1
|
Mao M, Ishikawa Y, Labelle-Dumais C, Wang X, Kuo YM, Gaffney UB, Smith ME, Abdala CN, Lebedev MD, Paradee WJ, Gould DB. A multifunction murine Col4a1 allele reveals potential gene therapy parameters for Gould syndrome. J Cell Biol 2025; 224:e202409153. [PMID: 40279671 PMCID: PMC12029515 DOI: 10.1083/jcb.202409153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/22/2025] [Accepted: 03/20/2025] [Indexed: 04/27/2025] Open
Abstract
Basement membranes (BMs) are specialized extracellular matrix (ECM) structures essential for organ morphogenesis, architecture, and function. BM composition and properties vary between tissues, developmental stages, and disease states, and there is only a rudimentary understanding of BM dynamics. Here, we introduce a versatile mouse model carrying a multifunctional dual-color fluorescence tagged allele with knockout potential for the fundamental BM component type IV collagen alpha 1 (COL4A1). This allele enables the characterization of cell type- and time-specific contributions to BMs and the generation of a conditional Col4a1 null allele. We demonstrate the utility of this unique genetic resource in providing clinically relevant insights for individuals with Gould syndrome - a multisystem disorder caused by COL4A1 and COL4A2 mutations. We show active COL4A1 turnover in postnatal cerebrovascular BMs, identifying a potential interventional window for cerebrovascular manifestations associated with Gould syndrome. We also demonstrate that heterozygous Col4a1 deletion is significantly less pathogenic than dominant Col4a1 missense mutations, which has important implications for gene therapy.
Collapse
Affiliation(s)
- Mao Mao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Yoshihiro Ishikawa
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | | | - Xiaowei Wang
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Uma B. Gaffney
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Megan E. Smith
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Carlie N. Abdala
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew D. Lebedev
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | | | - Douglas B. Gould
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, and Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Zhao N, Pessell AF, Chung TD, Searson PC. Brain vascular basement membrane: comparison of human and mouse brain at the transcriptomic and proteomic levels. Matrix Biol 2025:S0945-053X(25)00036-8. [PMID: 40294830 DOI: 10.1016/j.matbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
The cerebrovascular basement membrane (BM) is a key component of the blood-brain barrier (BBB). The BM provides structural support for brain microvascular endothelial cells and the supporting cells of the neurovascular unit, and facilitates cell signaling through adhesion receptors, regulates the concentration of soluble factors, and serves as an additional barrier for transport. However, our understanding of the composition of BM remains incomplete. Here we analyze recent proteomic and genomic data to assess the composition of BM in human and mouse brain, and in tissue-engineered BBB models. All data sets confirm that the main components of brain BM are collagen IV a1/2, laminin, along with agrin, perlecan, and nidogen. Transcriptomic data from human BMECs suggests that the main laminin isoform is Laminin 321, while transcriptomic data from mice and proteomic data from mice and humans suggest that Laminin 521 is the predominant isoform. Transcriptomic data from iBMECs suggest that Laminin 511 is the predominant isoform. The supporting molecules agrin, perlecan, and nidogen were detected at significant levels in all studies, although only nidogen 1 was detected in the human transcriptomic data sets. No significant differences in human BM composition were observed in BMECs along the arterio-venous axis, or in comparison of healthy and AD brains.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
3
|
Liu Y, Wang P, Li J, Chen L, Shu B, Wang H, Liu H, Zhao S, Zhou J, Chen X, Xie J. Single-cell RNA sequencing reveals the impaired epidermal differentiation and pathological microenvironment in diabetic foot ulcer. BURNS & TRAUMA 2025; 13:tkae065. [PMID: 40040959 PMCID: PMC11879498 DOI: 10.1093/burnst/tkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 03/06/2025]
Abstract
Background Diabetic foot ulcer (DFU) is one of the most common and complex complications of diabetes, but the underlying pathophysiology remains unclear. Single-cell RNA sequencing (scRNA-seq) has been conducted to explore novel cell types or molecular profiles of DFU from various perspectives. This study aimed to comprehensively analyze the potential mechanisms underlying impaired re-epithelization of DFU in a single-cell perspective. Methods We conducted scRNA-seq on tissues from human normal skin, acute wound, and DFU to investigate the potential mechanisms underlying impaired epidermal differentiation and the pathological microenvironment. Pseudo-time and lineage inference analyses revealed the distinct states and transition trajectories of epidermal cells under different conditions. Transcription factor analysis revealed the potential regulatory mechanism of key subtypes of keratinocytes. Cell-cell interaction analysis revealed the regulatory network between the proinflammatory microenvironment and epidermal cells. Laser-capture microscopy coupled with RNA sequencing (LCM-seq) and multiplex immunohistochemistry were used to validate the expression and location of key subtypes of keratinocytes. Results Our research provided a comprehensive map of the phenotypic and dynamic changes that occur during epidermal differentiation, alongside the corresponding regulatory networks in DFU. Importantly, we identified two subtypes of keratinocytes: basal cells (BC-2) and diabetes-associated keratinocytes (DAK) that might play crucial roles in the impairment of epidermal homeostasis. BC-2 and DAK showed a marked increase in DFU, with an inactive state and insufficient motivation for epidermal differentiation. BC-2 was involved in the cellular response and apoptosis processes, with high expression of TXNIP, IFITM1, and IL1R2. Additionally, the pro-differentiation transcription factors were downregulated in BC-2 in DFU, indicating that the differentiation process might be inhibited in BC-2 in DFU. DAK was associated with cellular glucose homeostasis. Furthermore, increased CCL2 + CXCL2+ fibroblasts, VWA1+ vascular endothelial cells, and GZMA+CD8+ T cells were detected in DFU. These changes in the wound microenvironment could regulate the fate of epidermal cells through the TNFSF12-TNFRSF12A, IFNG-IFNGR1/2, and IL-1B-IL1R2 pathways, which might result in persistent inflammation and impaired epidermal differentiation in DFU. Conclusions Our findings offer novel insights into the pathophysiology of DFU and present potential therapeutic targets that could improve wound care and treatment outcomes for DFU patients.
Collapse
Affiliation(s)
- Yiling Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Peng Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Jingting Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Lei Chen
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Bin Shu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Hanwen Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Hengdeng Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Shixin Zhao
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| | - Junli Zhou
- Department of Burn and Plastic Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), No. 3 Wandao Road, Dongguan 523000, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, No. 3 Lingnan Road, Foshan 528000, China
| | - Julin Xie
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2 Road, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2 Road, Guangzhou 510080, China
| |
Collapse
|
4
|
Wang M, Wang M, Jiang J, Li K, Liang H, Wang N, Zou Y, Wang D, Zhou S, Tang Y, Wu W, Qiu W, Li X, Wang X, Xie Q, Xiang X, Zhou W, Yang L, Chuong CM, Lei M. THSD4 promotes hair growth by facilitating dermal papilla and hair matrix interactions. Theranostics 2025; 15:3571-3588. [PMID: 40093891 PMCID: PMC11905124 DOI: 10.7150/thno.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction: Aging causes striking changes in the extracellular matrix (ECM) in hair follicles, which has a profound influence on hair growth. How the ECM of dermal papilla (DP), the master regulator of hair growth, changes during aging remains largely unknown. Methods: Herovici staining, Western Blotting and immunofluorescence were used to assess DP ECM and protein expression in hair follicles. Bulk and single cell RNA-sequencing were used to analyze gene expression and predict upstream and downstream regulators of target genes. Skin organoid and mouse models were used for functional validation of molecular mechanisms. Results: Aged follicle DP shows drastic depletion of ECM in which Thrombospondin Type 1 Domain Containing 4 (Thsd4) is highly downregulated. THSD4 is specifically expressed in the interface between DP and hair matrix (HM). It promotes hair growth by enhancing the interaction between dermal (DP) and epithelial cells (HM) through the SDC4-THSD4-CXCL1 signaling axis in both skin organoids and mouse models. Murine dorsal hair follicles show upregulated THSD4, enhanced DP-HM interaction, and hair growth following exposure to low temperature. Conclusions: THSD4 is a key micro- and macro-environmental mediator to promote hair growth by facilitating epidermal-mesenchymal interactions during aging. These findings demonstrate the therapeutic potential of low-temperature treatment for treating unwanted hair loss.
