1
|
Tyutyunyk-Massey L, Chen Z, Liu X, Kawakami M, Harned A, Ng Y, Luke B, Okpechi SC, Ogunlade B, Alfaro Y, Weigert R, Narayan K, Liu X, Dmitrovsky E. CDK2 inhibition produces a persistent population of polyploid cancer cells. JCI Insight 2025; 10:e189901. [PMID: 40232858 DOI: 10.1172/jci.insight.189901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/09/2025] [Indexed: 04/17/2025] Open
Abstract
Aneuploidy, a cancer hallmark, drives chromosomal instability, drug resistance, and clinically aggressive tumors. Cyclin-dependent kinase 2 (CDK2) antagonism with independent inhibitors or CDK2 knockdown triggered anaphase catastrophe. This disrupts supernumerary centrosome clustering, causing multipolar division and apoptosis. Time-lapse fluorescence microscopy of fluorescent ubiquitination-based cell cycle indicator (FUCCI) cell cycle probes transduced into aneuploid lung cancer cells revealed distinct fates of bipolar and polyploid cells after CDK2 inhibition. Apoptosis occurred in multipolar progeny but was repressed in persistent polyploid cancer cells. RNA-Seq analyses after CDK2 inhibition of 4N versus 2N lung cancer cells were enriched for CDK1 pathway and KIF family members. The Cancer Genome Atlas (TCGA) analysis of lung cancers indicated that CDK1 and KIF family member overexpression was associated with an unfavorable survival. Intravital microscopy of transplanted lung cancer cells in mice extended findings from the in vitro to in vivo settings. CDK2 inhibition of tumor-bearing mice produced polyploid cancer cells in vivo. These cancer cells were resistant to apoptosis and proliferated despite CDK2 inhibition. In contrast, polyploid populations were rarely detected in CDK2-inhibited human alveolar epithelial cells. These findings are translationally relevant. Combined targeting of CDK2 with CDK1 or kinesin family member antagonists should eliminate polyploid cancer cells, promote apoptosis, and augment antineoplastic effects.
Collapse
Affiliation(s)
| | | | | | | | - Adam Harned
- Center for Molecular Microscopy, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, and
- Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Brian Luke
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | | | | | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, and
- Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xi Liu
- Molecular Pharmacology Program and
| | | |
Collapse
|
2
|
Zerbib J, Bloomberg A, Ben-David U. Targeting vulnerabilities of aneuploid cells for cancer therapy. Trends Cancer 2025:S2405-8033(25)00097-4. [PMID: 40368673 DOI: 10.1016/j.trecan.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Aneuploidy is a common feature of cancer that drives tumor evolution, but it also creates cellular vulnerabilities that might be exploited therapeutically. Recent advances in genomic technologies and experimental models have uncovered diverse cellular consequences of aneuploidy, revealing dependencies on mitotic regulation, DNA replication and repair, proteostasis, metabolism, and immune interactions. Harnessing aneuploidy for precision oncology requires the combination of genomic, functional, and clinical studies that will enable translation of our improved understanding of aneuploidy to targeted therapies. In this review we discuss approaches to targeting both highly aneuploid cells and cells with specific common aneuploidies, summarize the biological underpinning of these aneuploidy-induced vulnerabilities, and explore their therapeutic implications.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Bloomberg
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Dai Y, Wu D, Carroll I, Zou F, Zou B. High-dimensional biomarker identification for interpretable disease prediction via machine learning models. BIOINFORMATICS (OXFORD, ENGLAND) 2025; 41:btaf266. [PMID: 40286292 DOI: 10.1093/bioinformatics/btaf266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/31/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
MOTIVATION Omics features, often measured by high-throughput technologies, combined with clinical features, significantly impact the understanding of many complex human diseases. Integrating key omics biomarkers with clinical risk factors is essential for elucidating disease mechanisms, advancing early diagnosis, and enhancing precision medicine. However, the high dimensionality and intricate associations between disease outcomes and omics profiles present substantial analytical challenges. RESULTS We propose a high-dimensional feature importance test (HiFIT) framework to address these challenges. Specifically, we develop an ensemble data-driven biomarker identification tool, Hybrid Feature Screening (HFS), to construct a candidate feature set for downstream machine learning models. The pre-screened candidate features from HFS are further refined using a computationally efficient permutation-based feature importance test employing machine learning methods to flexibly model the potential complex associations between disease outcomes and molecular biomarkers. Through extensive numerical simulation studies and practical applications to microbiome-associated weight changes following bariatric surgery, as well as the examination of gene-expression-associated kidney pan-cancer survival data, we demonstrate HiFIT's superior performance in both outcome prediction and feature importance identification. AVAILABILITY AND IMPLEMENTATION An R package implementing the HiFIT algorithm is available on GitHub (https://github.com/BZou-lab/HiFIT).
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Ian Carroll
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Baiming Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
4
|
Meléndez-Flórez MP, Ortega-Recalde O, Rangel N, Rondón-Lagos M. Chromosomal Instability and Clonal Heterogeneity in Breast Cancer: From Mechanisms to Clinical Applications. Cancers (Basel) 2025; 17:1222. [PMID: 40227811 PMCID: PMC11988187 DOI: 10.3390/cancers17071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Chromosomal instability (CIN) and clonal heterogeneity (CH) are fundamental hallmarks of breast cancer that drive tumor evolution, disease progression, and therapeutic resistance. Understanding the mechanisms underlying these phenomena is essential for improving cancer diagnosis, prognosis, and treatment strategies. METHODS In this review, we provide a comprehensive overview of the biological processes contributing to CIN and CH, highlighting their molecular determinants and clinical relevance. RESULTS We discuss the latest advances in detection methods, including single-cell sequencing and other high-resolution techniques, which have enhanced our ability to characterize intratumoral heterogeneity. Additionally, we explore how CIN and CH influence treatment responses, their potential as therapeutic targets, and their role in shaping the tumor immune microenvironment, which has implications for immunotherapy effectiveness. CONCLUSIONS By integrating recent findings, this review underscores the impact of CIN and CH on breast cancer progression and their translational implications for precision medicine.
Collapse
Affiliation(s)
- María Paula Meléndez-Flórez
- Departamento de Morfología, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Bogotá 110231, Colombia; (M.P.M.-F.); (O.O.-R.)
| | - Oscar Ortega-Recalde
- Departamento de Morfología, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Bogotá 110231, Colombia; (M.P.M.-F.); (O.O.-R.)
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá 110231, Colombia
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Milena Rondón-Lagos
- Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| |
Collapse
|
5
|
Liu G, Zhang Y, Cao Z, Zhao Z. Targeting KIF18A triggers antitumor immunity and enhances efficiency of PD-1 blockade in colorectal cancer with chromosomal instability phenotype. Cell Death Discov 2025; 11:130. [PMID: 40175357 PMCID: PMC11965295 DOI: 10.1038/s41420-025-02437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/27/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Colorectal cancer with chromosomal instability (CIN+) phenotype is immunosuppressive and refractory to immune checkpoint blockade (ICB) therapy. Recently, KIF18A is found to be a mitotic vulnerability in chromosomally unstable cancers, but whether targeting KIF18A affects antitumor immunity in CIN+ colorectal cancer is unknown. In our study, western blot, cell viability assay, transwell migration and invasion assays, flow cytometry, animal model, immunohistochemistry (IHC) staining, reverse transcription-quantitative PCR (RT-qPCR) and ELISA assay were conducted to evaluate the potential function of KIF18A in CIN+ colorectal cancer. We found that KIF18A inhibition by short hairpin RNAs (ShRNAs) or small inhibitor AM-1882 suppressed proliferation, migration, invasion and tumor growth and metastasis of CIN+ colorectal cancer cells in vitro and in vivo. Moreover, targeting KIF18A disrupted cell-cycle progression and induced G2/M arrest in CIN+ colorectal cancer cells. In addition, KIF18A inhibition promoted immune infiltration and activation in CIN+ colorectal tumors. KIF18A inhibition suppressed proliferation of Tregs and increased infiltration and activation of cytotoxic CD8+ T cells in CIN+ colorectal tumors. Mechanically, KIF18A inhibition stimulated type I IFN signaling and cGAS-STING activation in CIN+ colorectal tumors. Finally, targeting KIF18A enhanced PD-1 blockade efficiency in CIN+ colorectal tumors through T cells. Our data elucidated a novel role of KIF18A in antitumor immunity of CIN+ colorectal cancer.
Collapse
Affiliation(s)
- Gang Liu
- Senior Department of General Surgery, Chinese PLA General Hospital, Beijing, China.
| | - Yan Zhang
- Senior Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Zhen Cao
- Senior Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Zhanwei Zhao
- Senior Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Tagore S, Caprio L, Amin AD, Bestak K, Luthria K, D'Souza E, Barrera I, Melms JC, Wu S, Abuzaid S, Wang Y, Jakubikova V, Koch P, Brodtman DZ, Bawa B, Deshmukh SK, Ebel L, Ibarra-Arellano MA, Jaiswal A, Gurjao C, Biermann J, Shaikh N, Ramaradj P, Georgis Y, Lagos GG, Ehrlich MI, Ho P, Walsh ZH, Rogava M, Politis MG, Biswas D, Cottarelli A, Rizvi N, Shu CA, Herzberg B, Anandasabapathy N, Sledge G, Zorn E, Canoll P, Bruce JN, Rizvi NA, Taylor AM, Saqi A, Hibshoosh H, Schwartz GK, Henick BS, Chen F, Schapiro D, Shah P, Izar B. Single-cell and spatial genomic landscape of non-small cell lung cancer brain metastases. Nat Med 2025; 31:1351-1363. [PMID: 40016452 DOI: 10.1038/s41591-025-03530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/19/2025] [Indexed: 03/01/2025]
Abstract
Brain metastases frequently develop in patients with non-small cell lung cancer (NSCLC) and are a common cause of cancer-related deaths, yet our understanding of the underlying human biology is limited. Here we performed multimodal single-nucleus RNA and T cell receptor, single-cell spatial and whole-genome sequencing of brain metastases and primary tumors of patients with treatment-naive NSCLC. Chromosomal instability (CIN) is a distinguishing genomic feature of brain metastases compared with primary tumors, which we validated through integrated analysis of molecular profiling and clinical data in 4,869 independent patients, and a new cohort of 12,275 patients with NSCLC. Unbiased analyses revealed transcriptional neural-like programs that strongly enriched in cancer cells from brain metastases, including a recurring, CINhigh cell subpopulation that preexists in primary tumors but strongly enriched in brain metastases, which was also recovered in matched single-cell spatial transcriptomics. Using multiplexed immunofluorescence in an independent cohort of treatment-naive pairs of primary tumors and brain metastases from the same patients with NSCLC, we validated genomic and tumor-microenvironmental findings and identified a cancer cell population characterized by neural features strongly enriched in brain metastases. This comprehensive analysis provides insights into human NSCLC brain metastasis biology and serves as an important resource for additional discovery.
