People's Republic of China
| |
Collapse
|
18
|
Duan J, Ye Y, Liao J, Chen L, Zhao X, Liu C, Wen J. White-Sutton syndrome and congenital heart disease: case report and literature review. BMC Pediatr 2023; 23:158. [PMID: 37016333 PMCID: PMC10071667 DOI: 10.1186/s12887-023-03972-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND White-Sutton syndrome is an autosomal dominant neurodevelopmental disorder caused by heterozygous mutation in POGZ (Pogo Transposable Element Derived with ZNF Domain). This syndrome is characterized by delayed psychomotor development apparent in infancy and abnormal facial features. To date, 80 cases have been reported in the literature; however, the phenotypic characterizations remain incomplete. CASE PRESENTATION We herein describe a 2-year-old girl harboring a novel frameshift de novo POGZ variant: c.2746del (p.Thr916ProfsTer12). This patient presented with multisystem abnormalities affecting the digestive tract and neurological functioning, as well as congenital heart disease, which involved an atrial septal defect (18 × 23 × 22 mm) with pulmonary arterial hypertension (42 mmHg). The relationship between congenital heart disease and White-Sutton syndrome as described in both the GeneReview and OMIM databases (#616,364) remains unclear. A review of the current literature revealed 18 cases of White-Sutton syndrome with POGZ variants and congenital heart disease, and we summarize their clinical features in this study. CONCLUSIONS Our findings based on the present case and those in the literature indicate a relationship between POGZ mutation and congenital heart disease.
Collapse
Affiliation(s)
- Jing Duan
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Yuanzhen Ye
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Xia Zhao
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China
| | - Chao Liu
- Department of Bioinformatics, Berry Genomics Co. Ltd, Beijing, China
| | - Jialun Wen
- Department of Neurology, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Guangdong Province , 518038, Shenzhen, PR China.
| |
Collapse
|
19
|
Stevens HE, Scuderi S, Collica SC, Tomasi S, Horvath TL, Vaccarino FM. Neonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in mice. Transl Psychiatry 2023; 13:89. [PMID: 36906620 PMCID: PMC10008554 DOI: 10.1038/s41398-023-02372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is almost exclusively expressed in glial cells in postnatal mouse brain, but its impact in glia for brain behavioral functioning is poorly understood. We compared behavioral effects from FGFR2 loss in both neurons and astroglial cells and from FGFR2 loss in astroglial cells by using either the pluripotent progenitor-driven hGFAP-cre or the tamoxifen-inducible astrocyte-driven GFAP-creERT2 in Fgfr2 floxed mice. When FGFR2 was eliminated in embryonic pluripotent precursors or in early postnatal astroglia, mice were hyperactive, and had small changes in working memory, sociability, and anxiety-like behavior. In contrast, FGFR2 loss in astrocytes starting at 8 weeks of age resulted only in reduced anxiety-like behavior. Therefore, early postnatal loss of FGFR2 in astroglia is critical for broad behavioral dysregulation. Neurobiological assessments demonstrated that astrocyte-neuron membrane contact was reduced and glial glutamine synthetase expression increased only by early postnatal FGFR2 loss. We conclude that altered astroglial cell function dependent on FGFR2 in the early postnatal period may result in impaired synaptic development and behavioral regulation, modeling childhood behavioral deficits like attention deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Hanna E Stevens
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Psychiatry, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA.
| | - Soraya Scuderi
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Sarah C Collica
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Simone Tomasi
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Tamas L Horvath
- Department of Neuroscience, Yale University, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Flora M Vaccarino
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
20
|
Siouda M, Dujardin AD, Dekeyzer B, Schaeffer L, Mulligan P. Chromodomain on Y-like 2 (CDYL2) implicated in mitosis and genome stability regulation via interaction with CHAMP1 and POGZ. Cell Mol Life Sci 2023; 80:47. [PMID: 36658409 PMCID: PMC11072993 DOI: 10.1007/s00018-022-04659-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 01/21/2023]
Abstract
Histone H3 trimethylation on lysine 9 (H3K9me3) is a defining feature of mammalian pericentromeres, loss of which results in genome instability. Here we show that CDYL2 is recruited to pericentromeres in an H3K9me3-dependent manner and is required for faithful mitosis and genome stability. CDYL2 RNAi in MCF-7 breast cancer cells and Hela cervical cancer cells inhibited their growth, induced apoptosis, and provoked both nuclear and mitotic aberrations. Mass spectrometry analysis of CDYL2-interacting proteins identified the neurodevelopmental disease-linked mitotic regulators CHAMP1 and POGZ, which are associated with a central non-conserved region of CDYL2. RNAi rescue assays identified both the CDYL2 chromodomain and the CHAMP1-POGZ interacting region as required and, together, sufficient for CDYL2 regulation of mitosis and genome stability. CDYL2 RNAi caused loss of CHAMP1 localization at pericentromeres. We propose that CDYL2 functions as an adaptor protein that connects pericentromeric H3K9me3 with CHAMP1 and POGZ to ensure mitotic fidelity and genome stability.
