1
|
Sun S, Li Q, Onishi T, Goudappagouda, Zhou H, Gao L, Okada Y, Lu J, Narita A, Cai J. On-Surface Synthesis of Nanographenes Through Domino Cyclization Reactions. Angew Chem Int Ed Engl 2025:e202425167. [PMID: 40307191 DOI: 10.1002/anie.202425167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/02/2025]
Abstract
On-surface synthesis has emerged as a powerful method to synthesize nanographenes that are difficult to obtain through the solution chemistry, but the number of available reactions is still highly limited. In this study, we demonstrate an unprecedented on-surface domino cyclization of bis{2-(7-formylnaphthalen-2-yl)phenyl}diacetylene, leading to dibenzo[hi,st]ovalene and peryleno[2,1,12,11-fghij]pentaphene through a sequence of 1) cycloisomerization of diaryldiacetylene moieties, 2) oxidative cyclodehydrogenation, and 3) reductive cyclization of formyl groups. The structures of these nanographenes and other cyclized products were unambiguously elucidated by using scanning tunneling microscopy directly on Au(111). Moreover, their electronic properties were investigated by scanning tunneling spectroscopy combined with density functional theory calculations. Our findings offer new insights into the on-surface cyclization reactions, providing an effective strategy for synthesizing a wider variety of carbon nanostructures.
Collapse
Affiliation(s)
- Shijie Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Qingyan Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China
| | - Takatsugu Onishi
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0495, Japan
- Quantum Materials Science Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Goudappagouda
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Hangjing Zhou
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China
| | - Lei Gao
- Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yoshinori Okada
- Quantum Materials Science Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China
- Southwest United Graduate School, Kunming, 650093, China
| |
Collapse
|
2
|
Ruan L, Li R, Li M, Huang Y, An P. Phenylenediamine-Linked, Folded Nanographene Dimers: Access to Structure-Dependent Redox Capability. J Org Chem 2025; 90:4365-4373. [PMID: 40105489 DOI: 10.1021/acs.joc.5c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with open-shell or redox characteristics are highly desirable due to their intriguing electronic properties and potential applications. Here, we demonstrate a series of phenylenediamine-linked nanographenes (NGs) 1-3 by connecting two aza-hexa-peri-hexabenzocoronene (HBC) units to p-phenylene, p,p'-biphenylene, and p,p"-terphenylene, respectively, and unveil their 3D conformations, electronic structures, and redox properties. As proved by X-ray crystallographic analysis and quantum chemical calculation, 1-3 adopted anti-folded, Z-shaped 3D structures with rotatable single bonds. The structure-dependent redox capabilities were disclosed. For 1, a stable monoradical cation was generated by one-electron oxidation as the terminal product. X-ray crystallographic analysis revealed an unprecedented syn-folded structure of monoradical 1+. However, 2 and 3 were demonstrated as redox-active molecules from neutral to dication that each oxidative state can be precisely controlled by chemical oxidation/reduction.
Collapse
Affiliation(s)
- Lan Ruan
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ranran Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Meng Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yuxin Huang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Peng An
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
3
|
Paschke F, Ortiz R, Mishra S, Vilas-Varela M, Albrecht F, Peña D, Melle-Franco M, Gross L. A Route toward the On-Surface Synthesis of Organic Ferromagnetic Quantum Spin Chains. J Am Chem Soc 2025; 147:7859-7867. [PMID: 39967246 PMCID: PMC11887423 DOI: 10.1021/jacs.4c18123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Engineering sublattice imbalance is an intuitive way to induce high-spin ground states in bipartite polycyclic conjugated hydrocarbons (PCHs). Such molecules can be employed as building blocks of quantum spin chains, which are outstanding platforms to study fundamental models in quantum magnetism. This is exemplified by recent reports on the bottom-up synthesis of antiferromagnetic spin chains that provided insights into paradigmatic quantum phenomena such as fractionalization. In contrast to antiferromagnetism, demonstration of ferromagnetic coupling between PCHs has been scarce. Previous attempts in this direction were limited by the formation of nonbenzenoid rings leading to spin quenching or the use of spacer motifs that weaken the magnitude of ferromagnetic exchange. Here, we demonstrate the on-surface synthesis of short ferromagnetic spin chains based on dibenzotriangulene, a triplet PCH. Our synthetic strategy centers on the concept of achieving a direct (without spacer motifs) majority-minority sublattice coupling between adjacent molecules. This leads to a global sublattice imbalance in spin chains scaling with the chain length and therefore a ferromagnetic ground state with a strong intermolecular ferromagnetic exchange. Through scanning probe measurements and quantum chemical calculations, we analyze the electronic and magnetic properties of ferromagnetic dimers and trimers of dibenzotriangulene and confirm their quintet and septet ground states, respectively, with an intermolecular ferromagnetic exchange of 7 meV. Furthermore, we elucidate the role of sublattice coupling on magnetism through complementary experiments on antiferromagnetic dibenzotriangulene dimers with majority-majority and minority-minority sublattice couplings. We expect our study to provide impetus for the design of organic ferromagnetic materials.
Collapse
Affiliation(s)
- Fabian Paschke
- IBM Research
Europe – Zurich,, 8803 Rüschlikon, Switzerland
| | - Ricardo Ortiz
- CICECO -
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Manuel Vilas-Varela
- Center for
Research in Biological Chemistry and Molecular Materials (CiQUS),
and Department of Organic Chemistry, University
of Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | | | - Diego Peña
- Center for
Research in Biological Chemistry and Molecular Materials (CiQUS),
and Department of Organic Chemistry, University
of Santiago de Compostela, 15702 Santiago de Compostela, Spain
- Oportunius,
Galician Innovation Agency (GAIN), 15702 Santiago de Compostela, Spain
| | - Manuel Melle-Franco
- CICECO -
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leo Gross
- IBM Research
Europe – Zurich,, 8803 Rüschlikon, Switzerland
| |
Collapse
|
4
|
Sun K, Cao N, Silveira OJ, Fumega AO, Hanindita F, Ito S, Lado JL, Liljeroth P, Foster AS, Kawai S. On-surface synthesis of Heisenberg spin-1/2 antiferromagnetic molecular chains. SCIENCE ADVANCES 2025; 11:eads1641. [PMID: 40020073 PMCID: PMC11870052 DOI: 10.1126/sciadv.ads1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Magnetic exchange interactions between localized spins in π-electron magnetism of carbon-based nanostructures have attracted tremendous interest due to their great potential for nano spintronics. Unique many-body quantum characteristics, such as gaped excitations, strong spin entanglement, and fractionalized excitations, have been demonstrated, but the spin-1/2 Heisenberg model with a single antiferromagnetic coupling J value remained unexplored. Here, we realized the entangled antiferromagnetic quantum spin-1/2 Heisenberg model with diazahexabenzocoronene oligomers (up to 7 units) on Au(111). Extensive low-temperature scanning tunneling microscopy/spectroscopy measurements and density functional theory and many-body calculations show that even-numbered spin chains host a collective state with gapped excitations, while odd-numbered chains feature a Kondo excitation. We found that a given antiferromagnetic coupling J value between first neighbors in the entangled quantum states is responsible for the quantum phenomena, strongly relating to their parities of the chain. The tunable molecular building blocks act as an ideal platform for the experimental realization of topological spin lattices.