Collapse
Affiliation(s)
- Somnath Tagore
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Lindsay Caprio
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Amit Dipak Amin
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kresimir Bestak
- Institute for Computational Biomedicine, Faculty of Medicine, University Hospital Heidelberg and Heidelberg University, Heidelberg, Germany
| | - Karan Luthria
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Edridge D'Souza
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Irving Barrera
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Johannes C Melms
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sharon Wu
- Caris Life Sciences, Phoenix, AZ, USA
| | - Sinan Abuzaid
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yiping Wang
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Viktoria Jakubikova
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Peter Koch
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - D Zack Brodtman
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Banpreet Bawa
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Leon Ebel
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Miguel A Ibarra-Arellano
- Institute for Computational Biomedicine, Faculty of Medicine, University Hospital Heidelberg and Heidelberg University, Heidelberg, Germany
| | - Abhinav Jaiswal
- Department of Dermatology, Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Carino Gurjao
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jana Biermann
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Neha Shaikh
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Priyanka Ramaradj
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yohanna Georgis
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Galina G Lagos
- Lifespan Cancer Institute, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Matthew I Ehrlich
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Patricia Ho
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zachary H Walsh
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Meri Rogava
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle Garlin Politis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Devanik Biswas
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Azzurra Cottarelli
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Nikhil Rizvi
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Catherine A Shu
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Benjamin Herzberg
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology, Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, New York Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Naiyer A Rizvi
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Synthekine Inc., Menlo Park, CA, USA
| | - Alison M Taylor
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anjali Saqi
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanina Hibshoosh
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Gary K Schwartz
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Brian S Henick
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Denis Schapiro
- Institute for Computational Biomedicine, Faculty of Medicine, University Hospital Heidelberg and Heidelberg University, Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Spatial Profiling Center (TPSC), Heidelberg, Germany
| | - Parin Shah
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Benjamin Izar
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Kelley V, Baro M, Gasperi W, Ader N, Lea H, Lee H, Phoomak C, Kabeche L, King M, Contessa J. Loss of JAK1 Function Causes G2/M Cell Cycle Defects Vulnerable to Kif18a Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638911. [PMID: 40060568 PMCID: PMC11888196 DOI: 10.1101/2025.02.19.638911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
To gain insight into biological mechanisms that cause resistance to DNA damage, we performed parallel pooled genetic CRISPR-Cas9 screening for survival in high risk HNSCC subtypes. Surprisingly, and in addition to ATM, DNAPK, and NFKB signaling, JAK1 was identified as a driver of tumor cell radiosensitivity. Knockout of JAK1 in HNSCC increases cell survival by enhancing the DNA damage-induced G2 arrest, and both knockout and JAK1 inhibition with abrocitinib prevent subsequent formation of radiation-induced micronuclei. Loss of JAK1 function does not affect canonical CDK1 signaling but does reduce activation of PLK1 and AURKA, kinases that regulate both G2 and M phase progression. Correspondingly, JAK1 KO was found to cause mitotic defects using both EdU labeling and live cell imaging techniques. Given this insight, we evaluated Kif18a inhibition as an approach to exacerbate mitotic stress and enhance the efficacy of radiation. These studies establish Kif18a inhibition as a novel strategy to counteract therapeutic resistance to DNA damage mediated by G2 cell cycle arrest.
Collapse
Affiliation(s)
- Vanessa Kelley
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Marta Baro
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - William Gasperi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Nicholas Ader
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412 USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Hannah Lea
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
- Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Hojin Lee
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Chatchai Phoomak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
- Department of Biology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Lilian Kabeche
- Department Molecular Biophysics and Biomedicine, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Megan King
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Joseph Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510 USA
| |
Collapse
|
8
|
Zhang C, Wu BZ, Thu KL. Targeting Kinesins for Therapeutic Exploitation of Chromosomal Instability in Lung Cancer. Cancers (Basel) 2025; 17:685. [PMID: 40002279 PMCID: PMC11853690 DOI: 10.3390/cancers17040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
New therapeutic approaches that antagonize tumour-promoting phenotypes in lung cancer are needed to improve patient outcomes. Chromosomal instability (CIN) is a hallmark of lung cancer characterized by the ongoing acquisition of genetic alterations that include the gain and loss of whole chromosomes or segments of chromosomes as well as chromosomal rearrangements during cell division. Although it provides genetic diversity that fuels tumour evolution and enables the acquisition of aggressive phenotypes like immune evasion, metastasis, and drug resistance, too much CIN can be lethal because it creates genetic imbalances that disrupt essential genes and induce severe proteotoxic and metabolic stress. As such, sustaining advantageous levels of CIN that are compatible with survival is a fine balance in cancer cells, and potentiating CIN to levels that exceed a tolerable threshold is a promising treatment strategy for inherently unstable tumours like lung cancer. Kinesins are a superfamily of motor proteins with many members having functions in mitosis that are critical for the correct segregation of chromosomes and, consequently, maintaining genomic integrity. Accordingly, inhibition of such kinesins has been shown to exacerbate CIN. Therefore, inhibiting mitotic kinesins represents a promising strategy for amplifying CIN to lethal levels in vulnerable cancer cells. In this review, we describe the concept of CIN as a therapeutic vulnerability and comprehensively summarize studies reporting the clinical and functional relevance of kinesins in lung cancer, with the goal of outlining how kinesin inhibition, or "targeting kinesins", holds great potential as an effective strategy for treating lung cancer.
Collapse
Affiliation(s)
- Christopher Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Benson Z. Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
9
|
Lee SH, Kwon MS, Lee T, Hohng S, Lee H. Kinesin-like protein KIF18A is required for faithful coordination of chromosome congression with cytokinesis. FEBS J 2025. [PMID: 39954259 DOI: 10.1111/febs.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
The maintenance of genetic integrity in proliferating cells requires the coordinated regulation of DNA replication, chromosome segregation, and cytokinetic abscission. Chromosome-microtubule interactions regulate mitosis, while interactions between the actin cytoskeleton and Myosin IIA dictate cytokinetic abscission. This process, crucial for the equal distribution of the duplicated genome into two daughter cells, occurs perpendicular to the axis of chromosome segregation. However, the mechanism of how microtubule-driven mitosis and actin-associated cytokinesis are precisely coordinated remains poorly understood. This study highlights the role of KIF18A, a kinesin-like protein, in linking kinetochore-microtubule dynamics to cytokinetic axis formation. KIF18A's localization changes through the cell division cycle, from the metaphase plate during chromosome congression to the central spindle in late anaphase, and finally to the spindle midbody in telophase. KIF18A depletion leads to chromosome congression failures and anaphase onset delays. Notably, cells attempting to undergo division in the absence of KIF18A exhibited disruptions in the parallel structure of the central spindle, causing mislocalization of the centralspindlin complex, such as kinesin-like protein KIF23 (also known as MKLP1) and Rac GTPase-activating protein 1 (RACGAP1). These disruptions impair cleavage furrow establishment, causing incomplete cytokinesis and the formation of mononuclear or binucleated cells. Our findings suggest that KIF18A is crucial for coordinating chromosome congression and cytokinesis by regulating the spatial and temporal assembly of the central spindle during late anaphase.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Mi-Sun Kwon
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Taerim Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Seoul National University, Korea
| | - Hyunsook Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Korea
| |
Collapse
|
10
|
Zheng S, Raz L, Zhou L, Cohen-Sharir Y, Tian R, Ippolito MR, Gianotti S, Saad R, Wardenaar R, Broekhuis M, Suarez Peredo Rodriguez M, Wobben S, van den Brink A, Bakker P, Santaguida S, Foijer F, Ben-David U. High CDC20 levels increase sensitivity of cancer cells to MPS1 inhibitors. EMBO Rep 2025; 26:1036-1061. [PMID: 39838194 PMCID: PMC11850905 DOI: 10.1038/s44319-024-00363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Spindle assembly checkpoint (SAC) inhibitors are a recently developed class of drugs, which perturb chromosome segregation during cell division, induce chromosomal instability (CIN), and eventually lead to cell death. The molecular features that determine cellular sensitivity to these drugs are not fully understood. We recently reported that aneuploid cancer cells are preferentially sensitive to SAC inhibition. Here we report that sensitivity to SAC inhibition by MPS1 inhibitors is largely driven by the expression of CDC20, a main mitotic activator of the anaphase-promoting complex (APC/C), and that the effect of CDC20 is larger than that of the APC/C itself. Mechanistically, we discovered that CDC20 depletion prolongs metaphase duration, diminishes mitotic errors, and reduces sensitivity to SAC inhibition. We found that aneuploid cells express higher basal levels of CDC20, which shortens the duration of metaphase and leads to multiple mitotic errors, resulting in increased long-term sensitivity to the additional CIN induced by SAC inhibition. Our findings propose high CDC20 expression as a molecular feature associated with the sensitivity to SAC inhibition therapy and as a potential aneuploidy-induced cellular vulnerability.
