1
|
Wang Y, Jiao R, Zhang X, Ren Y, Zhao W, Ye Y. OmpR-mediated activation of the type Vl secretion system drives enhanced acid tolerance in Cronobacter. J Dairy Sci 2025; 108:3390-3403. [PMID: 39890079 DOI: 10.3168/jds.2024-25685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 02/03/2025]
Abstract
Cronobacter (7 species) are prevalent foodborne pathogens with a remarkable capacity to adapt to acidic environments. This resilience enables them to persist in both food matrices and host organisms. Here we investigated the role of the 2-component system response regulator OmpR in the acid tolerance of Cronobacter. Under acid stress, Cronobacter malonaticus demonstrated significantly elevated expression of ompR and type VI secretion system (T6SS) genes, as well as a marked decrease in the survival of OmpR or T6SS structure gene mutants, indicating the pivotal role of OmpR and T6SS in acid tolerance. Notably, OmpR markedly enhanced the T6SS expression by binding specifically to its promoter, and the activated T6SS expedited adaptation to acidic environments and facilitated biofilm formation, thereby aiding Cronobacter's survival under acidic conditions. Moreover, knocking out ompR in 6 additional Cronobacter species resulted in decreased T6SS expression and tolerance to acid stress than their wild-type strains, which further solidifies the widespread nature of the acid tolerance mechanism predicated on the activation of T6SS by OmpR in Cronobacter spp. A comprehensive understanding of the adaptation mechanisms employed by Cronobacter spp. in acidic conditions will provide a theoretical foundation for managing their contamination in acidic food matrices and preventing infection outbreaks in the infant gastrointestinal tract.
Collapse
Affiliation(s)
- Yang Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China; School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Rui Jiao
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Xiyan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Yuwei Ren
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Wenhua Zhao
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China.
| |
Collapse
|
2
|
Luo C, Gu H, Pan D, Zhao Y, Zheng A, Zhu H, Zhang C, Li C, Zhang J, Chen C, Xu L, Pan J, Shen X, Wang Y. Pseudomonas aeruginosa T6SS secretes an oxygen-binding hemerythrin to facilitate competitive growth under microaerobic conditions. Microbiol Res 2025; 293:128052. [PMID: 39813750 DOI: 10.1016/j.micres.2025.128052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
Pseudomonas aeruginosa is a prominent respiratory pathogen in cystic fibrosis (CF) patients, thriving in the hypoxic airway mucus. Previous studies have established the role of the oxygen-binding hemerythrin, Mhr, in enhancing P. aeruginosa's fitness under microaerobic conditions. However, the specific mechanisms by which Mhr operates remain unclear. This study uniquely identifies Mhr as an effector of the H2-Type VI Secretion System (H2-T6SS) and elucidates its role in the transport and interaction mechanisms that confer a growth advantage under microaerobic conditions. Our findings demonstrate that mhr expression is directly regulated by Anr and Dnr. Western blot analysis confirms that Mhr is secreted extracellularly via the H2-T6SS. The oxygen-binding Mhr re-enters P. aeruginosa through the OprG porin. Then, Mhr interacts with cbb3-type cytochrome c oxidase (cbb3-CcO) subunits CcoP1/CcoP2, significantly impacting intracellular NADH/NAD+ levels. These insights suggest that the T6SS-mediated secretion and transport of Mhr represent a novel mechanism by which P. aeruginosa acquires and delivers oxygen, potentially enhancing microaerobic respiration, energy production, and growth under microaerobic conditions.
Collapse
Affiliation(s)
- Chunhui Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huawei Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Damin Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixin Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anqi Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhang
- College of Life Sciences, Tarim University, Alar,Xinjiang 843300, China
| | - Can Chen
- Institute of Food and Drug Inspection, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junfeng Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Guan H, Wu H, Gan M, Zhang J, Wang J, Liu S, Chen S, Jiao Y, Li F, Huang S, Lin S, Chen H, Feng Y, Cheng C, Song H, Wang C, Zheng L, Fu J, Ouyang S. Contact-dependent antagonism is mediated by a T7SSb toxin effector-immunity protein pair via ADP-ribosylation. Sci Bull (Beijing) 2025:S2095-9273(25)00255-5. [PMID: 40175176 DOI: 10.1016/j.scib.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Affiliation(s)
- Hongxin Guan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Huan Wu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Mengrou Gan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jing Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajun Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Siyao Liu
- Center for Infectious Diseases and Pathogen Biology, the First Hospital of Jilin University, Changchun 130021, China
| | - Shuyue Chen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yindi Jiao
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Fan Li
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shiqing Huang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Sihuang Lin
- First Hospital of Quanzhou Affiliated with Fujian Medical University, Quanzhou 362000, China
| | - Hongwei Chen
- First Hospital of Quanzhou Affiliated with Fujian Medical University, Quanzhou 362000, China
| | - Yue Feng
- Beijing University of Chemical Technology, Beijing 100029, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang Province, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green Eco-Healthy Animal Husbandry of Zhejiang Province, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengyuan Wang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated with Fujian Medical University, Quanzhou 362000, China.
| | - Jiaqi Fu
- Center for Infectious Diseases and Pathogen Biology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
4
|
Duan Z, Liao L, Lai T, Yang R, Zhang J, Chen B. Dynamic and intricate regulation by the Csr sRNAs in the Arctic Pseudoalteromonas fuliginea. Commun Biol 2025; 8:369. [PMID: 40044903 PMCID: PMC11882849 DOI: 10.1038/s42003-025-07780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
The Csr (Carbon Storage Regulator) system is pivotal in controlling various cellular functions in most bacteria, primarily through the CsrA protein and its antagonistic sRNAs. However, riboregulatory networks are less explored in non-model organisms, particularly those in extreme environments. In this study, we discovered two new sRNAs of the Csr system, Pf2 and Pf3, in the Arctic bacterium Pseudoalteromonas fuliginea BSW20308, along with the previously known Pf1. By studying the impact of these Pf sRNAs on CsrA targetomes and physiological processes, we found a significant influence on various cellular functions and a collective effect on the interaction dynamics between CsrA and RNAs. Furthermore, we identified additional sRNAs that can interact with CsrA and mRNAs. Overall, our results emphasize the growing influence of the Csr system on cellular physiology through intricate sRNA regulation of CsrA, revealing riboregulatory network complexity and significance in non-model organisms.
Collapse
Affiliation(s)
- Zedong Duan
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Li Liao
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China.
| | - Tingyi Lai
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Key Laboratory of Polar Life and Environment Sciences; and School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Ruyi Yang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Zhang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
5
|
Liu X, Cao Y, Hu X, Lv A. Rahnella aquatilis VgrG-mediated PANoptosis in macrophages of Carassius auratus by dual RNA-seq analysis. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110155. [PMID: 39864564 DOI: 10.1016/j.fsi.2025.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Rahnella aquatilis is an emerging opportunistic pathogen that usually causes septicemia in fish and poses a potential threat to human health. VgrG gene is an important virulence factor of type VI secretion system in R. aquatilis, but its regulatory mechanism underlying PANoptosis is still unknown. Here, VgrG deletion mutant strain of R. aquatilis (ΔVgrG-RA) and recombinant plasmid pET32a-VgrG were respectively constructed, and immunohistochemistry for VgrG as well as PANoptosis features were evaluated. Moreover, the interaction transcriptome of ΔVgrG-mediated pathogen and host was determined by dual RNA-seq using an in vitro model of the primary macrophage cells from crucian carp Carassius auratus, and a total of 889 and 3765 differentially expressed genes (DEGs) were identified in pathogen-host interaction genes, respectively. Notably, GO and KEGG enrichment analysis were significantly involved in the PANoptosis pathways in ΔVgrG mutant-infected macrophages. The regulatory relationship of potential PANoptosis-related genes (PRGs) were analysed comprehensively, and their binding interaction of several hub proteins (eg., YcgR, Bcl2a, Calr3a, IL-1β) were determined by molecular docking analysis. To our best knowledge, this is first report of R. aquatilis VgrG-mediated interactions between pathogen and host macrophage cells, which will provide a new reference for understanding of molecular mechanism underlying PANoptosis in fish.
Collapse
Affiliation(s)
- Xiaoran Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Yanyan Cao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
6
|
Zhan L, Ge J, Xia L, Zhang Y. Reciprocal regulation between bacterial secretion systems and host metabolism: Enhancing bacterial intracellular survival capability. Microbiol Res 2025; 292:128025. [PMID: 39705830 DOI: 10.1016/j.micres.2024.128025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Secretion systems are intricate nanomachines present on many bacterial cell membranes that deliver various bacterially-encoded effector proteins into eukaryotic or prokaryotic cells. They are pivotal in bacterial invasion, host colonization, and pathogenesis. After infection, bacteria employ these machines to deliver toxic effectors to the cytoplasm of host cells that disrupt their metabolic balance, such as interfering with glucose metabolism, promoting lipid droplets formation, altering amino acid profiles and mitochondrial morphology, and reducing ROS levels, to ensure bacterial intracellular survival. Furthermore, metabolites within host cells can modulate the expression and/or function of bacterial secretion systems. This review summarizes recent advancements in understanding the impact of bacterial secretion systems on host cell metabolism and the feedback regulation of host metabolites on these machines, providing novel perspectives on host-pathogen interactions and mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Lina Zhan
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Jiongchen Ge
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
7
|
Ao G, Wang C, Yang L, Ma Y, Wang Z, Shi Y, Sun S, Ping W. Quorum sensing: the "switch" in the competitive relationship between Gram-positive bacteria based on transcriptomic analysis. Microbiol Res 2025; 290:127961. [PMID: 39504603 DOI: 10.1016/j.micres.2024.127961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Competition phenomenon is widely presented in nature, however, few reports on the competition phenomenon between bacteria based on the perspective of quorum sensing (QS), especially between Gram-positive bacteria. Here, the Gram-positive bacteria Rhodococcus sp. HD1 and Microbacterium sp. HM-2 were co-cultured, and the epiphysiological indicators, transcriptomics combined with gene engineering technique were applied to clarify the role of QS in the competition between Gram-positive bacteria. The results showed that the morphology of strain HD1 was changed into ellipsoids from long rods, the surface-to-volume ratio increased, and the competition index increased within strains HM-2 and HD1. The biomass of strain HD1(8.06×107 CFU/mL) was decreased significantly (p<0.05) under co-culture system, compared with mono-culture (5.75×108 CFU/mL), indicating that strain HM-2 had an inhibitory effect on HD1 at 12 h. Transcriptomic analysis revealed that QS-related genes were highly expressed in strain HM-2, and the expression level of the virulence gene TM_0352 was the highest (FPKM: 1774.19). Meanwhile, the ABC transporters-related genes in strain HD1 were significantly increased. Furthermore, QS pathway-related genes in strain HM-2 and ABC transporters-related genes in strain HD1 showed a significant correlation with the gene TM_0352 expression by the Mantel test analysis (p<0.05), surmising that the TM_0352 gene played a dominant role in the co-culture system. Knockout and complementation experiments confirmed that the function of gene TM_0352. The structural equation model showed that the QS up-regulation of strain HM-2 significantly promoted the expression of virulence genes, while strain HD1 promoted ABC transporters to cope with the up-regulation of TM_0352. The up-regulation of TM_0352 promoted the biomass of strain HM-2 and inhibited the biomass of HD1.The above results displayed that the competition phenomenon appeared by QS driving the up-regulation of TM_0352 gene in strain HM-2, which led to the up-regulation of ABC transporters in strain HD1. And these findings provided new insights into the perspective of factors related to competition inhibition between bacteria.