Collapse
Affiliation(s)
- Kewei Sun
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Center for Basic Research on Materials, National Institute for Materials Sciences, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Nan Cao
- Department of Applied Physics, Aalto University, Espoo, Finland
| | | | | | - Fiona Hanindita
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jose L. Lado
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Peter Liljeroth
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Adam S. Foster
- Department of Applied Physics, Aalto University, Espoo, Finland
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Sciences, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| |
Collapse
|
5
|
Yuan Z, Zhang XY, Jiang Y, Qian X, Wang Y, Liu Y, Liu L, Liu X, Guan D, Li Y, Zheng H, Liu C, Jia J, Qin M, Liu PN, Li DY, Wang S. Fractional Spinon Quasiparticles in Open-Shell Triangulene Spin-1/2 Chains. J Am Chem Soc 2025; 147:5004-5013. [PMID: 39874540 DOI: 10.1021/jacs.4c14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-1/2 chains using open-shell [2]triangulene molecules as building blocks. Each [2]triangulene unit, owing to its sublattice imbalance, hosts a net spin-1/2 in accordance with Lieb's theorem, and these spins are antiferromagnetically coupled within covalent chains with a coupling strength of J = 45 meV. Through scanning tunneling microscopy and spectroscopy, we probe the spin states, excitation gaps, and their spatial excitation weights within covalent spin chains of varying lengths with atomic precision. Our investigation reveals that the excitation gap decreases as the chain length increases, extrapolating to zero for long chains, consistent with Haldane's gapless prediction. Moreover, inelastic tunneling spectroscopy reveals an m-shaped energy dispersion characteristic of confined spinon quasiparticles in a one-dimensional quantum box. These findings establish a promising strategy for exploring the unique properties of excitation quasiparticles and their broad implications for quantum information.
Collapse
Affiliation(s)
- Zhangyu Yuan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yu Zhang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yashi Jiang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiangjian Qian
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yufeng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liang Liu
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xiaoxue Liu
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Dandan Guan
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Yaoyi Li
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hao Zheng
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Canhua Liu
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Jinfeng Jia
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Mingpu Qin
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| | - Pei-Nian Liu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Deng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shiyong Wang
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
6
|
Turco E, Wu F, Catarina G, Krane N, Ma J, Fasel R, Feng X, Ruffieux P. Magnetic Excitations in Ferromagnetically Coupled Spin-1 Nanographenes. Angew Chem Int Ed Engl 2024; 63:e202412353. [PMID: 39298142 DOI: 10.1002/anie.202412353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/07/2024]
Abstract
In the pursuit of high-spin building blocks for the formation of covalently bonded 1D or 2D materials with controlled magnetic interactions, π ${\pi }$ -electron magnetism offers an ideal framework to engineer ferromagnetic interactions between nanographenes. As a first step in this direction, we explore the spin properties of ferromagnetically coupled triangulenes-triangular nanographenes with spinS = 1 ${S = 1}$ . By combining in-solution synthesis of rationally designed molecular precursors with on-surface synthesis, we successfully achieve covalently bondedS = 2 ${S = 2}$ triangulene dimers andS = 3 ${S = 3}$ trimers on Au(111). Starting with the triangulene dimer, we meticulously characterize its low-energy magnetic excitations using inelastic electron tunneling spectroscopy (IETS). IETS reveals conductance steps corresponding to a quintet-to-triplet excitation, and a zero-bias peak resulting from higher-order spin-spin scattering of the five-fold degenerate ferromagnetic ground state. The Heisenberg model captures the key parameters of inter-triangulene ferromagnetic exchange, and its successful extension to the largerS = 3 ${S = 3}$ system validates the model's accuracy. We anticipate that incorporating ferromagnetically coupled building blocks into the repertoire of magnetic nanographenes will unlock new possibilities for designing carbon nanomaterials with complex magnetic ground states.
Collapse
Affiliation(s)
- Elia Turco
- Empa - Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland
| | - Fupeng Wu
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Gonçalo Catarina
- Empa - Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland
| | - Nils Krane
- Empa - Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland
| | - Ji Ma
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Roman Fasel
- Empa - Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Pascal Ruffieux
- Empa - Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory, 8600, Dübendorf, Switzerland
| |
Collapse
|
7
|
Li D, Silveira OJ, Matsuda T, Hayashi H, Maeda H, Foster AS, Kawai S. On-Surface Synthesis of Triaza[5]triangulene through Cyclodehydrogenation and its Magnetism. Angew Chem Int Ed Engl 2024; 63:e202411893. [PMID: 39039830 DOI: 10.1002/anie.202411893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Triangulenes as neutral radicals are becoming promising candidates for future applications such as spintronics and quantum technologies. To extend the potential of the advanced materials, it is of importance to control their electronic and magnetic properties by multiple graphitic nitrogen doping. Here, we synthesize triaza[5]triangulene on Au(111) by cyclodehydrogenation, and its derivatives by cleaving C-N bonds. Bond-resolved scanning tunneling microscopy and scanning tunneling spectroscopy provided detailed structural information and evidence for open-shell singlet ground state. The antiferromagnetic arrangement of the spins in positively doped triaza[5]triangulene was further confirmed by density function theory calculations. The key aspect of triangulenes with multiple graphitic nitrogen is the extra pz electrons composing the π orbitals, favoring charge transfer to the substrate and changing their low-energy excitations. Our findings pave the way for the exploration of exotic low-dimensional quantum phases of matter in heteroatom doped organic systems.