Collapse
Affiliation(s)
- Siqi Zheng
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Linoy Raz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lin Zhou
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruifang Tian
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | | | - Sara Gianotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20141, Italy
| | - Ron Saad
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rene Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
- Functional Genomics Center, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Mathilde Broekhuis
- Functional Genomics Center, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Maria Suarez Peredo Rodriguez
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Soraya Wobben
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Anouk van den Brink
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Petra Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Stefano Santaguida
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20141, Italy
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands.
- Functional Genomics Center, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands.
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Phillips AF, Zhang R, Jaffe M, Schulz R, Carty MC, Verma A, Feinberg TY, Arensman MD, Chiu A, Letso R, Bosco N, Queen KA, Racela AR, Stumpff J, Andreu-Agullo C, Bettigole SE, Depetris RS, Drutman S, Su SM, Cogan DA, Eng CH. Targeting chromosomally unstable tumors with a selective KIF18A inhibitor. Nat Commun 2025; 16:307. [PMID: 39747049 PMCID: PMC11697083 DOI: 10.1038/s41467-024-55300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Chromosome instability is a prevalent vulnerability of cancer cells that has yet to be fully exploited therapeutically. To identify genes uniquely essential to chromosomally unstable cells, we mined the Cancer Dependency Map for genes essential in tumor cells with high levels of copy number aberrations. We identify and validate KIF18A, a mitotic kinesin, as a vulnerability of chromosomally unstable cancer cells. Knockdown of KIF18A leads to mitotic defects and reduction of tumor growth. Screening of a chemical library for inhibitors of KIF18A enzymatic activity identified a hit that was optimized to yield VLS-1272, which is orally bioavailable, potent, ATP non-competitive, microtubule-dependent, and highly selective for KIF18A versus other kinesins. Inhibition of KIF18A's ATPase activity prevents KIF18A translocation across the mitotic spindle, resulting in chromosome congression defects, mitotic cell accumulation, and cell death. Profiling VLS-1272 across >100 cancer cell lines demonstrates that the specificity towards cancer cells with chromosome instability differentiates KIF18A inhibition from other clinically tested anti-mitotic drugs. Treatment of tumor xenografts with VLS-1272 results in mitotic defects leading to substantial, dose-dependent inhibition of tumor growth. The strong biological rationale, robust preclinical data, and optimized compound properties enable the clinical development of a KIF18A inhibitor in cancers with high chromosomal instability.
Collapse
Affiliation(s)
| | | | - Mia Jaffe
- Volastra Therapeutics, New York, NY, USA
| | | | | | | | | | | | - Alan Chiu
- Volastra Therapeutics, New York, NY, USA
| | - Reka Letso
- Volastra Therapeutics, New York, NY, USA
| | | | - Katelyn A Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Allison R Racela
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang Y, Zhou B, Lian X, Yu S, Huang B, Wu X, Wen L, Zhu C. KIF18A Is a Novel Target of JNK1/c-Jun Signaling Pathway Involved in Cervical Tumorigenesis. J Cell Physiol 2025; 240:e31516. [PMID: 39749722 DOI: 10.1002/jcp.31516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/21/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Cervical cancer remains a significant global health concern. KIF18A, a kinesin motor protein regulating microtubule dynamics during mitosis, is frequently overexpressed in various cancers, but its regulatory mechanisms are poorly understood. This study investigates KIF18A's role in cervical cancer and its regulation by the JNK1/c-Jun signaling pathway. Cell growth was assessed in vitro using MTT and colony formation assays, and in vivo using a nude mouse xenograft model with KIF18A knockdown HeLa cells. The Genomic Data Commons (GDC) data portal was used to identify KIF18A-related protein kinases in cervical cancer. Western blot analysis was employed to analyze phosphor-c-Jun, c-Jun, and KIF18A expression levels following JNK1 inhibition, c-Jun knockdown/overexpression, and KIF18A knockdown in cervical cancer cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to assess c-Jun binding and transcriptional activity of the KIF18A promoter. KIF18A knockdown significantly impaired cervical cancer cell growth both in vitro and in vivo. A strong positive correlation was observed between JNK1 and KIF18A expression in cervical and other cancers. JNK1 inhibition decreased both KIF18A expression and c-Jun phosphorylation. c-Jun was found to directly bind to and activate the KIF18A promoter. Furthermore, c-Jun knockdown inhibited cervical cancer cell growth, and this effect was partially rescued by KIF18A overexpression. This study demonstrates that the JNK1/c-Jun pathway activates KIF18A expression, which is essential for cervical cancer cell growth. Targeting the JNK/c-Jun/KIF18A axis may represent a promising novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Bowen Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xiaoying Lian
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Siqi Yu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Baihai Huang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xinyue Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lianpu Wen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Changjun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
13
|
Wang M, Lukanovic D, Barra F, Lei A. KIF18A and CDK1 as combined therapeutic targets in cervical and endometrial carcinomas: based on bioinformatics analysis and in vitro experiments. Transl Cancer Res 2024; 13:6880-6894. [PMID: 39816554 PMCID: PMC11730454 DOI: 10.21037/tcr-24-1831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
Background Chromosomal instability (CIN) has been identified as a factor that increases the susceptibility of tumor cells to kinesin family member 18A (KIF18A) inhibitors. Limited research exists on genes that are associated with sensitization to KIF18A inhibitors (KIF18Ais). Our study aimed to identify a gene linked to heightened sensitivity to KIF18Ais in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and uterine corpus endometrial carcinoma (UCEC). Methods The Cancer Genome Atlas (TCGA) and X2K Appyter databases were used to analyze potential kinases associated with KIF18A-related genes in CESC and UCEC. In vitro assessments, such as Cell Counting Kit-8 (CCK-8), transwell, and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assays, were performed to evaluate the combined effects of KIF18A and cyclin-dependent kinase 1 inhibitors (CDK1is) in CESC and UCEC cell lines. Results Our findings indicated that the combination of KIF18A with kinases may potentially augment the efficacy of KIF18Ais, given its close involvement in cell cycle and chromosome segregation. Through bioinformatics analysis, we observed a significant up-regulation of CDK1 expression in CESC and UCEC, which exhibited a strong correlation with KIF18A expression. Our hypothesis regarding the potential of CDK1 as a combination therapeutic target for KIF18A was supported by our cell experiments, which demonstrated that inhibition of CDK1 notably increased the sensitivity of CESC and UCEC cells to KIF18Ais. The combined use of CDK1is and KIF18Ais exhibited a synergistic effect in inhibiting cell migration and inducing apoptosis in CESC and UCEC cells. Conclusions This study provides evidence that targeting both KIF18A and CDK1 exerts synergistic anti-tumor effects in CESC and UCEC via inhibiting cell proliferation and migration and inducing apoptosis, suggesting a promising therapeutic strategy for these cancers.
Collapse
Affiliation(s)
- Mengjie Wang
- Department of Pharmacy, Shaanxi Cancer Hospital, Xi’an, China
| | - David Lukanovic
- Division of Gynecology and Obstetrics, Department of Gynecology, Ljubljana University Medical Center, Ljubljana, Slovenia
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Fabio Barra
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Unit of Obstetrics and Gynecology, P.O. “Ospedale del Tigullio”-ASL4, Genoa, Italy
| | - Aoli Lei
- Department of Gynecology, the First Hospital of Weinan City, Weinan, China
| |
Collapse
|
14
|
Nesbit C, Martin W, Czechanski A, Byers C, Raghupathy N, Ferraj A, Stumpff J, Reinholdt L. Anapc5 and Anapc7 as genetic modifiers of KIF18A function in fertility and mitotic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626395. [PMID: 39677807 PMCID: PMC11642851 DOI: 10.1101/2024.12.03.626395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The kinesin family member 18A (KIF18A) is an essential regulator of microtubule dynamics and chromosome alignment during mitosis. Functional dependency on KIF18A varies by cell type and genetic context but the heritable factors that influence this dependency remain unknown. To address this, we took advantage of the variable penetrance observed in different mouse strain backgrounds to screen for loci that modulate germ cell depletion in the absence of KIF18A. We found a significant association at a Chr5 locus where anaphase promoting complex subunits 5 (Anapc5) and 7 (Anapc7) were the top candidate genes. We found that both genes were differentially expressed in a sensitive strain background when compared to resistant strain background at key timepoints in gonadal development. We also identified a novel retroviral insertion in Anapc7 that may in part explain the observed expression differences. In cell line models, we found that depletion of KIF18A induced mitotic arrest, which was partially rescued by co-depletion of ANAPC7 (APC7) and exacerbated by co-depletion of ANAPC5 (APC5). These findings suggest that differential expression and activity of Anapc5 and Anapc7 may influence sensitivity to KIF18A depletion in germ cells and CIN cells, with potential implications for optimizing antineoplastic therapies.