Collapse
Affiliation(s)
- Maha Siouda
- Centre Léon Bérard, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Audrey D Dujardin
- Centre Léon Bérard, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Blanche Dekeyzer
- Centre Léon Bérard, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Laurent Schaeffer
- Faculté de Médecine, Physiopathology and Genetics of Neurons and Muscles Division, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS, UMR5310, 3ème étage, Aile B, 8 Avenue Rockefeller, 69008, Lyon, France
- Centre de Biotechnologie Cellulaire, CBC Biotec, CHU de Lyon - HCL Groupement Est, 59 Bvd Pinel, 69677, Cedex Bron, France
| | - Peter Mulligan
- Centre Léon Bérard, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France.
- Faculté de Médecine, Physiopathology and Genetics of Neurons and Muscles Division, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS, UMR5310, 3ème étage, Aile B, 8 Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
21
|
TEZCAN T, ŞENER EF, DEMİRCİ E, ŞAHİN N, HAMURCU Z, ÖZTOP D. EXPRESSION PROFILES OF PTEN AND POGZ GENES IN TURKISH PATIENTS WITH AUTISM. ACTA MEDICA ALANYA 2022. [DOI: 10.30565/medalanya.1148353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Amaç: Otizm spektrum bozukluğu (OSB), karmaşık davranışsal fenotiplerle teşhis edilen, etiyolojik ve klinik olarak heterojen bir grup nörogelişimsel bozukluktur. Uzun yıllar boyunca yapılan kapsamlı çalışmalara rağmen, OSB'nin nedenleri hala bilinmemektedir. PTEN ve POGZ genleri, OSB fenotipinden sorumlu olabilecek aday genler olarak gösterilmiştir. Bu çalışmanın amacı, otistik hastalarda PTEN ve POGZ genlerinin ekspresyon düzeylerini araştırmaktır.
Yöntem: DSM-IV ve DSM-V tanı kriterlerine göre OSB tanılı 50 hastada ve yaş-cinsiyet uyumlu 50 sağlıklı kontrolde PTEN, POGZ gen ekspresyonları kantitatif real time PCR (QRT-PCR) ile araştırıldı. Bu çalışma Erciyes Üniversitesi Genom ve Kök Hücre Merkezi'nde (GENKOK) yapılmıştır.
Bulgular: POGZ geninin hastalarda kontrollere göre daha fazla eksprese olduğu ve otistik erkeklerde bu genin ekspresyonunun anlamlı olduğu bulundu. PTEN gen ekspresyonu istatistiksel olarak anlamlı değildi ancak hastalarda kontrollere göre daha düşük bulundu (p=0.7884). Bu genlerin ekspresyonu ile bilişsel geriliği olan hastalar arasındaki ilişki anlamlı değildi.
Sonuç: Daha büyük hasta grupları ile diğer olası aday genlerin araştırılmasını ve sonuçların farklı klinik belirtilerle karşılaştırılmasını öneriyoruz.