Collapse
Affiliation(s)
- Donglin Li
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Orlando J Silveira
- Department of Applied Physics, Aalto University, P.O. Box 11100, Aalto, Espoo, 00076, Finland
| | - Takuma Matsuda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Hironobu Hayashi
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Adam S Foster
- Department of Applied Physics, Aalto University, P.O. Box 11100, Aalto, Espoo, 00076, Finland
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| |
Collapse
|
8
|
Jiménez-Martín A, Sosnová Z, Soler D, Mallada B, González-Herrero H, Edalatmanesh S, Martín N, Écija D, Jelínek P, de la Torre B. Atomically Precise Control of Topological State Hybridization in Conjugated Polymers. ACS NANO 2024; 18:29902-29912. [PMID: 39404161 PMCID: PMC11526428 DOI: 10.1021/acsnano.4c10357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Realization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers. Our investigation employed a combination of low-temperature scanning tunneling microscopy and spectroscopy, along with high-resolution atomic force microscopy, to effectively modify the hybridization level of neighboring edge states by the selective dehydrogenation reaction of molecular units in a pentacene-based polymer and demonstrate their reversible character. Density functional theory, tight binding, and complete active space calculations for the Hubbard model were employed to support our findings, revealing that the extent of orbital overlap between the topological edge states can be finely tuned based on the geometry and electronic bandgap of the interconnecting region. These results demonstrate the utility of topological edge states as components for designing complex quantum arrangements for advanced electronic devices.
Collapse
Affiliation(s)
- Alejandro Jiménez-Martín
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech
Republic
| | - Zdenka Sosnová
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Diego Soler
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Benjamin Mallada
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Héctor González-Herrero
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Departamento
de Física de la Materia Condensada, Universidad Autónoma, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma, E-28049 Madrid, Spain
| | - Shayan Edalatmanesh
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Nazario Martín
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- IMDEA
Nanoscience, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - David Écija
- IMDEA
Nanoscience, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Pavel Jelínek
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Bruno de la Torre
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| |
Collapse
|
9
|
Jacobse PH, Sarker M, Saxena A, Zahl P, Wang Z, Berger E, Aluru NR, Sinitskii A, Crommie MF. Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400473. [PMID: 38412424 DOI: 10.1002/smll.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 02/29/2024]
Abstract
Carbon-based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom-up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high-resolution atomic force microscopy (HR-AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin-degree of freedom in carbon-based nanostructures.
Collapse
Affiliation(s)
- Peter H Jacobse
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mamun Sarker
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Anshul Saxena
- Walker Department of Mechanical Engineering, University of Texas, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ziyi Wang
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emma Berger
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering, University of Texas, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Song S, Pinar Solé A, Matěj A, Li G, Stetsovych O, Soler D, Yang H, Telychko M, Li J, Kumar M, Chen Q, Edalatmanesh S, Brabec J, Veis L, Wu J, Jelinek P, Lu J. Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration. Nat Chem 2024; 16:938-944. [PMID: 38374456 DOI: 10.1038/s41557-024-01453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Open-shell nanographenes exhibit unconventional π-magnetism arising from topological frustration or strong electron-electron interaction. However, conventional design approaches are typically limited to a single magnetic origin, which can restrict the number of correlated spins or the type of magnetic ordering in open-shell nanographenes. Here we present a design strategy that combines topological frustration and electron-electron interactions to fabricate a large fully fused 'butterfly'-shaped tetraradical nanographene on Au(111). We employ bond-resolved scanning tunnelling microscopy and spin-excitation spectroscopy to resolve the molecular backbone and reveal the strongly correlated open-shell character, respectively. This nanographene contains four unpaired electrons with both ferromagnetic and anti-ferromagnetic interactions, harbouring a many-body singlet ground state and strong multi-spin entanglement, which is well described by many-body calculations. Furthermore, we study the magnetic properties and spin states in the nanographene using a nickelocene magnetic probe. The ability to imprint and characterize many-body strongly correlated spins in polyradical nanographenes paves the way for future advancements in quantum information technologies.
Collapse
Affiliation(s)
- Shaotang Song
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Andrés Pinar Solé
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Adam Matěj
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Guangwu Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Center of Single-Molecule Sciences, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | | | - Diego Soler
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Huimin Yang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jing Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Manish Kumar
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Qifan Chen
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jiri Brabec
- Department of Theoretical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Veis
- Department of Theoretical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Pavel Jelinek
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
- National University of Singapore (Suzhou) Research Institute, Suzhou, China.
| |
Collapse
|
11
|
Fang T, Zhang T, Hu T, Wang Z. Atomic-Limit Mott Insulator in [4]Triangulene Frameworks. NANO LETTERS 2024; 24:3059-3066. [PMID: 38426713 DOI: 10.1021/acs.nanolett.3c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Triangulene, one unique class of zigzag-edged triangular graphene molecules, has attracted tremendous research interest. In this work, as an ultimate phase of the Mott insulator, we present the realization of the atomic-limit Mott insulator in experimentally synthesized [4]triangulene frameworks ([4]-TGFs) from first-principles calculations. The frontier molecular orbitals of the nonmagnetic [4]triangulene consist of three coupled corner modes. After the isolated [4]triangulene is assembled into [4]-TGF, one special enantiomorphic flat band is created through the coupling of these corner modes, which is identified to be a second-order topological insulator with half-filled topological corner states at the Fermi level. Moreover, [4]-TGF prefers an antiferromagnetic ground state under Hubbard interactions, which further splits these metallic zero-energy states into an atomic-limit Mott insulator with spin-polarized corners. Since the fractional filling of topological corner states is a smoking-gun signature of higher-order topology, our results demonstrate a universal approach to explore the atomic-limit Mott insulators in higher-order topological materials.
Collapse
Affiliation(s)
- Tiancheng Fang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Tingfeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Tianyi Hu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengfei Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| |
Collapse
|
12
|
Calupitan JP, Berdonces-Layunta A, Aguilar-Galindo F, Vilas-Varela M, Peña D, Casanova D, Corso M, de Oteyza DG, Wang T. Emergence of π-Magnetism in Fused Aza-Triangulenes: Symmetry and Charge Transfer Effects. NANO LETTERS 2023; 23:9832-9840. [PMID: 37870305 PMCID: PMC10722538 DOI: 10.1021/acs.nanolett.3c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
On-surface synthesis has paved the way toward the fabrication and characterization of conjugated carbon-based molecular materials that exhibit π-magnetism such as triangulenes. Aza-triangulene, a nitrogen-substituted derivative, was recently shown to display rich on-surface chemistry, offering an ideal platform to investigate structure-property relations regarding spin-selective charge transfer and magnetic fingerprints. Herein, we study electronic changes upon fusion of single molecules into larger dimeric derivatives. We show that the closed-shell structure of aza-triangulene on Ag(111) leads to closed-shell dimers covalently coupled through sterically accessible carbon atoms. Meanwhile, its open-shell structure on Au(111) leads to coupling via atoms displaying a high spin density, resulting in symmetric or asymmetric products. Interestingly, whereas all dimers on Au(111) exhibit similar charge transfer properties, only asymmetric ones show magnetic fingerprints due to spin-selective charge transfer. These results expose clear relationships among molecular symmetry, charge transfer, and spin states of π-conjugated carbon-based nanostructures.