Collapse
Affiliation(s)
- Miaomiao Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Cooperation, ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Cooperation, ltd, Shenzhen 518000, China
| | - Nian'ou Wang
- Shenzhen Accompany Technology Cooperation, ltd, Shenzhen 518000, China
| | - Yi Zou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Burns and Plastic Surgery, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan 430000, China
| | - Dehuan Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Siyi Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuchun Tang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weiming Qiu
- Department of Burns and Plastic Surgery, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan 430000, China
| | - Xinxin Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wei Zhou
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education &111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Wuergezhen D, Gindroz E, Morita R, Hashimoto K, Abe T, Kiyonari H, Fujiwara H. An eGFP-Col4a2 mouse model reveals basement membrane dynamics underlying hair follicle morphogenesis. J Cell Biol 2025; 224:e202404003. [PMID: 39656438 PMCID: PMC11629887 DOI: 10.1083/jcb.202404003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Precisely controlled remodeling of the basement membrane (BM) is crucial for morphogenesis, but its molecular and tissue-level dynamics, underlying mechanisms, and functional significance in mammals remain largely unknown due to limited visualization tools. We developed mouse lines in which the endogenous collagen IV gene (Col4a2) was fused with a fluorescent tag. Through live imaging of developing hair follicles, we reveal a spatial gradient in the turnover rate of COL4A2 that is closely coupled with both the BM expansion rate and the proliferation rate of epithelial progenitors. Epithelial progenitors are displaced with directionally expanding BMs but do not actively migrate on stationary BM. The addition of a matrix metalloproteinase inhibitor delays COL4A2 turnover, restrains BM expansion, and increases perpendicular divisions of epithelial progenitors, altering hair follicle morphology. Our findings highlight the spatially distinct dynamics of BM and their key roles in orchestrating progenitor cell behavior and organ shape during development.
Collapse
Affiliation(s)
- Duligengaowa Wuergezhen
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eleonore Gindroz
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ritsuko Morita
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kei Hashimoto
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Fiore VF, Almagro J, Fuchs E. Shaping epithelial tissues by stem cell mechanics in development and cancer. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00821-0. [PMID: 39881165 DOI: 10.1038/s41580-024-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.
Collapse
Affiliation(s)
- Vincent F Fiore
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim, Ridgefield, CT, USA.
| | - Jorge Almagro
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
8
|
Napoli M, Bauer J, Bonod C, Vadon-Le Goff S, Moali C. PCPE-2 (procollagen C-proteinase enhancer-2): The non-identical twin of PCPE-1. Matrix Biol 2024; 134:59-78. [PMID: 39251075 DOI: 10.1016/j.matbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
PCPE-2 was discovered at the beginning of this century, and was soon identified as a close homolog of PCPE-1 (procollagen C-proteinase enhancer 1). After the demonstration that it could also stimulate the proteolytic maturation of fibrillar procollagens by BMP-1/tolloid-like proteinases (BTPs), PCPE-2 did not attract much attention as it was thought to fulfill the same functions as PCPE-1 which was already well-described. However, the tissue distribution of PCPE-2 shows both common points and significant differences with PCPE-1, suggesting that their activities are not fully overlapping. Also, the recently established connections between PCPE-2 (gene name PCOLCE2) and several important diseases such as atherosclerosis, inflammatory diseases and cancer have highlighted the need for a thorough reappraisal of the in vivo roles of this regulatory protein. In this context, the recent finding that, while retaining the ability to bind fibrillar procollagens and to activate their C-terminal maturation, PCPE-2 can also bind BTPs and inhibit their activity has substantially extended its potential functions. In this review, we describe the current knowledge about PCPE-2 with a focus on collagen fibrillogenesis, lipid metabolism and inflammation, and discuss how we could further advance our understanding of PCPE-2-dependent biological processes.
Collapse
Affiliation(s)
- Manon Napoli
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Julien Bauer
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Christelle Bonod
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Catherine Moali
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France.
| |
Collapse
|
9
|
Olczak A, Pieczonka TD, Ławicki S, Łukaszyk K, Pulawska-Czub A, Cambier L, Kobielak K. The overexpression of R-spondin 3 affects hair morphogenesis and hair development along with the formation and maturation of the hair follicle stem cells. Front Physiol 2024; 15:1424077. [PMID: 39351282 PMCID: PMC11439821 DOI: 10.3389/fphys.2024.1424077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Mice hair follicles (HFs) are a valuable model for studying various aspects of hair biology, including morphogenesis, development, and regeneration due to their easily observable phenotype and genetic manipulability. The initiation and progression of hair follicle morphogenesis, as well as the hair follicle cycle, are regulated by various signaling pathways, of which the main role is played by the Wingless-type MMTV integration site family (Wnt) and the Bone Morphogenic Protein (BMP). During the hair follicle cycle, the BMP pathway maintains hair follicle stem cells (HFSCs) in a dormant state while the Wnt pathway activates them for hair growth. Given the pivotal role of the Wnt pathway in hair biology and HFSCs regulation, we investigated the influence of the Wnt modulator - R-spondin 3 (Rspo3), in these processes. For this purpose, we developed a transgenic mice model with the overexpression of Rspo3 (Rspo3GOF) in the whole ectoderm and its derivatives, starting from early morphogenesis. Rspo3GOF mice exhibited a distinct phenotype with sparse hair and visible bald areas, caused by reduced proliferation and increased apoptosis of hair matrix progenitor cells, which resulted in a premature anagen-to-catagen transition with a shortened growth phase and decreased overall length of all hair types. In addition, Rspo3GOF promoted induction of auchene and awl, canonical Wnt-dependent hair type during morphogenesis, but the overall hair amount remained reduced. We also discovered a delay in the pre-bulge formation during morphogenesis and prolonged immaturity of the HFSC population in the bulge region postnatally, which further impaired proper hair regeneration throughout the mice's lifespan. Our data supported that Rspo3 function observed in our model works in HFSCs' formation of pre-bulge during morphogenesis via enhancing activation of the canonical Wnt pathway, whereas in contrast, in the postnatal immature bulge, activation of canonical Wnt signaling was attenuated. In vitro studies on keratinocytes revealed changes in proliferation, migration, and colony formation, highlighting the inhibitory effect of constitutive overexpression of Rspo3 on these cellular processes. Our research provides novel insights into the role of Rspo3 in the regulation of hair morphogenesis and development, along with the formation and maturation of the HFSCs, which affect hair regeneration.