Anahtar Kelimeler: Otizm, Otizm Spektrum Bozuklukları, PTEN, POGZ, Ekspresyon
Collapse
Affiliation(s)
- Tuğba TEZCAN
- KAPADOKYA VOCATIONAL SCHOOL, KAPADOKYA VOCATIONAL SCHOOL
| | - Elif Funda ŞENER
- Erciyes Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı
| | | | - Nilfer ŞAHİN
- MUGLA SITKI KOCMAN UNIVERSITY, FACULTY OF MEDICINE
| | | | | |
Collapse
|
22
|
Herman N, Kadener S, Shifman S. The chromatin factor ROW cooperates with BEAF-32 in regulating long-range inducible genes. EMBO Rep 2022; 23:e54720. [PMID: 36245419 PMCID: PMC9724677 DOI: 10.15252/embr.202254720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Insulator proteins located at the boundaries of topological associated domains (TAD) are involved in higher-order chromatin organization and transcription regulation. However, it is still not clear how long-range contacts contribute to transcriptional regulation. Here, we show that relative-of-WOC (ROW) is essential for the long-range transcription regulation mediated by the boundary element-associated factor of 32kD (BEAF-32). We find that ROW physically interacts with heterochromatin proteins (HP1b and HP1c) and the insulator protein (BEAF-32). These proteins interact at TAD boundaries where ROW, through its AT-hook motifs, binds AT-rich sequences flanked by BEAF-32-binding sites and motifs. Knockdown of row downregulates genes that are long-range targets of BEAF-32 and bound indirectly by ROW (without binding motif). Analyses of high-throughput chromosome conformation capture (Hi-C) data reveal long-range interactions between promoters of housekeeping genes bound directly by ROW and promoters of developmental genes bound indirectly by ROW. Thus, our results show cooperation between BEAF-32 and the ROW complex, including HP1 proteins, to regulate the transcription of developmental and inducible genes through long-range interactions.
Collapse
Affiliation(s)
- Neta Herman
- Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | | | - Sagiv Shifman
- Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
23
|
Conrow-Graham M, Williams JB, Martin J, Zhong P, Cao Q, Rein B, Yan Z. A convergent mechanism of high risk factors ADNP and POGZ in neurodevelopmental disorders. Brain 2022; 145:3250-3263. [PMID: 35775424 PMCID: PMC10233273 DOI: 10.1093/brain/awac152] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023] Open
Abstract
ADNP and POGZ are two top-ranking risk factors for autism spectrum disorder and intellectual disability, but how they are linked to these neurodevelopmental disorders is largely unknown. Both ADNP and POGZ are chromatin regulators, which could profoundly affect gene transcription and cellular function in the brain. Using post-mortem tissue from patients with autism spectrum disorder, we found diminished expression of ADNP and POGZ in the prefrontal cortex, a region highly implicated in neurodevelopmental disorders. To understand the functional role of these neurodevelopmental disorder risk factors, we used viral-based gene transfer to investigate how Adnp or Pogz deficiency in mouse prefrontal cortex affects behavioural, transcriptomic and synaptic function. Mice with prefrontal cortex deficiency of Adnp or Pogz exhibited specific impairment of cognitive task performance. RNA-sequencing revealed that Adnp or Pogz deficiency induced prominent upregulation of overlapping genes enriched in neuroinflammation, similar to the elevation of pro-inflammatory genes in humans with neurodevelopmental disorders. Concomitantly, Adnp or Pogz deficiency led to the significant increase of pro-phagocytic microglial activation in prefrontal cortex, as well as the significant decrease of glutamatergic transmission and postsynaptic protein expression. These findings have uncovered the convergent functions of two top risk factors for autism spectrum disorder and intellectual disability in prefrontal cortex, providing a mechanism linking chromatin, transcriptional and synaptic dysregulation to cognitive deficits associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Megan Conrow-Graham
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Jamal B Williams
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Jennifer Martin
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Qing Cao
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Benjamin Rein
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| |
Collapse
|
24
|
Nagai M, Iemura K, Kikkawa T, Naher S, Hattori S, Hagihara H, Nagata KI, Anzawa H, Kugisaki R, Wanibuchi H, Abe T, Inoue K, Kinoshita K, Miyakawa T, Osumi N, Tanaka K. Deficiency of CHAMP1, a gene related to intellectual disability, causes impaired neuronal development and a mild behavioural phenotype. Brain Commun 2022; 4:fcac220. [PMID: 36106092 PMCID: PMC9465530 DOI: 10.1093/braincomms/fcac220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
CHAMP1 is a gene associated with intellectual disability, which was originally identified as being involved in the maintenance of kinetochore–microtubule attachment. To explore the neuronal defects caused by CHAMP1 deficiency, we established mice that lack CHAMP1. Mice that are homozygous knockout for CHAMP1 were slightly smaller than wild-type mice and died soon after birth on pure C57BL/6J background. Although gross anatomical defects were not found in CHAMP1−/− mouse brains, mitotic cells were increased in the cerebral cortex. Neuronal differentiation was delayed in CHAMP1−/− neural stem cells in vitro, which was also suggested in vivo by CHAMP1 knockdown. In a behavioural test battery, adult CHAMP1 heterozygous knockout mice showed mild memory defects, altered social interaction, and depression-like behaviours. In transcriptomic analysis, genes related to neurotransmitter transport and neurodevelopmental disorder were downregulated in embryonic CHAMP1−/− brains. These results suggest that CHAMP1 plays a role in neuronal development, and CHAMP1-deficient mice resemble some aspects of individuals with CHAMP1 mutations.
