1
|
Chen Y, Li K, Sommer S, Ozgul A, Zhang Y, Wang D. Body-Size Change in a Rodent Is Affected by Environmental Warming and Population-Specific Thermoneutral Zone. Animals (Basel) 2025; 15:1112. [PMID: 40281946 PMCID: PMC12024339 DOI: 10.3390/ani15081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Rodent body size often exhibits a diversity of temperature-size patterns among and within species, which might be caused by differential thermoneutral zones (TNZs) and experienced extents of warming. Here, we test this hypothesis in populations of Apodemus agrarius. To study how body size varies across space, we analysed data on body size and temperature (specifically, annual mean minimum temperature) from nine sites spanning 1150 m of elevation. Using indirect calorimetry, we also measured the resting metabolic rate at different temperatures to infer the population-specific TNZ. To study how body size changes over time (2013-2020), we analysed body-size data of southern and northern populations from warm and cold sites, respectively. With increasing temperatures across space, body size increased and the TNZ narrowed. Moreover, during the eight years, temperature remained stable at the warm site but rose at the cold site. As a result, body size increased in the population at the cold site but remained stable in the population at the warm site. Finally, the rate of change in body size per 1 °C change in temperature was larger along the temporal than the spatial temperature gradient. Together, these results support our hypothesis that, among rodent populations, differential changes in body size can be caused by site-specific habitat warming and the population-specific TNZ. A population with a narrow TNZ can be restricted in its body-size response to habitat warming.
Collapse
Affiliation(s)
- Yan Chen
- College of Grassland Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Y.C.); (Y.Z.)
| | - Ke Li
- College of Life Sciences, Henan Normal University, 46 Jianshe East Road, Muye District, Xinxiang 453007, China;
| | - Stefan Sommer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; (S.S.); (A.O.)
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; (S.S.); (A.O.)
| | - Yizhen Zhang
- College of Grassland Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Y.C.); (Y.Z.)
| | - Deng Wang
- College of Grassland Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (Y.C.); (Y.Z.)
| |
Collapse
|
2
|
Käfer H, Kovac H, Amstrup AB, Sørensen JG, Stabentheiner A. Critical thermal maxima of Polistes life stages from different climates, with a critical evaluation of methods. J Therm Biol 2025; 129:104111. [PMID: 40228389 DOI: 10.1016/j.jtherbio.2025.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
Ambient temperature is a crucial abiotic factor for ectotherms. It strongly influences development, life and abundance, as well as success in colonizing new habitats. In the eusocial paper wasps Polistes sp., colony-forming insects with open nests, the larvae and pupae have limited options to influence their own body temperature in response to high environmental temperatures. They are dependent on measures taken by the adults to keep it at tolerable levels. We determined the upper thermal limits (CTmax) in field populations of three paper wasp species (Polistes dominula, P. gallicus, P. biglumis) from different climates (temperate, Mediterranean, alpine) for three life stages (larvae, pupae, adults). Due to morphological and physiological characteristics of the individual life stages, they did not show the same reactions to temperature rise and heat stress in terms of respiration and body movement. CTmax evaluation by established methods (mortal fall, short-term respiration patterns) was not possible, so we had to develop an adapted evaluation type based on long term respiration patterns. The most striking result was that the CTmax was similar in all populations and life stages, ranging from 47.6 to 48.8 °C in larvae and pupae, and from 47.1 to 47.9 °C in adults. P. dominula differed from P. gallicus and P. biglumis; the latter did not differ significantly (all stages). Tests in individual groups (populations, life stages) showed differences in one parameter or the other (population, life stage, mass). Overall, population (and thus climate as a related factor) and life stage, but not mass, had a significant effect on CTmax.s.
Collapse
Affiliation(s)
- Helmut Käfer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Helmut Kovac
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Astrid B Amstrup
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Jesper G Sørensen
- Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus C, 8000, Denmark
| | - Anton Stabentheiner
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| |
Collapse
|
3
|
Monge O, Caro SP, Charmantier A. What does infrared thermography tell us about the evolutionary potential of heat tolerance in endotherms? Evol Lett 2025; 9:184-188. [PMID: 40191413 PMCID: PMC11968186 DOI: 10.1093/evlett/qrae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 04/09/2025] Open
Abstract
Anthropogenic climate change affects wild animal populations through increasing average temperatures and more frequent extreme climatic events. Endotherms have evolved the capacity to regulate their body temperature but little is still known about how they can physiologically adapt to the pace of global warming. Adaptive responses would require that heat-tolerance mechanisms, such as the capacity to withstand high body temperatures and regulate evaporative water loss, exhibit sufficient heritable genetic variation for selection to act upon. Unfortunately, the quantitative genetics of these traits in endotherms remains poorly understood. In a recent study using infrared thermography (IRT) on semi-captive ostriches, Svensson et al., (Heritable variation in thermal profiles is associated with reproductive success in the world's largest bird. Evolution Letters, 8(2), 200-211.) sought to address this knowledge gap by measuring relative heat exchange from the head and neck and assessing the link between among-individual variation in heat dissipation and reproductive fitness. We discuss how IRT serves as a valuable tool for non-invasive data collecting, highlighting its potential for field studies of the evolutionary potential of thermal tolerance. Nevertheless, interpreting IRT data is not as straightforward as it may seem and thus must be conducted carefully. For instance, body parts from which surface temperatures are measured need to be unequivocally identified as sources of dry heat exchange in order to inform on thermoregulation-something lacking in the mentioned study. Furthermore, there is still no conclusive evidence that surface temperatures reflect core body temperatures in endotherms. Critical underlying mechanisms of the heat response, such as evaporative cooling, must also be considered. Assumptions stemming from uncertain proxies of thermoregulation can obscure our understanding of the endothermic adaptation of heat-tolerance traits to rapid global warming. These considerations emphasize that, while IRT can be a valuable tool for developing quantitative genetic approaches to estimate the evolutionary potential of heat tolerance in endotherms-particularly for species most vulnerable to warming, its application warrants careful planning.
Collapse
Affiliation(s)
- Otto Monge
- CEFE, Department of Evolutionary and Behavioral Ecology, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Samuel P Caro
- CEFE, Department of Evolutionary and Behavioral Ecology, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Anne Charmantier
- CEFE, Department of Evolutionary and Behavioral Ecology, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
4
|
Calixto CPG. Molecular aspects of heat stress sensing in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70069. [PMID: 40085177 PMCID: PMC11908636 DOI: 10.1111/tpj.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Heat stress impacts all aspects of life, from evolution to global food security. Therefore, it becomes essential to understand how plants respond to heat stress, especially in the context of climate change. The heat stress response (HSR) involves three main components: sensing, signal transduction, and cellular reprogramming. Here, I focus on the heat stress sensing component. How can cells detect heat stress if it is not a signalling particle? To answer this question, I have looked at the molecular definition of heat stress. It can be defined as any particular rise in the optimum growth temperature that leads to higher-than-normal levels of reactive molecular species and macromolecular damage to biological membranes, proteins, and nucleic acid polymers (DNA and RNA). It is precisely these stress-specific alterations that are detected by heat stress sensors, upon which they would immediately trigger the appropriate level of the HSR. In addition, the work towards thermotolerance is complemented by a second type of response, here called the cellular homeostasis response (CHR). Upon mild and extreme temperature changes, the CHR is triggered by plant thermosensors, which are responsible for monitoring temperature information. Heat stress sensors and thermosensors are distinct types of molecules, each with unique modes of activation and functions. While many recent reviews provide a comprehensive overview of plant thermosensors, there remains a notable gap in the review literature regarding an in-depth analysis of plant heat stress sensors. Here, I attempt to summarise our current knowledge of the cellular sensors involved in triggering the plant HSR.
Collapse
|
5
|
Pottier P, Kearney MR, Wu NC, Gunderson AR, Rej JE, Rivera-Villanueva AN, Pollo P, Burke S, Drobniak SM, Nakagawa S. Vulnerability of amphibians to global warming. Nature 2025; 639:954-961. [PMID: 40044855 PMCID: PMC11946914 DOI: 10.1038/s41586-025-08665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025]
Abstract
Amphibians are the most threatened vertebrates, yet their resilience to rising temperatures remains poorly understood1,2. This is primarily because knowledge of thermal tolerance is taxonomically and geographically biased3, compromising global climate vulnerability assessments. Here we used a phylogenetically informed data-imputation approach to predict the heat tolerance of 60% of amphibian species and assessed their vulnerability to daily temperature variations in thermal refugia. We found that 104 out of 5,203 species (2%) are currently exposed to overheating events in shaded terrestrial conditions. Despite accounting for heat-tolerance plasticity, a 4 °C global temperature increase would create a step change in impact severity, pushing 7.5% of species beyond their physiological limits. In the Southern Hemisphere, tropical species encounter disproportionally more overheating events, while non-tropical species are more susceptible in the Northern Hemisphere. These findings challenge evidence for a general latitudinal gradient in overheating risk4-6 and underscore the importance of considering climatic variability in vulnerability assessments. We provide conservative estimates assuming access to cool shaded microenvironments. Thus, the impacts of global warming will probably exceed our projections. Our microclimate-explicit analyses demonstrate that vegetation and water bodies are critical in buffering amphibians during heat waves. Immediate action is needed to preserve and manage these microhabitat features.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Alex R Gunderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Julie E Rej
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - A Nayelli Rivera-Villanueva
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango (CIIDIR), Instituto Politécnico Nacional, Durango, Mexico
- Laboratorio de Biología de la Conservación y Desarrollo Sostenible de la Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Touzot M, Holmstrup M, Sørensen JG, Slotsbo S. Gain of thermal tolerance through acclimation is quicker than the loss by de-acclimation in the freeze-tolerant potworm, Enchytraeus albidus. J Exp Biol 2025; 228:JEB249675. [PMID: 39895642 DOI: 10.1242/jeb.249675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Environmental temperature variation, naturally occurring or induced by climate change, leads organisms to evolve behavioural and physiological responses to handle thermal fluctuations. Among them, phenotypic plasticity is considered a fundamental response to natural thermal variations. Nevertheless, we know little about the rate of thermal acclimation responses and the physiological mechanisms underpinning phenotypic plasticity in freeze-tolerant invertebrates. We assessed the temporal dynamics of heat and cold tolerance plasticity in the freeze-tolerant potworm Enchytraeus albidus following thermal acclimation. Acclimation responses were investigated in worms cultured at 5 or 20°C and acclimated for varying duration (hours to weeks) at the same temperature or relocated to the opposite temperature. The rate of phenotypic responses of thermal tolerance was evaluated by assessing survival after exposure to high and low stressful temperatures. Worms cultured at 5°C were more cold tolerant and less heat tolerant than worms cultured at 20°C. The plasticity of thermal tolerance in E. albidus varied in scope and response time according to both culture and acclimation temperatures: acclimation at 20°C of worms cultured at 5°C increased heat survival within 1 day and reduced cold tolerance in 5 days, while acclimation at 5°C of worms cultured at 20°C did not affect heat survival but considerably and quickly, within 1 day, increased cold tolerance. Effects of acclimation were also assessed on membrane phospholipid fatty acid (PLFA) composition and glycogen content of worms, and showed that improved tolerance was linked to changes in membrane PLFA desaturation and chain length.