Collapse
Affiliation(s)
- Alicja Olczak
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Tomasz D. Pieczonka
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Szymon Ławicki
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Konrad Łukaszyk
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Anna Pulawska-Czub
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Linda Cambier
- The Vision Center and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Krzysztof Kobielak
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| |
Collapse
|
10
|
Yang F, Yang L, Kuroda Y, Lai S, Takahashi Y, Sayo T, Namiki T, Nakajima K, Sano S, Inoue S, Tsuruta D, Katayama I. Disorganisation of basement membrane zone architecture impairs melanocyte residence in vitiligo. J Pathol 2024; 264:30-41. [PMID: 38989633 DOI: 10.1002/path.6321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The basement membrane zone is the interface between the epidermis and dermis, and it is disrupted in several skin conditions. Here, we report the results of a comprehensive investigation into the structural and molecular factors of the basement membrane zone in vitiligo, a dermatological disorder characterised by depigmented patches on the skin. Using electron microscopy and immunofluorescence staining, we confirmed abnormal basement membrane zone morphology and disrupted basement membrane zone architecture in human vitiliginous skin. Furthermore, we identified elevated expression of matrix metalloproteinase 2 (MMP2) in human dermal fibroblasts as a key factor responsible for basement membrane zone matrix degradation. In our in vitro and ex vivo models, overexpression of MMP2 in fibroblasts led to basement membrane zone disruption and melanocyte disappearance. Importantly, we reveal that the loss of melanocytes in vitiligo is primarily linked to their weakened adhesion to the basement membrane, mediated by binding between integrin β1 and laminin and discoidin domain receptor 1 and collagen IV. Finally, inhibition of matrix metalloproteinase 2 expression reversed depigmentation in a mouse model of vitiligo. In conclusion, our research shows the importance of basement membrane zone integrity in melanocyte residence and offers new avenues for therapeutic interventions to address this challenging skin condition. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Fei Yang
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Lingli Yang
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yasutaka Kuroda
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Sylvia Lai
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshito Takahashi
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Tetsuya Sayo
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Takeshi Namiki
- Department of Dermatology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ichiro Katayama
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
11
|
Walther RF, Lancaster C, Burden JJ, Pichaud F. A dystroglycan-laminin-integrin axis coordinates cell shape remodeling in the developing Drosophila retina. PLoS Biol 2024; 22:e3002783. [PMID: 39226305 PMCID: PMC11398702 DOI: 10.1371/journal.pbio.3002783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
Cell shape remodeling is a principal driver of epithelial tissue morphogenesis. While progress continues to be made in our understanding of the pathways that control the apical (top) geometry of epithelial cells, we know comparatively little about those that control cell basal (bottom) geometry. To examine this, we used the Drosophila ommatidium, which is the basic visual unit of the compound eye. The ommatidium is shaped as a hexagonal prism, and generating this 3D structure requires ommatidial cells to adopt specific apical and basal polygonal geometries. Using this model system, we find that generating cell type-specific basal geometries starts with patterning of the basal extracellular matrix, whereby Laminin accumulates at discrete locations across the basal surface of the retina. We find the Dystroglycan receptor complex (DGC) is required for this patterning by promoting localized Laminin accumulation at the basal surface of cells. Moreover, our results reveal that localized accumulation of Laminin and the DGC are required for directing Integrin adhesion. This induces cell basal geometry remodeling by anchoring the basal surface of cells to the extracellular matrix at specific, Laminin-rich locations. We propose that patterning of a basal extracellular matrix by generating discrete Laminin domains can direct Integrin adhesion to induce cell shape remodeling in epithelial morphogenesis.
Collapse
Affiliation(s)
- Rhian F. Walther
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Courtney Lancaster
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Jemima J. Burden
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Franck Pichaud
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| |
Collapse
|
12
|
Xu S, Zhao L, Li Y, Gu X, Liu Z, Han X, Li W, Ma W. Activating the healing process: three-dimensional culture of stem cells in Matrigel for tissue repair. BMC Biotechnol 2024; 24:36. [PMID: 38796454 PMCID: PMC11128131 DOI: 10.1186/s12896-024-00862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND To establish a strategy for stem cell-related tissue regeneration therapy, human gingival mesenchymal stem cells (hGMSCs) were loaded with three-dimensional (3D) bioengineered Matrigel matrix scaffolds in high-cell density microtissues to promote local tissue restoration. METHODS The biological performance and stemness of hGMSCs under 3D culture conditions were investigated by viability and multidirectional differentiation analyses. A Sprague‒Dawley (SD) rat full-thickness buccal mucosa wound model was established, and hGMSCs/Matrigel were injected into the submucosa of the wound. Autologous stem cell proliferation and wound repair in local tissue were assessed by histomorphometry and immunohistochemical staining. RESULTS Three-dimensional suspension culture can provide a more natural environment for extensions and contacts between hGMSCs, and the viability and adipogenic differentiation capacity of hGMSCs were significantly enhanced. An animal study showed that hGMSCs/Matrigel significantly accelerated soft tissue repair by promoting autologous stem cell proliferation and enhancing the generation of collagen fibers in local tissue. CONCLUSION Three-dimensional cell culture with hydrogel scaffolds, such as Matrigel, can effectively improve the biological function and maintain the stemness of stem cells. The therapeutic efficacy of hGMSCs/Matrigel was confirmed, as these cells could effectively stimulate soft tissue repair to promote the healing process by activating the host microenvironment and autologous stem cells.
Collapse
Affiliation(s)
- Shukui Xu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Liru Zhao
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Yinghui Li
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Xiuge Gu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Ziyang Liu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Xing Han
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Wenwen Li
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Wensheng Ma
- Department of Orthodontics, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| |
Collapse
|
13
|
Batsukh S, Oh S, Lee JM, Joo JHJ, Son KH, Byun K. Extracellular Vesicles from Ecklonia cava and Phlorotannin Promote Rejuvenation in Aged Skin. Mar Drugs 2024; 22:223. [PMID: 38786614 PMCID: PMC11123375 DOI: 10.3390/md22050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) elicit diverse biological effects, including promoting skin health. EVs isolated from Ecklonia cava (EV-EC) carry heat shock protein 70 (HSP70), which inhibits key regulators such as TNF-α, MAPKs, and NF-κB, consequently downregulating matrix metalloproteinases (MMPs). Aging exacerbates oxidative stress, upregulating MAPK and NF-κB signaling and worsening extracellular matrix degradation in the skin. E. cava-derived phlorotannin (PT) mitigates MAPK and NF-κB signaling. We evaluated the impact of EV-EC and PT on skin rejuvenation using an in vitro keratinocyte senescence model and an in vivo aged-mouse model. Western blotting confirmed the presence of HSP70 in EV-EC. Treatment with EV-EC and PT in senescent keratinocytes increased HSP70 expression and decreased the expression of TNF-α, MAPK, NF-κB, activator protein-1 (AP-1), and MMPs. Oxidative stress was also reduced. Sequential treatment with PT and EV-EC (PT/EV-EC) yielded more significant results compared to individual treatments. The administration of PT/EV-EC to the back skin of aged mice mirrored the in vitro findings, resulting in increased collagen fiber accumulation and improved elasticity in the aged skin. Therefore, PT/EV-EC holds promise in promoting skin rejuvenation by increasing HSP70 expression, decreasing the expression of MMPs, and reducing oxidative stress in aged skin.
Collapse
Affiliation(s)
- Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ji Min Lee
- Doctors Dermatologic Clinic, Gangdong Godeok, Seoul 05269, Republic of Korea
| | | | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
14
|
Mu X, Ono M, Nguyen HTT, Wang Z, Zhao K, Komori T, Yonezawa T, Kuboki T, Oohashi T. Exploring the Regulators of Keratinization: Role of BMP-2 in Oral Mucosa. Cells 2024; 13:807. [PMID: 38786031 PMCID: PMC11119837 DOI: 10.3390/cells13100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.