Collapse
Affiliation(s)
- Jan Patrick Calupitan
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Fernando Aguilar-Galindo
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Vilas-Varela
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Peña
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - David Casanova
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48009 Bilbao, Spain
| | - Martina Corso
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Dimas G. de Oteyza
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| | - Tao Wang
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| |
Collapse
|
13
|
Liu Y, Li C, Xue FH, Su W, Wang Y, Huang H, Yang H, Chen J, Guan D, Li Y, Zheng H, Liu C, Qin M, Wang X, Wang R, Li DY, Liu PN, Wang S, Jia J. Quantum Phase Transition in Magnetic Nanographenes on a Lead Superconductor. NANO LETTERS 2023; 23:9704-9710. [PMID: 37870505 DOI: 10.1021/acs.nanolett.3c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Quantum spins, also known as spin operators that preserve SU(2) symmetry, lack a specific orientation in space and are hypothesized to display unique interactions with superconductivity. However, spin-orbit coupling and crystal field typically cause a significant magnetic anisotropy in d/f shell spins on surfaces. Here, we fabricate atomically precise S = 1/2 magnetic nanographenes on Pb(111) through engineering sublattice imbalance in the graphene honeycomb lattice. Through tuning the magnetic exchange strength between the unpaired spin and Cooper pairs, a quantum phase transition from the singlet to the doublet state has been observed, consistent with the quantum spin models. From our calculations, the particle-hole asymmetry is induced by the Coulomb scattering potential and gives a transition point about kBTk ≈ 1.6Δ. Our work demonstrates that delocalized π electron magnetism hosts highly tunable magnetic bound states, which can be further developed to study the Majorana bound states and other rich quantum phases of low-dimensional quantum spins on superconductors.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Fu-Hua Xue
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Su
- Beijing Computational Science Research Center, Beijing 100084, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Ying Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haili Huang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Hao Yang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Jiayi Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Dandan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Yaoyi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Mingpu Qin
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoqun Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center for Advanced Microstructures, Nanjing 210093, China
| | - Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| |
Collapse
|
14
|
Liu C, Hongo K, Maezono R, Zhang J, Oshima Y. Stiffer Bonding of Armchair Edge in Single-Layer Molybdenum Disulfide Nanoribbons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303477. [PMID: 37697633 PMCID: PMC10602518 DOI: 10.1002/advs.202303477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/02/2023] [Indexed: 09/13/2023]
Abstract
The physical and chemical properties of nanoribbon edges are important for characterizing nanoribbons and applying them in electronic devices, sensors, and catalysts. The mechanical response of molybdenum disulfide nanoribbons, which is an important issue for their application in thin resonators, is expected to be affected by the edge structure, albeit this result is not yet being reported. In this work, the width-dependent Young's modulus is precisely measured in single-layer molybdenum disulfide nanoribbons with armchair edges using the developed nanomechanical measurement based on a transmission electron microscope. The Young's modulus remains constant at ≈166 GPa above 3 nm width, but is inversely proportional to the width below 3 nm, suggesting a higher bond stiffness for the armchair edges. Supporting the experimental results, the density functional theory calculations show that buckling causes electron transfer from the Mo atoms at the edges to the S atoms on both sides to increase the Coulomb attraction.
Collapse
Affiliation(s)
- Chunmeng Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of Educationand School of Physics & MicroelectronicsZhengzhou UniversityZhengzhou450052China
- School of Materials ScienceJapan Advanced Institute of Science and Technology1‐1 AsahidaiNomiIshikawa923‐1292Japan
- Center of Advanced Analysis & Gene SequencingZhengzhou UniversityZhengzhou450001China
| | - Kenta Hongo
- Research Center for Advanced Computing InfrastructureJapan Advanced Institute of Science and TechnologyNomiIshikawa923‐1292Japan
| | - Ryo Maezono
- School of Information ScienceJapan Advanced Institute of Science and TechnologyNomiIshikawa923‐1292Japan
| | - Jiaqi Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of Educationand School of Physics & MicroelectronicsZhengzhou UniversityZhengzhou450052China
- School of Materials ScienceJapan Advanced Institute of Science and Technology1‐1 AsahidaiNomiIshikawa923‐1292Japan
- Institute of Quantum Materials and PhysicsHenan Academy of SciencesZhengzhou450046China
| | - Yoshifumi Oshima
- School of Materials ScienceJapan Advanced Institute of Science and Technology1‐1 AsahidaiNomiIshikawa923‐1292Japan
| |
Collapse
|
15
|
Yin R, Wang Z, Tan S, Ma C, Wang B. On-Surface Synthesis of Graphene Nanoribbons with Atomically Precise Structural Heterogeneities and On-Site Characterizations. ACS NANO 2023; 17:17610-17623. [PMID: 37666005 DOI: 10.1021/acsnano.3c06128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Graphene nanoribbons (GNRs) are strips of graphene, with widths of a few nanometers, that are promising candidates for future applications in nanodevices and quantum information processing due to their highly tunable structure-dependent electronic, spintronic, topological, and optical properties. Implantation of periodic structural heterogeneities, such as heteroatoms, nanopores, and non-hexagonal rings, has become a powerful manner for tailoring the designer properties of GNRs. The bottom-up synthesis approach, by combining on-surface chemical reactions based on rationally designed molecular precursors and in situ tip-based microscopic and spectroscopic techniques, promotes the construction of atomically precise GNRs with periodic structural modulations. However, there are still obstacles and challenges lying on the way toward the understanding of the intrinsic structure-property relations, such as the strong screening and Fermi level pinning effect of the normally used transition metal substrates and the lack of collective tip-based techniques that can cover multi-internal degrees of freedom of the GNRs. In this Perspective, we briefly review the recent progress in the on-surface synthesis of GNRs with diverse structural heterogeneities and highlight the structure-property relations as characterized by the noncontact atomic force microscopy and scanning tunneling microscopy/spectroscopy. We furthermore motivate to deliver the need for developing strategies to achieve quasi-freestanding GNRs and for exploiting multifunctional tip-based techniques to collectively probe the intrinsic properties.