Collapse
Affiliation(s)
- Masayoshi Nagai
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine , Sendai, Miyagi 980-8575 , Japan
| | - Sharmin Naher
- Department of Developmental Neuroscience, Tohoku University Graduate School of Life Sciences , Sendai, Miyagi 980-8575 , Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute of Developmental Research, Aichi Developmental Disability Center , Kasugai, Aichi 480-0392 , Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine , Nagoya, Aichi 466-8550 , Japan
| | - Hayato Anzawa
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University , Sendai 980-8579 , Japan
| | - Risa Kugisaki
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine , Osaka 545-8585 , Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research , Kobe, Hyogo 650-0047 , Japan
| | - Kengo Kinoshita
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University , Sendai 980-8579 , Japan
- Division of Integrated Genomics, Tohoku Medical Megabank Organization, Tohoku University , Sendai, 980-8573 , Japan
- Department of In Silico Analysis, Institute of Development, Aging and Cancer, Tohoku University , Sendai, 980-8575 , Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science (ICMS), Fujita Health University , Toyoake, Aichi 470-1192 , Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine , Sendai, Miyagi 980-8575 , Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University , Sendai, Miyagi 980-8575 , Japan
| |
Collapse
|
25
|
Giraldo-Ocampo S, Pacheco-Orozco RA, Pachajoa H. A Novel POGZ Variant in a Patient with Intellectual Disability and Obesity. Appl Clin Genet 2022; 15:63-68. [PMID: 35821784 PMCID: PMC9271277 DOI: 10.2147/tacg.s369483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
White–Sutton syndrome is a rare type of autosomal dominant neurodevelopmental disorder caused by mutations, mostly de novo, in the POGZ gene. No more than 120 patients have been described so far in the literature. Common clinical manifestations include intellectual disability, developmental delay, autism spectrum disorder, other behavioral abnormalities, sleeping problems, hyperactivity and visual problems. We describe a 20-year-old male patient from Colombia who presented with delayed psychomotor development, intellectual disability, obesity, sleep difficulties, hypotonia, hypogonadism, gynecomastia, visual abnormalities and several facial dysmorphisms. Genetic testing showed a novel heterozygous frameshift variant (c.3308del; p.Leu1103Profs*19) in the POGZ gene (NM_015100.3). This is the first report of a diagnosed patient with WHSUS in Colombia.
Collapse
Affiliation(s)
| | | | - Harry Pachajoa
- Genetics Division, Fundación Valle del Lili, Cali, Colombia
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Cali, Colombia
- Correspondence: Harry Pachajoa, Genetics Division, Fundación Valle del Lili, Carrera 98 # 18-49, Cali, Colombia, Tel +57 5552334 ext 7653, Email
| |
Collapse
|
26
|
Sun X, Cheng L, Sun Y. Autism-associated protein POGZ controls ESCs and ESC neural induction by association with esBAF. Mol Autism 2022; 13:24. [PMID: 35650610 PMCID: PMC9161502 DOI: 10.1186/s13229-022-00502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/16/2022] [Indexed: 01/15/2023] Open
Abstract
Background The POGZ gene has been found frequently mutated in neurodevelopmental disorders (NDDs), particularly autism spectrum disorder (ASD) and intellectual disability (ID). However, little is known about its roles in embryonic stem cells (ESCs), neural development and diseases. Methods We generated Pogz−/− ESCs and directed ESC differentiation toward a neural fate. We performed biochemistry, ChIP-seq, ATAC-seq, and bioinformatics analyses to understand the role of POGZ. Results We show that POGZ is required for the maintenance of ESC identity and the up-regulation of neural genes during ESC differentiation toward a neural fate. Genome-wide binding analysis shows that POGZ is primarily localized to gene promoter and enhancer regions. POGZ functions as both a transcriptional activator and repressor, and its loss leads to deregulation of differentiation genes, including neural genes. POGZ physically associates with the SWI-SNF (esBAF) chromatin remodeler complex, and together they modulate enhancer activities via epigenetic modifications such as chromatin remodeling and histone modification. During ESC neural induction, POGZ-mediated recruitment of esBAF/BRG1 and H3K27ac are important for proper expression of neural progenitor genes. Limitations The genotype and allele relevant to human neurodevelopmental disorders is heterozygous loss of function. This work is designed to study the effects of loss of POGZ function on ESCs and during ESC neural induction. Also, this work lacks of in vivo validation using animal models. Conclusions The data suggest that POGZ is both a transcription factor and a genome regulator, and its loss leads to defects in neural induction and neurogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00502-9.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Linxi Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China.,University of Chinese Academy of Sciences, Beijing, 100010, China