Collapse
Affiliation(s)
- Xindi Mu
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Ha Thi Thu Nguyen
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Kun Zhao
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Taishi Komori
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan;
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| |
Collapse
|
15
|
Vandishi AK, Esmaeili A, Taghipour N. The promising prospect of human hair follicle regeneration in the shadow of new tissue engineering strategies. Tissue Cell 2024; 87:102338. [PMID: 38428370 DOI: 10.1016/j.tice.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Hair loss disorder (alopecia) affects numerous people around the world. The low effectiveness and numerous side effects of common treatments have prompted researchers to investigate alternative and effective solutions. Hair follicle (HF) bioengineering is the knowledge of using hair-inductive (trichogenic) cells. Most bioengineering-based approaches focus on regenerating folliculogenesis through manipulation of regulators of physical/molecular properties in the HF niche. Despite the high potential of cell therapy, no cell product has been produced for effective treatment in the field of hair regeneration. This problem shows the challenges in the functionality of cultured human hair cells. To achieve this goal, research and development of new and practical approaches, technologies and biomaterials are needed. Based on recent advances in the field, this review evaluates emerging HF bioengineering strategies and the future prospects for the field of tissue engineering and successful HF regeneration.
Collapse
Affiliation(s)
- Arezoo Karami Vandishi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Christofidou ED, Tomazou M, Voutouri C, Michael C, Stylianopoulos T, Spyrou GM, Strati K. Oct4 is a gatekeeper of epithelial identity by regulating cytoskeletal organization in skin keratinocytes. Cell Rep 2024; 43:113859. [PMID: 38421873 DOI: 10.1016/j.celrep.2024.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Oct4 is a pioneer transcription factor regulating pluripotency. However, it is not well known whether Oct4 has an impact on epidermal cells. We generated OCT4 knockout clonal cell lines using immortalized human skin keratinocytes to identify a functional role for the protein. Here, we report that Oct4-deficient cells transitioned into a mesenchymal-like phenotype with enlarged size and shape, exhibited accelerated migratory behavior, decreased adhesion, and appeared arrested at the G2/M cell cycle checkpoint. Oct4 absence had a profound impact on cortical actin organization, with loss of microfilaments from the cell membrane, increased puncta deposition in the cytoplasm, and stress fiber formation. E-cadherin, β-catenin, and ZO1 were almost absent from cell-cell contacts, while fibronectin deposition was markedly increased in the extracellular matrix (ECM). Mapping of the transcriptional and chromatin profiles of Oct4-deficient cells revealed that Oct4 controls the levels of cytoskeletal, ECM, and differentiation-related genes, whereas epithelial identity is preserved through transcriptional and non-transcriptional mechanisms.
Collapse
Affiliation(s)
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
17
|
Li Y, Sun L, Chen R, Ni W, Liang Y, Zhang H, He C, Shi B, Petropoulos S, Zhao C, Shi L. Single-Cell Analysis Reveals Cxcl14 + Fibroblast Accumulation in Regenerating Diabetic Wounds Treated by Hydrogel-Delivering Carbon Monoxide. ACS CENTRAL SCIENCE 2024; 10:184-198. [PMID: 38292600 PMCID: PMC10823591 DOI: 10.1021/acscentsci.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2024]
Abstract
Nonhealing skin wounds are a problematic complication associated with diabetes. Therapeutic gases delivered by biomaterials have demonstrated powerful wound healing capabilities. However, the cellular responses and heterogeneity in the skin regeneration process after gas therapy remain elusive. Here, we display the benefit of the carbon monoxide (CO)-releasing hyaluronan hydrogel (CO@HAG) in promoting diabetic wound healing and investigate the cellular responses through single-cell transcriptomic analysis. The presented CO@HAG demonstrates wound microenvironment responsive gas releasing properties and accelerates the diabetic wound healing process in vivo. It is found that a new cluster of Cxcl14+ fibroblasts with progenitor property is accumulated in the CO@HAG-treated wound. This cluster of Cxcl14+ fibroblasts is yet unreported in the skin regeneration process. CO@HAG-treated wound macrophages feature a decrease in pro-inflammatory property, while their anti-inflammatory property increases. Moreover, the TGF-β signal between the pro-inflammatory (M1) macrophage and the Cxcl14+ fibroblast in the CO@HAG-treated wound is attenuated based on cell-cell interaction analysis. Our study provides a useful hydrogel-mediated gas therapy method for diabetic wounds and new insights into cellular events in the skin regeneration process after gas-releasing biomaterials therapy.
Collapse
Affiliation(s)
- Ya Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Lu Sun
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Ranxi Chen
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Wenpeng Ni
- College of
Materials Science and Engineering, Hunan
University, Changsha 410082, China
| | - Yuyun Liang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Hexu Zhang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Chaoyong He
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Bi Shi
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Sophie Petropoulos
- Department
of Clinical Science, Intervention and Technology, Division of Obstetrics
and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
- Département
de Médecine, Université de
Montréal, Montreal Canada, Centre de Recherche du Centre Hospitalier
de l’Université de Montréal, Axe Immunopathologie, H2X 19A 708 Montreal Canada
| | - Cheng Zhao
- Department
of Clinical Science, Intervention and Technology, Division of Obstetrics
and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Liyang Shi
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Di Russo J, Magin TM, Leube RE. A keratin code defines the textile nature of epithelial tissue architecture. Curr Opin Cell Biol 2023; 85:102236. [PMID: 37708744 DOI: 10.1016/j.ceb.2023.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
We suggest that the human body can be viewed as of textile nature whose fabric consists of interconnected fiber systems. These fiber systems form highly dynamic scaffolds, which respond to environmental changes at different temporal and spatial scales. This is especially relevant at sites where epithelia border on connective tissue regions that are exposed to dynamic microenvironments. We propose that the enormous heterogeneity and adaptability of epithelia are based on a "keratin code", which results from the cell-specific expression and posttranslational modification of keratin isotypes. It thereby defines unique cytoskeletal intermediate filament networks that are coupled across cells and to the correspondingly heterogeneous fibers of the underlying extracellular matrix. The resulting fabric confers unique local properties.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
19
|
Wistner SC, Rashad L, Slaughter G. Advances in tissue engineering and biofabrication for in vitro skin modeling. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2023; 35:e00306. [PMID: 38645432 PMCID: PMC11031264 DOI: 10.1016/j.bprint.2023.e00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The global prevalence of skin disease and injury is continually increasing, yet conventional cell-based models used to study these conditions do not accurately reflect the complexity of human skin. The lack of inadequate in vitro modeling has resulted in reliance on animal-based models to test pharmaceuticals, biomedical devices, and industrial and environmental toxins to address clinical needs. These in vivo models are monetarily and morally expensive and are poor predictors of human tissue responses and clinical trial outcomes. The onset of three-dimensional (3D) culture techniques, such as cell-embedded and decellularized approaches, has offered accessible in vitro alternatives, using innovative scaffolds to improve cell-based models' structural and histological authenticity. However, these models lack adequate organizational control and complexity, resulting in variations between structures and the exclusion of physiologically relevant vascular and immunological features. Recently, biofabrication strategies, which combine biology, engineering, and manufacturing capabilities, have emerged as instrumental tools to recreate the heterogeneity of human skin precisely. Bioprinting uses computer-aided design (CAD) to yield robust and reproducible skin prototypes with unprecedented control over tissue design and assembly. As the interdisciplinary nature of biofabrication grows, we look to the promise of next-generation biofabrication technologies, such as organ-on-a-chip (OOAC) and 4D modeling, to simulate human tissue behaviors more reliably for research, pharmaceutical, and regenerative medicine purposes. This review aims to discuss the barriers to developing clinically relevant skin models, describe the evolution of skin-inspired in vitro structures, analyze the current approaches to biofabricating 3D human skin mimetics, and define the opportunities and challenges in biofabricating skin tissue for preclinical and clinical uses.