Collapse
Affiliation(s)
- Morgane Touzot
- Section for Terrestrial Ecology, Institute for Ecoscience, Aarhus University, C. F. Møllers Allé 4, 8000 Aarhus C, Denmark
| | - Martin Holmstrup
- Section for Terrestrial Ecology, Institute for Ecoscience, Aarhus University, C. F. Møllers Allé 4, 8000 Aarhus C, Denmark
| | - Jesper Givskov Sørensen
- Section for Genetics, Ecology & Evolution, Department of Biology, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| | - Stine Slotsbo
- Section for Terrestrial Ecology, Institute for Ecoscience, Aarhus University, C. F. Møllers Allé 4, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Guo L, Li X, Chen S, Li Y, Wang W, Luo S, Jiang L, Liu H, Pan X, Zong Y, Feng L, Liu F, Zhang L, Bi G, Yang G. Mechanisms underlining Kelp (Saccharina japonica) adaptation to relative high seawater temperature. BMC Genomics 2025; 26:186. [PMID: 39994530 PMCID: PMC11849318 DOI: 10.1186/s12864-025-11382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025] Open
Abstract
Saccharina japonica has been cultivated in China for almost a century. From Dalian to Fujian, the lowest and the highest seawater temperatures in the period of cultivation increased by 14℃ and 8℃, respectively. Its adaptation to elevated seawater temperature is an example of securing the natural habitats of a species. To decipher the mechanisms underlining S. japonica adaptation to relative high seawater temperature, we assembled ~ 516.3 Mb female gametophyte genome and ~ 540.3 Mb of the male, respectively. The gametophytes isolated from southern China kelp cultivars acclimated to the relative high seawater temperature by transforming amino acids, glycosylating protein, maintaining osmotic pressure, intensifying the innate immune system, and exhausting energy and reduction power through the PEP-pyruvate-oxaloacetate node and the iodine cycle. They adapted to the relative high seawater temperature by transforming amino acids, changing sugar metabolism and intensifying innate immune system. The sex of S. japonica was determined by HMG-sex, and around this male gametophyte determiner the stress tolerant genes become linked to or associated with.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Xiaojie Li
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Shuxiu Chen
- Provincial Key Laboratory of Marine Seed Industry of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Yan Li
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Weiwei Wang
- Provincial Key Laboratory of Marine Seed Industry of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Shiju Luo
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Liming Jiang
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
- Yantai Marine Economic Research Institute, Yantai, 264006, Shandong, P. R. China
| | - Hang Liu
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Xiaohui Pan
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Yanan Zong
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Leili Feng
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Fuli Liu
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, OUC, Qingdao, 266003, P. R. China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agriculture University, Qingdao, 266109, P. R. China
| | - Guiqi Bi
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, P. R. China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China.
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, OUC, Qingdao, 266003, P. R. China.
- Provincial Key Laboratory of Marine Seed Industry of Shandong, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China.
- Institutes of Evolution and Marine Bioaffiliationersity, OUC, Qingdao, 266003, P. R. China.
| |
Collapse
|
8
|
Restrepo Z, González-Caro S, Hartley IP, Villegas JC, Meir P, Sanchez A, Ruiz Carrascal D, Mercado LM. Heterogeneous thermal tolerance of dominant Andean montane tree species. COMMUNICATIONS EARTH & ENVIRONMENT 2025; 6:117. [PMID: 39974301 PMCID: PMC11832418 DOI: 10.1038/s43247-025-02083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
In tropical montane forests, the Earth's largest biodiversity hotspots, there is increasing evidence that climate warming is resulting in montane species being displaced by their lowland counterparts. However, the drivers of these changes are poorly understood. Across a large elevation gradient in the Colombian Andes, we established three experimental plantations of 15 dominant tree species including both naturally occurring montane and lowland species and measured their survival and growth. Here we show that 55% of the studied montane species maintained growth at their survival's hottest temperature with the remaining 45% being intolerant to such levels of warming, declining their growth, while lowland species benefited strongly from the warmest temperatures. Our findings suggest that the direct negative effects of warming and increased competition of montane species with lowland species are promoting increased homogeneity in community composition, resulting in reduced biodiversity.
Collapse
Affiliation(s)
- Zorayda Restrepo
- Grupo GiGA, Escuela Ambiental, Facultad de ingeniería, Universidad de Antioquia, Medellín, Colombia
- Grupo de Servicios ecosistémicos y Cambio Climático, Corporación COL-TREE, Medellín, Colombia
- Grupo de Investigación en Ecología Aplicada, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
| | | | - Iain P. Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Juan Camilo Villegas
- Grupo de Investigación en Ecología Aplicada, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, UK
- Research School of Biology, Australian National University, Canberra, Australia
| | - Adriana Sanchez
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, D.C. Colombia
| | - Daniel Ruiz Carrascal
- Innovation and Technological Development Directorate, Eafit University, Medellín, Colombia
| | - Lina M. Mercado
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
- UK Centre for Ecology & Hydrology, Wallingford, UK
| |
Collapse
|
9
|
Rombouts J, Tavella F, Vandervelde A, Phong C, Ferrell JE, Yang Q, Gelens L. Mechanistic origins of temperature scaling in the early embryonic cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.24.630245. [PMID: 39763717 PMCID: PMC11703202 DOI: 10.1101/2024.12.24.630245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Temperature profoundly impacts organismal physiology and ecological dynamics, particularly affecting ectothermic species and making them especially vulnerable to climate changes. Although complex physiological processes usually involve dozens of enzymes, empirically it is found that the rates of these processes often obey the Arrhenius equation, which was originally proposed for individual chemical reactions. Here we have examined the temperature scaling of the early embryonic cell cycle, with the goal of understanding why the Arrhenius equation approximately holds and why it breaks down at temperature extremes. Using experimental data from Xenopus laevis, Xenopus tropicalis, and Danio rerio, plus published data from Caenorhabditis elegans, Caenorhabditis briggsae, and Drosophila melanogaster, we find that the apparent activation energies (E a values) for the early embryonic cell cycle for diverse ectotherms are all similar, 75 ± 7 kJ/mol (mean ± std.dev., n = 6), which corresponds to aQ 10 value at 20°C of 2.8 ± 0.2 (mean ± std.dev., n = 6). Using computational models, we find that the approximate Arrhenius scaling and the deviations from it at high and low temperatures can be accounted for by biphasic temperature scaling in critical individual components of the cell cycle oscillator circuit, by imbalances in theE a values for different partially rate-determining enzymes, or by a combination of both. Experimental studies of cycling Xenopus extracts indicate that both of these mechanisms contribute to the general scaling of temperature, and in vitro studies of individual cell cycle regulators confirm that there is in fact a substantial imbalance in theirE a values. These findings provide mechanistic insights into the dynamic interplay between temperature and complex biochemical processes, and into why biological systems fail at extreme temperatures.
Collapse
Affiliation(s)
- Jan Rombouts
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
- Cell Biology and Biophysics Unit and Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Franco Tavella
- Department of Physics /Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra Vandervelde
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
| | - Connie Phong
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Qiong Yang
- Department of Physics /Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
| |
Collapse
|
10
|
Tushabe D, Rosbakh S. Patterns and Drivers of Pollen Temperature Tolerance. PLANT, CELL & ENVIRONMENT 2025; 48:1366-1379. [PMID: 39445784 PMCID: PMC11695751 DOI: 10.1111/pce.15207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Pollen, a pivotal stage in the plant reproductive cycle, is highly sensitive to temperature fluctuations, impacting seed quality and quantity. While the importance of understanding pollen temperature limits (Tmin, Topt, Tmax - collectively PTLs) is recognized, a comprehensive synthesis of underlying drivers is lacking. Here, we examined PTLs, correlating them with vegetative tissue thermotolerance and assessing variability at the intra- and interspecific levels across 191 species with contrasting phylogeny, cultivation history, growth form and ecology. At the species level, the PTLs range from 9.0 to 42.4°C, with considerable differences among individual species. Vegetative tissue showed greater tolerance to both low and high temperatures than pollen. A significant, though weak, correlation was observed between PTLs and leaf temperature tolerance. Pollen heat tolerance was independent of that in leaves and stems. The greatest intraspecific variability was observed in pollen cold tolerance (Tmin), followed by Topt and Tmax. Phylogenetic analysis revealed family-level conservation in all three pollen temperature tolerance measures. Climate emerged as a significant PTL driver of pollen cold tolerance, with species from colder and stable climates exhibiting enhanced cold tolerance. Cultivated and wild species did not differ in their pollen temperature tolerances. Herbaceous plants showed higher tolerance to high temperatures compared to shrubs and trees, potentially reflecting divergent thermal conditions during anthesis. This study provides the first formal analysis of complex relationships between pollen temperature limits, plant characteristics and environmental factors, providing crucial insights into climate change impacts on plant reproduction.
Collapse
Affiliation(s)
- Donam Tushabe
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Sergey Rosbakh
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
- Department of Plant and Environmental Sciences, Faculty of ScienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
11
|
Burc E, Girard-Tercieux C, Metz M, Cazaux E, Baur J, Koppik M, Rêgo A, Hart AF, Berger D. Life-history adaptation under climate warming magnifies the agricultural footprint of a cosmopolitan insect pest. Nat Commun 2025; 16:827. [PMID: 39827176 PMCID: PMC11743133 DOI: 10.1038/s41467-025-56177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Climate change is affecting population growth rates of ectothermic pests with potentially dire consequences for agriculture and global food security. However, current projection models of pest impact typically overlook the potential for rapid genetic adaptation, making current forecasts uncertain. Here, we predict how climate change adaptation in life-history traits of insect pests affects their growth rates and impact on agricultural yields by unifying thermodynamics with classic theory on resource acquisition and allocation trade-offs between foraging, reproduction, and maintenance. Our model predicts that warming temperatures will favour resource allocation towards maintenance coupled with increased resource acquisition through larval foraging, and the evolution of this life-history strategy results in both increased population growth rates and per capita host consumption, causing a double-blow on agricultural yields. We find support for these predictions by studying thermal adaptation in life-history traits and gene expression in the wide-spread insect pest, Callosobruchus maculatus; with 5 years of evolution under experimental warming causing an almost two-fold increase in its predicted agricultural footprint. These results show that pest adaptation can offset current projections of agricultural impact and emphasize the need for integrating a mechanistic understanding of life-history evolution into forecasts of pest impact under climate change.