Collapse
Affiliation(s)
- Carleigh Nesbit
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | | | | | - Candice Byers
- The Roux Institute at Northeastern University, Portland, ME
| | | | | | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | | |
Collapse
|
15
|
Mohd Amin AS, Eastwood S, Pilcher C, Truong JQ, Foitzik R, Boag J, Gorringe KL, Holien JK. KIF18A inhibition: the next big player in the search for cancer therapeutics. Cancer Metastasis Rev 2024; 44:3. [PMID: 39580563 DOI: 10.1007/s10555-024-10225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 11/25/2024]
Abstract
Kinesin-like protein 18A (KIF18A) is a member of the kinesin family of molecular motor proteins, which utilise energy from the hydrolysis of adenosine triphosphate (ATP) to regulate critical cellular processes such as chromosome movement and microtubule dynamics. KIF18A plays a vital role in controlling microtubule length, which is crucial for maintaining proper cell function and division. Notably, increased expression levels of KIF18A have been observed in various types of cancer, indicating its potential involvement in tumour progression. Although preclinical studies have demonstrated that KIF18A is not essential for normal somatic cell division, it appears to be crucial for the survival and division of cancer cells, particularly those exhibiting chromosomal instability. This dependency makes KIF18A a promising target for developing new therapeutic strategies aimed at treating chromosomally unstable cancers. This review delves into the structural and functional aspects of KIF18A, and its role in cancer development, and evaluates current and emerging approaches to targeting KIF18A with innovative cancer treatments.
Collapse
Affiliation(s)
| | - Sarah Eastwood
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia
| | - Courtney Pilcher
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia
| | - Jia Q Truong
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia
| | - Richard Foitzik
- Oncology One Pty Ltd, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Inosi Therapeutics Pty Ltd, 655 Elizabeth St, Melbourne, VIC, 3000, Australia
| | - Joanne Boag
- Oncology One Pty Ltd, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Walter and Eliza Hall Institute of Medical Research, 4 Research Avenue, Bundoora, VIC, 3083, Australia
- Ternarx Pty Ltd, 4 Research Avenue, Bundoora, VIC, 3083, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Department of Oncology, Sir Peter MacCallum, The University of Melbourne, Grattan St, Parkville, VIC, 3010, Australia
| | - Jessica K Holien
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia.
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Grattan St, Parkville, VIC, 3010, Australia.
- St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3052, Australia.
| |
Collapse
|
16
|
Risteski P, Martinčić J, Jagrić M, Tintor E, Petelinec A, Tolić IM. Microtubule poleward flux as a target for modifying chromosome segregation errors. Proc Natl Acad Sci U S A 2024; 121:e2405015121. [PMID: 39541344 PMCID: PMC11588092 DOI: 10.1073/pnas.2405015121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer cells often display errors in chromosome segregation, some of which result from improper chromosome alignment at the spindle midplane. Chromosome alignment is facilitated by different rates of microtubule poleward flux between sister kinetochore fibers. However, the role of the poleward flux in supporting mitotic fidelity remains unknown. Here, we introduce the hypothesis that the finely tuned poleward flux safeguards against lagging chromosomes and micronuclei at mitotic exit by promoting chromosome alignment in metaphase. We used human untransformed RPE-1 cells depleted of KIF18A/kinesin-8 as a system with reduced mitotic fidelity, which we rescued by three mechanistically independent treatments, comprising low-dose taxol or codepletion of the spindle proteins HAUS8 or NuMA. The rescue of mitotic errors was due to shortening of the excessively long overlaps of antiparallel microtubules, serving as a platform for motor proteins that drive the flux, which in turn slowed down the overly fast flux and improved chromosome alignment. In contrast to the prevailing view, the rescue was not accompanied by reduction of overall microtubule growth rates. Instead, speckle microscopy revealed that the improved chromosome alignment in the rescue treatments was associated with slower growth and flux of kinetochore microtubules. In a similar manner, a low-dose taxol treatment rescued mitotic errors in a high-grade serous ovarian carcinoma cell line OVKATE. Collectively, our results highlight the potential of targeting microtubule poleward flux to modify chromosome instability and provide insight into the mechanism through which low doses of taxol rescue certain mitotic errors in cancer cells.
Collapse
Affiliation(s)
- Patrik Risteski
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Jelena Martinčić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Mihaela Jagrić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Erna Tintor
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Ana Petelinec
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Iva M. Tolić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| |
Collapse
|
17
|
Serpico AF, Pisauro C, Trano A, Grieco D. Chromosome alignment and Kif18A action rely on spindle-localized control of Cdk1 activity. Front Cell Dev Biol 2024; 12:1490781. [PMID: 39610707 PMCID: PMC11602486 DOI: 10.3389/fcell.2024.1490781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction During mitosis, chromosome alignment at the mitotic spindle equator grants correct chromosome segregation and proper nuclei formation in daughter cells. The kinesin 8 family member Kif18A plays a crucial role for chromosome alignment by localizing at the kinetochore-microtubule (K-MT) plus ends to dampen MT dynamics and stabilize K-MT attachments. Kif18A action is directly antagonized by the master mitotic kinase cyclin B-dependent kinase 1 (Cdk1) and is promoted by protein phosphatase 1 (PP1). Since chromosome alignment precedes Cdk1 inactivation by cyclin B proteolysis, it is unclear how Kif18A evades Cdk1 inhibition. Methods We analyzed chromosome alignment and Kif18A in mitotic cells upon genetic perturbation of the phosphorylation-dependent inhibitory control of Cdk1 activity by immunofluorescence and cell fractionation experiments. Results We show here that chromosome alignment in human cells relies on a recently identified fraction of Cdk1 that is inhibited by Wee1-dependent phosphorylation in mitosis (i-Cdk1, standing for inhibited/inactive-Cdk1) and that localized at spindle structures where it promotes proper spindle assembly. Indeed, the reduction of i-Cdk1 led to several spindle defects including spindles with misaligned, bipolarly attached chromosomes showing poor Kif18A localization at their K-MT plus ends. Restoring i-Cdk1 reversed both alignment defects and Kif18A localization. In cells with lowered i-Cdk1, expressing a phosphonull Kif18A mutant version at the sites that serve as Cdk1 substrate significantly rescued the alignment defects. Discussion Mechanistically, our evidence suggests that i-Cdk1 and active PP1 facilitated the dephosphorylation and reactivation of spindle-localized Kif18A. Considering the relevance of Kif18A for survival of aneuploid cancer cells and the potential therapeutic targeting of both Kif18A and Wee1, these findings could also be relevant for cancer therapy.
Collapse
Affiliation(s)
- Angela Flavia Serpico
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples “Federico II”, Naples, Italy
| | | | - Asia Trano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Domenico Grieco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| |
Collapse
|
18
|
Kang Z, Li R, Liu C, Dong X, Hu Y, Xu L, Liu X, Xiang Y, Gao L, Si W, Wang L, Li Q, Zhang L, Wang H, Yang X, Liu J. m 6A-modified cenRNA stabilizes CENPA to ensure centromere integrity in cancer cells. Cell 2024; 187:6035-6054.e27. [PMID: 39305902 DOI: 10.1016/j.cell.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 08/20/2024] [Indexed: 10/20/2024]
Abstract
m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.
Collapse
Affiliation(s)
- Zihong Kang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Ruimeng Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, 100084 Beijing, China
| | - Chang Liu
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Xiaozhe Dong
- College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008 Nanjing, China
| | - Xinyu Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Yunfan Xiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Liming Gao
- School of Science, China Pharmaceutical University, 211198 Nanjing, China
| | - Wenzhe Si
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Laboratory Medicine, Peking University Third Hospital, 100191 Beijing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008 Nanjing, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Liang Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022 Hangzhou, China
| | - Huan Wang
- College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, 100084 Beijing, China.
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
| |
Collapse
|
19
|
Zhang C, Tu P, Jia X, Xia Y, Lu B, Yang F, Wang S, Jin L. Design, Biological Characterization, and Discovery of Novel Cyclohexenyl Derivatives as Kinesin KIF18A Inhibitors for the Treatment of Ovarian Cancer. ACS Med Chem Lett 2024; 15:1778-1786. [PMID: 39411524 PMCID: PMC11472545 DOI: 10.1021/acsmedchemlett.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
A novel class of kinesin KIF18A inhibitors were discovered through modification of the clinical compound AMG650. Structure-activity relationship (SAR) study led to the discovery of compound 16 with an alkenyl motif, a highly potent KIF18A inhibitor, which displayed a favorable pharmacological profile and excellent efficacy in a mouse model of an OVCAR-3 xenograft tumor. Oral administration of 16 can induce a dose-dependent antitumor efficacy in the OVCAR-3 model without significant reduction in body weight. Compound 16 showed potential as a candidate for the clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chen Zhang
- Changchun
Genescience Pharma, 88
Hongmei Road, Xuhui District, Shanghai 200233, China
| | - Peng Tu
- Changchun
Genescience Pharma, 88
Hongmei Road, Xuhui District, Shanghai 200233, China
| | - Xiangyu Jia
- Changchun
Genescience Pharma, 88
Hongmei Road, Xuhui District, Shanghai 200233, China
| | - Yuanfeng Xia
- Changchun
Genescience Pharma, 88
Hongmei Road, Xuhui District, Shanghai 200233, China
| | - Biao Lu
- Changchun
Genescience Pharma, 88
Hongmei Road, Xuhui District, Shanghai 200233, China
| | - Fanglong Yang
- Changchun
Genescience Pharma, 88
Hongmei Road, Xuhui District, Shanghai 200233, China
| | - Siqin Wang
- Changchun
Genescience Pharma, 88
Hongmei Road, Xuhui District, Shanghai 200233, China
| | - Lei Jin
- Changchun
Genescience Pharma, 88
Hongmei Road, Xuhui District, Shanghai 200233, China
| |
Collapse
|
20
|
Dai Y, Zou F, Zou B. High-dimensional Biomarker Identification for Scalable and Interpretable Disease Prediction via Machine Learning Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616748. [PMID: 39416165 PMCID: PMC11482776 DOI: 10.1101/2024.10.04.616748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Omics data generated from high-throughput technologies and clinical features jointly impact many complex human diseases. Identifying key biomarkers and clinical risk factors is essential for understanding disease mechanisms and advancing early disease diagnosis and precision medicine. However, the high-dimensionality and intricate associations between disease outcomes and omics profiles present significant analytical challenges. To address these, we propose an ensemble data-driven biomarker identification tool, Hybrid Feature Screening (HFS), to construct a candidate feature set for downstream advanced machine learning models. The pre-screened candidate features from HFS are further refined using a computationally efficient permutation-based feature importance test, forming the comprehensive High-dimensional Feature Importance Test (HiFIT) framework. Through extensive numerical simulations and real-world applications, we demonstrate HiFIT's superior performance in both outcome prediction and feature importance identification. An R package implementing HiFIT is available on GitHub (https://github.com/BZou-lab/HiFIT).