Collapse
Affiliation(s)
- Guoxu Ao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Changli Wang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Liguo Yang
- Heilongjiang Province Daxinganling Ecological Enviroment Monitoring Center, 87 Guangming Road, Jiagedaqi District, Heilongjiang Province 165002, China
| | - Yue Ma
- Heilongjiang Province Daxinganling Ecological Enviroment Monitoring Center, 87 Guangming Road, Jiagedaqi District, Heilongjiang Province 165002, China
| | - Zhaoxuan Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yueqi Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shanshan Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
8
|
Chen Z, Mao Y, Song Y, Dou M, Shang K, Yu Z, Ding K, Chen S. Refined egoist: The toxin-antitoxin immune system of T6SS. Microb Pathog 2024; 196:106991. [PMID: 39369755 DOI: 10.1016/j.micpath.2024.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Type VI secretory system (T6SS) is a key regulatory network in the bacterial system, which plays an important role in host-pathogen interactions and maintains cell homeostasis by regulating the release of effector proteins in specific competition. T6SS causes cell lysis or competitive inhibition by delivering effector molecules, such as toxic proteins and nucleic acids, directly from donor bacterial cells to eukaryotic or prokaryotic targets. Additionally, it orchestrates synthesis of immune effectors that counteract toxins thus preventing self-intoxication or antagonistic actions by competing microbes. Even so, the mechanism of toxin-antitoxin regulation in bacteria remains unclear. In response, this review discusses the bacterial T6SS's structure and function and the mechanism behind toxin-antitoxin secretion and the T6SS's expression in order to guide the further exploration of the pathogenic mechanism of the T6SS and the development of novel preparations for reducing and replacing toxins and antitoxins.
Collapse
Affiliation(s)
- Ziduo Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yikai Mao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yinzhou Song
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengxuan Dou
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
9
|
Guo S, Liu Y, Yin Y, Chen Y, Jia S, Wu T, Liao J, Jiang X, Kareem HA, Li X, Pan J, Wang Y, Shen X. Unveiling the multifaceted potential of Pseudomonas khavaziana strain SR9: a promising biocontrol agent for wheat crown rot. Microbiol Spectr 2024; 12:e0071224. [PMID: 39162535 PMCID: PMC11448100 DOI: 10.1128/spectrum.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Fusarium pseudograminearum, a soil-borne fungus, is the cause of the devastating wheat disease known as wheat crown rot (WCR). The persistence of this pathogen in the soil and crop residues contributes to the increased occurrence and severity of WCR. Therefore, developing effective strategies to prevent and manage WCR is of great importance. In this study, we isolated a bacterial strain, designated as SR9, from the stem of wheat, that exhibited potent antagonistic effects against F. pseudograminearum, as well as the biocontrol efficacy of SR9 on WCR was quantified at 83.99% ± 0.11%. We identified SR9 as Pseudomonas khavaziana and demonstrated its potential as a plant probiotic. SR9 displayed broad-spectrum antagonism against other fungal pathogens, including Neurospora dictyophora, Botrytis californica, and Botryosphaeria dothidea. Whole-genome sequencing analysis revealed that SR9 harbored genes encoding various cell wall-degrading enzymes, cellulases, and lipases, along with antifungal metabolites, which are responsible for its antagonistic activity. Gene knockout and quantitative PCR analyses reveal that phenazine is the essential factor for antagonism. SR9 possessed genes related to auxin synthesis, flagellar biosynthesis, biofilm adhesion, and the chemotaxis system, which play pivotal roles in plant colonization and growth promotion; we also evaluated the effects of SR9 on plant growth in wheat and Arabidopsis. Our findings strongly suggest that SR9 holds great promise as a biocontrol agent for WCR in sustainable agriculture.IMPORTANCEThe escalating prevalence of wheat crown rot, primarily attributed to Fusarium pseudograminearum, necessitates the development of cost-effective and eco-friendly biocontrol strategies. While plant endophytes are recognized for their biocontrol potential, reports on effective strains targeting wheat crown rot are sparse. This study introduces the Pseudomonas khavaziana SR9 strain as an efficacious antagonist to the wheat crown rot pathogen Fusarium pseudograminearum. Demonstrating a significant reduction in wheat crown rot incidence and notable plant growth promotion, SR9 emerges as a key contributor to plant health and agricultural sustainability. Our study outlines a biological approach to tackle wheat crown rot, establishing a groundwork for innovative sustainable agricultural practices.
Collapse
Affiliation(s)
- Shengzhi Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yanling Yin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, China
| | - Yating Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Siyu Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Tong Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jun Liao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xinyan Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Hafiz Abdul Kareem
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xuejun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Xianyang, Shaanxi, China
| | - Junfeng Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, China
| |
Collapse
|
10
|
Cobe BL, Dey S, Minasov G, Inniss N, Satchell KJF, Cianciotto NP. Bactericidal effectors of the Stenotrophomonas maltophilia type IV secretion system: functional definition of the nuclease TfdA and structural determination of TfcB. mBio 2024; 15:e0119824. [PMID: 38832773 PMCID: PMC11253643 DOI: 10.1128/mbio.01198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).
Collapse
Affiliation(s)
- Brandi L. Cobe
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Supratim Dey
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicole Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Sima CM, Buzilă ER, Trofin F, Păduraru D, Luncă C, Duhaniuc A, Dorneanu OS, Nastase EV. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr Issues Mol Biol 2024; 46:7447-7472. [PMID: 39057083 PMCID: PMC11275306 DOI: 10.3390/cimb46070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Even with the intensive efforts by public health programs to control and prevent it, non-typhoidal Salmonella (NTS) infection remains an important public health challenge. It is responsible for approximately 150 million illnesses and 60,000 deaths worldwide annually. NTS infection poses significant risks with high rates of morbidity and mortality, leading to potential short- and long-term complications. There is growing concern among health authorities about the increasing incidence of antimicrobial resistance, with multidrug resistance totaling 22.6% in Europe, highlighting an urgent need for new therapeutic approaches. Our review aims to provide a comprehensive overview of NTS infection. We outline the molecular mechanisms involved in the pathogenesis of NTS infection, as well as the events leading to invasive NTS infection and the subsequent complications associated with it. Given the widespread implications of antimicrobial resistance, our review also presents the global landscape of resistance, including multidrug resistance, and delve into the underlying mechanisms driving this resistance. The rising rates of antibiotic resistance frequently lead to treatment failures, emphasizing the importance of investigating alternative therapeutic options. Therefore, in this review we also explore potential alternative therapies that could offer promising approaches to treating NTS infections.
Collapse
Affiliation(s)
- Cristina Mihaela Sima
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Elena Roxana Buzilă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
| | - Diana Păduraru
- “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania;
| | - Cătălina Luncă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Alexandru Duhaniuc
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Olivia Simona Dorneanu
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
12
|
Gupta S, Biswas P, Das B, Mondal S, Gupta P, Das D, Mallick AI. Selective depletion of Campylobacter jejuni via T6SS dependent functionality: an approach for improving chickens gut health. Gut Pathog 2024; 16:38. [PMID: 38997758 PMCID: PMC11245787 DOI: 10.1186/s13099-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The targeted depletion of potential gut pathogens is often challenging because of their intrinsic ability to thrive in harsh gut environments. Earlier, we showed that Campylobacter jejuni (C. jejuni) exclusively uses the Type-VI Secretion System (T6SS) to target its prey such as Escherichia coli (E. coli), and phenotypic differences between T6SS-negative and T6SS-positive C. jejuni isolates toward bile salt sensitivity. However, it remains unclear how the target-driven T6SS functionality prevails in a polymicrobial gut environment. Here, we investigated the fate of microbial competition in an altered gut environment via bacterial T6SS using a T6SS-negative and -positive C. jejuni or its isogenic mutant of the hemolysin-coregulated protein (hcp). We showed that in the presence of bile salt and prey bacteria (E. coli), T6SS-positive C. jejuni experiences enhanced intracellular stress leading to cell death. Intracellular tracking of fluorophore-conjugated bile salts confirmed that T6SS-mediated bile salt influx into C. jejuni can enhance intracellular oxidative stress, affecting C. jejuni viability. We further investigated whether the T6SS activity in the presence of prey (E. coli) perturbs the in vivo colonization of C. jejuni. Using chickens as primary hosts of C. jejuni and non-pathogenic E. coli as prey, we showed a marked reduction of C. jejuni load in chickens cecum when bile salt solution was administered orally. Analysis of local antibody responses and pro-inflammatory gene expression showed a reduced risk of tissue damage, indicating that T6SS activity in the complex gut environment can be exploited as a possible measure to clear the persistent colonization of C. jejuni in chickens.