Collapse
Affiliation(s)
- Estelle Burc
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Agronomy Institute Rennes-Angers (IARA), Graduate school of agronomy, 35000, Rennes, France
| | - Camille Girard-Tercieux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Moa Metz
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Elise Cazaux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexandre Rêgo
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Alex F Hart
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| |
Collapse
|
12
|
Williamson J, Lu M, Camus MF, Gregory RD, Maclean IMD, Rocha JC, Saastamoinen M, Wilson RJ, Bridle J, Pigot AL. Clustered warming tolerances and the nonlinear risks of biodiversity loss on a warming planet. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230321. [PMID: 39780588 PMCID: PMC11720646 DOI: 10.1098/rstb.2023.0321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Anthropogenic climate change is projected to become a major driver of biodiversity loss, destabilizing the ecosystems on which human society depends. As the planet rapidly warms, the disruption of ecological interactions among populations, species and their environment, will likely drive positive feedback loops, accelerating the pace and magnitude of biodiversity losses. We propose that, even without invoking such amplifying feedback, biodiversity loss should increase nonlinearly with warming because of the non-uniform distribution of biodiversity. Whether these non-uniformities are the uneven distribution of populations across a species' thermal niche, or the uneven distribution of thermal niche limits among species within an ecological community, we show that in both cases, the resulting clustering in population warming tolerances drives nonlinear increases in the risk to biodiversity. We discuss how fundamental constraints on species' physiologies and geographical distributions give rise to clustered warming tolerances, and how population responses to changing climates could variously temper, delay or intensify nonlinear dynamics. We argue that nonlinear increases in risks to biodiversity should be the null expectation under warming, and highlight the empirical research needed to understand the causes, commonness and consequences of clustered warming tolerances to better predict where, when and why nonlinear biodiversity losses will occur.This article is part of the discussion meeting issue 'Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future'.
Collapse
Affiliation(s)
- Joseph Williamson
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| | - Muyang Lu
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
- College of Life Science, Sichuan University, Chengdu610065, China
| | - M. Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| | - Richard D. Gregory
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
- RSPB Centre for Conservation Science, Sandy, BedfordshireSG19 2DL, UK
| | - Ilya M. D. Maclean
- Environment & Sustainability Institute, University of Exeter, Penryn Campus, ExeterTR10 9FE, UK
| | - Juan C. Rocha
- The Anthropocene Laboratory, Royal Swedish Academy of Sciences, Stockholm114 18, Sweden
- Stockholm Resilience Centre, Stockholm University, Stockholm106 91, Sweden
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
| | - Robert J. Wilson
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Madrid28006, Spain
| | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| | - Alex L. Pigot
- Department of Genetics, Evolution and Environment, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
13
|
Zhang Y, Luo Y, Huang K, Liu Q, Fu C, Pang X, Fu S. Constraints of digestion on swimming performance and stress tolerance vary with habitat in freshwater fish species. Integr Zool 2025; 20:88-107. [PMID: 38288562 DOI: 10.1111/1749-4877.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Limited aerobic scope (AS) during digestion might be the main constraint on the performance of bodily functions in water-breathing animals. Thus, investigating the postprandial changes in various physiological functions and determining the existence of a shared common pattern because of possible dependence on residual AS during digestion in freshwater fish species are very important in conservation physiology. All species from slow-flow habitats showed impaired swimming speed while digesting, whereas all species from fast-flow habitats showed strong swimming performance, which was unchanged while digesting. Only two species from slow-flow habitats showed impaired heat tolerance during digestion, suggesting that whether oxygen limitation is involved in the heat tolerance process is species-specific. Three species from slow- or intermediate-flow habitats showed impaired hypoxia tolerance during digestion because feeding metabolism cannot cease completely under hypoxia. Overall, there was no common pattern in postprandial changes in different physiological functions because: (1) the digestion process was suppressed under oxygen-limiting conditions, (2) the residual AS decreased during digestion, and (3) performance was related to residual AS, while digestion was context-dependent and species-specific. However, digestion generally showed a stronger effect on bodily functions in species from slow-flow habitats, whereas it showed no impairment in fishes from fast-flow habitats. Nevertheless, the postprandial change in physiological functions varies with habitat, possibly due to divergent selective pressure on such functions. More importantly, the present study suggests that a precise prediction of how freshwater fish populations will respond to global climate change needs to incorporate data from postprandial fishes.
Collapse
Affiliation(s)
- Yongfei Zhang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Yulian Luo
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Keren Huang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Qianying Liu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Xu Pang
- College of Fisheries, Southwest University, Chongqing, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
14
|
Hurtado-Bautista E, Islas-Robles A, Moreno-Hagelsieb G, Olmedo-Alvarez G. Thermal Plasticity and Evolutionary Constraints in Bacillus: Implications for Climate Change Adaptation. BIOLOGY 2024; 13:1088. [PMID: 39765755 PMCID: PMC11673879 DOI: 10.3390/biology13121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
The ongoing rise in global temperatures poses significant challenges to ecosystems, particularly impacting bacterial communities that are central to biogeochemical cycles. The resilience of wild mesophilic bacteria to temperature increases of 2-4 °C remains poorly understood. In this study, we conducted experimental evolution on six wild Bacillus strains from two lineages (Bacillus cereus and Bacillus subtilis) to examine their thermal adaptation strategies. We exposed the bacteria to gradually increasing temperatures to assess their thermal plasticity, focusing on the genetic mechanisms underlying adaptation. While B. subtilis lineages improved growth at highly critical temperatures, only one increased its thermal niche to 4 °C above their natural range. This finding is concerning given climate change projections. B. cereus strains exhibited higher mutation rates but were not able to grow at increasing temperatures, while B. subtilis required fewer genetic changes to increase heat tolerance, indicating distinct adaptive strategies. We observed convergent evolution in five evolved lines, with mutations in genes involved in c-di-AMP synthesis, which is crucial for potassium transport, implicating this chemical messenger for the first time in heat tolerance. These insights highlight the vulnerability of bacteria to climate change and underscore the importance of genetic background in shaping thermal adaptation.
Collapse
Affiliation(s)
- Enrique Hurtado-Bautista
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| | - Africa Islas-Robles
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| | | | - Gabriela Olmedo-Alvarez
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| |
Collapse
|
15
|
Feng Z, Zhang L, Tang N, Li X, Xing W. Ensemble modeling of aquatic plant invasions and economic cost analysis in China under climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177444. [PMID: 39522784 DOI: 10.1016/j.scitotenv.2024.177444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Pistia stratiotes, Eichhornia crassipes, Alternanthera philoxeroides, and Cabomba caroliniana are officially recognized as invasive aquatic plants in China. Accurately predicting their invasion dynamics under climate change is crucial for the future safety of aquatic ecosystems. Compared to single prediction models, ensemble models that integrate multiple algorithms provide more accurate forecasts. However, there has been a notable lack of research utilizing ensemble models to collectively predict the invasive regions of these four species in China. To address this gap, we collected and analyzed comprehensive data on species distribution, climate, altitude, population density, and the normalized difference vegetation index to accurately predict the future invasive regions and potential warnings for aquatic systems concerning these species. Our results indicate that suitable areas for invasive aquatic plants in China are primarily located in the southeastern region. Significant differences exist in the suitable habitats for each species: P. stratiotes and E. crassipes have broad distribution areas, covering most water systems in southeastern China, while C. caroliniana is concentrated in the middle and lower reaches of the Yangtze River and the estuaries of the Yangtze and Pearl Rivers. A. philoxeroides has an extensive invasion area, with the North China Plain projected to become a suitable invasion region in the future. The main factors influencing future invasions are human activities and climate change. In addition, under climate change, the suitable habitats for these invasive aquatic plants are expected to expand towards higher latitudes. We also estimated the economic costs associated with invasive aquatic plants in China using the Invacost database, revealing cumulative costs of US$5525.17 million, where damage costs (89.70%) significantly exceed management costs (10.30%). Our innovative approach, employing various ensemble algorithms and water system invasion forecasts, aims to effectively mitigate the future invasions and economic impacts of these species.
Collapse
Affiliation(s)
- Zixuan Feng
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lei Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Na Tang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
16
|
Diamond SE, da Silva CRB, Medina-Báez OA. A multicontinental dataset of butterfly thermal physiological traits. Sci Data 2024; 11:1348. [PMID: 39695139 PMCID: PMC11655982 DOI: 10.1038/s41597-024-04191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Butterflies serve as key indicators of climate change impacts such as shifts in emergence timing and shifts in geographic range and distribution. However, the development of commonly used ecological forecasts based on butterfly physiological tolerance of temperature change has lagged behind that of other taxonomic groups. Here, we provide a series of related datasets comprising butterfly thermal physiological traits to enable such forecasts. We compiled data from the literature on butterfly heat and cold tolerance (critical thermal maxima and minima) for 117 species as well as heat resistance (knockdown time) for 45 species. We also present a new dataset comprising heat and cold tolerance and thermal sensitivity of metabolic rate of 28 common North American butterfly species. We envision these data to not only provide foundations for contemporary ecological forecasts of vulnerability to recent climate change, but also to aid in our understanding of butterfly ecology and evolution over historical timescales.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Carmen R B da Silva
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | | |
Collapse
|
17
|
Martínez-Villa JA, Paquette A, Feeley KJ, Morales-Morales PA, Messier C, Durán SM. Changes in morphological and physiological traits of urban trees in response to elevated temperatures within an Urban Heat Island. TREE PHYSIOLOGY 2024; 44:tpae145. [PMID: 39541501 DOI: 10.1093/treephys/tpae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Urban heat islands (UHIs) are a common phenomenon in metropolitan areas worldwide where the air temperature is significantly higher in urban areas than in surrounding suburban, rural or natural areas. Mitigation strategies to counteract UHI effects include increasing tree cover and green spaces to reduce heat. The successful application of these approaches necessitates a deep understanding of the thermal tolerances in urban trees and their susceptibility to elevated urban temperatures. We evaluated how the photosynthetic thermal optimum (Topt), photosynthetic heat tolerance (T50) and key leaf thermoregulatory morphological traits (leaf area [LA], specific leaf area, leaf width, thickness and leaf dry matter content) differ between conspecific trees growing in 'hot' (UHI) vs 'cool' parts of Montreal, Canada (with a difference of 3.4 °C in air temperature), to assess the ability of seven common tree species to acclimation to higher temperatures. We hypothesized that individuals with hotter growing temperatures would exhibit higher Topt and T50, as well as leaf thermoregulatory morphological traits aligned with conservative strategies (e.g., reduced LA and increased leaf mass) compared with their counterparts in the cooler parts of the city. Contrary to our a priori hypotheses, LA increased with growing temperatures and only four of the seven species had higher T50 and only three had higher Topt values in the hotter area. These results suggest that many tree species cannot acclimate to elevated temperatures and that the important services they provide, such as carbon capture, can be negatively affected by high temperatures caused by climate change and/or the UHI effect. The ability vs inability of tree species to acclimate to high temperatures should be considered when implementing long term tree planting programs in urban areas.