Collapse
Affiliation(s)
- Sarah C. Wistner
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Layla Rashad
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Gymama Slaughter
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| |
Collapse
|
20
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
21
|
Lei M, Harn HIC, Li Q, Jiang J, Wu W, Zhou W, Jiang TX, Wang M, Zhang J, Lai YC, Juan WT, Widelitz RB, Yang L, Gu ZZ, Chuong CM. The mechano-chemical circuit drives skin organoid self-organization. Proc Natl Acad Sci U S A 2023; 120:e2221982120. [PMID: 37643215 PMCID: PMC10483620 DOI: 10.1073/pnas.2221982120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Stem cells in organoids self-organize into tissue patterns with unknown mechanisms. Here, we use skin organoids to analyze this process. Cell behavior videos show that the morphological transformation from multiple spheroidal units with morphogenesis competence (CMU) to planar skin is characterized by two abrupt cell motility-increasing events before calming down. The self-organizing processes are controlled by a morphogenetic module composed of molecular sensors, modulators, and executers. Increasing dermal stiffness provides the initial driving force (driver) which activates Yap1 (sensor) in epidermal cysts. Notch signaling (modulator 1) in epidermal cyst tunes the threshold of Yap1 activation. Activated Yap1 induces Wnts and MMPs (epidermal executers) in basal cells to facilitate cellular flows, allowing epidermal cells to protrude out from the CMU. Dermal cell-expressed Rock (dermal executer) generates a stiff force bridge between two CMU and accelerates tissue mixing via activating Laminin and β1-integrin. Thus, this self-organizing coalescence process is controlled by a mechano-chemical circuit. Beyond skin, self-organization in organoids may use similar mechano-chemical circuit structures.
Collapse
Affiliation(s)
- Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung40402, Taiwan
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing210096, China
| | - Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing400030, China
| | - Tin-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
| | - Jinwei Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
| | - Yung-Chih Lai
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung40402, Taiwan
| | - Wen-Tau Juan
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung40402, Taiwan
| | - Randall Bruce Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing400044, China
| | - Zhong-Ze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing210096, China
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
22
|
Sugiyama-Nakagiri Y, Yamashita S, Taniguchi Y, Shimono C, Sekiguchi K. Laminin fragments conjugated with perlecan's growth factor-binding domain differentiate human induced pluripotent stem cells into skin-derived precursor cells. Sci Rep 2023; 13:14556. [PMID: 37666868 PMCID: PMC10477235 DOI: 10.1038/s41598-023-41701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Deriving stem cells to regenerate full-thickness human skin is important for treating skin disorders without invasive surgical procedures. Our previous protocol to differentiate human induced pluripotent stem cells (iPSCs) into skin-derived precursor cells (SKPs) as a source of dermal stem cells employs mouse fibroblasts as feeder cells and is therefore unsuitable for clinical use. Herein, we report a feeder-free method for differentiating iPSCs into SKPs by customising culture substrates. We immunohistochemically screened for laminins expressed in dermal papillae (DP) and explored the conditions for inducing the differentiation of iPSCs into SKPs on recombinant laminin E8 (LM-E8) fragments with or without conjugation to domain I of perlecan (PDI), which binds to growth factors through heparan sulphate chains. Several LM-E8 fragments, including those of LM111, 121, 332, 421, 511, and 521, supported iPSC differentiation into SKPs without PDI conjugation. However, the SKP yield was significantly enhanced on PDI-conjugated LM-E8 fragments. SKPs induced on PDI-conjugated LM111-E8 fragments retained the gene expression patterns characteristic of SKPs, as well as the ability to differentiate into adipocytes, osteocytes, and Schwann cells. Thus, PDI-conjugated LM-E8 fragments are promising agents for inducing iPSC differentiation into SKPs in clinical settings.
Collapse
Affiliation(s)
| | - Shiho Yamashita
- Kao Corporation, 2602, Akabane Ichikai-Machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Yukimasa Taniguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Chisei Shimono
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
23
|
McIntyre DC, Nance J. Niche cells regulate primordial germ cell quiescence in response to basement membrane signaling. Development 2023; 150:dev201640. [PMID: 37497562 PMCID: PMC10445801 DOI: 10.1242/dev.201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Stem cell quiescence, proliferation and differentiation are controlled by interactions with niche cells and a specialized extracellular matrix called basement membrane (BM). Direct interactions with adjacent BM are known to regulate stem cell quiescence; however, it is less clear how niche BM relays signals to stem cells that it does not contact. Here, we examine how niche BM regulates Caenorhabditis elegans primordial germ cells (PGCs). BM regulates PGC quiescence even though PGCs are enwrapped by somatic niche cells and do not contact the BM; this can be demonstrated by depleting laminin, which causes normally quiescent embryonic PGCs to proliferate. We show that following laminin depletion, niche cells relay proliferation-inducing signals from the gonadal BM to PGCs via integrin receptors. Disrupting the BM proteoglycan perlecan blocks PGC proliferation when laminin is depleted, indicating that laminin functions to inhibit a proliferation-inducing signal originating from perlecan. Reducing perlecan levels in fed larvae hampers germline growth, suggesting that BM signals regulate germ cell proliferation under physiological conditions. Our results reveal how BM signals can regulate stem cell quiescence indirectly, by activating niche cell integrin receptors.
Collapse
Affiliation(s)
- Daniel C. McIntyre
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- University of Virginia, Department of Biology, 90 Geldard Drive, Physical Life Science Building Room 318, Charlottesville, VA 22904, USA
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
24
|
Du H, Zhang T, Wang Q, Cao X, Zheng H, Li J, Zhu J, Qu J, Guo L, Sun Y. Traditional Chinese Medicine Shi-Bi-Man regulates lactic acid metabolism and drives hair follicle stem cell activation to promote hair regeneration. Chin Med 2023; 18:84. [PMID: 37454125 PMCID: PMC10349503 DOI: 10.1186/s13020-023-00791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND As a supplement for promoting hair health, Shi-Bi-Man (SBM) is a prescription comprising various traditional Chinese medicines. Though SBM has been reported to promote hair regeneration, its molecular mechanism remains unclear. Cynomolgus monkeys (Macaca fascicularis) are non-human primates with a gene expression profile similar to that of humans. The purpose of this research is to evaluate the effect of SBM on promoting hair regeneration in cynomolgus monkeys and to reveal the underlying mechanism. METHODS The effect of SBM on hair regeneration was observed by skin administration on 6 cynomolgus monkeys with artificial back shaving. The molecular mechanism of SBM was studied using single-cell RNA sequencing (scRNA-seq) in combination with quantitative polymerase chain reaction (qPCR) detection for gene transcription level, and immunofluorescence staining verification for protein level. RESULTS SBM significantly induced hair regeneration in cynomolgus monkeys, increased hair follicle number and facilitated hair follicle development. ScRNA-seq revealed an increase in the number of hair follicle stem cells (HFSCs) with a higher activation state, as evidenced by the higher expression of activation marker LDHA related to metabolism and the proliferation marker MKI67. Immunofluorescence analysis at the protein level and qPCR at the mRNA level confirmed the sequencing data. Cellchat analysis revealed an enrichment of ligand-receptor pairs involved in intercellular communication in Laminin-related pathways. CONCLUSION SBM significantly promotes hair regeneration in cynomolgus monkeys. Mechanically, SBM can up-regulate LDHA-mediated lactic acid metabolism and drive HFSC activation, which in turn promotes the proliferation and differentiation of HFSCs.