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China. .,University of Chinese Academy of Sciences, Beijing, 100010, China. .,Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Abstract
Immunity could be viewed as the common factor in neurodevelopmental disorders and cancer. The immune and nervous systems coevolve as the embryo develops. Immunity can release cytokines that activate MAPK signaling in neural cells. In specific embryonic brain cell types, dysregulated signaling that results from germline or embryonic mutations can promote changes in chromatin organization and gene accessibility, and thus expression levels of essential genes in neurodevelopment. In cancer, dysregulated signaling can emerge from sporadic somatic mutations during human life. Neurodevelopmental disorders and cancer share similarities. In neurodevelopmental disorders, immunity, and cancer, there appears an almost invariable involvement of small GTPases (e.g., Ras, RhoA, and Rac) and their pathways. TLRs, IL-1, GIT1, and FGFR signaling pathways, all can be dysregulated in neurodevelopmental disorders and cancer. Although there are signaling similarities, decisive differentiating factors are timing windows, and cell type specific perturbation levels, pointing to chromatin reorganization. Finally, we discuss drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Corresponding author
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
28
|
Deng L, Mojica-Perez SP, Azaria RD, Schultz M, Parent JM, Niu W. Loss of POGZ alters neural differentiation of human embryonic stem cells. Mol Cell Neurosci 2022; 120:103727. [PMID: 35367590 PMCID: PMC9549529 DOI: 10.1016/j.mcn.2022.103727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
POGZ is a pogo transposable element derived protein with multiple zinc finger domains. Many de novo loss-of-function (LoF) variants of the POGZ gene are associated with autism and other neurodevelopmental disorders. However, the role of POGZ in human cortical development remains poorly understood. Here we generated multiple POGZ LoF lines in H9 human embryonic stem cells (hESCs) using CRISPR/CAS9 genome editing. These lines were then differentiated into neural structures, similar to those found in early to mid-fetal human brain, a critical developmental stage for studying disease mechanisms of neurodevelopmental disorders. We found that the loss of POGZ reduced neural stem cell proliferation in excitatory cortex-patterned neural rosettes, structures analogous to the cortical ventricular zone in human fetal brain. As a result, fewer intermediate progenitor cells and early born neurons were generated. In addition, neuronal migration from the apical center to the basal surface of neural rosettes was perturbed due to the loss of POGZ. Furthermore, cortical-like excitatory neurons derived from multiple POGZ homozygous knockout lines exhibited a more simplified dendritic architecture compared to wild type lines. Our findings demonstrate how POGZ regulates early neurodevelopment in the context of human cells, and provide further understanding of the cellular pathogenesis of neurodevelopmental disorders associated with POGZ variants.
Collapse
|
29
|
The Novel Protease Activities of JMJD5–JMJD6–JMJD7 and Arginine Methylation Activities of Arginine Methyltransferases Are Likely Coupled. Biomolecules 2022; 12:biom12030347. [PMID: 35327545 PMCID: PMC8945206 DOI: 10.3390/biom12030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
The surreptitious discoveries of the protease activities on arginine-methylated targets of a subfamily of Jumonji domain-containing family including JMJD5, JMJD6, and JMJD7 pose several questions regarding their authenticity, function, purpose, and relations with others. At the same time, despite several decades of efforts and massive accumulating data regarding the roles of the arginine methyltransferase family (PRMTs), the exact function of this protein family still remains a mystery, though it seems to play critical roles in transcription regulation, including activation and inactivation of a large group of genes, as well as other biological activities. In this review, we aim to elucidate that the function of JMJD5/6/7 and PRMTs are likely coupled. Besides roles in the regulation of the biogenesis of membrane-less organelles in cells, they are major players in regulating stimulating transcription factors to control the activities of RNA Polymerase II in higher eukaryotes, especially in the animal kingdom. Furthermore, we propose that arginine methylation by PRMTs could be a ubiquitous action marked for destruction after missions by a subfamily of the Jumonji protein family.