Collapse
Affiliation(s)
- Subhadeep Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
13
|
Huang X, Li C, Zhang K, Li K, Xie J, Peng Y, Quan M, Sun Y, Hu Y, Xia L, Hu S. Function and Global Regulation of Type III Secretion System and Flagella in Entomopathogenic Nematode Symbiotic Bacteria. Int J Mol Sci 2024; 25:7579. [PMID: 39062822 PMCID: PMC11277461 DOI: 10.3390/ijms25147579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China; (X.H.); (K.L.); (L.X.)
| |
Collapse
|
14
|
Yang L, Jia S, Sun S, Wang L, Zhao B, Zhang M, Yin Y, Yang M, Fulano AM, Shen X, Pan J, Wang Y. A pyocin-like T6SS effector mediates bacterial competition in Yersinia pseudotuberculosis. Microbiol Spectr 2024; 12:e0427823. [PMID: 38712967 PMCID: PMC11237486 DOI: 10.1128/spectrum.04278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Within the realm of Gram-negative bacteria, bacteriocins are secreted almost everywhere, and the most representative are colicin and pyocin, which are secreted by Escherichia coli and Pseudomonas aeruginosa, respectively. Signal peptides at the amino terminus of bacteriocins or ABC transporters can secrete bacteriocins, which then enter bacteria through cell membrane receptors and exert toxicity. In general, the bactericidal spectrum is usually narrow, killing only the kin or closely related species. Our previous research indicates that YPK_0952 is an effector of the third Type VI secretion system (T6SS-3) in Yersinia pseudotuberculosis. Next, we sought to determine its identity and characterize its toxicity. We found that YPK_0952 (a pyocin-like effector) can achieve intra-species and inter-species competitive advantages through both contact-dependent and contact-independent mechanisms mediated by the T6SS-3 while enhancing the intestinal colonization capacity of Y. pseudotuberculosis. We further identified YPK_0952 as a DNase dependent on Mg2+, Ni2+, Mn2+, and Co2+ bivalent metal ions, and the homologous immune protein YPK_0953 can inhibit its activity. In summary, YPK_0952 exerts toxicity by degrading nucleic acids from competing cells, and YPK_0953 prevents self-attack in Y. pseudotuberculosis.IMPORTANCEBacteriocins secreted by Gram-negative bacteria generally enter cells through specific interactions on the cell surface, resulting in a narrow bactericidal spectrum. First, we identified a new pyocin-like effector protein, YPK_0952, in the third Type VI secretion system (T6SS-3) of Yersinia pseudotuberculosis. YPK_0952 is secreted by T6SS-3 and can exert DNase activity through contact-dependent and contact-independent entry into nearby cells of the same and other species (e.g., Escherichia coli) to help Y. pseudotuberculosis to exert a competitive advantage and promote intestinal colonization. This discovery lays the foundation for an in-depth study of the different effector protein types within the T6SS and their complexity in competing interactions. At the same time, this study provides a new development for the toolbox of toxin/immune pairs for studying Gram-negative bacteriocin translocation.
Collapse
Affiliation(s)
- Leilei Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuangkai Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Sihuai Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Bobo Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengsi Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanling Yin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Mingming Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Alex M. Fulano
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Junfeng Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Liu Y, Unterweger D. Microbiology: Murder as a solution to promiscuity? Curr Biol 2024; 34:R539-R541. [PMID: 38834027 DOI: 10.1016/j.cub.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Strain-specific pili enable Vibrio cholerae bacteria to adhere to each other and form aggregates in liquid culture. A new study focuses on strains with less specific, promiscuous pili and suggests a role for contact-dependent bacterial killing in shaping the composition of these aggregates.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany; Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Daniel Unterweger
- Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany; Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.
| |
Collapse
|
16
|
Gu Y, Liu Y, Mao W, Peng Y, Han X, Jin H, Xu J, Chang L, Hou Y, Shen X, Liu X, Yang Y. Functional versatility of Zur in metal homeostasis, motility, biofilm formation, and stress resistance in Yersinia pseudotuberculosis. Microbiol Spectr 2024; 12:e0375623. [PMID: 38534119 PMCID: PMC11064496 DOI: 10.1128/spectrum.03756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Zur (zinc uptake regulator) is a significant member of the Fur (ferric uptake regulator) superfamily, which is widely distributed in bacteria. Zur plays crucial roles in zinc homeostasis and influences cell development and environmental adaptation in various species. Yersinia pseudotuberculosis is a Gram-negative enteric that pathogen usually serves as a model organism in pathogenicity studies. The regulatory effects of Zur on the zinc transporter ZnuABC and the protein secretion system T6SS have been documented in Y. pseudotuberculosis. In this study, a comparative transcriptomics analysis between a ∆zur mutant and the wild-type (WT) strain of Y. pseudotuberculosis was conducted using RNA-seq. This analysis revealed global regulation by Zur across multiple functional categories, including membrane transport, cell motility, and molecular and energy metabolism. Additionally, Zur mediates the homeostasis not only of zinc but also ferric and magnesium in vivo. There was a notable decrease in 35 flagellar biosynthesis and assembly-related genes, leading to reduced swimming motility in the ∆zur mutant strain. Furthermore, Zur upregulated multiple simple sugar and oligopeptide transport system genes by directly binding to their promoters. The absence of Zur inhibited biofilm formation as well as reduced resistance to chloramphenicol and acidic stress. This study illustrates the comprehensive regulatory functions of Zur, emphasizing its importance in stress resistance and pathogenicity in Y. pseudotuberculosis. IMPORTANCE Bacteria encounter diverse stresses in the environment and possess essential regulators to modulate the expression of genes in responding to the stresses for better fitness and survival. Zur (zinc uptake regulator) plays a vital role in zinc homeostasis. Studies of Zur from multiple species reviewed that it influences cell development, stress resistance, and virulence of bacteria. Y. pseudotuberculosis is an enteric pathogen that serves a model organism in the study of pathogenicity, virulence factors, and mechanism of environmental adaptation. In this study, transcriptomics analysis of Zur's regulons was conducted in Y. pseudotuberculosis. The functions of Zur as a global regulator in metal homeostasis, motility, nutrient acquisition, glycan metabolism, and nucleotide metabolism, in turn, increasing the biofilm formation, stress resistance, and virulence were reviewed. The importance of Zur in environmental adaptation and pathogenicity of Y. pseudotuberculosis was emphasized.
Collapse
Affiliation(s)
- Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yongde Liu
- Qingyang Longfeng Sponge City Construction Management and Operation Co., Ltd, Qingyang, China
| | - Wei Mao
- Qingyang Longfeng Sponge City Construction Management and Operation Co., Ltd, Qingyang, China
| | - Ying Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jingling Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Liyang Chang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yixin Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xingyu Liu
- General Research Institute for Nonferrous Metals, Beijing, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Li W, Huang X, Li D, Liu X, Jiang X, Bian X, Li X, Zhang J. A combination of genomics and transcriptomics provides insights into the distribution and differential mRNA expression of type VI secretion system in clinical Klebsiella pneumoniae. mSphere 2024; 9:e0082223. [PMID: 38436228 PMCID: PMC10964426 DOI: 10.1128/msphere.00822-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
The type VI secretion system (T6SS) serves as a crucial molecular weapon in interbacterial competition and significantly influences the adaptability of bacteria in their ecological niche. However, the distribution and function of T6SS in clinical Klebsiella pneumoniae, a common opportunistic nosocomial pathogen, have not been fully elucidated. Here, we conducted a genomic analysis of 65 clinical K. pneumoniae isolates obtained from patients with varying infections. Genes encoding a T6SS cluster present in all analyzed strains of K. pneumoniae, and strains with identical sequence type carried structurally and numerically identical T6SS. Our study also highlights the importance of selecting conserved regions within essential T6SS genes for PCR-based identification of T6SS in bacteria. Afterward, we utilized the predominant sequence type 11 (ST11) K. pneumoniae HS11286 to investigate the effect of knocking out T6SS marker genes hcp or vgrG. Transcriptome analysis identified a total of 1,298 co-upregulated and 1,752 co-downregulated differentially expressed genes in both mutants. Pathway analysis showed that only Δhcp mutant exhibited alterations in transport, establishment of localization, localization, and cell processes. The absence of hcp or vgrG gene suppressed the expression of other T6SS-related genes within the locus I cluster. Additionally, interbacterial competition experiments showed that hcp and vgrG are essential for competitive ability of ST11 K. pneumoniae HS11286. This study furthers our understanding of the genomic characteristics of T6SS in clinical K. pneumoniae and suggests the involvement of multiple genes in T6SS of strain HS11286. IMPORTANCE Gram-negative bacteria use type VI secretion system (T6SS) to deliver effectors that interact with neighboring cells for niche advantage. Klebsiella pneumoniae is an opportunistic nosocomial pathogen that often carries multiple T6SS loci, the function of which has not yet been elucidated. We performed a genomic analysis of 65 clinical K. pneumoniae strains isolated from various sources, confirming that all strains contained T6SS. We then used transcriptomics to further study changes in gene expression and its effect on interbacterial competition following the knockout of key T6SS genes in sequence type 11 (ST11) K. pneumoniae HS11286. Our findings revealed the distribution and genomic characteristics of T6SS in clinical K. pneumoniae. This study also described the overall transcriptional changes in the predominant Chinese ST11 strain HS11286 upon deletion of crucial T6SS genes. Additionally, this work provides a reference for future research on the identification of T6SS in bacteria.
Collapse
Affiliation(s)
- Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaolan Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Jiang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
| | - Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Zhao X, Gao L, Ali Q, Yu C, Yuan B, Huang H, Long J, Gu Q, Wu H, Gao X. A type VI secretion system effector TseG of Pantoea ananatis is involved in virulence and antibacterial activity. MOLECULAR PLANT PATHOLOGY 2024; 25:e13442. [PMID: 38476100 PMCID: PMC10933656 DOI: 10.1111/mpp.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
The type VI secretion system (T6SS) of many gram-negative bacteria injects toxic effectors into adjacent cells to manipulate host cells during pathogenesis or to kill competing bacteria. However, the identification and function of the T6SS effectors remains only partly known. Pantoea ananatis, a gram-negative bacterium, is commonly found in various plants and natural environments, including water and soil. In the current study, genomic analysis of P. ananatis DZ-12 causing brown stalk rot on maize demonstrated that it carries three T6SS gene clusters, namely, T6SS-1, T6SS-2, and T6SS-3. Interestingly, only T6SS-1 secretion systems are involved in pathogenicity and bacterial competition. The study also investigated the T6SS-1 system in detail and identified an unknown T6SS-1-secreted effector TseG by using the upstream T6SS effector chaperone TecG containing a conserved domain of DUF2169. TseG can directly interact with the chaperone TecG for delivery and with a downstream immunity protein TsiG for protection from its toxicity. TseG, highly conserved in the Pantoea genus, is involved in virulence in maize, potato, and onion. Additionally, P. ananatis uses TseG to target Escherichia coli, gaining a competitive advantage. This study provides the first report on the T6SS-1-secreted effector from P. ananatis, thereby enriching our understanding of the various types and functions of type VI effector proteins.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Lu Gao
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Qurban Ali
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Chenjie Yu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Bingqin Yuan
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Hai Huang
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Juying Long
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Qin Gu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Huijun Wu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Xuewen Gao
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| |
Collapse
|
19
|
Zhao X, Wang W, Zeng X, Xu R, Yuan B, Yu W, Wang M, Jia R, Chen S, Zhu D, Liu M, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Sun D, Cheng A. Klebicin E, a pore-forming bacteriocin of Klebsiella pneumoniae, exploits the porin OmpC and the Ton system for translocation. J Biol Chem 2024; 300:105694. [PMID: 38301890 PMCID: PMC10906532 DOI: 10.1016/j.jbc.2024.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.