Collapse
Affiliation(s)
- Ruoting Yin
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengya Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shijing Tan
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chuanxu Ma
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
16
|
Du Q, Su X, Liu Y, Jiang Y, Li C, Yan K, Ortiz R, Frederiksen T, Wang S, Yu P. Orbital-symmetry effects on magnetic exchange in open-shell nanographenes. Nat Commun 2023; 14:4802. [PMID: 37558678 PMCID: PMC10412602 DOI: 10.1038/s41467-023-40542-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Open-shell nanographenes appear as promising candidates for future applications in spintronics and quantum technologies. A critical aspect to realize this potential is to design and control the magnetic exchange. Here, we reveal the effects of frontier orbital symmetries on the magnetic coupling in diradical nanographenes through scanning probe microscope measurements and different levels of theoretical calculations. In these open-shell nanographenes, the exchange energy exhibits a remarkable variation between 20 and 160 meV. Theoretical calculations reveal that frontier orbital symmetries play a key role in affecting the magnetic coupling on such a large scale. Moreover, a triradical nanographene is demonstrated for investigating the magnetic interaction among three unpaired electrons with unequal magnetic exchange, in agreement with Heisenberg spin model calculations. Our results provide insights into both theoretical design and experimental realization of nanographene materials with different exchange interactions through tuning the orbital symmetry, potentially useful for realizing magnetically operable graphene-based nanomaterials.
Collapse
Affiliation(s)
- Qingyang Du
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xuelei Su
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yufeng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yashi Jiang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ricardo Ortiz
- Donostia International Physics Center (DIPC) - UPV/EHU, 20018, San Sebastián, Spain.
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC) - UPV/EHU, 20018, San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
17
|
Du L, Gao B, Xu S, Xu Q. Strong ferromagnetism of g-C 3N 4 achieved by atomic manipulation. Nat Commun 2023; 14:2278. [PMID: 37080974 PMCID: PMC10119309 DOI: 10.1038/s41467-023-38012-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
Two-dimensional (2D) metal-free ferromagnetic materials are ideal candidates to fabricate next-generation memory and logic devices, but optimization of their ferromagnetism at atomic-scale remains challenging. Theoretically, optimization of ferromagnetism could be achieved by inducing long-range magnetic sequence, which requires short-range exchange interactions. In this work, we propose a strategy to enhance the ferromagnetism of 2D graphite carbon nitride (g-C3N4), which is facilitating the short-range exchange interaction by introducing in-planar boron bridges. As expected, the ferromagnetism of g-C3N4 was significantly enhanced after the introduction of boron bridges, consistent with theoretical calculations. Overall, boosting ferromagnetism of 2D materials by introducing bridging groups is emphasized, which could be applied to manipulate the magnetism of other materials.
Collapse
Affiliation(s)
- Lina Du
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Song Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, PR China
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, PR China.
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
18
|
Yan Y, Zheng F, Qie B, Lu J, Jiang H, Zhu Z, Sun Q. Triangle Counting Rule: An Approach to Forecast the Magnetic Properties of Benzenoid Polycyclic Hydrocarbons. J Phys Chem Lett 2023; 14:3193-3198. [PMID: 36971433 DOI: 10.1021/acs.jpclett.3c00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Open-shell benzenoid polycyclic hydrocarbons (BPHs) are promising materials for future quantum applications. However, the search for and realization of open-shell BPHs with desired properties is a challenging task due to the gigantic chemical space of BPHs, requiring new strategies for both theoretical understanding and experimental advancement. In this work, by building a structure database of BPHs through graphical enumeration, performing data-driven analysis, and combining tight-binding and mean-field Hubbard calculations, we discovered that the number of the internal vertices of the BPH graphs is closely correlated to their open-shell characters. We further established a simple rule, the triangle counting rule, to predict the magnetic ground states of BPHs. These findings not only provide a database of open-shell BPHs, but also extend the well-known Lieb's theorem and Ovchinnikov's rule and provide a straightforward method for designing open-shell carbon nanostructures. These insights may aid in the exploration of emerging quantum phases and the development of magnetic carbon materials for technology applications.
Collapse
Affiliation(s)
- Yuyi Yan
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Fengru Zheng
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Boyu Qie
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Jiayi Lu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Hao Jiang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhiwen Zhu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Qiang Sun
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
19
|
Steering Large Magnetic Exchange Coupling in Nanographenes near the Closed-Shell to Open-Shell Transition. J Am Chem Soc 2023; 145:2968-2974. [PMID: 36708335 DOI: 10.1021/jacs.2c11431] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The design of open-shell carbon-based nanomaterials is at the vanguard of materials science, steered by their beneficial magnetic properties like weaker spin-orbit coupling than that of transition metal atoms and larger spin delocalization, which are of potential relevance for future spintronics and quantum technologies. A key parameter in magnetic materials is the magnetic exchange coupling (MEC) between unpaired spins, which should be large enough to allow device operation at practical temperatures. In this work, we theoretically and experimentally explore three distinct families of nanographenes (NGs) (A, B, and C) featuring majority zigzag peripheries. Through many-body calculations, we identify a transition from a closed-shell ground state to an open-shell ground state upon an increase of the molecular size. Our predictions indicate that the largest MEC for open-shell NGs occurs in proximity to the transition between closed-shell and open-shell states. Such predictions are corroborated by the on-surface syntheses and structural, electronic, and magnetic characterizations of three NGs (A[3,5], B[4,5], and C[4,3]), which are the smallest open-shell systems in their respective chemical families and are thus located the closest to the transition boundary. Notably, two of the NGs (B[4,5] and C[4,3]) feature record values of MEC (close to 200 meV) measured on the Au(111) surface. Our strategy for maximizing the MEC provides perspectives for designing carbon nanomaterials with robust magnetic ground states.
Collapse
|
20
|
Pawar S, Duadi H, Fixler D. Recent Advances in the Spintronic Application of Carbon-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:598. [PMID: 36770559 PMCID: PMC9919822 DOI: 10.3390/nano13030598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The term "carbon-based spintronics" mostly refers to the spin applications in carbon materials such as graphene, fullerene, carbon nitride, and carbon nanotubes. Carbon-based spintronics and their devices have undergone extraordinary development recently. The causes of spin relaxation and the characteristics of spin transport in carbon materials, namely for graphene and carbon nanotubes, have been the subject of several theoretical and experimental studies. This article gives a summary of the present state of research and technological advancements for spintronic applications in carbon-based materials. We discuss the benefits and challenges of several spin-enabled, carbon-based applications. The advantages include the fact that they are significantly less volatile than charge-based electronics. The challenge is in being able to scale up to mass production.