Collapse
Affiliation(s)
- Johanna Andrea Martínez-Villa
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, 141 Av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - Alain Paquette
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, 141 Av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - Kenneth J Feeley
- Biology Department, University of Miami, 1301 Memorial Dr #215, Coral Gables, FL 33146, United States
| | - Paula Andrea Morales-Morales
- Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín, Medellin, Antioquia, Cra. 65 #59a-110, Medellín, Antioquia, Colombia
| | - Christian Messier
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, 141 Av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - Sandra M Durán
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus DeliveryFort Collins, CO 80523-1472, United States
| |
Collapse
|
18
|
Patrón-Rivero C, Osorio-Olvera L, Rojas-Soto O, Chiappa-Carrara X, Villalobos F, Bessesen B, López-Reyes K, Yañez-Arenas C. Global analysis of the influence of environmental variables to explain ecological niches and realized thermal niche boundaries of sea snakes. PLoS One 2024; 19:e0310456. [PMID: 39636927 PMCID: PMC11620380 DOI: 10.1371/journal.pone.0310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/02/2024] [Indexed: 12/07/2024] Open
Abstract
Understanding the factors affecting species distributions is a central topic in ecology and biogeography. However, most research on this topic has focused on species inhabiting terrestrial environments. At broad scales, abiotic variables consistently serve as primary determinants of species' distributions. In this study, we investigated the explanatory power of different abiotic variables in determining the distribution patterns of sea snakes on a global scale. Additionally, as the boundaries of realized thermal niches have significant implications for the ecology of species and their geographic distributions, we evaluated the asymmetry of realized thermal limits (i.e., differences in variances between the upper and lower limits of the realized thermal niche). We obtained 10 marine environmental variables from global databases along with >5000 occurrence records for 51 sea snake species in 4 genera across the group's entire known geographic range. Using these data, we employed correlative ecological niche modeling to analyze the influence of the individual variables in explaining species' distributions. To estimate the realized thermal limits of each species, we extracted the mean, minimum, and maximum temperature values at four depths (superficial, mean benthic, minimum benthic, and maximum benthic) for each occurrence record of the species. We then evaluated the asymmetry of the realized thermal niche by measuring and comparing the variances in the upper and lower limits. Both analyses (the importance of variables and realized thermal limit asymmetry) were performed at three taxonomic levels (sea snakes as a lineage of marine-adapted elapids [true sea snakes + sea kraits], subfamily, and genus) and two spatial resolutions. Overall, we found that temperature, silicate, nitrate, salinity, and phosphate concentrations were the most influential factors in explaining the spatial distribution patterns of sea snakes, regardless of taxonomic level or spatial resolution. Similarly, we observed that the realized thermal limits were asymmetric, with a higher variance in the lower limits, and that asymmetry decreased as the taxonomic level and spatial resolution increased.
Collapse
Affiliation(s)
- Carlos Patrón-Rivero
- Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sierra Papacal, Yucatán, Mexico
| | - Luis Osorio-Olvera
- Laboratorio de Ecoinformática de la Biodiversidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Octavio Rojas-Soto
- Laboratorio de Bioclimatología, Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | - Xavier Chiappa-Carrara
- Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de Mexico, Ucú, Yucatán, Mexico
| | - Fabricio Villalobos
- Laboratorio de Macroecología Evolutiva Red de Biología Evolutiva, Instituto de Ecología, A.C, Xalapa, Veracruz, México
| | - Brooke Bessesen
- Department of Ecology and Evolutionary Biology, University of Reading, Reading, United Kingdom
| | - Kevin López-Reyes
- Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sierra Papacal, Yucatán, Mexico
| | - Carlos Yañez-Arenas
- Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sierra Papacal, Yucatán, Mexico
| |
Collapse
|
19
|
Bates AE. Heat-tolerant corals thrive outside ocean hotspots. Trends Ecol Evol 2024; 39:1073-1075. [PMID: 39550239 DOI: 10.1016/j.tree.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
Hotspots - sites with high temperatures - are expected to favor heat-tolerant organisms. Lachs et al. tested this assumption with Palau corals. Surprisingly, heat-tolerant individuals originated in both hotspots and cool refugia, with energy reserves giving a tolerance boost. Protecting ecological networks across environmental gradients can maintain high thermal trait diversity.
Collapse
Affiliation(s)
- Amanda E Bates
- Department of Biology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
20
|
Lucore JM, Beehner JC, White AF, Sinclair LF, Martins VA, Kovalaskas SA, Ordoñez JC, Bergman TJ, Benítez ME, Marshall AJ. High temperatures are associated with decreased immune system performance in a wild primate. SCIENCE ADVANCES 2024; 10:eadq6629. [PMID: 39612329 PMCID: PMC11619714 DOI: 10.1126/sciadv.adq6629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Rising temperatures due to climate change are predicted to threaten the persistence of wild animals, but there is little evidence that climate change has pushed species beyond their thermal tolerance. The immune system is an ideal avenue to assess the effects of climate change because immune performance is sensitive to changes in temperature and immune competency can affect reproductive success. We investigate the effect of rising temperatures on a biomarker of nonspecific immune performance in a wild population of capuchin monkeys and provide compelling evidence that immune performance is associated with ambient temperature. Critically, we found that immune performance in young individuals is more sensitive to high temperatures compared to other age groups. Coupled with evidence of rising temperatures in the region, our results offer insight into how climate change will affect the immune system of wild mammals.
Collapse
Affiliation(s)
- Jordan M. Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | - Jacinta C. Beehner
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Amy F. White
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Durham University, Durham, UK
| | - Lorena F. Sinclair
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | | | - Sarah A. Kovalaskas
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Juan Carlos Ordoñez
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
| | - Thore J. Bergman
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Marcela E. Benítez
- Capuchinos de Taboga Research Project, Taboga Forest Reserve, Guanacaste, Costa Rica
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Andrew J. Marshall
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Program in the Environment, University of Michigan, Ann Arbor, MI, USA
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Program in Computing for the Arts and Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Li J, Guttmann N, Drew GC, Hector TE, Wolinska J, King KC. Excess mortality of infected ectotherms induced by warming depends on pathogen kingdom and evolutionary history. PLoS Biol 2024; 22:e3002900. [PMID: 39556605 PMCID: PMC11611255 DOI: 10.1371/journal.pbio.3002900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Climate change is causing extreme heating events and can lead to more infectious disease outbreaks, putting species persistence at risk. The extent to which warming temperatures and infection may together impair host health is unclear. Using a meta-analysis of >190 effect sizes representing 101 ectothermic animal host-pathogen systems, we demonstrate that warming significantly increased the mortality of hosts infected by bacterial pathogens. Pathogens that have been evolutionarily established within the host species showed higher virulence under warmer temperatures. Conversely, the effect of warming on novel infections-from pathogens without a shared evolutionary history with the host species-were more pronounced with larger differences between compared temperatures. We found that compared to established infections, novel infections were more deadly at lower/baseline temperatures. Moreover, we revealed that the virulence of fungal pathogens increased only when temperatures were shifted upwards towards the pathogen thermal optimum. The magnitude of all these significant effects was not impacted by host life-stage, immune complexity, pathogen inoculation methods, or exposure time. Overall, our findings reveal distinct patterns in changes of pathogen virulence during warming. We highlight the importance of pathogen taxa, thermal optima, and evolutionary history in determining the impact of global change on infection outcomes.
Collapse
Affiliation(s)
- Jingdi Li
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Nele Guttmann
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin (FU), Berlin, Germany
| | - Georgia C. Drew
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Collegium Helveticum, The joint Institute for Advanced Studies (IAS) of the ETH Zurich, The University of Zurich, &The Zurich University of the Arts, Zurich, Switzerland
| | - Tobias E. Hector
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin (FU), Berlin, Germany
| | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Davydov VI, Karasev EV, Popova EV, Poletaev VI. Method of estimating sea-surface paleotemperatures through biotic proxies: A case study in Upper Paleozoic paleoclimatic, paleogeographic and paleotectonic reconstructions of Siberia. Ecol Evol 2024; 14:e70265. [PMID: 39512848 PMCID: PMC11542995 DOI: 10.1002/ece3.70265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 11/15/2024] Open
Abstract
This study introduces a novel approach for quantitatively assessing sea-surface paleotemperatures examined in the Upper Paleozoic of Siberia, utilizing the obtained in the region data as a case study of the use of this method. The method relies on evaluating the taxonomic composition and ecological proxies of biota. It utilizes a comprehensive dataset encompassing the geographic distribution and ecology of various biotic groups in Siberia and adjacent regions, leveraging the newly developed by the authors large PaleoSib database and partially the Paleobiology Database (paleobiology.org) The taxonomy has been used according to the database of Global Biodiversity Information Facility (gbif.org). Fossils collected from individual locations often exhibit a wide spectrum of paleotemperatures. To address this variability, we developed an algorithm for calculating average biotic paleotemperatures in each locality/time slice. Our computations of the available data have unveiled a coherent pattern of paleoclimate dynamics, particularly Sea Surface Temperature, across Siberian basins and surrounding areas during the Late Paleozoic era. These findings significantly contribute to a refined comprehension of paleoclimate and paleotectonic dynamics in the region during that specific time. To enhance paleotemperature analyses, we have integrated lithological indices with biotic ones, fortifying the overall methodology and furnishing a more robust framework for interpreting paleoclimate data. The method could be a helpful tool in regional and interregional studies, regardless of the utilized rock's age and fossil groups.
Collapse
Affiliation(s)
| | - Eugeny V. Karasev
- Borissiak Paleontological Institute of Russian Academy of ScienceMoscowRussia
- Kazan Federal UniversityKazanTatarstanRussia
| | - Elizaveta V. Popova
- Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
| | - Vladislav I. Poletaev
- Institute of Geological Science the National Academy of Science of UkraineKievUkraine
| |
Collapse
|
23
|
Dichiera AM, Earhart ML, Bugg WS, Brauner CJ, Schulte PM. Too Hot to Handle: A Meta-Analytical Review of the Thermal Tolerance and Adaptive Capacity of North American Sturgeon. GLOBAL CHANGE BIOLOGY 2024; 30:e17564. [PMID: 39563555 DOI: 10.1111/gcb.17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024]
Abstract
Understanding how ectotherms may fare with rising global temperatures and more frequent heatwaves is especially concerning for species already considered at-risk, such as long-lived, late-maturing sturgeon. There have been concerted efforts to collect data on the movement behavior and thermal physiology of North American sturgeon to enhance conservation efforts; thus, we sought to synthesize these data to understand how sturgeon respond to thermal stress and what capacity they have to acclimate and adapt to warming. Here, we combined a systematic literature review and meta-analysis, integrating field-based observations (distribution and spawning) and laboratory-based experiments (survival, activity, growth, metabolism, and upper thermal limits) for large-scale insights to understand the vulnerability of North American sturgeon to rising global temperatures. We summarized the preferred thermal habitat and thermal limits of sturgeon in their natural environment and using meta-analytical techniques, quantified the effect of prolonged temperature change on sturgeon whole-animal physiology and acute upper thermal limits. While acclimation did not have significant effects on physiological rates or survival overall, there were positive trends of activity and metabolism in young-of-the-year sturgeons, likely offset by negative trends of survival in early life. Notably, North American sturgeon have a greater capacity for thermal tolerance plasticity than other fishes, increasing upper thermal limits by 0.56°C per 1°C change in acclimation temperature. But with limited laboratory-based studies, more research is needed to understand if this is a sturgeon trait, or perhaps that of basal fishes in general. Importantly, with these data gaps, the fate of sturgeon remains uncertain as climate change intensifies, and physiological impacts across life stages likely limit ecological success.