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Baiming Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Chen Q, Le X, Li Q, Liu S, Chen Z. Exploration of inhibitors targeting KIF18A with ploidy-specific lethality. Drug Discov Today 2024; 29:104142. [PMID: 39168405 DOI: 10.1016/j.drudis.2024.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Currently, various antimitotic inhibitors applied in tumor therapy. However, these inhibitors exhibit targeted toxicity to some extent. As a motor protein, kinesin family member 18A (KIF18A) is crucial to spindle formation and is associated with tumors exhibiting ploidy-specific characteristics such as chromosomal aneuploidy, whole-genome doubling (WGD), and chromosomal instability (CIN). Differing from traditional antimitotic targets, KIF18A exhibits tumor-specific selectivity. The functional loss or attenuation of KIF18A results in vulnerability of tumor cells with ploidy-specific characteristics, with lesser effects on diploid cells. Research on inhibitors targeting KIF18A with ploidy-specific lethality holds significant importance. This review provides a brief overview of the regulatory mechanisms of the ploidy-specific lethality target KIF18A and the research advancements in its inhibitors, aiming to facilitate the development of KIF18A inhibitors.
Collapse
Affiliation(s)
- Qingsong Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Xiangyang Le
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Suyou Liu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China.
| |
Collapse
|
22
|
Lau TT, Ma HT, Poon RY. Kinesins regulate the heterogeneity in centrosome clustering after whole-genome duplication. Life Sci Alliance 2024; 7:e202402670. [PMID: 39074902 PMCID: PMC11287020 DOI: 10.26508/lsa.202402670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
After whole-genome duplication (WGD), tetraploid cells can undergo multipolar mitosis or pseudo-bipolar mitosis with clustered centrosomes. Kinesins play a crucial role in regulating spindle formation. However, the contribution of kinesin expression levels to the heterogeneity in centrosome clustering observed across different cell lines after WGD remains unclear. We identified two subsets of cell lines: "BP" cells efficiently cluster extra centrosomes for pseudo-bipolar mitosis, and "MP" cells primarily undergo multipolar mitosis after WGD. Diploid MP cells contained higher levels of KIF11 and KIF15 compared with BP cells and showed reduced sensitivity to centrosome clustering induced by KIF11 inhibitors. Moreover, partial inhibition of KIF11 or depletion of KIF15 converted MP cells from multipolar to bipolar mitosis after WGD. Multipolar spindle formation involved microtubules but was independent of kinetochore-microtubule attachment. Silencing KIFC1, but not KIFC3, promoted multipolar mitosis in BP cells, indicating the involvement of specific kinesin-14 family members in counteracting the forces from KIF11/KIF15 after WGD. These findings highlight the collective role of KIF11, KIF15, and KIFC1 in determining the polarity of the mitotic spindle after WGD.
Collapse
Affiliation(s)
- Thomas Ty Lau
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Department of Pathology, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Randy Yc Poon
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
23
|
Wang X, Zhang XY, Liao NQ, He ZH, Chen QF. Identification of ribosome biogenesis genes and subgroups in ischaemic stroke. Front Immunol 2024; 15:1449158. [PMID: 39290696 PMCID: PMC11406505 DOI: 10.3389/fimmu.2024.1449158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Background Ischaemic stroke is a leading cause of death and severe disability worldwide. Given the importance of protein synthesis in the inflammatory response and neuronal repair and regeneration after stroke, and that proteins are acquired by ribosomal translation of mRNA, it has been theorised that ribosome biogenesis may have an impact on promoting and facilitating recovery after stroke. However, the relationship between stroke and ribosome biogenesis has not been investigated. Methods In the present study, a ribosome biogenesis gene signature (RSG) was developed using Cox and least absolute shrinkage and selection operator (LASSO) analysis. We classified ischaemic stroke patients into high-risk and low-risk groups using the obtained relevant genes, and further elucidated the immune infiltration of the disease using ssGSEA, which clarified the close relationship between ischaemic stroke and immune subgroups. The concentration of related proteins in the serum of stroke patients was determined by ELISA, and the patients were divided into groups to evaluate the effect of the ribosome biogenesis gene on patients. Through bioinformatics analysis, we identified potential IS-RSGs and explored future therapeutic targets, thereby facilitating the development of more effective therapeutic strategies and novel drugs against potential therapeutic targets in ischaemic stroke. Results We obtained a set of 12 ribosome biogenesis-related genes (EXOSC5, MRPS11, MRPS7, RNASEL, RPF1, RPS28, C1QBP, GAR1, GRWD1, PELP1, UTP, ERI3), which play a key role in assessing the prognostic risk of ischaemic stroke. Importantly, risk grouping using ribosome biogenesis-related genes was also closely associated with important signaling pathways in stroke. ELISA detected the expression of C1QBP, RPS28 and RNASEL proteins in stroke patients, and the proportion of neutrophils was significantly increased in the high-risk group. Conclusions The present study demonstrates the involvement of ribosomal biogenesis genes in the pathogenesis of ischaemic stroke, providing novel insights into the underlying pathogenic mechanisms and potential therapeutic strategies for ischaemic stroke.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Guangxi University, Nanning, China
| | - Xiao-Yu Zhang
- The College of Life Sciences, Northwest University, Xian, China
| | - Nan-Qing Liao
- School of Medicine, Guangxi University, Nanning, China
| | - Ze-Hua He
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Qing-Feng Chen
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| |
Collapse
|
24
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
25
|
Zhao S, Li Z, Zhang Q, Zhang Y, Zhang J, Fan G, Cao X, Jiu Y. Discovery of Trametinib as an orchestrator for cytoskeletal vimentin remodeling. J Mol Cell Biol 2024; 16:mjae009. [PMID: 38429984 PMCID: PMC11393047 DOI: 10.1093/jmcb/mjae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 03/03/2024] Open
Abstract
The dynamic remodeling of the cytoskeletal network of vimentin intermediate filaments supports various cellular functions, including cell morphology, elasticity, migration, organelle localization, and resistance against mechanical or pathological stress. Currently available chemicals targeting vimentin predominantly induce network reorganization and shrinkage around the nucleus. Effective tools for long-term manipulation of vimentin network dispersion in living cells are still lacking, limiting in-depth studies on vimentin function and potential therapeutic applications. Here, we verified that a commercially available small molecule, trametinib, is capable of inducing spatial spreading of the cellular vimentin network without affecting its transcriptional or Translational regulation. Further evidence confirmed its low cytotoxicity and similar effects on different cell types. Importantly, Trametinib has no impact on the other two cytoskeletal systems, actin filaments and the microtubule network. Moreover, Trametinib regulates vimentin network dispersion rapidly and efficiently, with effects persisting for up to 48 h after drug withdrawal. We also ruled out the possibility that Trametinib directly affects the phosphorylation level of vimentin. In summary, we identified an unprecedented regulator Trametinib, which is capable of spreading the vimentin network toward the cell periphery, and thus complemented the existing repertoire of vimentin remodeling drugs in the field of cytoskeletal research.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhifang Li
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaobao Cao
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
26
|
Wu T, Luo Y, Zhang M, Chen B, Du X, Gu H, Xie S, Pan Z, Yu R, Hai R, Niu X, Hao G, Jin L, Shi J, Sun X, Kuang Y, Li W, Sang Q, Wang L. Mechanisms of minor pole-mediated spindle bipolarization in human oocytes. Science 2024; 385:eado1022. [PMID: 39172836 DOI: 10.1126/science.ado1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
Spindle bipolarization, the process of a microtubule mass transforming into a bipolar spindle, is a prerequisite for accurate chromosome segregation. In contrast to mitotic cells, the process and mechanism of spindle bipolarization in human oocytes remains unclear. Using high-resolution imaging in more than 1800 human oocytes, we revealed a typical state of multipolar intermediates that form during spindle bipolarization and elucidated the mechanism underlying this process. We found that the minor poles formed in multiple kinetochore clusters contribute to the generation of multipolar intermediates. We further determined the essential roles of HAUS6, KIF11, and KIF18A in spindle bipolarization and identified mutations in these genes in infertile patients characterized by oocyte or embryo defects. These results provide insights into the physiological and pathological mechanisms of spindle bipolarization in human oocytes.
Collapse
Affiliation(s)
- Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Yuxi Luo
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Meiling Zhang
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200032, China
| | - Xingzhu Du
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Siyuan Xie
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Zhiqi Pan
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Ran Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Ruiqi Hai
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Xiangli Niu
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning 530029, China
| | - Guimin Hao
- Hebei Clinical Research Center for Birth Defects, Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Liping Jin
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Juanzi Shi
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an 710003, China
| | - Xiaoxi Sun
- Shanghai JIAI Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wen Li
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Sim N, Carter JM, Deka K, Tan BKT, Sim Y, Tan SM, Li Y. TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer. Nat Commun 2024; 15:5638. [PMID: 38965263 PMCID: PMC11224303 DOI: 10.1038/s41467-024-50071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival. We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis. We further illustrate that such mechanisms activate TNBC-specific super enhancers (SE) to drive the transcriptional activation of cancer dependency genes via chromatin looping. In particular, we uncover the SE-driven upregulation of Nicotinamide phosphoribosyltransferase (NAMPT), which promotes NAD+ and ATP metabolic reprogramming critical for filopodia formation and metastasis. Collectively, our study details the complex mechanistic link between TWEAK/Fn14 signalling and TNBC metastasis, which reveals several vulnerabilities which could be pursued for the targeted treatment of TNBC patients.