Collapse
Affiliation(s)
- Shweta Pawar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
21
|
Quantum nanomagnets in on-surface metal-free porphyrin chains. Nat Chem 2023; 15:53-60. [PMID: 36280765 DOI: 10.1038/s41557-022-01061-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/09/2022] [Indexed: 01/14/2023]
Abstract
Unlike classic spins, quantum magnets are spin systems that interact via the exchange interaction and exhibit collective quantum behaviours, such as fractional excitations. Molecular magnetism often stems from d/f-transition metals, but their spin-orbit coupling and crystal field induce a significant magnetic anisotropy, breaking the rotation symmetry of quantum spins. Thus, it is of great importance to build quantum nanomagnets in metal-free systems. Here we have synthesized individual quantum nanomagnets based on metal-free multi-porphyrin systems. Covalent chains of two to five porphyrins were first prepared on Au(111) under ultrahigh vacuum, and hydrogen atoms were then removed from selected carbons using the tip of a scanning tunnelling microscope. The conversion of specific porphyrin units to their radical or biradical state enabled the tuning of intra- and inter-porphyrin magnetic coupling. Characterization of the collective magnetic properties of the resulting chains showed that the constructed S = 1/2 antiferromagnets display a gapped excitation, whereas the S = 1 antiferromagnets exhibit distinct end states between even- and odd-numbered spin chains, consistent with Heisenberg model calculations.
Collapse
|
22
|
Zhu YC, Xue FH, Kang LX, Liu JW, Wang Y, Li DY, Liu PN. Synthesis of Dendronized Polymers on the Au(111) Surface. J Phys Chem Lett 2022; 13:10589-10596. [PMID: 36346870 DOI: 10.1021/acs.jpclett.2c02810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dendronized polymers (DPs) consist of a linear polymeric backbone with dendritic side chains. Fine-tuning of the functional groups in the side chains enriches the structural versatility of the DPs and imparts a variety of novel physical properties. Herein, the first on-surface synthesis of DPs is achieved via the postfunctionalization of polymers on Au(111), in which the surface-confinement-induced planar conformation and chiral configurations were unambiguously characterized. While the dendronized monomer was synthesized in situ on Au(111), the subsequent polymerization afforded only short, cross-linked DP chains owing to multiple side reactions. The postfunctionalization approach selectively produced brominated polyphenylene backbone moieties by the deiodination polymerization of 4-bromo-4″-iodo-5'-(4-iodophenyl)-1,1':3',1″-terphenyl on Au(111), which smoothly underwent divergent cross-coupling reactions with two different isocyanides to form two types of DPs as individual long chains.
Collapse
Affiliation(s)
- Ya-Cheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fu-Hua Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-Wei Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
23
|
Friedrich N, Menchón RE, Pozo I, Hieulle J, Vegliante A, Li J, Sánchez-Portal D, Peña D, Garcia-Lekue A, Pascual JI. Addressing Electron Spins Embedded in Metallic Graphene Nanoribbons. ACS NANO 2022; 16:14819-14826. [PMID: 36037149 PMCID: PMC9527809 DOI: 10.1021/acsnano.2c05673] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Spin-hosting graphene nanostructures are promising metal-free systems for elementary quantum spintronic devices. Conventionally, spins are protected from quenching by electronic band gaps, which also hinder electronic access to their quantum state. Here, we present a narrow graphene nanoribbon substitutionally doped with boron heteroatoms that combines a metallic character with the presence of localized spin 1/2 states in its interior. The ribbon was fabricated by on-surface synthesis on a Au(111) substrate. Transport measurements through ribbons suspended between the tip and the sample of a scanning tunneling microscope revealed their ballistic behavior, characteristic of metallic nanowires. Conductance spectra show fingerprints of localized spin states in the form of Kondo resonances and inelastic tunneling excitations. Density functional theory rationalizes the metallic character of the graphene nanoribbon due to the partial depopulation of the valence band induced by the boron atoms. The transferred charge builds localized magnetic moments around the boron atoms. The orthogonal symmetry of the spin-hosting state's and the valence band's wave functions protects them from mixing, maintaining the spin states localized. The combination of ballistic transport and spin localization into a single graphene nanoribbon offers the perspective of electronically addressing and controlling carbon spins in real device architectures.
Collapse
Affiliation(s)
| | - Rodrigo E. Menchón
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Iago Pozo
- CiQUS,
Centro Singular de Investigación en Química Biolóxica
e Materiais Moleculares, 15705 Santiago de Compostela, Spain
| | | | | | - Jingcheng Li
- CIC
nanoGUNE-BRTA, 20018 Donostia-San Sebastián, Spain
| | - Daniel Sánchez-Portal
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Diego Peña
- CiQUS,
Centro Singular de Investigación en Química Biolóxica
e Materiais Moleculares, 15705 Santiago de Compostela, Spain
| | - Aran Garcia-Lekue
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - José Ignacio Pascual
- CIC
nanoGUNE-BRTA, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
24
|
de Oteyza DG, Frederiksen T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:443001. [PMID: 35977474 DOI: 10.1088/1361-648x/ac8a7f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Emergence ofπ-magnetism in open-shell nanographenes has been theoretically predicted decades ago but their experimental characterization was elusive due to the strong chemical reactivity that makes their synthesis and stabilization difficult. In recent years, on-surface synthesis under vacuum conditions has provided unprecedented opportunities for atomically precise engineering of nanographenes, which in combination with scanning probe techniques have led to a substantial progress in our capabilities to realize localized electron spin states and to control electron spin interactions at the atomic scale. Here we review the essential concepts and the remarkable advances in the last few years, and outline the versatility of carbon-basedπ-magnetic materials as an interesting platform for applications in spintronics and quantum technologies.
Collapse
Affiliation(s)
- Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, E-33940 El Entrego, Spain
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
| |
Collapse
|
25
|
Sun K, Silveira OJ, Saito S, Sagisaka K, Yamaguchi S, Foster AS, Kawai S. Manipulation of Spin Polarization in Boron-Substituted Graphene Nanoribbons. ACS NANO 2022; 16:11244-11250. [PMID: 35730993 DOI: 10.1021/acsnano.2c04563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design of magnetic topological states due to spin polarization in an extended π carbon system has great potential in spintronics application. Although magnetic zigzag edges in graphene nanoribbons (GNRs) have been investigated earlier, real-space observation and manipulation of spin polarization in a heteroatom substituted system remains challenging. Here, we investigate a zero-bias peak at a boron site embedded at the center of an armchair-type GNR on a AuSiX/Au(111) surface with a combination of low-temperature scanning tunneling microscopy/spectroscopy and density functional theory calculations. After the tip-induced removal of a Si atom connected to two adjacent boron atoms, a clear Kondo resonance peak appeared and was further split by an applied magnetic field of 12 T. This magnetic state can be relayed along the longitudinal axis of the GNR by sequential removal of Si atoms.