Collapse
Affiliation(s)
- Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Wenyu Wang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Zeng
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rong Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Wenyao Yu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Li C, Wei Z, He X, He H, Liu Y, Zuo Y, Xiao H, Wang Y, Shen X, Zhu L. OxyR-regulated T6SS functions in coordination with siderophore to resist oxidative stress. Microbiol Spectr 2024; 12:e0323123. [PMID: 38189330 PMCID: PMC10846153 DOI: 10.1128/spectrum.03231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
The formation of reactive oxygen species is harmful and can destroy intracellular macromolecules such as lipids, proteins, and DNA, even leading to bacterial death. To cope with this situation, microbes have evolved a variety of sophisticated mechanisms, including antioxidant enzymes, siderophores, and the type VI secretion system (T6SS). However, the mechanism of oxidative stress resistance in Cupriavidus pinatubonensis is unclear. In this study, we identified Reut_A2805 as an OxyR ortholog in C. pinatubonensis, which positively regulated the expression of T6SS1 by directly binding to its operon promoter region. The study revealed that OxyR-regulated T6SS1 combats oxidative stress by importing iron into bacterial cells. Moreover, the T6SS1-mediated outer membrane vesicles-dependent iron acquisition pathway played a crucial role in the oxidative stress resistance process. Finally, our study demonstrated that the T6SS1 and siderophore systems in C. pinatubonensis exhibit different responses in combating oxidative stress under low-iron conditions, providing a comprehensive understanding of how bacterial iron acquisition systems function in diverse conditions.IMPORTANCEThe ability to eliminate reactive oxygen species is crucial for bacterial survival. Continuous formation of hydroperoxides can damage metalloenzymes, disrupt DNA integrity, and even result in cell death. While various mechanisms have been identified in other bacterial species to combat oxidative stress, the specific mechanism of oxidative stress resistance in C. pinatubonensis remains unclear. The importance of this study is that we elucidate the mechanism that OxyR-regulated T6SS1 combats oxidative stress by importing iron with the help of bacterial outer membrane vesicle. Moreover, the study highlights the contrasting responses of T6SS1- and siderophore-mediated iron acquisition systems to oxidative stress. This study provides a comprehensive understanding of bacterial iron acquisition and its role in oxidative stress resistance in C. pinatubonensis under low-iron conditions.
Collapse
Affiliation(s)
- Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinquan He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiyang He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - He Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Song L, Xu L, Wu T, Shi Z, Kareem HA, Wang Z, Dai Q, Guo C, Pan J, Yang M, Wei X, Wang Y, Wei G, Shen X. Trojan horselike T6SS effector TepC mediates both interference competition and exploitative competition. THE ISME JOURNAL 2024; 18:wrad028. [PMID: 38365238 PMCID: PMC10833071 DOI: 10.1093/ismejo/wrad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 02/18/2024]
Abstract
The type VI secretion system (T6SS) is a bacterial weapon capable of delivering antibacterial effectors to kill competing cells for interference competition, as well as secreting metal ion scavenging effectors to acquire essential micronutrients for exploitation competition. However, no T6SS effectors that can mediate both interference competition and exploitation competition have been reported. In this study, we identified a unique T6SS-1 effector in Yersinia pseudotuberculosis named TepC, which plays versatile roles in microbial communities. First, secreted TepC acts as a proteinaceous siderophore that binds to iron and mediates exploitative competition. Additionally, we discovered that TepC has DNase activity, which gives it both contact-dependent and contact-independent interference competition abilities. In conditions where iron is limited, the iron-loaded TepC is taken up by target cells expressing the outer membrane receptor TdsR. For kin cells encoding the cognate immunity protein TipC, TepC facilitates iron acquisition, and its toxic effects are neutralized. On the other hand, nonkin cells lacking TipC are enticed to uptake TepC and are killed by its DNase activity. Therefore, we have uncovered a T6SS effector, TepC, that functions like a "Trojan horse" by binding to iron ions to provide a valuable resource to kin cells, whereas punishing cheaters that do not produce public goods. This lure-to-kill mechanism, mediated by a bifunctional T6SS effector, may offer new insights into the molecular mechanisms that maintain stability in microbial communities.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong Wu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenkun Shi
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Abdul Kareem
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuo Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyun Dai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenghao Guo
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingming Yang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomeng Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Jia J, Garbarino E, Wang Y, Li J, Song M, Zhang X, Wang X, Li L, Chi J, Cui L, Tang H. Generation of SARS-CoV-2 spike receptor binding domain mutants and functional screening for immune evaders using a novel lentivirus-based system. J Med Virol 2024; 96:e29425. [PMID: 38258313 DOI: 10.1002/jmv.29425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The emergence of rapid and continuous mutations of severe acute respiratory syndrome 2 (SARS-CoV-2) spike glycoprotein that increased with the Omicron variant points out the necessity to anticipate such mutations for conceiving specific and adaptable therapies to avoid another pandemic. The crucial target for the antibody treatment and vaccine design is the receptor binding domain (RBD) of the SARS-CoV-2 spike. It is also the site where the virus has shown its high ability to mutate and consequently escape immune response. We developed a robust and simple method for generating a large number of functional SARS-CoV-2 spike RBD mutants by error-prone PCR and a novel nonreplicative lentivirus-based system. We prepared anti-RBD wild type (WT) polyclonal antibodies and used them to screen and select for mutant libraries that escape inhibition of virion entry into recipient cells expressing human angiotensin-converting enzyme 2 and transmembrane serine protease 2. We isolated, cloned, and sequenced six mutants totally bearing nine mutation sites. Eight mutations were found in successive WT variants, including Omicron and other recombinants, whereas one is novel. These results, together with the detailed functional analyses of two mutants provided the proof of concept for our approach.
Collapse
Affiliation(s)
- Junli Jia
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Emanuela Garbarino
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuhang Wang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- Department of Blood Transfusion, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaming Li
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Minmin Song
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xinjie Wang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lingyun Li
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Jing Chi
- Department of Microbiological Laboratory, Baoan District Center for Disease Control and Prevention, Shenzhen, China
| | - Lunbiao Cui
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Huamin Tang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Shao X, Wu Q, Li L, He W, He X, Cheng D, Murero A, Lin L, Wang L, Zhong C, Huang L, Qian G. Adapting the inoculation methods of kiwifruit canker disease to identify efficient biocontrol bacteria from branch microbiome. MOLECULAR PLANT PATHOLOGY 2024; 25:e13399. [PMID: 37921929 PMCID: PMC10788592 DOI: 10.1111/mpp.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa), the bacterium that causes kiwifruit bacterial canker, is a common field occurrence that is difficult to control globally. Currently, exploring the resources for efficient biocontrol bacteria is a hot spot in the field. The common strategy for isolating biocontrol bacteria is to directly isolate biocontrol bacteria that can secrete diffusible antibacterial substances, most of which are members of Bacillus, Pseudomonas and Streptomycetaceae, from disease samples or soil. Here, we report a new approach by adapting the typical isolation methods of kiwifruit canker disease to identify efficient biocontrol bacteria from the branch microbiome. Using this unique approach, we isolated a group of kiwifruit biocontrol agents (KBAs) from the branch microbiome of Psa-resistant varieties. Thirteen of these showed no antagonistic activity in vitro, which depends on the secretion of antibacterial compounds. However, they exhibited antibacterial activity via cell-to-cell contacts mimicked by co-culture on agar plates. Through biocontrol tests on plants, two isolates, KBA13 and KBA19, demonstrated their effectiveness by protecting kiwifruit branches from Psa infection. Using KBA19, identified as Pantoea endophytica, as a representative, we found that this bacterium uses the type VI secretion system (T6SS) as the main contact-dependent antibacterial weapon that acts via translocating toxic effector proteins into Psa cells to induce cell death, and that this capacity expressed by KBA19 is common to various Psa strains from different countries. Our findings highlight a new strategy to identify efficient biocontrol agents that use the T6SS to function in an antibacterial metabolite-independent manner to control wood diseases.
Collapse
Affiliation(s)
- Xiaolong Shao
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Qianhua Wu
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Li Li
- CAS Engineering Laboratory for Kiwifruit Industrial Technology, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhanHubei ProvinceChina
| | - Weimei He
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Xueting He
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Dongjin Cheng
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Aprodisia Murero
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Long Lin
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Limin Wang
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Caihong Zhong
- CAS Engineering Laboratory for Kiwifruit Industrial Technology, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhanHubei ProvinceChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShanxiChina
| | - Guoliang Qian
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
24
|
Wang B, Zhang Z, Xu F, Yang Z, Li Z, Shen D, Wang L, Wu H, Li T, Yan Q, Wei Q, Shao X, Qian G. Soil bacterium manipulates antifungal weapons by sensing intracellular type IVA secretion system effectors of a competitor. THE ISME JOURNAL 2023; 17:2232-2246. [PMID: 37838821 PMCID: PMC10689834 DOI: 10.1038/s41396-023-01533-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Soil beneficial bacteria can effectively inhibit bacterial pathogens by assembling contact-dependent killing weapons, such as the type IVA secretion system (T4ASS). It's not clear whether these antibacterial weapons are involved in biotrophic microbial interactions in soil. Here we showed that an antifungal antibiotic 2,4-DAPG production of the soil bacterium, Pseudomonas protegens can be triggered by another soil bacterium, Lysobacter enzymogenes, via T4ASS by co-culturing on agar plates to mimic cell-to-cell contact. We demonstrated that the induced 2,4-DAPG production of P. protegens is achieved by intracellular detection of the T4ASS effector protein Le1519 translocated from L. enzymogenes. We defined Le1519 as LtaE (Lysobacter T4E triggering antifungal effects), which specifically stimulates the expression of 2,4-DAPG biosynthesis genes in P. protegens, thereby protecting soybean seedlings from infection by the fungus Rhizoctonia solani. We further found that LtaE directly bound to PhlF, a pathway-specific transcriptional repressor of the 2,4-DAPG biosynthesis, then activated the 2,4-DAPG production. Our results highlight a novel pattern of microbial interspecies and interkingdom interactions, providing a unique case for expanding the diversity of soil microbial interactions.