Collapse
Affiliation(s)
- Angelina M Dichiera
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, Virginia, USA
| | - Madison L Earhart
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - William S Bugg
- Pacific Salmon Foundation, Vancouver, British Columbia, Canada
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Bodensteiner B, Burress ED, Muñoz MM. Adaptive Radiation Without Independent Stages of Trait Evolution in a Group of Caribbean Anoles. Syst Biol 2024; 73:743-757. [PMID: 39093688 DOI: 10.1093/sysbio/syae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive radiation involves diversification along multiple trait axes, producing phenotypically diverse, species-rich lineages. Theory generally predicts that multi-trait evolution occurs via a "stages" model, with some traits saturating early in a lineage's history, and others diversifying later. Despite its multidimensional nature, however, we know surprisingly little about how different suites of traits evolve during adaptive radiation. Here, we investigated the rate, pattern, and timing of morphological and physiological evolution in the anole lizard adaptive radiation from the Caribbean island of Hispaniola. Rates and patterns of morphological and physiological diversity are largely unaligned, corresponding to independent selective pressures associated with structural and thermal niches. Cold tolerance evolution reflects parapatric divergence across elevation, rather than niche partitioning within communities. Heat tolerance evolution and the preferred temperature evolve more slowly than cold tolerance, reflecting behavioral buffering, particularly in edge-habitat species (a pattern associated with the Bogert effect). In contrast to the nearby island of Puerto Rico, closely related anoles on Hispaniola do not sympatrically partition thermal niche space. Instead, allopatric and parapatric separation across biogeographic and environmental boundaries serves to keep morphologically similar close relatives apart. The phenotypic diversity of this island's adaptive radiation accumulated largely as a by-product of time, with surprisingly few exceptional pulses of trait evolution. A better understanding of the processes that guide multidimensional trait evolution (and nuance therein) will prove key in determining whether the stages model should be considered a common theme of adaptive radiation.
Collapse
Affiliation(s)
- Brooke Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT 06511, USA
| | - Edward D Burress
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Ln, Tuscaloosa, AL 35401, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT 06511, USA
| |
Collapse
|
25
|
Meena A, De Nardo AN, Maggu K, Sbilordo SH, Roy J, Snook RR, Lüpold S. Fertility loss and recovery dynamics after repeated heat stress across life stages in male Drosophila melanogaster: patterns and processes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241082. [PMID: 39359471 PMCID: PMC11444773 DOI: 10.1098/rsos.241082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Frequent and extreme temperatures associated with climate change pose a major threat to biodiversity, particularly for organisms whose metabolism is strictly linked to ambient temperatures. Many studies have explored thermal effects on survival, but heat-induced fertility loss is emerging as a greater threat to population persistence. However, while evidence is accumulating that both juvenile and adult stages heat exposure can impair fertility in their own ways, much less is known about the immediate and longer-term fitness consequences of repeated heat stress across life stages. To address this knowledge gap, we used male Drosophila melanogaster to investigate (i) the cumulative fitness effects of repeated heat stress across life stages, (ii) the potential of recovery from these heat exposures, and (iii) the underlying mechanisms. We found individual and combined effects of chronic juvenile and acute adult heat stress on male fitness traits. These effects tended to exacerbate over several days after brief heat exposure, indicating a substantial fertility loss for these short-lived organisms. Our findings highlight the cumulative and persistent effects of heat stress on fitness. Such combined effects could accelerate population declines, particularly in more vulnerable species, emphasizing the importance of considering reproduction and its recovery for more accurate models of species persistence.
Collapse
Affiliation(s)
- Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alessio N. De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rhonda R. Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Cocciardi JM, Ohmer MEB. Drivers of Intraspecific Variation in Thermal Traits and Their Importance for Resilience to Global Change in Amphibians. Integr Comp Biol 2024; 64:882-899. [PMID: 39138058 DOI: 10.1093/icb/icae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Collapse
Affiliation(s)
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38655, USA
| |
Collapse
|
27
|
Diamond SE, Kolaske LR, Martin RA. Physiology Evolves Convergently but Lags Behind Warming in Cities. Integr Comp Biol 2024; 64:402-413. [PMID: 38710535 DOI: 10.1093/icb/icae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024] Open
Abstract
Cities, through the generation of urban heat islands, provide a venue for exploring contemporary convergent evolution to climatic warming. We quantified how repeatable the evolution of heat tolerance, cold tolerance, and body size was among diverse lineages in response to urban heat islands. Our study revealed significant shifts toward higher heat tolerance and diminished cold tolerance among urban populations. We further found that the magnitude of trait divergence was significantly and positively associated with the magnitude of the urban heat island, suggesting that temperature played a major role in the observed divergence in thermal tolerance. Despite these trends, the magnitude of trait responses lagged behind environmental warming. Heat tolerance responses exhibited a deficit of 0.84°C for every 1°C increase in warming, suggesting limits on adaptive evolution and consequent adaptational lags. Other moderators were predictive of greater divergence in heat tolerance, including lower baseline tolerance and greater divergence in body size. Although terrestrial species did not exhibit systematic shifts toward larger or smaller body size, aquatic species exhibited significant shifts toward smaller body size in urban habitats. Our study demonstrates how cities can be used to address long-standing questions in evolutionary biology regarding the repeatability of evolution. Importantly, this work also shows how cities can be used as forecasting tools by quantifying adaptational lags and by developing trait-based associations with responses to contemporary warming.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Logan R Kolaske
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
28
|
Schou MF, Cornwallis CK. Adaptation to fluctuating temperatures across life stages in endotherms. Trends Ecol Evol 2024; 39:841-850. [PMID: 38902165 DOI: 10.1016/j.tree.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Accelerating rates of climate change have intensified research on thermal adaptation. Increasing temperature fluctuations, a prominent feature of climate change, means that the persistence of many species depends on both heat and cold tolerance across the entire life cycle. In endotherms, research has focused on specific life stages, with changes in thermoregulation across life rarely being examined. Consequently, there is a need to (i) analyse how heat and cold tolerance mechanisms coevolve, and (ii) test whether antagonistic effects between heat and cold tolerance across different life stages limit thermal adaptation. Information on genes influencing heat and cold tolerance and how they are expressed through life will enable more accurate modelling of species vulnerabilities to future climatic volatility.
Collapse
Affiliation(s)
- Mads F Schou
- Department of Biology, Aarhus University, 8000 Aarhus, Denmark.
| | | |
Collapse
|
29
|
Melchionna M, Castiglione S, Girardi G, Serio C, Esposito A, Mondanaro A, Profico A, Sansalone G, Raia P. RRmorph-a new R package to map phenotypic evolutionary rates and patterns on 3D meshes. Commun Biol 2024; 7:1009. [PMID: 39154087 PMCID: PMC11330470 DOI: 10.1038/s42003-024-06710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
The study of evolutionary rates and patterns is the key to understand how natural selection shaped the current and past diversity of phenotypes. Phylogenetic comparative methods offer an array of solutions to undertake this challenging task, and help understanding phenotypic variation in full in most circumstances. However, complex, three-dimensional structures such as the skull and the brain serve disparate goals, and different portions of these phenotypes often fulfil different functions, making it hard to understand which parts truly were recruited by natural selection. In the recent past, we developed tools apt to chart evolutionary rate and patterns directly on three-dimensional shapes, according to their magnitude and direction. Here, we present further developments of these tools, which now allow to restitute the mapping of rates and patterns with full biological realism. The tools are condensed in a new R software package.
Collapse
Affiliation(s)
| | | | | | - Carmela Serio
- DiSTAR, University of Naples Federico II, Naples, Italy
| | | | | | | | - Gabriele Sansalone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pasquale Raia
- DiSTAR, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
30
|
Rogger J, Judd EJ, Mills BJW, Goddéris Y, Gerya TV, Pellissier L. Biogeographic climate sensitivity controls Earth system response to large igneous province carbon degassing. Science 2024; 385:661-666. [PMID: 39116244 DOI: 10.1126/science.adn3450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Periods of large igneous province (LIP) magmatism have shaped Earth's biological and climatic history, causing major climatic shifts and biological reorganizations. The vegetation response to LIP-induced perturbations may affect the efficiency of the carbon-climate regulation system and the post-LIP climate evolution. Using an eco-evolutionary vegetation model, we demonstrate here that the vegetation's climate adaptation capacity, through biological evolution and geographic dispersal, is a major determinant of the severity and longevity of LIP-induced hyperthermals and can promote the emergence of a new climatic steady state. Proxy-based temperature reconstructions of the Permian-Triassic, Triassic-Jurassic, and Paleocene-Eocene hyperthermals match the modeled trajectories of bioclimatic disturbance and recovery. We conclude that biological vegetation dynamics shape the multimillion-year Earth system response to sudden carbon degassing and global warming episodes.
Collapse
Affiliation(s)
- Julian Rogger
- Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Emily J Judd
- Department of Geosciences, University of Arizona, Tucson, Arizona, USA
| | | | - Yves Goddéris
- Géosciences-Environnement Toulouse, CNRS-Observatoire Midi-Pyrénées, Toulouse, France
| | - Taras V Gerya
- Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Loïc Pellissier
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| |
Collapse
|
31
|
da Silva CRB, Diamond SE. Local climate change velocities and evolutionary history explain multidirectional range shifts in a North American butterfly assemblage. J Anim Ecol 2024; 93:1160-1171. [PMID: 38922857 DOI: 10.1111/1365-2656.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Species are often expected to shift their distributions either poleward or upslope to evade warming climates and colonise new suitable climatic niches. However, from 18-years of fixed transect monitoring data on 88 species of butterfly in the midwestern United States, we show that butterflies are shifting their centroids in all directions, except towards regions that are warming the fastest (southeast). Butterflies shifted their centroids at a mean rate of 4.87 km year-1. The rate of centroid shift was significantly associated with local climate change velocity (temperature by precipitation interaction), but not with mean climate change velocity throughout the species' ranges. Species tended to shift their centroids at a faster rate towards regions that are warming at slower velocities but increasing in precipitation velocity. Surprisingly, species' thermal niche breadth (range of climates butterflies experience throughout their distribution) and wingspan (often used as metric for dispersal capability) were not correlated with the rate at which species shifted their ranges. We observed high phylogenetic signal in the direction species shifted their centroids. However, we found no phylogenetic signal in the rate species shifted their centroids, suggesting less conserved processes determine the rate of range shift than the direction species shift their ranges. This research shows important signatures of multidirectional range shifts (latitudinal and longitudinal) and uniquely shows that local climate change velocities are more important in driving range shifts than the mean climate change velocity throughout a species' entire range.
Collapse
Affiliation(s)
- Carmen R B da Silva
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Nascimento G, Câmara T, Arnan X. Critical thermal maxima in neotropical ants at colony, population, and community levels. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:571-580. [PMID: 39308218 DOI: 10.1017/s0007485324000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Global warming is exposing many organisms to severe thermal conditions and is having impacts at multiple levels of biological organisation, from individuals to species and beyond. Biotic and abiotic factors can influence organismal thermal tolerance, shaping responses to climate change. In eusocial ants, thermal tolerance can be measured at the colony level (among workers within colonies), the population level (among colonies within species), and the community level (among species). We analysed critical thermal maxima (CTmax) across these three levels for ants in a semiarid region of northeastern Brazil. We examined the individual and combined effects of phylogeny, body size (BS), and nesting microhabitat on community-level CTmax and the individual effects of BS on population- and colony-level CTmax. We sampled 1864 workers from 99 ant colonies across 47 species, for which we characterised CTmax, nesting microhabitat, BS, and phylogenetic history. Among species, CTmax ranged from 39.3 to 49.7°C, and community-level differences were best explained by phylogeny and BS. For more than half of the species, CTmax differed significantly among colonies in a way that was not explained by BS. Notably, there was almost as much variability in CTmax within colonies as within the entire community. Monomorphic and polymorphic species exhibited similar levels of CTmax variability within colonies, a pattern not always explained by BS. This vital intra- and inter-colony variability in thermal tolerance is likely allows tropical ant species to better cope with climate change. Our results underscore why ecological research must examine multiple levels of biological organisation.