Collapse
Affiliation(s)
- Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Benita Kiat Tee Tan
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
28
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
29
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
30
|
Lv Y, Feng G, Yang L, Wu X, Wang C, Ye A, wang S, Xu C, Shi H. Differential whole-genome doubling based signatures for improvement on clinical outcomes and drug response in patients with breast cancer. Heliyon 2024; 10:e28586. [PMID: 38576569 PMCID: PMC10990872 DOI: 10.1016/j.heliyon.2024.e28586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Whole genome doublings (WGD), a hallmark of human cancer, is pervasive in breast cancer patients. However, the molecular mechanism of the complete impact of WGD on survival and treatment response in breast cancer remains unclear. To address this, we performed a comprehensive and systematic analysis of WGD, aiming to identify distinct genetic alterations linked to WGD and highlight its improvement on clinical outcomes and treatment response for breast cancer. A linear regression model along with weighted gene co-expression network analysis (WGCNA) was applied on The Cancer Genome Atlas (TCGA) dataset to identify critical genes related to WGD. Further Cox regression models with random selection were used to optimize the most useful prognostic markers in the TCGA dataset. The clinical implication of the risk model was further assessed through prognostic impact evaluation, tumor stratification, functional analysis, genomic feature difference analysis, drug response analysis, and multiple independent datasets for validation. Our findings revealed a high aneuploidy burden, chromosomal instability (CIN), copy number variation (CNV), and mutation burden in breast tumors exhibiting WGD events. Moreover, 247 key genes associated with WGD were identified from the distinct genomic patterns in the TCGA dataset. A risk model consisting of 22 genes was optimized from the key genes. High-risk breast cancer patients were more prone to WGD and exhibited greater genomic diversity compared to low-risk patients. Some oncogenic signaling pathways were enriched in the high-risk group, while primary immune deficiency pathways were enriched in the low-risk group. We also identified a risk gene, ANLN (anillin), which displayed a strong positive correlation with two crucial WGD genes, KIF18A and CCNE2. Tumors with high expression of ANLN were more prone to WGD events and displayed worse clinical survival outcomes. Furthermore, the expression levels of these risk genes were significantly associated with the sensitivities of BRCA cell lines to multiple drugs, providing valuable insights for targeted therapies. These findings will be helpful for further improvement on clinical outcomes and contribution to drug development in breast cancer.
Collapse
Affiliation(s)
| | | | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoliang Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Chengyi Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Aokun Ye
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shuyuan wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| |
Collapse
|
31
|
Ren J, Yao X, Yang M, Cheng S, Wu D, Xu K, Li R, Zhang H, Zhang D. Kinesin Family Member-18A (KIF18A) Promotes Cell Proliferation and Metastasis in Hepatocellular Carcinoma. Dig Dis Sci 2024; 69:1274-1286. [PMID: 38446308 PMCID: PMC11026273 DOI: 10.1007/s10620-024-08321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND & AIMS Kinesin family member 18A (KIF18A) is notable for its aberrant expression across various cancer types and its pivotal role is driving cancer progression. In this study, we aim to investigate the intricate molecular mechanisms underlying the impact of KIF18A on the progression of HCC. METHODS Western blotting assays, a quantitative real-time PCR and immunohistochemical analyses were performed to quantitatively assess KIF18A expression in HCC tissues. We then performed genetic manipulations within HCC cells by silencing endogenous KIF18A using short hairpin RNA (shRNA) and introducing exogenous plasmids to overexpress KIF18A. We monitored cell progression, analyzed cell cycle and cell apoptosis and assessed cell migration and invasion both in vitro and in vivo. Moreover, we conducted RNA-sequencing to explore KIF18A-related signaling pathways utilizing Reactome and KEGG enrichment methods and validated these critical mediators in these pathways. RESULTS Analysis of the TCGA-LIHC database revealed pronounced overexpression of KIF18A in HCC tissues, the finding was subsequently confirmed through the analysis of clinical samples obtained from HCC patients. Notably, silencing KIF18A in cells led to an obvious inhibition of cell proliferation, migration and invasion in vitro. Furthermore, in subcutaneous and orthotopic xenograft models, suppression of KIF18A sgnificantly redudce tumor weight and the number of lung metastatic nodules. Mechanistically, KIF18A appears to facilitate cell proliferation by upregulating MAD2 and CDK1/CyclinB1 expression levels, with the activation of SMAD2/3 signaling contributing to KIF18A-driven metastasis. CONCLUSION Our study elucidates the molecular mechanism by which KIF18A mediates proliferation and metastasis in HCC cells, offering new insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Minli Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Kexin Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ranran Li
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Han Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Dapeng Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- , Room 706, Chongyi Building, 1 Yixue Yuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
32
|
Lakshmi RB, Nayak P, Raz L, Sarkar A, Saroha A, Kumari P, Nair VM, Kombarakkaran DP, Sajana S, M G S, Agasti SS, Paul R, Ben-David U, Manna TK. CKAP5 stabilizes CENP-E at kinetochores by regulating microtubule-chromosome attachments. EMBO Rep 2024; 25:1909-1935. [PMID: 38424231 PMCID: PMC11014917 DOI: 10.1038/s44319-024-00106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Stabilization of microtubule plus end-directed kinesin CENP-E at the metaphase kinetochores is important for chromosome alignment, but its mechanism remains unclear. Here, we show that CKAP5, a conserved microtubule plus tip protein, regulates CENP-E at kinetochores in human cells. Depletion of CKAP5 impairs CENP-E localization at kinetochores at the metaphase plate and results in increased kinetochore-microtubule stability and attachment errors. Erroneous attachments are also supported by computational modeling. Analysis of CKAP5 knockout cancer cells of multiple tissue origins shows that CKAP5 is preferentially essential in aneuploid, chromosomally unstable cells, and the sensitivity to CKAP5 depletion is correlated to that of CENP-E depletion. CKAP5 depletion leads to reduction in CENP-E-BubR1 interaction and the interaction is rescued by TOG4-TOG5 domain of CKAP5. The same domain can rescue CKAP5 depletion-induced CENP-E removal from the kinetochores. Interestingly, CKAP5 depletion facilitates recruitment of PP1 to the kinetochores and furthermore, a PP1 target site-specific CENP-E phospho-mimicking mutant gets stabilized at kinetochores in the CKAP5-depleted cells. Together, the results support a model in which CKAP5 controls mitotic chromosome attachment errors by stabilizing CENP-E at kinetochores and by regulating stability of the kinetochore-attached microtubules.
Collapse
Affiliation(s)
- R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Pinaki Nayak
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Linoy Raz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Apurba Sarkar
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Akshay Saroha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Pratibha Kumari
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Vishnu M Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Delvin P Kombarakkaran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - S Sajana
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Sanusha M G
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Raja Paul
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
33
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
34
|
Gliech CR, Yeow ZY, Tapias-Gomez D, Yang Y, Huang Z, Tijhuis AE, Spierings DC, Foijer F, Chung G, Tamayo N, Bahrami-Nejad Z, Collins P, Nguyen TT, Plata Stapper A, Hughes PE, Payton M, Holland AJ. Weakened APC/C activity at mitotic exit drives cancer vulnerability to KIF18A inhibition. EMBO J 2024; 43:666-694. [PMID: 38279026 PMCID: PMC10907621 DOI: 10.1038/s44318-024-00031-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024] Open
Abstract
The efficacy of current antimitotic cancer drugs is limited by toxicity in highly proliferative healthy tissues. A cancer-specific dependency on the microtubule motor protein KIF18A therefore makes it an attractive therapeutic target. Not all cancers require KIF18A, however, and the determinants underlying this distinction remain unclear. Here, we show that KIF18A inhibition drives a modest and widespread increase in spindle assembly checkpoint (SAC) signaling from kinetochores which can result in lethal mitotic delays. Whether cells arrest in mitosis depends on the robustness of the metaphase-to-anaphase transition, and cells predisposed with weak basal anaphase-promoting complex/cyclosome (APC/C) activity and/or persistent SAC signaling through metaphase are uniquely sensitive to KIF18A inhibition. KIF18A-dependent cancer cells exhibit hallmarks of this SAC:APC/C imbalance, including a long metaphase-to-anaphase transition, and slow mitosis overall. Together, our data reveal vulnerabilities in the cell division apparatus of cancer cells that can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Colin R Gliech
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhong Y Yeow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Daniel Tapias-Gomez
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yuchen Yang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andréa E Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, AV, 9713, The Netherlands
| | - Diana Cj Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, AV, 9713, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, AV, 9713, The Netherlands
| | - Grace Chung
- Oncology Research, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - Nuria Tamayo
- Medicinal Chemistry, Amgen Research, Thousand Oaks, CA, 91320, USA
| | | | - Patrick Collins
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, 94084, USA
| | - Thong T Nguyen
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, 94084, USA
| | - Andres Plata Stapper
- Center for Research Acceleration by Digital Innovation, Amgen Research, South San Francisco, CA, 94084, USA
| | - Paul E Hughes
- Oncology Research, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - Marc Payton
- Oncology Research, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
35
|
Bhatia S, Khanna KK, Duijf PHG. Targeting chromosomal instability and aneuploidy in cancer. Trends Pharmacol Sci 2024; 45:210-224. [PMID: 38355324 DOI: 10.1016/j.tips.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Cancer development and therapy resistance are driven by chromosomal instability (CIN), which causes chromosome gains and losses (i.e., aneuploidy) and structural chromosomal alterations. Technical limitations and knowledge gaps have delayed therapeutic targeting of CIN and aneuploidy in cancers. However, our toolbox for creating and studying aneuploidy in cell models has greatly expanded recently. Moreover, accumulating evidence suggests that seven conventional antimitotic chemotherapeutic drugs achieve clinical response by inducing CIN instead of mitotic arrest, although additional anticancer activities may also contribute in vivo. In this review, we discuss these recent developments. We also highlight new discoveries, which together show that 25 chromosome arm aneuploidies (CAAs) may be targetable by 36 drugs across 14 types of cancer. Collectively, these advances offer many new opportunities to improve cancer treatment.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health and Centre for Biomedical Technologies at the Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Pascal H G Duijf
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health and Centre for Biomedical Technologies at the Translational Research Institute, Woolloongabba, QLD 4102, Australia; Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
36
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Schutt KL, Queen KA, Fisher K, Budington O, Mao W, Liu W, Gu X, Xiao Y, Aswad F, Joseph J, Stumpff J. Identification of the KIF18A alpha-4 helix as a therapeutic target for chromosomally unstable tumor cells. Front Mol Biosci 2024; 11:1328077. [PMID: 38410188 PMCID: PMC10896213 DOI: 10.3389/fmolb.2024.1328077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Background: The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. Methods: In this study, we used cultured cell models to investigate the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Results: Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. Conclusion: These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.