Collapse
Affiliation(s)
- Bingxin Wang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zeyu Zhang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Fugui Xu
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zixiang Yang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zihan Li
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Danyu Shen
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Limin Wang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Huijun Wu
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Qi Wei
- Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaolong Shao
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Guoliang Qian
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
25
|
Li S, Liu Q, Duan C, Li J, Sun H, Xu L, Yang Q, Wang Y, Shen X, Zhang L. c-di-GMP inhibits the DNA binding activity of H-NS in Salmonella. Nat Commun 2023; 14:7502. [PMID: 37980414 PMCID: PMC10657408 DOI: 10.1038/s41467-023-43442-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger that transduces extracellular stimuli into cellular responses and regulates various biological processes in bacteria. H-NS is a global regulatory protein that represses expression of many genes, but how H-NS activity is modulated by environmental signals remains largely unclear. Here, we show that high intracellular c-di-GMP levels, induced by environmental cues, relieve H-NS-mediated transcriptional silencing in Salmonella enterica serovar Typhimurium. We find that c-di-GMP binds to the H-NS protein to inhibit its binding to DNA, thus derepressing genes silenced by H-NS. However, c-di-GMP is unable to displace H-NS from DNA. In addition, a K107A mutation in H-NS abolishes response to c-di-GMP but leaves its DNA binding activity unaffected in vivo. Our results thus suggest a mechanism by which H-NS acts as an environment-sensing regulator in Gram-negative bacteria.
Collapse
Affiliation(s)
- Shuyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinmeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chongyi Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jialin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hengxi Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiao Yang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316021, China
- Donghai Laboratory, Zhoushan, 316021, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Sun Y, Ko DH, Gao J, Fu K, Gao Y, Zhang Q, Baldi S, Hong T, Ivanov I, He Y, Tian H. Unraveling the salt tolerance of Phi29 DNA polymerase using compartmentalized self-replication and microfluidics platform. Front Microbiol 2023; 14:1267196. [PMID: 38029082 PMCID: PMC10661337 DOI: 10.3389/fmicb.2023.1267196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
In Phi29-α-hemolysin (α-HL) nanopore sequencing systems, a strong electrochemical signal is dependent on a high concentration of salt. However, high salt concentrations adversely affect polymerase activity. Sequencing by synthesis (SBS) requires the use of phi29 polymerase without exonuclease activity to prevent the degradation of modified nucleotide tags; however, the lack of exonuclease activity also affects polymerase processivity. This study aimed to optimize phi29 polymerase for improved salt tolerance and processivity while maintaining its lack of exonuclease activity to meet the requirements of nanopore sequencing. Using salt tolerance compartmentalized self-replication (stCSR) and a microfluidic platform, we obtained 11 mutant sites with enhanced salt tolerance attributes. Sequencing and biochemical analyses revealed that the substitution of conserved amino acids such as G197D, Y369E, T372N, and I378R plays a critical role in maintaining the processivity of exonuclease-deficient phi29 polymerase under high salt conditions. Furthermore, Y369E and T372N have been identified as important determinants of DNA polymerase binding affinity. This study provides insights into optimizing polymerase processability under high-salt conditions for real-time polymerase nanopore sequencing, paving the way for improved performance and applications in nanopore sequencing technologies.
Collapse
Affiliation(s)
- Yaping Sun
- Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Danny Hsu Ko
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Jie Gao
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Kang Fu
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Yaping Gao
- Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Qiwen Zhang
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Salem Baldi
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Tao Hong
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Igor Ivanov
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Yun He
- Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Hui Tian
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| |
Collapse
|
27
|
Navarro-Monserrat ED, Taylor CG. T6SS: A Key to Pseudomonas's Success in Biocontrol? Microorganisms 2023; 11:2718. [PMID: 38004732 PMCID: PMC10673566 DOI: 10.3390/microorganisms11112718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Bacteria from the genus Pseudomonas have been extensively studied for their capacity to act as biological control agents of disease and pests and for their ability to enhance and promote crop production in agricultural systems. While initial research primarily focused on the human pathogenic bacteria Pseudomonas aeruginosa, recent studies indicate the significance of type VI secretion (T6SS) in other Pseudomonas strains for biocontrol purposes. This system possibly plays a pivotal role in restricting the biological activity of target microorganisms and may also contribute to the bolstering of the survival capabilities of the bacteria within their applied environment. The type VI secretion system is a phage-like structure used to translocate effectors into both prokaryotic and eukaryotic target cells. T6SSs are involved in a myriad of interactions, some of which have direct implications in the success of Pseudomonas as biocontrol agents. The prevalence of T6SSs in the genomes of Pseudomonas species is notably greater than the estimated 25% occurrence rate found in Gram-negative bacteria. This observation implies that T6SS likely plays a pivotal role in the survival and fitness of Pseudomonas. This review provides a brief overview of T6SS, its role in Pseudomonas with biocontrol applications, and future avenues of research within this subject matter.
Collapse
Affiliation(s)
| | - Christopher G. Taylor
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA;
| |
Collapse
|
28
|
Hug S, Heiniger B, Bolli K, Paszti S, Eberl L, Ahrens CH, Pessi G. Paraburkholderia sabiae Uses One Type VI Secretion System (T6SS-1) as a Powerful Weapon against Notorious Plant Pathogens. Microbiol Spectr 2023; 11:e0162223. [PMID: 37439699 PMCID: PMC10434147 DOI: 10.1128/spectrum.01622-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023] Open
Abstract
Paraburkholderia sabiae LMG24235 is a nitrogen-fixing betaproteobacterium originally isolated from a root nodule of Mimosa caesalpiniifolia in Brazil. We show here that this strain effectively kills strains from several bacterial families (Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae) which include important plant pathogens in a contact-dependent manner. De novo assembly of the first complete genome of P. sabiae using long sequencing reads and subsequent annotation revealed two gene clusters predicted to encode type VI secretion systems (T6SS), which we named T6SS-1 and T6SS-3 according to previous classification methods (G. Shalom, J. G. Shaw, and M. S. Thomas, Microbiology, 153:2689-2699, 2007, https://doi.org/10.1099/mic.0.2007/006585-0). We created P. sabiae with mutations in each of the two T6SS gene clusters that abrogated their function, and the T6SS-1 mutant was no longer able to outcompete other strains in a contact-dependent manner. Notably, our analysis revealed that T6SS-1 is essential for competition against several important plant pathogens in vitro, including Burkholderia plantarii, Ralstonia solanacearum, Pseudomonas syringae, and Pectobacterium carotovorum. The 9-log reduction in P. syringae cells in the presence of P. sabiae was particularly remarkable. Importantly, in an in vivo assay, P. sabiae was able to protect potato tubers from bacterial soft rot disease caused by P. carotovorum, and this protection was partly dependent on T6SS-1. IMPORTANCE Rhizobia often display additional beneficial traits such as the production of plant hormones and the acquisition of limited essential nutrients that improve plant growth and enhance plant yields. Here, we show that the rhizobial strain P. sabiae antagonizes important phytopathogens such as P. carotovorum, P. syringae, and R. solanacearum and that this effect is due to contact-dependent killing mediated by one of two T6SS systems identified in the complete, de novo assembled genome sequence of P. sabiae. Importantly, co-inoculation of Solanum tuberosum tubers with P. sabiae also resulted in a drastic reduction of soft rot caused by P. carotovorum in an in vivo model system. This result highlights the protective potential of P. sabiae against important bacterial plant diseases, which makes it a valuable candidate for application as a biocontrol agent. It also emphasizes the particular potential of rhizobial inoculants that combine several beneficial effects such as plant growth promotion and biocontrol for sustainable agriculture.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope – Molecular Ecology, Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Kim Bolli
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope – Molecular Ecology, Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
29
|
Liu H, Wei Z, Li J, Liu X, Zhu L, Wang Y, Wang T, Li C, Shen X. A Yersinia T6SS Effector YezP Engages the Hemin Uptake Receptor HmuR and ZnuABC for Zn 2+ Acquisition. Appl Environ Microbiol 2023; 89:e0024023. [PMID: 37338394 PMCID: PMC10370319 DOI: 10.1128/aem.00240-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
Metal ions are essential nutrients for all life forms, and restriction of metal ion availability is an effective host defense against bacterial infection. Meanwhile, bacterial pathogens have developed equally effective means to secure their metal ion supply. The enteric pathogen Yersinia pseudotuberculosis was found to uptake zinc using the T6SS4 effector YezP, which is essential for Zn2+ acquisition and bacterial survival under oxidative stress. However, the mechanism of this zinc uptake pathway has not been fully elucidated. Here, we identified the hemin uptake receptor HmuR for YezP, which can mediate import of Zn2+ into the periplasm by the YezP-Zn2+ complex and demonstrated that YezP functions extracellularly. This study also confirmed that the ZnuCB transporter is the inner membrane transporter for Zn2+ from the periplasm to cytoplasm. Overall, our results reveal the complete T6SS/YezP/HmuR/ZnuABC pathway, wherein multiple systems are coupled to support zinc uptake by Y. pseudotuberculosis under oxidative stress. IMPORTANCE Identifying the transporters involved in import of metal ions under normal physiological growth conditions in bacterial pathogens will clarify its pathogenic mechanism. Y. pseudotuberculosis YPIII, a common foodborne pathogen that infects animals and humans, uptake zinc via the T6SS4 effector YezP. However, the outer and inner transports involved in Zn2+ acquisition remain unknown. The important outcomes of this study are the identification of the hemin uptake receptor HmuR and inner membrane transporter ZnuCB that import Zn2+ into the cytoplasm via the YezP-Zn2+ complex, and elucidation of the complete Zn2+ acquisition pathway consisting of T6SS, HmuRSTUV, and ZnuABC, thereby providing a comprehensive view of T6SS-mediated ion transport and its functions.
Collapse
Affiliation(s)
- Hai Liu
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, Gansu, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingyu Liu
- State Key Laboratory of Geological Processes and Mineral Resources, Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Lin YL, Smith SN, Kanso E, Septer AN, Rycroft CH. A subcellular biochemical model for T6SS dynamics reveals winning competitive strategies. PNAS NEXUS 2023; 2:pgad195. [PMID: 37441614 PMCID: PMC10335733 DOI: 10.1093/pnasnexus/pgad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The type VI secretion system (T6SS) is a broadly distributed interbacterial weapon that can be used to eliminate competing bacterial populations. Although unarmed target populations are typically used to study T6SS function in vitro, bacteria most likely encounter other T6SS-armed competitors in nature. However, the connection between subcellular details of the T6SS and the outcomes of such mutually lethal battles is not well understood. Here, we incorporate biological data derived from natural competitors of Vibrio fischeri light organ symbionts to build a biochemical model for T6SS at the single-cell level, which we then integrate into an agent-based model (ABM). Using the ABM, we isolate and experiment with strain-specific physiological differences between competitors in ways not possible with biological samples to identify winning strategies for T6SS-armed populations. Through in vitro experiments, we discover that strain-specific differences exist in T6SS activation speed. ABM simulations corroborate that faster activation is dominant in determining survival during competition. Once competitors are fully activated, the energy required for T6SS creates a tipping point where increased weapon building and firing becomes too costly to be advantageous. Through ABM simulations, we identify the threshold where this transition occurs in the T6SS parameter space. We also find that competitive outcomes depend on the geometry of the battlefield: unarmed target cells survive at the edges of a range expansion where unlimited territory can be claimed. Alternatively, competitions within a confined space, much like the light organ crypts where natural V. fischeri compete, result in the rapid elimination of the unarmed population.