Collapse
Affiliation(s)
- Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Tao Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiao Wang
- Department of Ultrasound, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Huiwen Zheng
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Jiabin Li
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Jianxia Zhu
- Shenzhen Sipimo Technology Co., Ltd., Shenzhen, 518000, Guangdong Province, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Lehang Guo
- Department of Ultrasound, Shanghai Tenth People's Hospital, Shanghai, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
25
|
Wei H, Du S, Parksong J, Pasolli HA, Matte-Martone C, Regot S, Gonzalez LE, Xin T, Greco V. Organ function is preserved despite reorganization of niche architecture in the hair follicle. Cell Stem Cell 2023; 30:962-972.e6. [PMID: 37419106 PMCID: PMC10362479 DOI: 10.1016/j.stem.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
The ability of stem cells to build and replenish tissues depends on support from their niche. Although niche architecture varies across organs, its functional importance is unclear. During hair follicle growth, multipotent epithelial progenitors build hair via crosstalk with their remodeling fibroblast niche, the dermal papilla, providing a powerful model to functionally interrogate niche architecture. Through mouse intravital imaging, we show that dermal papilla fibroblasts remodel individually and collectively to form a morphologically polarized, structurally robust niche. Asymmetric TGF-β signaling precedes morphological niche polarity, and loss of TGF-β signaling in dermal papilla fibroblasts leads them to progressively lose their stereotypic architecture, instead surrounding the epithelium. The reorganized niche induces the redistribution of multipotent progenitors but nevertheless supports their proliferation and differentiation. However, the differentiated lineages and hairs produced by progenitors are shorter. Overall, our results reveal that niche architecture optimizes organ efficiency but is not absolutely essential for organ function.
Collapse
Affiliation(s)
- Haoyang Wei
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shuangshuang Du
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeeun Parksong
- Departments of Cell Biology and Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | | | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lauren E Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianchi Xin
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
26
|
Shiju TM, Sampaio LP, Hilgert GSL, Wilson SE. Corneal epithelial basement membrane assembly is mediated by epithelial cells in coordination with corneal fibroblasts during wound healing. Mol Vis 2023; 29:68-86. [PMID: 37287640 PMCID: PMC10243680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Purpose To understand which cell types, either alone or in combination, contribute to the assembly of the epithelial basement membrane (BM) during corneal wound healing. Methods A 3D corneal organotypic model and an in situ rabbit photorefractive keratectomy (PRK) model were used in this study. The 3D corneal organotypic model was established by culturing the rabbit corneal epithelial cells with either corneal fibroblasts or myofibroblasts embedded in collagen type I for 18 days. Corneal fibroblasts were isolated from fresh rabbit corneas, and the myofibroblasts were derived either directly from bone marrow or differentiated from corneal fibroblasts. Immunocytochemistry for alpha-smooth muscle actin (SMA), vimentin, desmin, and vinculin markers confirmed well-differentiated myofibroblasts. Immunohistochemistry was performed in cryofixed sections for BM markers, including laminin alpha-5, laminin beta-3, perlecan, nidogen-1, and collagen type IV. Specimens were also examined with transmission electron microscopy (TEM). Corneas were collected from rabbits after -3 diopter (D) PRK at different time points after surgery, with four corneas at each time point in each group. Cryofixed corneal sections were stained for vimentin, alpha-SMA, and nidogen-1. Results The formation of an epithelial BM with expression of laminin alpha-5, laminin beta-3, perlecan, nidogen-1, and collagen IV was observed at the interface between the corneal epithelial cells and corneal fibroblasts. TEM images further confirmed the presence of epithelial BM in organotypic cultures of epithelial cells and corneal fibroblasts. No epithelial BM was observed in cultures of corneal epithelial cells and myofibroblasts (cornea or bone marrow derived), corneal epithelial cells alone, or corneal fibroblasts alone. In rabbit corneas after -3D PRK, a strong association was observed between the regenerating epithelial BM and the presence of corneal fibroblasts at the site of epithelial BM generation. Conclusions The corneal epithelial BM assembly is mediated by epithelial cells in coordination with corneal fibroblasts during wound healing.
Collapse
|
27
|
Wang M, Zhou X, Zhou S, Wang M, Jiang J, Wu W, Liu T, Xu W, Zhang J, Liu D, Zou Y, Qiu W, Zhang M, Liu W, Li Z, Wang D, Li T, Li J, Liu W, Yang L, Lei M. Mechanical force drives the initial mesenchymal-epithelial interaction during skin organoid development. Theranostics 2023; 13:2930-2945. [PMID: 37284452 PMCID: PMC10240816 DOI: 10.7150/thno.83217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Rationale: Stem cells self-organize to form organoids that generate mini-organs that resemble the physiologically-developed ones. The mechanism by which the stem cells acquire the initial potential for generating mini-organs remains elusive. Here we used skin organoids as an example to study how mechanical force drives initial epidermal-dermal interaction which potentiates skin organoids to regenerate hair follicles. Methods: Live imaging analysis, single-cell RNA-sequencing analysis, and immunofluorescence were used to analyze the contractile force of dermal cells in skin organoids. Bulk RNA-sequencing analysis, calcium probe detection, and functional perturbations were used to verify that calcium signaling pathways respond to the contractile force of dermal cells. In vitro mechanical loading experiment was used to prove that the stretching force triggers the epidermal Piezo1 expression which negatively regulates dermal cell attachment. Transplantation assay was used to test the regenerative ability of skin organoids. Results: We found that dermal cell-derived contraction force drives the movement of dermal cells surrounding the epidermal aggregates to trigger initial mesenchymal-epithelial interaction (MEI). In response to dermal cell contraction force, the arrangement of the dermal cytoskeleton was negatively regulated by the calcium signaling pathway which further influences dermal-epidermal attachment. The native contraction force generated from the dermal cell movement exerts a stretching force on the adjacent epidermal cells, activating the stretching force sensor Piezo1 in the epidermal basal cells during organoid culture. Epidermal Piezo1 in turn drives strong MEI to negatively regulate dermal cell attachment. Proper initial MEI by mechanical-chemical coupling during organoid culture is required for hair regeneration upon transplantation of the skin organoids into the back of the nude mice. Conclusion: Our study demonstrated that mechanical-chemical cascade drives the initial event of MEI during skin organoid development, which is fundamental to the organoid, developmental, and regenerative biology fields.