Collapse
Affiliation(s)
- Kewei Sun
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Orlando J Silveira
- Department of Applied Physics, Aalto University, PO Box 11100, FI-00076 Aalto, Finland
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Keisuke Sagisaka
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Adam S Foster
- Department of Applied Physics, Aalto University, PO Box 11100, FI-00076 Aalto, Finland
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shigeki Kawai
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
26
|
Boyn JN, Mazziotti DA. Elucidating the molecular orbital dependence of the total electronic energy in multireference problems. J Chem Phys 2022; 156:194104. [PMID: 35597644 DOI: 10.1063/5.0090342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The accurate resolution of the chemical properties of strongly correlated systems, such as biradicals, requires the use of electronic structure theories that account for both multi-reference and dynamic correlation effects. A variety of methods exist that aim to resolve the dynamic correlation in multi-reference problems, commonly relying on an exponentially scaling complete-active-space self-consistent-field (CASSCF) calculation to generate reference molecular orbitals (MOs). However, while CASSCF orbitals provide the optimal solution for a selected set of correlated (active) orbitals, their suitability in the quest for the resolution of the total correlation energy has not been thoroughly investigated. Recent research has shown the ability of Kohn-Shan density functional theory to provide improved orbitals for coupled cluster (CC) and Møller-Plesset perturbation theory (MP) calculations. Here, we extend the search for optimal and more cost effective MOs to post-configuration-interaction [post-(CI)] methods, surveying the ability of the MOs obtained with various density functional theory (DFT) functionals, as well as Hartree-Fock and CC and MP calculations to accurately capture the total electronic correlation energy. Applying the anti-Hermitian contracted Schrödinger equation to the dissociation of N2, the calculation of biradical singlet-triplet gaps, and the transition states of bicylobutane isomerization, we demonstrate that DFT provides a cost-effective alternative to CASSCF in providing reference orbitals for post-CI dynamic correlation calculations.
Collapse
Affiliation(s)
- Jan-Niklas Boyn
- The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - David A Mazziotti
- The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
27
|
Zhang H, Lu J, Zhang Y, Gao L, Zhao XJ, Tan YZ, Cai J. Magnetism engineering of nanographene: an enrichment strategy by co-depositing diverse precursors on Au(111). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Cheng S, Xue Z, Li C, Liu Y, Xiang L, Ke Y, Yan K, Wang S, Yu P. On-surface synthesis of triangulene trimers via dehydration reaction. Nat Commun 2022; 13:1705. [PMID: 35361812 PMCID: PMC8971457 DOI: 10.1038/s41467-022-29371-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Triangulene and its homologues are of considerable interest for molecular spintronics due to their high-spin ground states as well as the potential for constructing high spin frameworks. Realizing triangulene-based high-spin system on surface is challenging but of particular importance for understanding π-electron magnetism. Here, we report two approaches to generate triangulene trimers on Au(111) by using surface-assisted dehydration and alkyne trimerization, respectively. We find that the developed dehydration reaction shows much higher chemoselectivity thus resulting in significant promotion of product yield compared to that using alkyne trimerization approach, through cutting the side reaction path. Combined with spin-polarized density functional theory calculations, scanning tunneling spectroscopy measurements identify the septuple (S = 3) high-spin ground state and quantify the collective ferromagnetic interaction among three triangulene units. Our results demonstrate the approaches to fabricate high-quality triangulene-based high spin systems and understand their magnetic interactions, which are essential for realizing carbon-based spintronic devices.
Collapse
Affiliation(s)
- Suqin Cheng
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Zhijie Xue
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yufeng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Longjun Xiang
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Youqi Ke
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Kaking Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
29
|
Wang T, Sanz S, Castro-Esteban J, Lawrence J, Berdonces-Layunta A, Mohammed MSG, Vilas-Varela M, Corso M, Peña D, Frederiksen T, de Oteyza DG. Magnetic Interactions Between Radical Pairs in Chiral Graphene Nanoribbons. NANO LETTERS 2022; 22:164-171. [PMID: 34936370 DOI: 10.1021/acs.nanolett.1c03578] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Open-shell graphene nanoribbons have become promising candidates for future applications, including quantum technologies. Here, we characterize magnetic states hosted by chiral graphene nanoribbons (chGNRs). The substitution of a hydrogen atom at the chGNR edge by a ketone effectively adds one pz electron to the π-electron network, producing an unpaired π-radical. A similar scenario occurs for regular ketone-functionalized chGNRs in which one ketone is missing. Two such radical states can interact via exchange coupling, and we study those interactions as a function of their relative position, which includes a remarkable dependence on the chirality, as well as on the nature of the surrounding ribbon, that is, with or without ketone functionalization. Besides, we determine the parameters whereby this type of system with oxygen heteroatoms can be adequately described within the widely used mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with tunable magnetic properties.
Collapse
Affiliation(s)
- Tao Wang
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Sofia Sanz
- Donostia International Physics Center, 20018 San Sebastián, Spain
| | - Jesús Castro-Esteban
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - James Lawrence
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martina Corso
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Dimas G de Oteyza
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Fisica de Materiales CFM/MPC, CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
30
|
Biswas K, Yang L, Ma J, Sánchez-Grande A, Chen Q, Lauwaet K, Gallego JM, Miranda R, Écija D, Jelínek P, Feng X, Urgel JI. Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:224. [PMID: 35055243 PMCID: PMC8780648 DOI: 10.3390/nano12020224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
The synthesis of nanographenes (NGs) with open-shell ground states have recently attained increasing attention in view of their interesting physicochemical properties and great prospects in manifold applications as suitable materials within the rising field of carbon-based magnetism. A potential route to induce magnetism in NGs is the introduction of structural defects, for instance non-benzenoid rings, in their honeycomb lattice. Here, we report the on-surface synthesis of three open-shell non-benzenoid NGs (A1, A2 and A3) on the Au(111) surface. A1 and A2 contain two five- and one seven-membered rings within their benzenoid backbone, while A3 incorporates one five-membered ring. Their structures and electronic properties have been investigated by means of scanning tunneling microscopy, noncontact atomic force microscopy and scanning tunneling spectroscopy complemented with theoretical calculations. Our results provide access to open-shell NGs with a combination of non-benzenoid topologies previously precluded by conventional synthetic procedures.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - Lin Yang
- Center for Advancing Electronics, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany; (L.Y.); (X.F.)