Collapse
Affiliation(s)
- Katherine L Schutt
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Katelyn A Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Kira Fisher
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Olivia Budington
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | | | - Wei Liu
- Apeiron Therapeutics, Shanghai, China
| | | | | | - Fred Aswad
- Apeiron Therapeutics, Burlingame, CA, United States
| | - James Joseph
- Apeiron Therapeutics, Burlingame, CA, United States
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| |
Collapse
|
38
|
Mathur R, Wang Q, Schupp PG, Nikolic A, Hilz S, Hong C, Grishanina NR, Kwok D, Stevers NO, Jin Q, Youngblood MW, Stasiak LA, Hou Y, Wang J, Yamaguchi TN, Lafontaine M, Shai A, Smirnov IV, Solomon DA, Chang SM, Hervey-Jumper SL, Berger MS, Lupo JM, Okada H, Phillips JJ, Boutros PC, Gallo M, Oldham MC, Yue F, Costello JF. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell 2024; 187:446-463.e16. [PMID: 38242087 PMCID: PMC10832360 DOI: 10.1016/j.cell.2023.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024]
Abstract
Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.
Collapse
Affiliation(s)
- Radhika Mathur
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick G Schupp
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ana Nikolic
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nadia R Grishanina
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Darwin Kwok
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lena Ann Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angees, CA, USA
| | - Marisa Lafontaine
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ivan V Smirnov
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David A Solomon
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Janine M Lupo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angees, CA, USA
| | - Marco Gallo
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB; Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Queen KA, Cario A, Berger CL, Stumpff J. Modification of the neck-linker of KIF18A alters Microtubule subpopulation preference. Mol Biol Cell 2024; 35:ar3. [PMID: 37903223 PMCID: PMC10881168 DOI: 10.1091/mbc.e23-05-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Kinesins support many diverse cellular processes, including facilitating cell division through mechanical regulation of the mitotic spindle. However, how kinesin activity is controlled to facilitate this process is not well understood. Interestingly, posttranslational modifications have been identified within the enzymatic region of all 45 mammalian kinesins, but the significance of these modifications has gone largely unexplored. Given the critical role of the enzymatic region in facilitating nucleotide and microtubule binding, it may serve as a primary site for kinesin regulation. Consistent with this idea, a phosphomimetic mutation at S357 in the neck-linker of KIF18A alters the localization of KIF18A within the spindle from kinetochore microtubules to nonkinetochore microtubules at the periphery of the spindle. Changes in localization of KIF18A-S357D are accompanied by defects in mitotic spindle positioning and the ability to promote mitotic progression. This altered localization pattern is mimicked by a shortened neck-linker mutant, suggesting that KIF18A-S357D may cause the motor to adopt a shortened neck-linker-like state that decreases KIF18A accumulation at the plus-ends of kinetochore microtubules. These findings demonstrate that posttranslational modifications in the enzymatic region of kinesins could be important for biasing their localization to particular microtubule subpopulations.
Collapse
Affiliation(s)
- Katelyn A. Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Alisa Cario
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05401
| |
Collapse
|
40
|
Therapeutic targeting of the KIF18A motor protein in cancers with chromosomal instability. NATURE CANCER 2024; 5:10-11. [PMID: 38267629 DOI: 10.1038/s43018-023-00700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
|
41
|
Payton M, Belmontes B, Hanestad K, Moriguchi J, Chen K, McCarter JD, Chung G, Ninniri MS, Sun J, Manoukian R, Chambers S, Ho SM, Kurzeja RJM, Edson KZ, Dahal UP, Wu T, Wannberg S, Beltran PJ, Canon J, Boghossian AS, Rees MG, Ronan MM, Roth JA, Minocherhomji S, Bourbeau MP, Allen JR, Coxon A, Tamayo NA, Hughes PE. Small-molecule inhibition of kinesin KIF18A reveals a mitotic vulnerability enriched in chromosomally unstable cancers. NATURE CANCER 2024; 5:66-84. [PMID: 38151625 PMCID: PMC10824666 DOI: 10.1038/s43018-023-00699-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer, caused by persistent errors in chromosome segregation during mitosis. Aggressive cancers like high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) have a high frequency of CIN and TP53 mutations. Here, we show that inhibitors of the KIF18A motor protein activate the mitotic checkpoint and selectively kill chromosomally unstable cancer cells. Sensitivity to KIF18A inhibition is enriched in TP53-mutant HGSOC and TNBC cell lines with CIN features, including in a subset of CCNE1-amplified, CDK4-CDK6-inhibitor-resistant and BRCA1-altered cell line models. Our KIF18A inhibitors have minimal detrimental effects on human bone marrow cells in culture, distinct from other anti-mitotic agents. In mice, inhibition of KIF18A leads to robust anti-cancer effects with tumor regression observed in human HGSOC and TNBC models at well-tolerated doses. Collectively, our results provide a rational therapeutic strategy for selective targeting of CIN cancers via KIF18A inhibition.
Collapse
Affiliation(s)
- Marc Payton
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA.
| | | | - Kelly Hanestad
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | - Jodi Moriguchi
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | - Kui Chen
- Lead Discovery and Characterization, Amgen Research, Thousand Oaks, CA, USA
| | - John D McCarter
- Lead Discovery and Characterization, Amgen Research, Thousand Oaks, CA, USA
| | - Grace Chung
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | | | - Jan Sun
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | | | | | - Seok-Man Ho
- Research Biomics, Amgen Research, San Francisco, CA, USA
| | | | | | | | - Tian Wu
- Pre-Pivotal Drug Product, Amgen Process Development, Thousand Oaks, CA, USA
| | | | | | - Jude Canon
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | | | | | | | | | - Sheroy Minocherhomji
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA
| | | | | | - Angela Coxon
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | - Nuria A Tamayo
- Medicinal Chemistry, Amgen Research, Thousand Oaks, CA, USA
| | - Paul E Hughes
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| |
Collapse
|
42
|
Vittoria MA, Quinton RJ, Ganem NJ. Whole-genome doubling in tissues and tumors. Trends Genet 2023; 39:954-967. [PMID: 37714734 PMCID: PMC10840902 DOI: 10.1016/j.tig.2023.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
The overwhelming majority of proliferating somatic human cells are diploid, and this genomic state is typically maintained across successive cell divisions. However, failures in cell division can induce a whole-genome doubling (WGD) event, in which diploid cells transition to a tetraploid state. While some WGDs are developmentally programmed to produce nonproliferative tetraploid cells with specific cellular functions, unscheduled WGDs can be catastrophic: erroneously arising tetraploid cells are ill-equipped to cope with their doubled cellular and chromosomal content and quickly become genomically unstable and tumorigenic. Deciphering the genetics that underlie the genesis, physiology, and evolution of whole-genome doubled (WGD+) cells may therefore reveal therapeutic avenues to selectively eliminate pathological WGD+ cells.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Ryan J Quinton
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neil J Ganem
- Department of Medicine, Division of Hematology and Oncology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
43
|
Zheng S, Guerrero-Haughton E, Foijer F. Chromosomal Instability-Driven Cancer Progression: Interplay with the Tumour Microenvironment and Therapeutic Strategies. Cells 2023; 12:2712. [PMID: 38067140 PMCID: PMC10706135 DOI: 10.3390/cells12232712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Chromosomal instability (CIN) is a prevalent characteristic of solid tumours and haematological malignancies. CIN results in an increased frequency of chromosome mis-segregation events, thus yielding numerical and structural copy number alterations, a state also known as aneuploidy. CIN is associated with increased chances of tumour recurrence, metastasis, and acquisition of resistance to therapeutic interventions, and this is a dismal prognosis. In this review, we delve into the interplay between CIN and cancer, with a focus on its impact on the tumour microenvironment-a driving force behind metastasis. We discuss the potential therapeutic avenues that have resulted from these insights and underscore their crucial role in shaping innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Siqi Zheng
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erika Guerrero-Haughton
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
- Department of Research in Sexual and Reproductive Health, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
- Sistema Nacional de Investigación, SENACYT, Panama City 0816-02593, Panama
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
44
|
Tian L, Wang Y, Zhang Z, Feng X, Xiao F, Zong M. CD72, a new immune checkpoint molecule, is a novel prognostic biomarker for kidney renal clear cell carcinoma. Eur J Med Res 2023; 28:531. [PMID: 37980541 PMCID: PMC10656955 DOI: 10.1186/s40001-023-01487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The incidence and mortality of clear cell carcinoma of the kidney increases yearly. There are limited screening methods and advances in treating kidney renal clear cell carcinoma (KIRC). It is important to find new biomarkers to screen, diagnose and predict the prognosis of KIRC. Some studies have shown that CD72 influences the development and progression of colorectal cancer, nasopharyngeal cancer, and acute lymphoid leukemia. However, there is a lack of research on the role of CD72 in the pathogenesis of KIRC. This study aimed to determine whether CD72 is associated with the prognosis and immune infiltration of KIRC, providing an essential molecular basis for the early non-invasive diagnosis and immunotherapy of KIRC. METHODS Using TCGA, GTE, GEO, and ImmPort databases, we obtained the differentially expressed mRNA (DEmRNA) associated with the prognosis and immunity of KIRC patients. We used the Kruskal-Wallis test to identify clinicopathological parameters associated with target gene expression. We performed univariate and multivariate COX regression analyses to determine the effect of target gene expression and clinicopathological parameters on survival. We analyzed the target genes' relevant functions and signaling pathways through enrichment analysis. Finally, the correlation of target genes with tumor immune infiltration was explored by ssGSEA and Spearman correlation analysis. RESULTS The results revealed that patients with KIRC with higher expression of CD72 have a poorer prognosis. CD72 was associated with the Pathologic T stage, Pathologic stage, Pathologic M stage, Pathologic N stage, Histologic grade in KIRC patients, Laterality, and OS event. It was an independent predictor of the overall survival of KIRC patients. Functional enrichment analysis showed that CD72 was significantly enriched in oncogenic and immune-related pathways. According to ssGSEA and Spearman correlation analysis, CD72 expression was significantly associated with tumor immune cells and immune checkpoints. CONCLUSION Our study suggests that CD72 is associated with tumor immunity and may be a biomarker relevant to the diagnosis and prognosis of KIRC patients.