Collapse
Affiliation(s)
- Geraldo Nascimento
- Universidade de Pernambuco - Campus Garanhuns, Garanhuns, Pernambuco, Brazil
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade de Pernambuco - Campus Petrolina, Petrolina, Pernambuco, Brazil
| | - Talita Câmara
- Universidade de Pernambuco - Campus Garanhuns, Garanhuns, Pernambuco, Brazil
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade de Pernambuco - Campus Petrolina, Petrolina, Pernambuco, Brazil
| | - Xavier Arnan
- Universidade de Pernambuco - Campus Garanhuns, Garanhuns, Pernambuco, Brazil
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade de Pernambuco - Campus Petrolina, Petrolina, Pernambuco, Brazil
- CREAF, Campus de Bellaterra (UAB) Edifici C, Catalunya, Spain
| |
Collapse
|
33
|
Rutter LA, MacKay MJ, Cope H, Szewczyk NJ, Kim J, Overbey E, Tierney BT, Muratani M, Lamm B, Bezdan D, Paul AM, Schmidt MA, Church GM, Giacomello S, Mason CE. Protective alleles and precision healthcare in crewed spaceflight. Nat Commun 2024; 15:6158. [PMID: 39039045 PMCID: PMC11263583 DOI: 10.1038/s41467-024-49423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions.
Collapse
Affiliation(s)
- Lindsay A Rutter
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ben Lamm
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, Austin, TX, 78701, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Yuri GmbH, Meckenbeuren, Germany
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, 80302, USA.
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, 80302, USA.
| | - George M Church
- GC Therapeutics Inc, Cambridge, MA, 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
| | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Xue T, Feng T, Liang Y, Yang X, Qin F, Yu J, Janssens SB, Yu S. Radiating diversification and niche conservatism jointly shape the inverse latitudinal diversity gradient of Potentilla L. (Rosaceae). BMC PLANT BIOLOGY 2024; 24:443. [PMID: 38778263 PMCID: PMC11112792 DOI: 10.1186/s12870-024-05083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The latitudinal diversity gradient (LDG), characterized by an increase in species richness from the poles to the equator, is one of the most pervasive biological patterns. However, inverse LDGs, in which species richness peaks in extratropical regions, are also found in some lineages and their causes remain unclear. Here, we test the roles of evolutionary time, diversification rates, and niche conservatism in explaining the inverse LDG of Potentilla (ca. 500 species). We compiled the global distributions of ~ 90% of Potentilla species, and reconstructed a robust phylogenetic framework based on whole-plastome sequences. Next, we analyzed the divergence time, ancestral area, diversification rate, and ancestral niche to investigate the macroevolutionary history of Potentilla. RESULTS The genus originated in the Qinghai-Tibet Plateau during the late Eocene and gradually spread to other regions of the Northern Hemisphere posterior to the late Miocene. Rapid cooling after the late Pliocene promoted the radiating diversification of Potentilla. The polyploidization, as well as some cold-adaptive morphological innovations, enhanced the adaptation of Potentilla species to the cold environment. Ancestral niche reconstruction suggests that Potentilla likely originated in a relatively cool environment. The species richness peaks at approximately 45 °N, a region characterized by high diversification rates, and the environmental conditions are similar to the ancestral climate niche. Evolutionary time was not significantly correlated with species richness in the latitudinal gradient. CONCLUSIONS Our results suggest that the elevated diversification rates in middle latitude regions and the conservatism in thermal niches jointly determined the inverse LDG in Potentilla. This study highlights the importance of integrating evolutionary and ecological approaches to explain the diversity pattern of biological groups on a global scale.
Collapse
Affiliation(s)
- Tiantian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Feng
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Gelderland, the Netherlands
| | - Yunfen Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Fei Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianghong Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, Meise, BE-1860, Belgium.
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven, BE-3001, Belgium.
| | - Shengxiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Affiliation(s)
- Michelle L Bell
- From the Yale School of the Environment, Yale University, New Haven, CT (M.L.B.); the School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, South Korea (M.L.B.); the Environment and Health Modelling Lab, Department of Public Health, Environments, and Society, London School of Hygiene and Tropical Medicine, London (A.G.); and the American Public Health Association, Washington, DC (G.C.B.)
| | - Antonio Gasparrini
- From the Yale School of the Environment, Yale University, New Haven, CT (M.L.B.); the School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, South Korea (M.L.B.); the Environment and Health Modelling Lab, Department of Public Health, Environments, and Society, London School of Hygiene and Tropical Medicine, London (A.G.); and the American Public Health Association, Washington, DC (G.C.B.)
| | - Georges C Benjamin
- From the Yale School of the Environment, Yale University, New Haven, CT (M.L.B.); the School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, South Korea (M.L.B.); the Environment and Health Modelling Lab, Department of Public Health, Environments, and Society, London School of Hygiene and Tropical Medicine, London (A.G.); and the American Public Health Association, Washington, DC (G.C.B.)
| |
Collapse
|
36
|
Miloch D, Cecchetto NR, Lescano JN, Leynaud GC, Perotti MG. Is thermal sensitivity affected by predation risk? A case study in tadpoles from ephemeral environments. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:400-409. [PMID: 38356256 DOI: 10.1002/jez.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Changes in environmental temperature may induce variations in thermal tolerance and sensitivity in ectotherm organisms. These variations generate plastic responses that can be analyzed by examining their Thermal Performance Curves (TPCs). Additionally, some performance traits, like locomotion, could be affected by other factors such as biological interactions (e.g., predator-prey interaction). Here, we evaluate if the risk of predation modifies TPCs in Mendoza four-eyed frog (Pleurodema nebulosum, Burmeister, 1861) and Guayapa's four-eyed frog (Pleurodema guayapae, Barrio, 1964), two amphibian species that occur in ephemeral ponds in arid environments. We measured thermal tolerances and maximum swimming velocity at six different temperatures in tadpoles under three situations: control, exposure to predator chemical cues, and exposure to conspecific alarm cues. TPCs were fitted using General Additive Mixed Models. We found that curves of tadpoles at risk of predation differed from those of control mainly in thermal sensitivity parameters. Our work confirms the importance of biotic interactions have in thermal physiology.
Collapse
Affiliation(s)
- Daniela Miloch
- Facultad de Ciencias Exactas, Físicas, y Naturales, Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Nicolas R Cecchetto
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Bariloche, Río Negro, Argentina
| | - Julián N Lescano
- Facultad de Ciencias Exactas, Físicas, y Naturales, Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Gerardo C Leynaud
- Facultad de Ciencias Exactas, Físicas, y Naturales, Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - María Gabriela Perotti
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Bariloche, Río Negro, Argentina
| |
Collapse
|
37
|
Backus GA, Clements CF, Baskett ML. Restoring spatiotemporal variability to enhance the capacity for dispersal-limited species to track climate change. Ecology 2024; 105:e4257. [PMID: 38426609 DOI: 10.1002/ecy.4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 03/02/2024]
Abstract
Climate refugia are areas where species can persist through climate change with little to no movement. Among the factors associated with climate refugia are high spatial heterogeneity, such that there is only a short distance between current and future optimal climates, as well as biotic or abiotic environmental factors that buffer against variability in time. However, these types of climate refugia may be declining due to anthropogenic homogenization of environments and degradation of environmental buffers. To quantify the potential for restoration of refugia-like environmental conditions to increase population persistence under climate change, we simulated a population's capacity to track their temperature over space and time given different levels of spatial and temporal variability in temperature. To determine how species traits affected the efficacy of restoring heterogeneity, we explored an array of values for species' dispersal ability, thermal tolerance, and fecundity. We found that species were more likely to persist in environments with higher spatial heterogeneity and lower environmental stochasticity. When simulating a management action that increased the spatial heterogeneity of a previously homogenized environment, species were more likely to persist through climate change, and population sizes were generally higher, but there was little effect with mild temperature change. The benefits of heterogeneity restoration were greatest for species with limited dispersal ability. In contrast, species with longer dispersal but lower fecundity were more likely to benefit from a reduction in environmental stochasticity than an increase in spatial heterogeneity. Our results suggest that restoring environments to refugia-like conditions could promote species' persistence under the influence of climate change in addition to conservation strategies such as assisted migration, corridors, and increased protection.
Collapse
Affiliation(s)
- Gregory A Backus
- Environmental Science and Policy, University of California, Davis, Davis, California, USA
| | | | - Marissa L Baskett
- Environmental Science and Policy, University of California, Davis, Davis, California, USA
| |
Collapse
|
38
|
Bourn JJ, Dorrity MW. Degrees of freedom: temperature's influence on developmental rate. Curr Opin Genet Dev 2024; 85:102155. [PMID: 38335718 DOI: 10.1016/j.gde.2024.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Temperature exerts a fundamental influence across scales of biology, from the biophysical nature of molecules, to the sensitivity of cells, and the coordinated progression of development in embryos. Species-specific developmental rates and temperature-induced acceleration of development indicate that these sensing mechanisms are harnessed to influence developmental dynamics. Tracing how temperature sensitivity propagates through biological scales to influence the pace of development can therefore reveal how embryogenesis remains robust to environmental influences. Cellular protein homeostasis (proteostasis), and cellular metabolic rate are linked to both temperature-induced and species-specific developmental tempos in specific cell types, hinting toward generalized mechanisms of timing control. New methods to extract timing information from single-cell profiling experiments are driving further progress in understanding how mechanisms of temperature sensitivity can direct cell-autonomous responses, coordination across cell types, and evolutionary modifications of developmental timing.
Collapse
Affiliation(s)
- Jess J Bourn
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany. https://twitter.com/@bournsupremacy
| | - Michael W Dorrity
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
39
|
Wesselmann M, Hendriks IE, Johnson M, Jordà G, Mineur F, Marbà N. Increasing spread rates of tropical non-native macrophytes in the Mediterranean Sea. GLOBAL CHANGE BIOLOGY 2024; 30:e17249. [PMID: 38572713 DOI: 10.1111/gcb.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Warming as well as species introductions have increased over the past centuries, however a link between cause and effect of these two phenomena is still unclear. Here we use distribution records (1813-2023) to reconstruct the invasion histories of marine non-native macrophytes, macroalgae and seagrasses, in the Mediterranean Sea. We defined expansion as the maximum linear rate of spread (km year-1) and the accumulation of occupied grid cells (50 km2) over time and analyzed the relation between expansion rates and the species' thermal conditions at its native distribution range. Our database revealed a marked increase in the introductions and spread rates of non-native macrophytes in the Mediterranean Sea since the 1960s, notably intensifying after the 1990s. During the beginning of this century species velocity of invasion has increased to 26 ± 9 km2 year-1, with an acceleration in the velocity of invasion of tropical/subtropical species, exceeding those of temperate and cosmopolitan macrophytes. The highest spread rates since then were observed in macrophytes coming from native regions with minimum SSTs two to three degrees warmer than in the Mediterranean Sea. In addition, most non-native macrophytes in the Mediterranean (>80%) do not exceed the maximum temperature of their range of origin, whereas approximately half of the species are exposed to lower minimum SST in the Mediterranean than in their native range. This indicates that tropical/subtropical macrophytes might be able to expand as they are not limited by the colder Mediterranean SST due to the plasticity of their lower thermal limit. These results suggest that future warming will increase the thermal habitat available for thermophilic species in the Mediterranean Sea and continue to favor their expansion.