Collapse
Affiliation(s)
| | | | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
31
|
Allsopp LP, Bernal P. Killing in the name of: T6SS structure and effector diversity. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001367. [PMID: 37490402 PMCID: PMC10433429 DOI: 10.1099/mic.0.001367] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The life of bacteria is challenging, to endure bacteria employ a range of mechanisms to optimize their environment, including deploying the type VI secretion system (T6SS). Acting as a bacterial crossbow, this system delivers effectors responsible for subverting host cells, killing competitors and facilitating general secretion to access common goods. Due to its importance, this lethal machine has been evolutionarily maintained, disseminated and specialized to fulfil these vital functions. In fact, T6SS structural clusters are present in over 25 % of Gram-negative bacteria, varying in number from one to six different genetic clusters per organism. Since its discovery in 2006, research on the T6SS has rapidly progressed, yielding remarkable breakthroughs. The identification and characterization of novel components of the T6SS, combined with biochemical and structural studies, have revealed fascinating mechanisms governing its assembly, loading, firing and disassembly processes. Recent findings have also demonstrated the efficacy of this system against fungal and Gram-positive cells, expanding its scope. Ongoing research continues to uncover an extensive and expanding repertoire of T6SS effectors, the genuine mediators of T6SS function. These studies are shedding light on new aspects of the biology of prokaryotic and eukaryotic organisms. This review provides a comprehensive overview of the T6SS, highlighting recent discoveries of its structure and the diversity of its effectors. Additionally, it injects a personal perspective on avenues for future research, aiming to deepen our understanding of this combative system.
Collapse
Affiliation(s)
- Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| |
Collapse
|
32
|
Wu LL, Yan S, Pei TT, Tang MX, Li H, Liang X, Sun S, Dong T. A Dueling-Competent Signal-Sensing Module Guides Precise Delivery of Cargo Proteins into Target Cells by Engineered Pseudomonas aeruginosa. ACS Synth Biol 2023; 12:360-368. [PMID: 36662232 DOI: 10.1021/acssynbio.2c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To recognize and manipulate a specific microbe of a crowded community is a highly challenging task in synthetic biology. Here we introduce a highly selective protein delivery platform, termed DUEC, which responds to direct contact of attacking cells by engineering the tit-for-tat/dueling response of H1-T6SS (type VI secretion system) in Pseudomonas aeruginosa. Using a Cre-recombinase-dependent reporter, we screened H1-T6SS-secreted substrates and developed Tse6N as the most effective secretion tag for Cre delivery. DUEC cells can discriminately deliver the Tse6N-Cre cargo into the cytosol of T6SS+ but not T6SS- Vibrio cholerae cells. DUEC could also deliver a nuclease cargo, Tse6N-NucSe1, to selectively kill provoking cells in a mixed community. These data demonstrate that the DUEC cell not only is a prototypical physical-contact sensor and delivery platform but also may be coupled with recombination-based circuits with the potential for complex tasks in mixed microbial communities.
Collapse
Affiliation(s)
- Li-Li Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangquan Yan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Xuan Tang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuyang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
33
|
Liu M, Zhao MY, Wang H, Wang ZH, Wang Z, Liu Y, Li YP, Dong T, Fu Y. Pesticin-Like Effector VgrG3 cp Targeting Peptidoglycan Delivered by the Type VI Secretion System Contributes to Vibrio cholerae Interbacterial Competition. Microbiol Spectr 2023; 11:e0426722. [PMID: 36625646 PMCID: PMC9927483 DOI: 10.1128/spectrum.04267-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Vibrio cholerae can utilize a type VI secretion system (T6SS) to increase its intra- and interspecies competition. However, much still remains to be understood about the underlying mechanism of this intraspecies competition. In this study, we isolated an environmental V. cholerae strain E1 that lacked the typical virulence factors toxin-coregulated pilus and cholera toxin and that encoded a functional T6SS. We identified an evolved VgrG3 variant with a predicted C-terminal pesticin-like domain in V. cholerae E1, designated VgrG3cp. Using heterologous expression, protein secretion, and peptidoglycan-degrading assays, we demonstrated that VgrG3cp is a T6SS-dependent effector harboring cell wall muramidase activity and that its toxicity can be neutralized by cognate immunity protein TsiV3cp. Site-directed mutagenesis proved that the aspartic acid residue at position 867 is crucial for VgrG3cp-mediated antibacterial activity. Bioinformatic analysis showed that genes encoding VgrG3cp-like homologs are distributed in Vibrio species, are linked with T6SS structural genes and auxiliary genes, and the vgrG3cp-tsiV3cp gene pair of V. cholerae probably evolved from Vibrio anguillarum and Vibrio fluvialis via homologous recombination. Through a time-lapse microscopy assay, we directly determined that cells accumulating VgrG3cp disrupted bacterial division, while the cells continued to increase in size until the loss of membrane potential and cell wall breakage and finally burst. The results of the competitive killing assay showed that VgrG3cp contributes to V. cholerae interspecies competition. Collectively, our study revealed a novel T6SS E-I pair representing a new T6SS toxin family which allows V. cholerae to gain dominance within polymicrobial communities by T6SS. IMPORTANCE The type VI secretion system used by a broad range of Gram-negative bacteria delivers toxic proteins to target adjacent eukaryotic and prokaryotic cells. Diversification of effector proteins determines the complex bacterium-bacterium interactions and impacts the health of hosts and environmental ecosystems in which bacteria reside. This work uncovered an evolved valine-glycine repeat protein G3, carrying a C-terminal pesticin-like domain (VgrG3cp), which has been suggested to harbor cell wall hydrolase activity and is able to affect cell division and the integrity of cell wall structure. Pesticin-like homologs constitute a family of T6SS-associated effectors targeting bacterial peptidoglycan which are distributed in Vibrio species, and genetic loci of them are linked with T6SS structural genes and auxiliary genes. T6SS-delivered VgrG3cp mediated broad-spectrum antibacterial activity for several microorganisms tested, indicating that VgrG3cp-mediated antimicrobial activity is capable of conferring bacteria a competitive advantage over competitors in the same niches.
Collapse
Affiliation(s)
- Ming Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Meng-Yu Zhao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Heng Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ying Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yin-Peng Li
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
34
|
Guckes KR, Miyashiro TI. The type-VI secretion system of the beneficial symbiont Vibrio fischeri. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001302. [PMID: 36809081 PMCID: PMC9972734 DOI: 10.1099/mic.0.001302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
The mutualistic symbiosis between the Hawaiian bobtail squid Euprymna scolopes and the marine bacterium Vibrio fischeri is a powerful experimental system for determining how intercellular interactions impact animal-bacterial associations. In nature, this symbiosis features multiple strains of V. fischeri within each adult animal, which indicates that different strains initially colonize each squid. Various studies have demonstrated that certain strains of V. fischeri possess a type-VI secretion system (T6SS), which can inhibit other strains from establishing symbiosis within the same host habitat. The T6SS is a bacterial melee weapon that enables a cell to kill adjacent cells by translocating toxic effectors via a lancet-like apparatus. This review describes the progress that has been made in understanding the factors that govern the structure and expression of the T6SS in V. fischeri and its effect on the symbiosis.
Collapse
Affiliation(s)
- Kirsten R. Guckes
- The Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, PA, USA
| | - Tim I. Miyashiro
- The Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, PA, USA
| |
Collapse
|
35
|
Zuo Y, Li C, Yu D, Wang K, Liu Y, Wei Z, Yang Y, Wang Y, Shen X, Zhu L. A Fur-regulated type VI secretion system contributes to oxidative stress resistance and virulence in Yersinia pseudotuberculosis. STRESS BIOLOGY 2023; 3:2. [PMID: 37676351 PMCID: PMC10441874 DOI: 10.1007/s44154-022-00081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/26/2022] [Indexed: 09/08/2023]
Abstract
The type VI secretion system (T6SS) is a widespread protein secretion apparatus deployed by many Gram-negative bacterial species to interact with competitor bacteria, host organisms, and the environment. Yersinia pseudotuberculosis T6SS4 was recently reported to be involved in manganese acquisition; however, the underlying regulatory mechanism still remains unclear. In this study, we discovered that T6SS4 is regulated by ferric uptake regulator (Fur) in response to manganese ions (Mn2+), and this negative regulation of Fur was proceeded by specifically recognizing the promoter region of T6SS4 in Y. pseudotuberculosis. Furthermore, T6SS4 is induced by low Mn2+ and oxidative stress conditions via Fur, acting as a Mn2+-responsive transcriptional regulator to maintain intracellular manganese homeostasis, which plays important role in the transport of Mn2+ for survival under oxidative stress. Our results provide evidence that T6SS4 can enhance the oxidative stress resistance and virulence for Y. pseudotuberculosis. This study provides new insights into the regulation of T6SS4 via the Mn2+-dependent transcriptional regulator Fur, and expands our knowledge of the regulatory mechanisms and functions of T6SS from Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Yuxin Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Danyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kenan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
36
|
Liu M, Wang H, Liu Y, Tian M, Wang Z, Shu RD, Zhao MY, Chen WD, Wang H, Wang H, Fu Y. The phospholipase effector Tle1 Vc promotes Vibrio cholerae virulence by killing competitors and impacting gene expression. Gut Microbes 2023; 15:2241204. [PMID: 37526354 PMCID: PMC10395195 DOI: 10.1080/19490976.2023.2241204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
Vibrio cholerae utilizes the Type VI secretion system (T6SS) to gain an advantage in interbacterial competition by delivering anti-prokaryotic effectors in a contact-dependent manner. However, the impact of T6SS and its secreted effectors on physiological behavior remains poorly understood. In this study, we present Tle1Vc, a phospholipase effector in atypical pathogenic V. cholerae E1 that is secreted by T6SS via its interaction with VgrG1E1. Tle1Vc contains a DUF2235 domain and belongs to the Tle1 (type VI lipase effector) family. Bacterial toxicity assays, lipase activity assays and site-directed mutagenesis revealed that Tle1Vc possessed phospholipase A1 activity and phospholipase A2 activity, and that Tle1Vc-induced toxicity required a serine residue (S356) and two aspartic acid residues (D417 and D496). Cells intoxication with Tle1Vc lead to membrane depolarization and alter membrane permeability. Tli1tox-, a cognate immunity protein, directly interacts with Tle1Vc to neutralize its toxicity. Moreover, Tle1Vc can kill multiple microorganisms by T6SS and promote in vivo fitness of V. cholerae through mediating antibacterial activity. Tle1Vc induces bacterial motility by increasing the expression of flagellar-related genes independently of functional T6SS and the tit-for-tat (TFT) response, where Pseudomonas aeruginosa uses its T6SS-H1 cluster to counterattack other offensive attackers. Our study also demonstrated that the physical puncture of E1 T6SS can induce a moderate TFT response, which is essential to the Tle1Vc-mediated strong TFT response, maximizing effector functions. Overall, our study characterized the antibacterial mechanism of phospholipase effector Tle1Vc and its multiple physiological significance.