Collapse
|
30
|
Heath J, Cheyou ES, Findlay S, Luo VM, Carpio EP, Lee J, Djerir B, Chen X, Morin T, Lebeau B, Karam M, Bagci H, Grapton D, Ursini‐Siegel J, Côté J, Witcher M, Richard S, Maréchal A, Orthwein A. POGZ promotes homology-directed DNA repair in an HP1-dependent manner. EMBO Rep 2022; 23:e51041. [PMID: 34758190 PMCID: PMC8728601 DOI: 10.15252/embr.202051041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 01/07/2023] Open
Abstract
The heterochromatin protein HP1 plays a central role in the maintenance of genome stability but little is known about how HP1 is controlled. Here, we show that the zinc finger protein POGZ promotes the presence of HP1 at DNA double-strand breaks (DSBs) in human cells. POGZ depletion delays the resolution of DSBs and sensitizes cells to different DNA-damaging agents, including cisplatin and talazoparib. Mechanistically, POGZ promotes homology-directed DNA repair by retaining the BRCA1/BARD1 complex at DSBs in an HP1-dependent manner. In vivo CRISPR inactivation of Pogz is embryonically lethal. Pogz haploinsufficiency (Pogz+ /delta) results in developmental delay, impaired intellectual abilities, hyperactive behaviour and a compromised humoral immune response in mice, recapitulating the main clinical features of the White Sutton syndrome (WHSUS). Pogz+ /delta mice are further radiosensitive and accumulate DSBs in diverse tissues, including the spleen and brain. Altogether, our findings identify POGZ as an important player in homology-directed DNA repair both in vitro and in vivo.
Collapse
Affiliation(s)
- John Heath
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Division of Experimental MedicineMcGill UniversityMontrealQCCanada
| | - Estelle Simo Cheyou
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQCCanada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Division of Experimental MedicineMcGill UniversityMontrealQCCanada
| | - Vincent M Luo
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Department of Microbiology and ImmunologyMcGill UniversityMontrealQCCanada
| | - Edgar Pinedo Carpio
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Division of Experimental MedicineMcGill UniversityMontrealQCCanada
| | - Jeesan Lee
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
| | - Billel Djerir
- Department of BiologyUniversité de SherbrookeSherbrookeQCCanada
| | - Xiaoru Chen
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
| | - Théo Morin
- Department of BiologyUniversité de SherbrookeSherbrookeQCCanada
| | - Benjamin Lebeau
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Division of Experimental MedicineMcGill UniversityMontrealQCCanada
| | - Martin Karam
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Division of Experimental MedicineMcGill UniversityMontrealQCCanada
| | - Halil Bagci
- Institut de Recherches Cliniques de Montréal (IRCM)MontrealQCCanada
- Département of Anatomy and Cell BiologyMcGill UniversityMontrealQCCanada
- Present address:
Institute of BiochemistryETH ZürichZürichSwitzerland
| | - Damien Grapton
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
| | - Josie Ursini‐Siegel
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Division of Experimental MedicineMcGill UniversityMontrealQCCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQCCanada
| | - Jean‐Francois Côté
- Institut de Recherches Cliniques de Montréal (IRCM)MontrealQCCanada
- Département of Anatomy and Cell BiologyMcGill UniversityMontrealQCCanada
- Département de Biochimie et Médecine MoléculaireUniversité de MontréalMontrealQCCanada
- Département de Médecine (Programmes de Biologie Moléculaire)Université de MontréalMontrealQCCanada
| | - Michael Witcher
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Division of Experimental MedicineMcGill UniversityMontrealQCCanada
| | - Stéphane Richard
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQCCanada
| | | | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer CentreJewish General HospitalMontrealQCCanada
- Division of Experimental MedicineMcGill UniversityMontrealQCCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQCCanada
- Department of Microbiology and ImmunologyMcGill UniversityMontrealQCCanada
| |
Collapse
|
31