Collapse
Affiliation(s)
- Mengyue Wang
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhou
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Siyi Zhou
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Miaomiao Wang
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jingwei Jiang
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wang Wu
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Three Gorges Hospital, Chongqing University, Chongqing 404000, China
| | - Tiantian Liu
- Three Gorges Hospital, Chongqing University, Chongqing 404000, China
| | - Wei Xu
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Jinwei Zhang
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Deming Liu
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yi Zou
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Burns and Plastic Surgery, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan 430000, China
| | - Weiming Qiu
- Department of Burns and Plastic Surgery, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan 430000, China
| | - Man Zhang
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weiwei Liu
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zeming Li
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Dehuan Wang
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Tingting Li
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ji Li
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wanqian Liu
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Li Yang
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair & Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
28
|
Shin SH, Lee YH, Rho NK, Park KY. Skin aging from mechanisms to interventions: focusing on dermal aging. Front Physiol 2023; 14:1195272. [PMID: 37234413 PMCID: PMC10206231 DOI: 10.3389/fphys.2023.1195272] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Skin aging is a multifaceted process that involves intrinsic and extrinsic mechanisms that lead to various structural and physiological changes in the skin. Intrinsic aging is associated with programmed aging and cellular senescence, which are caused by endogenous oxidative stress and cellular damage. Extrinsic aging is the result of environmental factors, such as ultraviolet (UV) radiation and pollution, and leads to the production of reactive oxygen species, ultimately causing DNA damage and cellular dysfunction. In aged skin, senescent cells accumulate and contribute to the degradation of the extracellular matrix, which further contributes to the aging process. To combat the symptoms of aging, various topical agents and clinical procedures such as chemical peels, injectables, and energy-based devices have been developed. These procedures address different symptoms of aging, but to devise an effective anti-aging treatment protocol, it is essential to thoroughly understand the mechanisms of skin aging. This review provides an overview of the mechanisms of skin aging and their significance in the development of anti-aging treatments.
Collapse
Affiliation(s)
- Sun Hye Shin
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yoon Hwan Lee
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Nark-Kyoung Rho
- Leaders Aesthetic Laser & Cosmetic Surgery Center, Seoul, Republic of Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Nigro P, Vamvini M, Yang J, Caputo T, Ho LL, Carbone NP, Papadopoulos D, Conlin R, He J, Hirshman MF, White JD, Robidoux J, Hickner RC, Nielsen S, Pedersen BK, Kellis M, Middelbeek RJW, Goodyear LJ. Exercise training remodels inguinal white adipose tissue through adaptations in innervation, vascularization, and the extracellular matrix. Cell Rep 2023; 42:112392. [PMID: 37058410 PMCID: PMC10374102 DOI: 10.1016/j.celrep.2023.112392] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Inguinal white adipose tissue (iWAT) is essential for the beneficial effects of exercise training on metabolic health. The underlying mechanisms for these effects are not fully understood, and here, we test the hypothesis that exercise training results in a more favorable iWAT structural phenotype. Using biochemical, imaging, and multi-omics analyses, we find that 11 days of wheel running in male mice causes profound iWAT remodeling including decreased extracellular matrix (ECM) deposition and increased vascularization and innervation. We identify adipose stem cells as one of the main contributors to training-induced ECM remodeling, show that the PRDM16 transcriptional complex is necessary for iWAT remodeling and beiging, and discover neuronal growth regulator 1 (NEGR1) as a link between PRDM16 and neuritogenesis. Moreover, we find that training causes a shift from hypertrophic to insulin-sensitive adipocyte subpopulations. Exercise training leads to remarkable adaptations to iWAT structure and cell-type composition that can confer beneficial changes in tissue metabolism.
Collapse
Affiliation(s)
- Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jiekun Yang
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Lun Ho
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas P Carbone
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Danae Papadopoulos
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Royce Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jie He
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joseph D White
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA
| | - Jacques Robidoux
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA
| | - Robert C Hickner
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Manolis Kellis
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Chhabra Y, Weeraratna AT. Fibroblasts in cancer: Unity in heterogeneity. Cell 2023; 186:1580-1609. [PMID: 37059066 PMCID: PMC11422789 DOI: 10.1016/j.cell.2023.03.016] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Tumor cells do not exist in isolation in vivo, and carcinogenesis depends on the surrounding tumor microenvironment (TME), composed of a myriad of cell types and biophysical and biochemical components. Fibroblasts are integral in maintaining tissue homeostasis. However, even before a tumor develops, pro-tumorigenic fibroblasts in close proximity can provide the fertile 'soil' to the cancer 'seed' and are known as cancer-associated fibroblasts (CAFs). In response to intrinsic and extrinsic stressors, CAFs reorganize the TME enabling metastasis, therapeutic resistance, dormancy and reactivation by secreting cellular and acellular factors. In this review, we summarize the recent discoveries on CAF-mediated cancer progression with a particular focus on fibroblast heterogeneity and plasticity.
Collapse
Affiliation(s)
- Yash Chhabra
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Macromolecular crowding regulates matrix composition and gene expression in human gingival fibroblast cultures. Sci Rep 2023; 13:2047. [PMID: 36739306 PMCID: PMC9899282 DOI: 10.1038/s41598-023-29252-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 02/06/2023] Open
Abstract
Standard cell cultures are performed in aqueous media with a low macromolecule concentration compared to tissue microenvironment. In macromolecular crowding (MMC) experiments, synthetic polymeric crowders are added into cell culture media to better mimic macromolecule concentrations found in vivo. However, their effect on cultured cells is incompletely understood and appears context-dependent. Here we show using human gingival fibroblasts, a cell type associated with fast and scarless wound healing, that MMC (standard medium supplemented with Ficoll 70/400) potently modulates fibroblast phenotype and extracellular matrix (ECM) composition compared to standard culture media (nMMC) over time. MMC significantly reduced cell numbers, but increased accumulation of collagen I, cellular fibronectin, and tenascin C, while suppressing level of SPARC (Secreted Protein Acidic and Cysteine Rich). Out of the 75 wound healing and ECM related genes studied, MMC significantly modulated expression of 25 genes compared to nMMC condition. MMC also suppressed myofibroblast markers and promoted deposition of basement membrane molecules collagen IV, laminin 1, and expression of LAMB3 (Laminin Subunit Beta 3) gene. In cell-derived matrices produced by a novel decellularization protocol, the altered molecular composition of MMC matrices was replicated. Thus, MMC may improve cell culture models for research and provide novel approaches for regenerative therapy.
Collapse
|
32
|
Darian-Smith E, Safran SG, Coroneo MT. Zonular and capsular bag disorders: a hypothetical perspective based on recent pathophysiological insights. J Cataract Refract Surg 2023; 49:207-212. [PMID: 36700888 DOI: 10.1097/j.jcrs.0000000000001098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/13/2022] [Indexed: 01/27/2023]
Abstract
The purpose of this article was to look at the pathophysiology behind and devise a classification system for the causes of zonular apparatus-capsular bag (ZACB) insufficiency. Also discussed is dystrophic bag syndrome, including clinical cases and addressing where it lies on the ZACB spectrum. There has been interest in the emergence of in-the-bag intraocular lens (IOL) subluxation, the prevalence of which is increasing. There has also been a recent report of dead bag syndrome, which the authors believe is part of the same disease spectrum. The authors put these phenomena into perspective and provide a classification system based on the possible causes of what they have termed ZACB insufficiency. The basic aspects of capsular bag-IOL ocular pathophysiology are summarized with a focus on functional aspects and the consequences for IOL fastening. Within this framework, dystrophic bag syndrome is a form of primary capsular ZACB insufficiency. The contribution of factors such as intraocular drugs may suggest a reconsideration of agents used and their mode of application.