Collapse
Affiliation(s)
- Marlene Wesselmann
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles, Spain
| | - Iris E Hendriks
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles, Spain
| | - Mark Johnson
- School of Natural Sciences and Ryan Institute, University of Galway, Ireland
| | - Gabriel Jordà
- Instituto Espanol de Oceanografía, Centre Oceanografic de Balears, Palma, Spain
| | - Frederic Mineur
- School of Natural Sciences and Ryan Institute, University of Galway, Ireland
| | - Núria Marbà
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles, Spain
| |
Collapse
|
40
|
Ren X, Zhao J, Hu J. Non-concordant epigenetic and transcriptional responses to acute thermal stress in western mosquitofish (Gambusia affinis). Mol Ecol 2024:e17332. [PMID: 38529738 DOI: 10.1111/mec.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Climate change is intensifying the frequency and severity of extreme temperatures. Understanding the molecular mechanisms underlying the ability to cope with acute thermal stress is key for predicting species' responses to extreme temperature events. While many studies have focused on the individual roles of gene expression, post-transcriptional processes and epigenetic modifications in response to acute thermal stress, the relative contribution of these molecular mechanisms remains unclear. The wide range of thermal limits of western mosquitofish (Gambusia affinis) provides an opportunity to explore this interplay. Here, we quantified changes in gene expression, alternative splicing, DNA methylation and microRNA (miRNA) expression in muscle tissue dissected from mosquitofish immediately after reaching high (CTmax) or low thermal limit (CTmin). Although the numbers of genes showing expression and splicing changes in response to acute temperature stress were small, we found a possibly larger and non-redundant role of splicing compared to gene expression, with more genes being differentially spliced (DSGs) than differentially expressed (DEGs), and little overlap between DSGs and DEGs. We also identified a small proportion of CpGs showing significant methylation change (i.e. differentially methylated cytosines, DMCs) in fish at thermal limits; however, there was no overlap between DEGs and genes annotated with DMCs in both CTmax and CTmin experiments. The weak interplay between epigenetic modifications and gene expression was further supported by our discoveries of no differentially expressed miRNAs. These findings provide novel insights into the relative role of different molecular mechanisms underlying immediate responses to extreme temperatures and demonstrate non-concordant responses of epigenetic and transcriptional mechanisms to acute temperature stress.
Collapse
Affiliation(s)
- Xingyue Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Junjie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
41
|
Beaudreau N, Page TM, Drolet D, McKindsey CW, Howland KL, Calosi P. Using a metabolomics approach to investigate the sensitivity of a potential Arctic-invader and its Arctic sister-species to marine heatwaves and traditional harvesting disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170167. [PMID: 38242480 DOI: 10.1016/j.scitotenv.2024.170167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Coastal species are threatened by fishing practices and changing environmental conditions, such as marine heatwaves (MHW). The mechanisms that confer tolerance to such stressors in marine invertebrates are poorly understood. However, differences in tolerance among different species may be attributed to their geographical distribution. To test the tolerance of species occupying different thermal ranges, we used two closely related bivalves the softshell clam Mya arenaria (Linnaeus, 1758), a cold-temperate invader with demonstrated potential for establishment in the Arctic, and the blunt gaper Mya truncata (Linnaeus, 1758), a native polar species. Clams were subjected to a thermal stress, mimicking a MHW, and harvesting stress in a controlled environment. Seven acute temperature changes (2, 7, 12, 17, 22, 27, and 32 °C) were tested at two harvesting disturbance intensities (with, without). Survival was measured after 12 days and three tissues (gills, mantle, and posterior adductor muscle) collected from surviving individuals for targeted metabolomic profiling. MHW tolerance differed significantly between species: 26.9 °C for M. arenaria and 17.8 °C for M. truncata, with a negligeable effect of harvesting. At the upper thermal limit, M. arenaria displayed a more profound metabolomic remodelling when compared to M. truncata, and this varied greatly between tissue types. Network analysis revealed differences in pathway utilization at the upper MHW limit, with M. arenaria displaying a greater reliance on multiple DNA repair and expression and cell signalling pathways, while M. truncata was limited to fewer pathways. This suggests that M. truncata is ill equipped to cope with warming environments. MHW patterning in the Northwest Atlantic may be a strong predictor of population survival and future range shifts in these two clam species. As polar environments undergo faster rates of warming compared to the global average, M. truncata may be outcompeted by M. arenaria expanding into its native range.
Collapse
Affiliation(s)
- Nicholas Beaudreau
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Tessa M Page
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - David Drolet
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Christopher W McKindsey
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Kimberly L Howland
- Fisheries and Oceans Canada, Arctic and Aquatic Research Division, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Piero Calosi
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| |
Collapse
|
42
|
Camacho A, Rodrigues MT, Jayyusi R, Harun M, Geraci M, Carretero MA, Vinagre C, Tejedo M. Does heat tolerance actually predict animals' geographic thermal limits? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170165. [PMID: 38242475 DOI: 10.1016/j.scitotenv.2024.170165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
The "climate extremes hypothesis" is a major assumption of geographic studies of heat tolerance and climatic vulnerability. However, this assumption remains vastly untested across taxa, and multiple factors may contribute to uncoupling heat tolerance estimates and geographic limits. Our dataset includes 1000 entries of heat tolerance data and maximum temperatures for each species' known geographic limits (hereafter, Tmax). We gathered this information across major animal taxa, including marine fish, terrestrial arthropods, amphibians, non-avian reptiles, birds, and mammals. We first tested if heat tolerance constrains the Tmax of sites where species could be observed. Secondly, we tested if the strength of such restrictions depends on how high Tmax is relative to heat tolerance. Thirdly, we correlated the different estimates of Tmax among them and across species. Restrictions are strong for amphibians, arthropods, and birds but often weak or inconsistent for reptiles and mammals. Marine fish describe a non-linear relationship that contrasts with terrestrial groups. Traditional heat tolerance measures in thermal vulnerability studies, like panting temperatures and the upper set point of preferred temperatures, do not predict Tmax or are inversely correlated to it, respectively. Heat tolerance restricts the geographic warm edges more strongly for species that reach sites with higher Tmax for their heat tolerance. These emerging patterns underline the importance of reliable species' heat tolerance indexes to identify their thermal vulnerability at their warm range edges. Besides, the tight correlations of Tmax estimates across on-land microhabitats support a view of multiple types of thermal challenges simultaneously shaping ranges' warm edges for on-land species. The heterogeneous correlation of Tmax estimates in the ocean supports the view that fish thermoregulation is generally limited, too. We propose new hypotheses to understand thermal restrictions on animal distribution.
Collapse
Affiliation(s)
- Agustín Camacho
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, Av. Américo Vespucio 26, 41092 Sevilla, Spain; São Paulo, SP, CEP: 05508-090, Brazil.
| | - Miguel Trefaut Rodrigues
- Laboratorio de Herpetologia, Departamento de Zoologia, Instituto de Biociências, USP, Rua do Matão, trav. 14, n° 321, Cidade Universitária, São Paulo, SP CEP: 05508-090, Brazil
| | - Refat Jayyusi
- School of Life Sciences, Arizona State University, USA
| | - Mohamed Harun
- Administração Nacional das Àreas de Conservaçao, Ministério da Terra, Ambiente e desenvolvimento rural, Rua da Resistência, nr° 1746/47 8° andar, Maputo, Mozambique; Faculdade de Veterinaria UEM, Maputo, Mozambique
| | - Marco Geraci
- Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, USA; CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal; MEMOTEF Department, School of Economics, Sapienza University of Rome
| | - Miguel A Carretero
- CIBIO-InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, P-4485-661 Vairão, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Catarina Vinagre
- CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Miguel Tejedo
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, Av. Américo Vespucio 26, 41092 Sevilla, Spain
| |
Collapse
|
43
|
Trigos-Peral G, Maák IE, Schmid S, Chudzik P, Czaczkes TJ, Witek M, Casacci LP, Sánchez-García D, Lőrincz Á, Kochanowski M, Heinze J. Urban abiotic stressors drive changes in the foraging activity and colony growth of the black garden ant Lasius niger. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170157. [PMID: 38242447 DOI: 10.1016/j.scitotenv.2024.170157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Changes in habitat characteristics are known to have profound effects on biotic communities and their functional traits. In the context of an urban-rural gradient, urbanisation drastically alters abiotic characteristics, e.g., by increasing environmental temperatures and through light pollution. These abiotic changes significantly impact the functional traits of organisms, particularly insects. Furthermore, changes in habitat characteristics also drive changes in the behavioural traits of animals, allowing them to adapt and thrive in new environments. In our study, we focused on the synanthropic ant species Lasius niger as a model organism. We conducted nocturnal field observations and complemented them with laboratory experiments to investigate the influence of night warming (NW) associated with Urban Heat Islands (UHI), light pollution (ALAN), and habitat type on ant foraging behaviour. In addition, we investigated the influence of elevated temperatures on brood development and worker mortality. Our findings revealed that urban populations of L. niger were generally more active during the night compared to their rural counterparts, although the magnitude of this difference varied with specific city characteristics. In laboratory settings, higher temperatures and continuous illumination were associated with increased activity level in ants, again differing between urban and rural populations. Rural ants exhibited more locomotion compared to their urban counterparts when maintained under identical conditions, which might enable them to forage more effectively in a potentially more challenging environment. High temperatures decreased the developmental time of brood from both habitat types and increased worker mortality, although rural colonies were more strongly affected. Overall, our study provides novel insights into the influence of urban environmental stressors on the foraging activity pattern and colony development of ants. Such stressors can be important for the establishment and spread of synanthropic ant species, including invasive ones, and the biotic homogenization of anthropogenic ecosystems.