Collapse
Affiliation(s)
- Lv Tian
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- School of Nursing, Jilin University, Changchun, China
| | - Yiming Wang
- School of Nursing, Jilin University, Changchun, China
| | - Zhiyuan Zhang
- School of Nursing, Jilin University, Changchun, China
| | - Xuechao Feng
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Fengjun Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Minru Zong
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
- School of Nursing, Jilin University, Changchun, China.
| |
Collapse
|
45
|
Schutt K, Queen KA, Fisher K, Budington O, Mao W, Liu W, Xiao Y, Aswad F, Joseph J, Stumpff J. Identification of the KIF18A alpha-4 helix as a therapeutic target for chromosomally unstable tumor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562576. [PMID: 37905069 PMCID: PMC10614886 DOI: 10.1101/2023.10.16.562576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. In this study, we investigated the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.
Collapse
Affiliation(s)
- Katherine Schutt
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Katelyn A Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Kira Fisher
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Olivia Budington
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | | | - Wei Liu
- Apeiron Therapeutics, Shanghai, CN
| | | | | | | | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| |
Collapse
|
46
|
Yao S, Wang S, Zheng M, Wang Z, Liu Z, Wang ZL, Li L. Implantable, Biodegradable, and Wireless Triboelectric Devices for Cancer Therapy through Disrupting Microtubule and Actins Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303962. [PMID: 37392034 DOI: 10.1002/adma.202303962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Electric-field-based stimulation is emerging as a new cancer therapeutic modality through interfering with cell mitosis. To address its limitations of complicated wire connections, bulky devices, and coarse spatial resolution, an improved and alternative method is proposed for wirelessly delivering electrical stimulation into tumor tissues through designing an implantable, biodegradable, and wirelessly controlled therapeutic triboelectric nanogenerator (ET-TENG). With the excitation of ultrasound (US) to the ET-TENG, the implanted ET-TENG can generate an alternating current voltage and concurrently release the loaded anti-mitotic drugs into tumor tissues, which synergistically disrupts the assembly of microtubules and filament actins, induces cell cycle arrest, and finally enhances cell death. With the assistance of US, the device can be completely degraded after the therapy, getting free of a secondary surgical extraction. The device can not only work around those unresectable tumors, but also provides a new application of wireless electric field in cancer therapy.
Collapse
Affiliation(s)
- Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| | - Minjia Zheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
47
|
Liu Y, Sun M, Zhang B, Zhao W. KIF18A improves migration and invasion of colorectal cancer (CRC) cells through inhibiting PTEN signaling. Aging (Albany NY) 2023; 15:9182-9192. [PMID: 37708299 PMCID: PMC10522371 DOI: 10.18632/aging.205027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Kinesin family member 18A (KIF18A) is involved in the development of a variety of human malignancies. However, we have never known the influences of KIF18A on colorectal cancer (CRC). The study is designed to investigate the effect and molecular mechanism of KIF18A on the progression of colorectal cancer. METHODS We have not only analyzed the database using GEO, but have examined the effect of KIF18A on the development of CRC by subcutaneous tumorigenesis in nude mice. HE staining was used to observe tumor size. Besides, we make use of Western blotting to monitor the expression of related proteins. In addition, the scratch wound assay and Transwell assay were conducted to detect the effect of KIF18A on the migration and invasion of CRC cells. RESULTS The results of GEO database analysis suggested that KIF18A had a positive correlation with the growth of CRC. The results of subcutaneous tumorigenesis and HE staining in nude mice explained that KIF18A promoted the progression of CRC. Both scratch wound assay and Transwell indicated that the migration and invasion of CRC could be promoted by KIF18A. The results of Western blot illustrated that KIF18A could forward the migration and invasion of CRC cells, and inhibit PTEN, which promoted the activation of PI3K/Akt signaling pathway, thus bringing about the expression of MMP2 and MMP9. CONCLUSION In conclusion, KIF18A can further the activation of PI3K/Akt signaling pathway by means of inhibiting PTEN transcription. Therefore, it is inferred that that KIF18A is a therapeutic target for CRC.
Collapse
Affiliation(s)
- Yuan Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Bin Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
48
|
Normandin K, Coulombe-Huntington J, St-Denis C, Bernard A, Bourouh M, Bertomeu T, Tyers M, Archambault V. Genetic enhancers of partial PLK1 inhibition reveal hypersensitivity to kinetochore perturbations. PLoS Genet 2023; 19:e1010903. [PMID: 37639469 PMCID: PMC10491399 DOI: 10.1371/journal.pgen.1010903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/08/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase required for mitosis and cytokinesis. As cancer cells are often hypersensitive to partial PLK1 inactivation, chemical inhibitors of PLK1 have been developed and tested in clinical trials. However, these small molecule inhibitors alone are not completely effective. PLK1 promotes numerous molecular and cellular events in the cell division cycle and it is unclear which of these events most crucially depend on PLK1 activity. We used a CRISPR-based genome-wide screening strategy to identify genes whose inactivation enhances cell proliferation defects upon partial chemical inhibition of PLK1. Genes identified encode proteins that are functionally linked to PLK1 in multiple ways, most notably factors that promote centromere and kinetochore function. Loss of the kinesin KIF18A or the outer kinetochore protein SKA1 in PLK1-compromised cells resulted in mitotic defects, activation of the spindle assembly checkpoint and nuclear reassembly defects. We also show that PLK1-dependent CENP-A loading at centromeres is extremely sensitive to partial PLK1 inhibition. Our results suggest that partial inhibition of PLK1 compromises the integrity and function of the centromere/kinetochore complex, rendering cells hypersensitive to different kinetochore perturbations. We propose that KIF18A is a promising target for combinatorial therapies with PLK1 inhibitors.
Collapse
Affiliation(s)
- Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | | | - Corinne St-Denis
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Alexandre Bernard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de médecine, Université de Montréal, Montréal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
49
|
Bloomfield M, Cimini D. The fate of extra centrosomes in newly formed tetraploid cells: should I stay, or should I go? Front Cell Dev Biol 2023; 11:1210983. [PMID: 37576603 PMCID: PMC10413984 DOI: 10.3389/fcell.2023.1210983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
An increase in centrosome number is commonly observed in cancer cells, but the role centrosome amplification plays along with how and when it occurs during cancer development is unclear. One mechanism for generating cancer cells with extra centrosomes is whole genome doubling (WGD), an event that occurs in over 30% of human cancers and is associated with poor survival. Newly formed tetraploid cells can acquire extra centrosomes during WGD, and a generally accepted model proposes that centrosome amplification in tetraploid cells promotes cancer progression by generating aneuploidy and chromosomal instability. Recent findings, however, indicate that newly formed tetraploid cells in vitro lose their extra centrosomes to prevent multipolar cell divisions. Rather than persistent centrosome amplification, this evidence raises the possibility that it may be advantageous for tetraploid cells to initially restore centrosome number homeostasis and for a fraction of the population to reacquire additional centrosomes in the later stages of cancer evolution. In this review, we explore the different evolutionary paths available to newly formed tetraploid cells, their effects on centrosome and chromosome number distribution in daughter cells, and their probabilities of long-term survival. We then discuss the mechanisms that may alter centrosome and chromosome numbers in tetraploid cells and their relevance to cancer progression following WGD.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
50
|
Sanz-Gómez N, González-Álvarez M, De Las Rivas J, de Cárcer G. Whole-Genome Doubling as a source of cancer: how, when, where, and why? Front Cell Dev Biol 2023; 11:1209136. [PMID: 37342233 PMCID: PMC10277508 DOI: 10.3389/fcell.2023.1209136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - María González-Álvarez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| |
Collapse
|