Collapse
Affiliation(s)
- Ming Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Heng Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ying Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Run-Dong Shu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yu Zhao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wei-Di Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hui Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
37
|
Yang Y, Pan D, Tang Y, Li J, Zhu K, Yu Z, Zhu L, Wang Y, Chen P, Li C. H3-T6SS of Pseudomonas aeruginosa PA14 contributes to environmental adaptation via secretion of a biofilm-promoting effector. STRESS BIOLOGY 2022; 2:55. [PMID: 37676573 PMCID: PMC10442045 DOI: 10.1007/s44154-022-00078-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/11/2022] [Indexed: 09/08/2023]
Abstract
Microbial species often occur in complex communities and exhibit intricate synergistic and antagonistic interactions. To avoid predation and compete for favorable niches, bacteria have evolved specialized protein secretion systems. The type VI secretion system (T6SS) is a versatile secretion system widely distributed among Gram-negative bacteria that translocates effectors into target cells or the extracellular milieu via various physiological processes. Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases, and it has three independent T6SSs (H1-, H2-, and H3-T6SS). In this study, we found that the H3-T6SS of highly virulent P. aeruginosa PA14 is negatively regulated by OxyR and OmpR, which are global regulatory proteins of bacterial oxidative and acid stress. In addition, we identified a H3-T6SS effector PA14_33970, which is located upstream of VgrG3. PA14_33970 interacted directly with VgrG3 and translocated into host cells. Moreover, we found that H3-T6SS and PA14_33970 play crucial roles in oxidative, acid, and osmotic stress resistance, as well as in motility and biofilm formation. PA14_33970 was identified as a new T6SS effector promoting biofilm formation and thus named TepB. Furthermore, we found that TepB contributes to the virulence of P. aeruginosa PA14 toward Caenorhabditis elegans. Overall, our study indicates that H3-T6SS and its biofilm-promoting effector TepB are regulated by OxyR and OmpR, both of which are important for adaptation of P. aeruginosa PA14 to multiple stressors, providing insights into the regulatory mechanisms and roles of T6SSs in P. aeruginosa.
Collapse
Affiliation(s)
- Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Damin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanan Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kaixiang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zonglan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
38
|
Speare L, Jackson A, Septer AN. Calcium Promotes T6SS-Mediated Killing and Aggregation between Competing Symbionts. Microbiol Spectr 2022; 10:e0139722. [PMID: 36453912 PMCID: PMC9769598 DOI: 10.1128/spectrum.01397-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
Bacteria use a variety of strategies to exclude competitors from accessing resources, including space within a host niche. Because these mechanisms are typically costly to deploy, they are often tightly regulated for use in environments where the benefits outweigh the energetic cost. The type VI secretion system (T6SS) is a competitive mechanism that allows inhibitors to kill competing microbes by physically puncturing and translocating cytotoxic effectors directly into neighboring competitor cells. Although T6SSs are encoded in both symbiotic and free-living taxa where they may be actively secreting into the extracellular milieu during growth in liquid culture, there is little evidence for bacteria engaging in T6SS-mediated, contact-dependent killing under low-viscosity liquid conditions. Here, we determined that calcium acts as a pH-dependent cue to activate the assembly of an antibacterial T6SS in a Vibrio fischeri light organ symbiont in a low-viscosity liquid medium. Moreover, competing V. fischeri isolates formed mixed-strain aggregates that promoted the contact necessary for T6SS-dependent elimination of a target population. Our findings expand our knowledge of V. fischeri T6SS ecology and identify a low-viscosity liquid condition where cells engage in contact-dependent killing. IMPORTANCE Microbes deploy competitive mechanisms to gain access to resources such as nutrients or space within an ecological niche. Identifying when and where these strategies are employed can be challenging given the complexity and variability of most natural systems; therefore, studies evaluating specific cues that conditionally regulate interbacterial competition can inform the ecological context for such competition. In this work, we identified a pH-dependent chemical cue in seawater, calcium, which promotes activation of a contact-dependent interbacterial weapon in the marine symbiont Vibrio fischeri. This finding underscores the importance of using ecologically relevant salts in growth media and the ability of bacterial cells to sense and integrate multiple environmental cues to assess the need for a weapon. Identification of these cues provides insight into the types of environments where employing a weapon is advantageous to the survival and propagation of a bacterial population.
Collapse
Affiliation(s)
- Lauren Speare
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Aundre Jackson
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
39
|
Wang D, Zhu L, Zhen X, Yang D, Li C, Chen Y, Wang H, Qu Y, Liu X, Yin Y, Gu H, Xu L, Wan C, Wang Y, Ouyang S, Shen X. A secreted effector with a dual role as a toxin and as a transcriptional factor. Nat Commun 2022; 13:7779. [PMID: 36522324 PMCID: PMC9755527 DOI: 10.1038/s41467-022-35522-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria have evolved multiple secretion systems for delivering effector proteins into the cytosol of neighboring cells, but the roles of many of these effectors remain unknown. Here, we show that Yersinia pseudotuberculosis secretes an effector, CccR, that can act both as a toxin and as a transcriptional factor. The effector is secreted by a type VI secretion system (T6SS) and can enter nearby cells of the same species and other species (such as Escherichia coli) via cell-cell contact and in a contact-independent manner. CccR contains an N-terminal FIC domain and a C-terminal DNA-binding domain. In Y. pseudotuberculosis cells, CccR inhibits its own expression by binding through its DNA-binding domain to the cccR promoter, and affects the expression of other genes through unclear mechanisms. In E. coli cells, the FIC domain of CccR AMPylates the cell division protein FtsZ, inducing cell filamentation and growth arrest. Thus, our results indicate that CccR has a dual role, modulating gene expression in neighboring cells of the same species, and inhibiting the growth of competitors.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangkai Zhen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Daoyan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yating Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huannan Wang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yichen Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaozhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanling Yin
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Huawei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanxing Wan
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
40
|
Liyanapathiranage P, Jones JB, Potnis N. Mutation of a Single Core Gene, tssM, of Type VI Secretion System of Xanthomonas perforans Influences Virulence, Epiphytic Survival, and Transmission During Pathogenesis on Tomato. PHYTOPATHOLOGY 2022; 112:752-764. [PMID: 34543058 DOI: 10.1094/phyto-02-21-0069-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xanthomonas perforans is a seedborne hemibiotrophic pathogen that successfully establishes infection in the phyllosphere of tomato. While most studies investigating mechanistic basis of pathogenesis have focused on successful apoplastic growth, factors important during asymptomatic colonization in the early stages of disease development are not well understood. In this study, we show that tssM gene of the type VI secretion system cluster i3* (T6SS-i3*) plays a significant role during initial asymptomatic epiphytic colonization at different stages during the life cycle of the pathogen. Mutation in a core gene, tssM of T6SS-i3*, imparted higher aggressiveness to the pathogen, as indicated by higher overall disease severity, higher in planta growth, and shorter latent infection period compared with the wild-type upon dip inoculation of 4- to 5-week-old tomato plants. Contribution of tssM toward aggressiveness was evident during vertical transmission from seed to seedling, with wild-type showing reduced disease severity as well as lower in planta populations on seedlings compared with the mutant. Presence of functional TssM offered higher epiphytic fitness as well as higher dissemination potential to the pathogen when tested in an experimental setup mimicking transplant house high-humidity conditions. We showed higher osmotolerance being one mechanism by which TssM offers higher epiphytic fitness. Taken together, these data reveal that functional TssM plays a larger role in offering ecological advantage to the pathogen. TssM prolongs the association of hemibiotrophic pathogen with the host, minimizing overall disease severity yet facilitating successful dissemination.
Collapse
Affiliation(s)
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| |
Collapse
|
41
|
T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. THE ISME JOURNAL 2022; 16:500-510. [PMID: 34433898 PMCID: PMC8776902 DOI: 10.1038/s41396-021-01093-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Outer membrane vesicles (OMVs) can function as nanoscale vectors that mediate bacterial interactions in microbial communities. How bacteria recognize and recruit OMVs inter-specifically remains largely unknown, thus limiting our understanding of the complex physiological and ecological roles of OMVs. Here, we report a ligand-receptor interaction-based OMV recruitment mechanism, consisting of a type VI secretion system (T6SS)-secreted lipopolysaccharide (LPS)-binding effector TeoL and the outer membrane receptors CubA and CstR. We demonstrated that Cupriavidus necator T6SS1 secretes TeoL to preferentially associate with OMVs in the extracellular milieu through interactions with LPS, one of the most abundant components of OMVs. TeoL associated with OMVs can further bind outer membrane receptors CubA and CstR, which tethers OMVs to the recipient cells and allows cargo to be delivered. The LPS-mediated mechanism enables bacterial cells to recruit OMVs derived from different species, and confers advantages to bacterial cells in iron acquisition, interbacterial competition, and horizontal gene transfer (HGT). Moreover, our findings provide multiple new perspectives on T6SS functionality in the context of bacterial competition and HGT, through the recruitment of OMVs.
Collapse
|
42
|
Antimicrobial Weapons of Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:223-256. [DOI: 10.1007/978-3-031-08491-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Yang X, Liu H, Zhang Y, Shen X. Roles of Type VI Secretion System in Transport of Metal Ions. Front Microbiol 2021; 12:756136. [PMID: 34803980 PMCID: PMC8602904 DOI: 10.3389/fmicb.2021.756136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The type VI secretion system (T6SS) is a transmembrane protein nanomachine employed by many gram-negative bacteria to directly translocate effectors into adjacent cells or the extracellular milieu, showing multiple functions in both interbacterial competition and bacteria-host interactions. Metal ion transport is a newly discovered T6SS function. This review summarizes the identified T6SS functions and highlights the features of metal ion transport mediated by T6SS and discusses its regulation.