|
|
32
|
Markenscoff-Papadimitriou E, Binyameen F, Whalen S, Price J, Lim K, Ypsilanti AR, Catta-Preta R, Pai ELL, Mu X, Xu D, Pollard KS, Nord AS, State MW, Rubenstein JL. Autism risk gene POGZ promotes chromatin accessibility and expression of clustered synaptic genes. Cell Rep 2021; 37:110089. [PMID: 34879283 PMCID: PMC9512081 DOI: 10.1016/j.celrep.2021.110089] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
Deleterious genetic variants in POGZ, which encodes the chromatin regulator Pogo Transposable Element with ZNF Domain protein, are strongly associated with autism spectrum disorder (ASD). Although it is a high-confidence ASD risk gene, the neurodevelopmental functions of POGZ remain unclear. Here we reveal the genomic binding of POGZ in the developing forebrain at euchromatic loci and gene regulatory elements (REs). We profile chromatin accessibility and gene expression in Pogz-/- mice and show that POGZ promotes the active chromatin state and transcription of clustered synaptic genes. We further demonstrate that POGZ forms a nuclear complex and co-occupies loci with ADNP, another high-confidence ASD risk gene, and provide evidence that POGZ regulates other neurodevelopmental disorder risk genes as well. Our results reveal a neurodevelopmental function of an ASD risk gene and identify molecular targets that may elucidate its function in ASD.
Collapse
Affiliation(s)
- Eirene Markenscoff-Papadimitriou
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Fadya Binyameen
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA, USA
| | - James Price
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Kenneth Lim
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Athena R Ypsilanti
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Rinaldo Catta-Preta
- Departments of Neurobiology, Physiology, and Behavior and Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA, USA
| | - Emily Ling-Lin Pai
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | | | | | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA; Institute for Computational Health Sciences, University of California, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA; Quantitative Biology Institute, University of California, San Francisco, CA, USA
| | - Alex S Nord
- Departments of Neurobiology, Physiology, and Behavior and Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA, USA
| | - Matthew W State
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - John L Rubenstein
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
33
|
Chen J, Lambo ME, Ge X, Dearborn JT, Liu Y, McCullough KB, Swift RG, Tabachnick DR, Tian L, Noguchi K, Garbow JR, Constantino JN, Gabel HW, Hengen KB, Maloney SE, Dougherty JD. A MYT1L syndrome mouse model recapitulates patient phenotypes and reveals altered brain development due to disrupted neuronal maturation. Neuron 2021; 109:3775-3792.e14. [PMID: 34614421 PMCID: PMC8668036 DOI: 10.1016/j.neuron.2021.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/07/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
Human genetics have defined a new neurodevelopmental syndrome caused by loss-of-function mutations in MYT1L, a transcription factor known for enabling fibroblast-to-neuron conversions. However, how MYT1L mutation causes intellectual disability, autism, ADHD, obesity, and brain anomalies is unknown. Here, we developed a Myt1l haploinsufficient mouse model that develops obesity, white-matter thinning, and microcephaly, mimicking common clinical phenotypes. During brain development we discovered disrupted gene expression, mediated in part by loss of Myt1l gene-target activation, and identified precocious neuronal differentiation as the mechanism for microcephaly. In contrast, in adults we discovered that mutation results in failure of transcriptional and chromatin maturation, echoed in disruptions in baseline physiological properties of neurons. Myt1l haploinsufficiency also results in behavioral anomalies, including hyperactivity, muscle weakness, and social alterations, with more severe phenotypes in males. Overall, our findings provide insight into the mechanistic underpinnings of this disorder and enable future preclinical studies.