| | - Ji Ma
- Center for Advancing Electronics, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany; (L.Y.); (X.F.)
| | - Ana Sánchez-Grande
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Science, CZ-16253 Praha, Czech Republic;
| | - Koen Lauwaet
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain;
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, CZ-16253 Praha, Czech Republic;
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, CZ-77146 Olomouc, Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany; (L.Y.); (X.F.)
| | - José I. Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain; (K.B.); (A.S.-G.); (K.L.); (R.M.)
| |
Collapse
|
31
|
Jacobse PH, Jin Z, Jiang J, Peurifoy S, Yue Z, Wang Z, Rizzo DJ, Louie SG, Nuckolls C, Crommie MF. Pseudo-atomic orbital behavior in graphene nanoribbons with four-membered rings. SCIENCE ADVANCES 2021; 7:eabl5892. [PMID: 34936436 PMCID: PMC8694588 DOI: 10.1126/sciadv.abl5892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The incorporation of nonhexagonal rings into graphene nanoribbons (GNRs) is an effective strategy for engineering localized electronic states, bandgaps, and magnetic properties. Here, we demonstrate the successful synthesis of nanoribbons having four-membered ring (cyclobutadienoid) linkages by using an on-surface synthesis approach involving direct contact transfer of coronene-type precursors followed by thermally assisted [2 + 2] cycloaddition. The resulting coronene-cyclobutadienoid nanoribbons feature a narrow 600-meV bandgap and novel electronic frontier states that can be interpreted as linear chains of effective px and py pseudo-atomic orbitals. We show that these states give rise to exceptional physical properties, such as a rigid indirect energy gap. This provides a previously unexplored strategy for constructing narrow gap GNRs via modification of precursor molecules whose function is to modulate the coupling between adjacent four-membered ring states.
Collapse
Affiliation(s)
- Peter H. Jacobse
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Zexin Jin
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jingwei Jiang
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Samuel Peurifoy
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Ziqin Yue
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Ziyi Wang
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Daniel J. Rizzo
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Steven G. Louie
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Michael F. Crommie
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
32
|
Spin State Switching in Heptauthrene Nanostructure by Electric Field: Computational Study. Int J Mol Sci 2021; 22:ijms222413364. [PMID: 34948161 PMCID: PMC8705984 DOI: 10.3390/ijms222413364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
Recent experimental studies proved the presence of the triplet spin state in atomically precise heptauthrene nanostructure of nanographene type (composed of two interconnected triangles with zigzag edge). In the paper, we report the computational study predicting the possibility of controlling this spin state with an external in-plane electric field by causing the spin switching. We construct and discuss the ground state magnetic phase diagram involving S=1 (triplet) state, S=0 antiferromagnetic state and non-magnetic state and predict the switching possibility with the critical electric field of the order of 0.1 V/Å. We discuss the spin distribution across the nanostructure, finding its concentration along the longest zigzag edge. To model our system of interest, we use the mean-field Hubbard Hamiltonian, taking into account the in-plane external electric field as well as the in-plane magnetic field (in a form of the exchange field from the substrate). We also assess the effect of uniaxial strain on the magnetic phase diagram.
Collapse
|
33
|
Liu X, Qin X, Li X, Ding Z, Li X, Hu W, Yang J. Designing Two-Dimensional Versatile Room-Temperature Ferromagnets via Assembling Large-Scale Magnetic Quantum Dots. NANO LETTERS 2021; 21:9816-9823. [PMID: 34761940 DOI: 10.1021/acs.nanolett.1c03814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) ferromagnets possess astonishing potential in new-concept spintronics. However, most of the reported intrinsic 2D ferromagnets show a low Curie temperature far below room temperature. Here, we propose a series of 2D magnetic covalent and metal organic frameworks (COFs/MOFs) by assembling triangular zigzag graphene quantum dots (TZGDs) with various linkages, involving small-sized TZGDs, nonmetal atoms, magnetic metal atoms, and molecules. Upon first-principles calculations, we demonstrate 2D magnetic semiconductors with an enhanced Curie temperature of up to 472 K can be realized through the strong p(d)-p direct exchange interaction between TZGDs and linkages. Particularly, the TZGD size hardly affects the Curie temperature, whereas linkages can modulate the Curie temperature significantly. The TZGD size and linkages can regulate the electronic and magnetic properties of TZGD-based 2D ferromagnets. Our results confirm the possibility of designing 2D ferromagnets based on TZGDs and motivate the research of 2D ferromagnets on magnetic quantum dots and molecular magnets.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinming Qin
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangyang Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zijing Ding
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingxing Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
34
|
Peng X, Mahalingam H, Dong S, Mutombo P, Su J, Telychko M, Song S, Lyu P, Ng PW, Wu J, Jelínek P, Chi C, Rodin A, Lu J. Visualizing designer quantum states in stable macrocycle quantum corrals. Nat Commun 2021; 12:5895. [PMID: 34625542 PMCID: PMC8501084 DOI: 10.1038/s41467-021-26198-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Creating atomically precise quantum architectures with high digital fidelity and desired quantum states is an important goal in a new era of quantum technology. The strategy of creating these quantum nanostructures mainly relies on atom-by-atom, molecule-by-molecule manipulation or molecular assembly through non-covalent interactions, which thus lack sufficient chemical robustness required for on-chip quantum device operation at elevated temperature. Here, we report a bottom-up synthesis of covalently linked organic quantum corrals (OQCs) with atomic precision to induce the formation of topology-controlled quantum resonance states, arising from a collective interference of scattered electron waves inside the quantum nanocavities. Individual OQCs host a series of atomic orbital-like resonance states whose orbital hybridization into artificial homo-diatomic and hetero-diatomic molecular-like resonance states can be constructed in Cassini oval-shaped OQCs with desired topologies corroborated by joint ab initio and analytic calculations. Our studies open up a new avenue to fabricate covalently linked large-sized OQCs with atomic precision to engineer desired quantum states with high chemical robustness and digital fidelity for future practical applications.
Collapse
Affiliation(s)
- Xinnan Peng
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | | | - Shaoqiang Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pingo Mutombo
- Institute of Physics, Czech Academy of Sciences, Prague, 16200, Czech Republic
| | - Jie Su
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Shaotang Song
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pei Wen Ng
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Prague, 16200, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, 78371, Czech Republic.
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
| | - Aleksandr Rodin
- Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore.
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, 117543, Singapore.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|