Collapse
Affiliation(s)
- Xiaobing Yang
- College of Applied Engineering, Henan University of Science and Technology (HAUST), Sanmenxia, China.,Medical College, Sanmenxia Vocational Technical School, Sanmenxia, China
| | - Hai Liu
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Yanxiong Zhang
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
44
|
Lin J, Xu L, Yang J, Wang Z, Shen X. Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance. STRESS BIOLOGY 2021; 1:11. [PMID: 37676535 PMCID: PMC10441901 DOI: 10.1007/s44154-021-00008-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/09/2021] [Indexed: 09/08/2023]
Abstract
Bacteria inhabit diverse and dynamic environments, where nutrients may be limited and toxic chemicals can be prevalent. To adapt to these stressful conditions, bacteria have evolved specialized protein secretion systems, such as the type VI secretion system (T6SS) to facilitate their survival. As a molecular syringe, the T6SS expels various effectors into neighboring bacterial cells, eukaryotic cells, or the extracellular environment. These effectors improve the competitive fitness and environmental adaption of bacterial cells. Although primarily recognized as antibacterial weapons, recent studies have demonstrated that T6SSs have functions beyond interspecies competition. Here, we summarize recent research on the role of T6SSs in microbiome modulation, pathogenesis, and stress resistance.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Zhuo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
45
|
Modular Lipoprotein Toxins Transferred by Outer Membrane Exchange Target Discrete Cell Entry Pathways. mBio 2021; 12:e0238821. [PMID: 34517761 PMCID: PMC8546572 DOI: 10.1128/mbio.02388-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria compete against related individuals by delivering toxins. In myxobacteria, a key delivery and kin discrimination mechanism is called outer membrane (OM) exchange (OME). Here, cells that display compatible polymorphic cell surface receptors recognize one another and bidirectionally transfer OM content. Included in the cargo is a suite of polymorphic SitA lipoprotein toxins. Consequently, OME between compatible cells that are not clonemates results in intoxication, while exchange between clonemates is harmonious because cells express a cognate repertoire of immunity proteins, which themselves are not transferred. SitA toxins belong to six nonhomologous families classified by sequence conservation within their N-terminal “escort domains” (EDs), while their C termini contain polymorphic nucleases that target the cytoplasmic compartment. To investigate how toxins delivered to the OM by OME translocate to the cytoplasm, we selected transposon mutants resistant to each family. Our screens identified eight genes that conferred resistance in a SitA family-specific manner. Most of these genes are predicted to localize to the cell envelope, and some resemble proteins that colicins exploit to gain cell entry. By constructing functional chimeric SitAs between families, we show that the ED determines the specificity of resistance. Importantly, a mutant that confers resistance to all six SitA families was discovered. This gene was named traC and plays an accessory role with traAB in OME. This work thus provides insight into the mechanism of kin discrimination in myxobacteria and provides working models for how SitA toxins exploit host proteins to gain cytoplasmic entry.
Collapse
|
46
|
T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese. Proc Natl Acad Sci U S A 2021; 118:2103526118. [PMID: 34625471 DOI: 10.1073/pnas.2103526118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular ionic concentrations are a central factor orchestrating host innate immunity, but no pathogenic mechanism that perturbs host innate immunity by directly targeting metal ions has yet been described. Here, we report a unique virulence strategy of Yersinia pseudotuberculosis (Yptb) involving modulation of the availability of Mn2+, an immunostimulatory metal ion in host cells. We showed that the Yptb type VI secretion system (T6SS) delivered a micropeptide, TssS, into host cells to enhance its virulence. The mutant strain lacking TssS (ΔtssS) showed substantially reduced virulence but induced a significantly stronger host innate immune response, indicating an antagonistic role of this effector in host antimicrobial immunity. Subsequent studies revealed that TssS is a Mn2+-chelating protein and that its Mn2+-chelating ability is essential for the disruption of host innate immunity. Moreover, we showed that Mn2+ enhances the host innate immune response to Yptb infection by activating the stimulator of interferon genes (STING)-mediated immune response. Furthermore, we demonstrated that TssS counteracted the cytoplasmic Mn2+ increase to inhibit the STING-mediated innate immune response by sequestering Mn2+ Finally, TssS-mediated STING inhibition sabotaged bacterial clearance in vivo. These results reveal a previously unrecognized bacterial immune evasion strategy involving modulation of the bioavailability of intracellular metal ions and provide a perspective on the role of the T6SS in pathogenesis.
Collapse
|
47
|
Sibinelli-Sousa S, de Araújo-Silva AL, Hespanhol JT, Bayer-Santos E. Revisiting the steps of Salmonella gut infection with a focus on antagonistic interbacterial interactions. FEBS J 2021; 289:4192-4211. [PMID: 34546626 DOI: 10.1111/febs.16211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
A commensal microbial community is established in the mammalian gut during its development, and these organisms protect the host against pathogenic invaders. The hallmark of noninvasive Salmonella gut infection is the induction of inflammation via effector proteins secreted by the type III secretion system, which modulate host responses to create a new niche in which the pathogen can overcome the colonization resistance imposed by the microbiota. Several studies have shown that endogenous microbes are important to control Salmonella infection by competing for resources. However, there is limited information about antimicrobial mechanisms used by commensals and pathogens during these in vivo disputes for niche control. This review aims to revisit the steps that Salmonella needs to overcome during gut colonization-before and after the induction of inflammation-to achieve an effective infection. We focus on a series of reported and hypothetical antagonistic interbacterial interactions in which both contact-independent and contact-dependent mechanisms might define the outcome of the infection.
Collapse
Affiliation(s)
| | | | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
48
|
Li C, Pan D, Li M, Wang Y, Song L, Yu D, Zuo Y, Wang K, Liu Y, Wei Z, Lu Z, Zhu L, Shen X. Aerobactin-Mediated Iron Acquisition Enhances Biofilm Formation, Oxidative Stress Resistance, and Virulence of Yersinia pseudotuberculosis. Front Microbiol 2021; 12:699913. [PMID: 34335534 PMCID: PMC8319957 DOI: 10.3389/fmicb.2021.699913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Aerobactin is a citrate-hydroxamate siderophore that is critical for the virulence of pathogenic enteric bacteria. However, although the aerobactin-producing iucABCD-iutA operon is distributed widely in the genomes of Yersinia species, none of the pathogenic Yersinia spp. was found to produce aerobactin. Here, we showed that the iucABCD-iutA operon in the food-borne enteric pathogen Yersinia pseudotuberculosis YPIII is a functional siderophore system involved in iron acquisition. The expression of the operon was found to be directly repressed by the ferric uptake regulator (Fur) in an iron concentration-dependent manner. In addition, we demonstrated that the aerobactin-mediated iron acquisition contributes to bacterial growth under iron-limited conditions. Moreover, we provided evidence that aerobactin plays important roles in biofilm formation, resistance to oxidative stress, ROS removal, and virulence of Y. pseudotuberculosis. Overall, our study not only uncovered a novel strategy of iron acquisition in Y. pseudotuberculosis but also highlighted the importance of aerobactin in the pathogenesis of Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Damin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Luting Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Danyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yuxin Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kenan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
49
|
Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO Rep 2021; 22:e51857. [PMID: 33786997 PMCID: PMC8183406 DOI: 10.15252/embr.202051857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria utilize type VI secretion system (T6SS) to deliver antibacterial toxins to target co-habiting bacteria. Here, we report that Burkholderia gladioli strain NGJ1 deploys certain T6SS effectors (TseTBg), having both DNase and RNase activities to kill target bacteria. RNase activity is prominent on NGJ1 as well as other bacterial RNA while DNase activity is pertinent to only other bacteria. The associated immunity (TsiTBg) proteins harbor non-canonical helix-turn-helix motifs and demonstrate transcriptional repression activity, similar to the antitoxins of type II toxin-antitoxin (TA) systems. Genome analysis reveals that homologs of TseTBg are either encoded as TA or T6SS effectors in diverse bacteria. Our results indicate that a new ORF (encoding a hypothetical protein) has evolved as a result of operonic fusion of TA type TseTBg homolog with certain T6SS-related genes by the action of IS3 transposable elements. This has potentially led to the conversion of a TA into T6SS effector in Burkholderia. Our study exemplifies that bacteria can recruit toxins of TA systems as T6SS weapons to diversify its arsenal to dominate during inter-bacterial competitions.
Collapse
Affiliation(s)
- Sunil Kumar Yadav
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Ankita Magotra
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Srayan Ghosh
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Aiswarya Krishnan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Amrita Pradhan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Rahul Kumar
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Joyati Das
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Mamta Sharma
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Gopaljee Jha
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| |
Collapse
|
50
|
Cai R, Gao F, Pan J, Hao X, Yu Z, Qu Y, Li J, Wang D, Wang Y, Shen X, Liu X, Yang Y. The transcriptional regulator Zur regulates the expression of ZnuABC and T6SS4 in response to stresses in Yersinia pseudotuberculosis. Microbiol Res 2021; 249:126787. [PMID: 33991717 DOI: 10.1016/j.micres.2021.126787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 01/21/2023]
Abstract
Zinc homeostasis is crucial for the development and stress resistance of bacteria in the environment. Serial zinc sensing transcriptional regulators, zinc transporters and zinc binding proteins were found to maintain the zinc homeostasis in bacteria. Zur is a zinc uptake regulator that is widely distributed in species, and ZnuABC, as well as the Type VI Secretion System (T6SS4) function in zinc acquisition. Here, we report that the regulator Zur inhibits the expression of the ZnuABC which inhibition could be eliminated at low zinc level, and upregulates the T6SS4 operon in Yersinia pseudotuberculosis to facilitate Zn2+ uptake and oxidative stress resistance. Zur regulates the expression of ZnuABC and T6SS4 by directly binding to their promoter regions. Zur senses the Zn2+ concentration and represses ZnuABC in a Zn2+-containing environment. Zur works as an auxiliary regular activator of T6SS4, facilitating oxidative stress resistance. This study revealed the dual function of regulator Zur on ZnuABC and T6SS4, and enriched the knowledge of Zn2+ homeostasis maintenance in Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Ran Cai
- Beijing Capital Co., LTD, Beijing, 100044, China
| | - Fen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Junfeng Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xinwei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zonglan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yichen Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jialin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Dandan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xingyu Liu
- General Research Institute for Nonferrous Metals, Beijing, 100088, China.
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|