Collapse
Affiliation(s)
- Jiayang Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary E Lambo
- Department of Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
| | - Joshua T Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine B McCullough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Raylynn G Swift
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Dora R Tabachnick
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucy Tian
- Department of Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA; Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Specchio N, Di Micco V, Trivisano M, Ferretti A, Curatolo P. The epilepsy-autism spectrum disorder phenotype in the era of molecular genetics and precision therapy. Epilepsia 2021; 63:6-21. [PMID: 34741464 DOI: 10.1111/epi.17115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is frequently associated with infants with epileptic encephalopathy, and early interventions targeting social and cognitive deficits can have positive effects on developmental outcome. However, early diagnosis of ASD among infants with epilepsy is complicated by variability in clinical phenotypes. Commonality in both biological and molecular mechanisms have been suggested between ASD and epilepsy, such as occurs with tuberous sclerosis complex. This review summarizes the current understanding of causal mechanisms between epilepsy and ASD, with a particularly genetic focus. Hypothetical explanations to support the conjugation of the two conditions include abnormalities in synaptic growth, imbalance in neuronal excitation/inhibition, and abnormal synaptic plasticity. Investigation of the probable genetic basis has implemented many genes, although the main risk supports existing hypotheses in that these cluster to abnormalities in ion channels, synaptic function and structure, and transcription regulators, with the mammalian target of rapamycin (mTOR) pathway and "mTORpathies" having been a notable research focus. Experimental models not only have a crucial role in determining gene functions but are also useful instruments for tracing disease trajectory. Precision medicine from gene therapy remains a theoretical possibility, but more contemporary developments continue in molecular tests to aid earlier diagnoses and better therapeutic targeting.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Valentina Di Micco
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Alessandro Ferretti
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
35
|
Kawamura A, Katayama Y, Kakegawa W, Ino D, Nishiyama M, Yuzaki M, Nakayama KI. The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Rep 2021; 35:108932. [PMID: 33826902 DOI: 10.1016/j.celrep.2021.108932] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in the gene encoding the chromatin remodeler chromodomain helicase DNA-binding protein 8 (CHD8) are a highly penetrant risk factor for autism spectrum disorder (ASD). Although cerebellar abnormalities have long been thought to be related to ASD pathogenesis, it has remained largely unknown whether dysfunction of CHD8 in the cerebellum contributes to ASD phenotypes. We here show that cerebellar granule neuron progenitor (GNP)-specific deletion of Chd8 in mice impairs the proliferation and differentiation of these cells as well as gives rise to cerebellar hypoplasia and a motor coordination defect, but not to ASD-like behavioral abnormalities. CHD8 is found to regulate the expression of neuronal genes in GNPs. It also binds preferentially to promoter regions and modulates local chromatin accessibility of transcriptionally active genes in these cells. Our results have thus uncovered a key role for CHD8 in cerebellar development, with important implications for understanding the contribution of this brain region to ASD pathogenesis.
Collapse
Affiliation(s)
- Atsuki Kawamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daisuke Ino
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
36
|
Kitagawa K, Matsumura K, Baba M, Kondo M, Takemoto T, Nagayasu K, Ago Y, Seiriki K, Hayata-Takano A, Kasai A, Takuma K, Hashimoto R, Hashimoto H, Nakazawa T. Intranasal oxytocin administration ameliorates social behavioral deficits in a POGZ WT/Q1038R mouse model of autism spectrum disorder. Mol Brain 2021; 14:56. [PMID: 33726803 PMCID: PMC7962304 DOI: 10.1186/s13041-021-00769-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.
Collapse
Affiliation(s)
- Kohei Kitagawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kensuke Matsumura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masayuki Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Momoka Kondo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoya Takemoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuki Nagayasu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Takuma
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan.,Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8553, Japan.,Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan. .,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan. .,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan. .,Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan. .,Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| |
Collapse
|
37
|
Amir N, Suliman-Lavie R, Tal M, Shifman S, Tishby N, Nelken I. Value-complexity tradeoff explains mouse navigational learning. PLoS Comput Biol 2020; 16:e1008497. [PMID: 33306669 PMCID: PMC7758052 DOI: 10.1371/journal.pcbi.1008497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 12/23/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
We introduce a novel methodology for describing animal behavior as a tradeoff between value and complexity, using the Morris Water Maze navigation task as a concrete example. We develop a dynamical system model of the Water Maze navigation task, solve its optimal control under varying complexity constraints, and analyze the learning process in terms of the value and complexity of swimming trajectories. The value of a trajectory is related to its energetic cost and is correlated with swimming time. Complexity is a novel learning metric which measures how unlikely is a trajectory to be generated by a naive animal. Our model is analytically tractable, provides good fit to observed behavior and reveals that the learning process is characterized by early value optimization followed by complexity reduction. Furthermore, complexity sensitively characterizes behavioral differences between mouse strains.
Collapse
Affiliation(s)
- Nadav Amir
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
| | - Reut Suliman-Lavie
- The Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Maayan Tal
- The Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Sagiv Shifman
- The Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Naftali Tishby
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
- The Benin School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|