Collapse
Affiliation(s)
- G Trigos-Peral
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland.
| | - I E Maák
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland; University of Szeged, Szeged, Hungary
| | - S Schmid
- University of Regensburg, Regensburg, Germany
| | - P Chudzik
- Han University of Applied Sciences, Nijmegen, Netherlands
| | | | - M Witek
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland
| | - L P Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - D Sánchez-García
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland
| | - Á Lőrincz
- University of Szeged, Szeged, Hungary
| | | | - J Heinze
- University of Regensburg, Regensburg, Germany
| |
Collapse
|
44
|
Rinaldo A, de Eyto E, Reed T, Gjelland KØ, McGinnity P. Global warming is projected to lead to increased freshwater growth potential and changes in pace of life in Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2024; 104:647-661. [PMID: 37907447 DOI: 10.1111/jfb.15603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023]
Abstract
Global warming has been implicated in widespread demographic changes in Atlantic salmon Salmo salar populations, but projections of life-history responses to future climate change are lacking. Here, we first exploit multiple decades of climate and biological data from the Burrishoole catchment in the west of Ireland to model statistical relationships between atmospheric variables, water temperature, and freshwater growth of juvenile Atlantic salmon. We then use this information to project potential changes in juvenile growth and life-history scheduling under three shared socioeconomic pathway and representative concentration pathway scenarios from 1961 to 2100, based on an ensemble of five climate models. Historical water temperatures were well predicted with a recurrent neural network, using observation-based atmospheric forcing data. Length-at-age was in turn also well predicted by cumulative growing degree days calculated from these water temperatures. Most juveniles in the Burrishoole population migrated to sea as 2-year-old smolts, but our future projections indicate that the system should start producing a greater proportion of 1-year-old smolts, as increasingly more juveniles cross a size-based threshold in their first summer for smoltification the following spring. Those failing to cross the size-based threshold will instead become 2-year-old smolts, but at a larger length relative to 2-year-old smolts observed currently, owing to greater overall freshwater growth opportunity. These changes in age- and size-at-seaward migration could have cascading effects on age- and size-at-maturity and reproductive output. Consequently, the seemingly small changes that our results demonstrate have the potential to cause significant shifts in population dynamics over the full life cycle. This workflow is highly applicable across the range of the Atlantic salmon, as well as to other anadromous species, as it uses openly accessible climate data and a length-at-age model with minimal input requirements, fostering improved general understanding of phenotypic and demographic responses to climate change and management implications.
Collapse
Affiliation(s)
- Adrian Rinaldo
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Fisheries Ecosystems Advisory Services, Marine Institute, Newport, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Elvira de Eyto
- Fisheries Ecosystems Advisory Services, Marine Institute, Newport, Ireland
| | - Thomas Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | | | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Lobo JM. Hotter-is-not-better: A study on the thermal response of a winter active and nocturnal beetle. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104602. [PMID: 38142956 DOI: 10.1016/j.jinsphys.2023.104602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
While there are numerous examples of thermogenesis processes in poikilothermic insects that maintain a stable temperature for a certain time and in certain parts of the body, there is a lack of information on ectothermic insect species capable of remaining active under "cold" conditions that would be challenging for other species. Such a thermal strategy would imply the existence of a metabolism that can operate at different temperatures without the need to increase body temperature when experiencing cold environmental conditions. This "hotter-is-not-better" thermal strategy is considered ancestral and conjectured to be linked to the origin and evolution of endothermy. In this study, we examined the thermal performance of a large-bodied dung beetle species (Chelotrupes momus) capable of being active during the winter nights in the Iberian Mediterranean region. Field and laboratory results were obtained using thermocamera records, thermocouples, data loggers and spectrometers that measured ultraviolet, visible and near-infrared wavelengths. The thermal data clearly indicated that this species can remain active at a body temperature of approximately 6 °C without the need to warm its body above ambient temperature. Comparing the spectrophotometric data of the species under study with that from other previously examined dung beetle species indicated that the exoskeleton of this particular species likely enhances the absorption of infrared radiation, thereby implying a dual role of the exoskeleton in both heat acquisition and heat dissipation. Taken together, these results suggest that this species has morphological and metabolic adaptations that enable life processes at temperatures that are typically unsuitable for most insect species in the region.
Collapse
Affiliation(s)
- Jorge M Lobo
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales-CSIC, Spain.
| |
Collapse
|
46
|
Rogger J, Mills BJW, Gerya TV, Pellissier L. Speed of thermal adaptation of terrestrial vegetation alters Earth's long-term climate. SCIENCE ADVANCES 2024; 10:eadj4408. [PMID: 38427727 PMCID: PMC10906918 DOI: 10.1126/sciadv.adj4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Earth's long-term climate is driven by the cycling of carbon between geologic reservoirs and the atmosphere-ocean system. Our understanding of carbon-climate regulation remains incomplete, with large discrepancies remaining between biogeochemical model predictions and the geologic record. Here, we evaluate the importance of the continuous biological climate adaptation of vegetation as a regulation mechanism in the geologic carbon cycle since the establishment of forest ecosystems. Using a model, we show that the vegetation's speed of adaptation to temperature changes through eco-evolutionary processes can strongly influence global rates of organic carbon burial and silicate weathering. Considering a limited thermal adaptation capacity of the vegetation results in a closer balance of reconstructed carbon fluxes into and out of the atmosphere-ocean system, which is a prerequisite to maintain habitable conditions on Earth's surface on a multimillion-year timescale. We conclude that the long-term carbon-climate system is more sensitive to biological dynamics than previously expected, which may help to explain large shifts in Phanerozoic climate.
Collapse
Affiliation(s)
- Julian Rogger
- Swiss Federal Institute of Technology Zurich, Department of Earth Sciences, Zurich, Switzerland
- Swiss Federal Institute of Technology Zurich, Department of Environmental Systems Science, Zurich, Switzerland
| | | | - Taras V. Gerya
- Swiss Federal Institute of Technology Zurich, Department of Earth Sciences, Zurich, Switzerland
| | - Loïc Pellissier
- Swiss Federal Institute of Technology Zurich, Department of Environmental Systems Science, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| |
Collapse
|
47
|
Penn JL, Deutsch C. Geographical and taxonomic patterns in aerobic traits of marine ectotherms. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220487. [PMID: 38186276 PMCID: PMC10772604 DOI: 10.1098/rstb.2022.0487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/24/2023] [Indexed: 01/09/2024] Open
Abstract
The metabolism and hypoxia tolerance of marine ectotherms play key roles in limiting species geographical ranges, but underlying traits have only been directly measured for a small fraction of biodiversity. Here we diagnose and analyse spatial and phylogenetic patterns in hypoxia tolerance and its temperature sensitivity at ecologically active metabolic rates, by combining a model of organismal oxygen (O2) balance with global climate and biogeographic data for approximately 25 000 animal species from 13 phyla. Large-scale spatial trait patterns reveal that active hypoxia tolerance is greater and less temperature sensitive among tropical species compared to polar ones, consistent with sparse experimental data. Species energetic demands for activity vary less with temperature than resting costs, an inference confirmed by available rate measurements. Across the tree of life, closely related species share similar hypoxia traits, indicating that evolutionary history shapes physiological tolerances to O2 and temperature. Trait frequencies are highly conserved across phyla, suggesting the breadth of global aerobic conditions selects for convergent trait diversity. Our results support aerobic limitation as a constraint on marine habitat distributions and their responses to climate change and highlight the under-sampling of aerobic traits among species living in the ocean's tropical and polar oxythermal extremes. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Justin L. Penn
- Department of Geosciences, Princeton University, Princeton 08544, NJ, USA
| | - Curtis Deutsch
- Department of Geosciences, Princeton University, Princeton 08544, NJ, USA
- High Meadows Environmental Institute, Princeton University, Princeton 08544, NJ, USA
| |
Collapse
|
48
|
Privalova V, Sobczyk Ł, Szlachcic E, Labecka AM, Czarnoleski M. Heat tolerance in Drosophila melanogaster is influenced by oxygen conditions and mutations in cell size control pathways. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220490. [PMID: 38186282 PMCID: PMC10772611 DOI: 10.1098/rstb.2022.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 01/09/2024] Open
Abstract
Understanding metabolic performance limitations is key to explaining the past, present and future of life. We investigated whether heat tolerance in actively flying Drosophila melanogaster is modified by individual differences in cell size and the amount of oxygen in the environment. We used two mutants with loss-of-function mutations in cell size control associated with the target of rapamycin (TOR)/insulin pathways, showing reduced (mutant rictorΔ2) or increased (mutant Mnt1) cell size in different body tissues compared to controls. Flies were exposed to a steady increase in temperature under normoxia and hypoxia until they collapsed. The upper critical temperature decreased in response to each mutation type as well as under hypoxia. Females, which have larger cells than males, had lower heat tolerance than males. Altogether, mutations in cell cycle control pathways, differences in cell size and differences in oxygen availability affected heat tolerance, but existing theories on the roles of cell size and tissue oxygenation in metabolic performance can only partially explain our results. A better understanding of how the cellular composition of the body affects metabolism may depend on the development of research models that help separate various interfering physiological parameters from the exclusive influence of cell size. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Łukasz Sobczyk
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
49
|
Fromm B, Sorger T. Rapid adaptation of cellular metabolic rate to the MicroRNA complements of mammals and its relevance to the evolution of endothermy. iScience 2024; 27:108740. [PMID: 38327773 PMCID: PMC10847693 DOI: 10.1016/j.isci.2023.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
The metabolic efficiency of mammalian cells depends on the attenuation of intrinsic translation noise by microRNAs. We devised a metric of cellular metabolic rate (cMR), rMR/Mexp optimally fit to the number of microRNA families (mirFam), that is robust to variation in mass and sensitive to body temperature (Tb), consistent with the heat dissipation limit theory of Speakman and Król (2010). Using mirFam as predictor, an Ornstein-Uhlenbeck process of stabilizing selection, with an adaptive shift at the divergence of Boreoeutheria, accounted for 95% of the variation in cMR across mammals. Branchwise rates of evolution of cMR, mirFam and Tb concurrently increased 6- to 7-fold at the divergence of Boreoeutheria, independent of mass. Cellular MR variation across placental mammals was also predicted by the sum of model conserved microRNA-target interactions, revealing an unexpected degree of integration of the microRNA-target apparatus into the energy economy of the mammalian cell.
Collapse
Affiliation(s)
- Bastian Fromm
- The Arctic University Museum of Norway, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Thomas Sorger
- Department of Biology, Roger Williams University, Bristol, RI 02809, USA
| |
Collapse
|
50
|
Quigley KM. Breeding and Selecting Corals Resilient to Global Warming. Annu Rev Anim Biosci 2024; 12:209-332. [PMID: 37931139 DOI: 10.1146/annurev-animal-021122-093315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Selective breeding of resilient organisms is an emerging topic in marine conservation. It can help us predict how species will adapt in the future and how we can help restore struggling populations effectively in the present. Scleractinian corals represent a potential tractable model system given their widescale phenotypic plasticity across fitness-related traits and a reproductive life history based on mass synchronized spawning. Here, I explore the justification for breeding in corals, identify underutilized pathways of acclimation, and highlight avenues for quantitative targeted breeding from the coral host and symbiont perspective. Specifically, the facilitation of enhanced heat tolerance by targeted breeding of plasticity mechanisms is underutilized. Evidence from theoretical genetics identifies potential pitfalls, including inattention to physical and genetic characteristics of the receiving environment. Three criteria for breeding emerge from this synthesis: selection from warm, variable reefs that have survived disturbance. This information will be essential to protect what we have and restore what we can.
Collapse
Affiliation(s)
- K M Quigley
- The Minderoo Foundation, Perth, Western Australia, Australia;
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|