Collapse
Affiliation(s)
- Erica Darian-Smith
- From the Department of Ophthalmology, Prince of Wales Hospital at University of New South Wales, Sydney, Australia (Darian-Smith, Safran, Coroneo); Sydney University Medical School, Sydney, Australia (Darian-Smith); Capital Health System, New Jersey Surgery Centre, Pennington, New Jersey
| | | | | |
Collapse
|
33
|
Pappalardo A, Alvarez Cespedes D, Fang S, Herschman AR, Jeon EY, Myers KM, Kysar JW, Abaci HE. Engineering edgeless human skin with enhanced biomechanical properties. SCIENCE ADVANCES 2023; 9:eade2514. [PMID: 36706190 PMCID: PMC9882972 DOI: 10.1126/sciadv.ade2514] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/23/2022] [Indexed: 06/01/2023]
Abstract
Despite the advancements in skin bioengineering, 3D skin constructs are still produced as flat tissues with open edges, disregarding the fully enclosed geometry of human skin. Therefore, they do not effectively cover anatomically complex body sites, e.g., hands. Here, we challenge the prevailing paradigm by engineering the skin as a fully enclosed 3D tissue that can be shaped after a body part and seamlessly transplanted as a biological clothing. Our wearable edgeless skin constructs (WESCs) show enhanced dermal extracellular matrix (ECM) deposition and mechanical properties compared to conventional constructs. WESCs display region-specific cell/ECM alignment, as well as physiologic anisotropic mechanical properties. WESCs replace the skin in full-thickness wounds of challenging body sites (e.g., mouse hindlimbs) with minimal suturing and shorter surgery time. This study provides a compelling technology that may substantially improve wound care and suggests that the recapitulation of the tissue macroanatomy can lead to enhanced biological function.
Collapse
Affiliation(s)
- Alberto Pappalardo
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Alvarez Cespedes
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shuyang Fang
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - Abigail R. Herschman
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - Eun Young Jeon
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kristin M. Myers
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - Jeffrey W. Kysar
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
- Department of Otolaryngology - Head & Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
34
|
Matsubayashi Y. Dynamic movement and turnover of extracellular matrices during tissue development and maintenance. Fly (Austin) 2022; 16:248-274. [PMID: 35856387 PMCID: PMC9302511 DOI: 10.1080/19336934.2022.2076539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular matrices (ECMs) are essential for the architecture and function of animal tissues. ECMs have been thought to be highly stable structures; however, too much stability of ECMs would hamper tissue remodelling required for organ development and maintenance. Regarding this conundrum, this article reviews multiple lines of evidence that ECMs are in fact rapidly moving and replacing components in diverse organisms including hydra, worms, flies, and vertebrates. Also discussed are how cells behave on/in such dynamic ECMs, how ECM dynamics contributes to embryogenesis and adult tissue homoeostasis, and what molecular mechanisms exist behind the dynamics. In addition, it is highlighted how cutting-edge technologies such as genome engineering, live imaging, and mathematical modelling have contributed to reveal the previously invisible dynamics of ECMs. The idea that ECMs are unchanging is to be changed, and ECM dynamics is emerging as a hitherto unrecognized critical factor for tissue development and maintenance.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Dorset, Poole, Dorset, UK
| |
Collapse
|
35
|
Shim J, Park J, Abudureyimu G, Kim MH, Shim JS, Jang KT, Kwon EJ, Jang HS, Yeo E, Lee JH, Lee D. Comparative Spatial Transcriptomic and Single-Cell Analyses of Human Nail Units and Hair Follicles Show Transcriptional Similarities between the Onychodermis and Follicular Dermal Papilla. J Invest Dermatol 2022; 142:3146-3157.e12. [PMID: 35853486 DOI: 10.1016/j.jid.2022.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023]
Abstract
The nail unit and hair follicle are both hard keratin-producing organs that share various biological features. In this study, we used digital spatial profiling and single-cell RNA sequencing to define a spatially resolved expression profile of the human nail unit and hair follicle. Our approach showed the presence of a nail-specific mesenchymal population called onychofibroblasts within the onychodermis. Onychodermis and follicular dermal papilla both expressed Wnt and bone morphogenetic protein signaling molecules. In addition, nail matrix epithelium and hair matrix showed very similar expressions profile, including the expression of hard keratins and HOXC13, a transcriptional regulator of the hair shaft. Integration of single-cell RNA sequencing and digital spatial profiling data through computational deconvolution methods estimated epithelial and mesenchymal cell abundance in the nail- and hair-specific regions of interest and revealed close transcriptional similarity between these major skin appendages. To analyze the function of bone morphogenetic proteins in nail differentiation, we treated cultured human nail matrix keratinocytes with BMP5, which are highly expressed by onychofibroblasts. We observed increased expressions of hard keratin and its regulator genes such as HOXC13. Collectively, our data suggest that onychodermis is the counterpart of dermal papilla and that BMP5 in onychofibroblasts plays a key role in the differentiation of nail matrix keratinocytes.
Collapse
Affiliation(s)
- Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gulimila Abudureyimu
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min-Hee Kim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Sup Shim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Ji Kwon
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York, USA
| | - Hyung-Suk Jang
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eunhye Yeo
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Dongyoun Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Tentaku A, Kurisu S, Sejima K, Nagao T, Takahashi A, Yonemura S. Proximal deposition of collagen IV by fibroblasts contributes to basement membrane formation by colon epithelial cells in vitro. FEBS J 2022; 289:7466-7485. [PMID: 35730982 DOI: 10.1111/febs.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023]
Abstract
The basement membrane (BM) underlying epithelial tissue is a thin layer of extracellular matrix that governs tissue integrity and function. Epithelial BMs are generally assembled using BM components secreted from two origins: epithelium and stroma. Although de novo BM formation involves self-assembly processes of large proteins, it remains unclear how stroma-derived macromolecules are transported and assembled, specifically in the BM region. In this study, we established an in vitro co-culture model of BM formation in which DLD-1 human colon epithelial cells were cultured on top of collagen I gel containing human embryonic OUMS-36T-2 fibroblasts as stromal cells. A distinct feature of our system is represented by OUMS-36T-2 cells which are almost exclusively responsible for synthesis of collagen IV, a major BM component. Exploiting this advantage, we found that collagen IV incorporation was significantly impaired in culture conditions where OUMS-36T-2 cells were not allowed to directly contact DLD-1 cells. Soluble collagen IV, once diluted in the culture medium, did not accumulate in the BM region efficiently. Live imaging of fluorescently tagged collagen IV revealed that OUMS-36T-2 cells deposited collagen IV aggregates directly onto the basal surface of DLD-1 cells. Collectively, these results indicate a novel mode of collagen IV deposition in which fibroblasts proximal to epithelial cells exclusively contribute to collagen IV assembly during BM formation.
Collapse
Affiliation(s)
- Aya Tentaku
- Department of Cell Biology, Tokushima University Graduate School of Biomedical Sciences, Japan.,Department of Preventive Environment and Nutrition, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Shusaku Kurisu
- Department of Cell Biology, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Kurumi Sejima
- Department of Cell Biology, Tokushima University Graduate School of Biomedical Sciences, Japan.,Student Lab, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Toshiki Nagao
- Department of Cell Biology, Tokushima University Graduate School of Biomedical Sciences, Japan.,Student Lab, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Shigenobu Yonemura
- Department of Cell Biology, Tokushima University Graduate School of Biomedical Sciences, Japan.,Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
37
|
Cell Population Dynamics in Wound-Induced Hair Follicle Neogenesis Model. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071058. [PMID: 35888146 PMCID: PMC9322605 DOI: 10.3390/life12071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Hair follicle (HF) regeneration can be achieved in the center of large full-thickness wounds on mouse backs (wound-induced HF neogenesis model, WIHN). Investigations with this model have allowed for the identification of some of the factors limiting the extent of fibrosis, which creates a permissive environment for the reposition of HF. For WIHN, specific subpopulations of cells rather than cell types are permissive to this process. Detailed information on the cellular composition in WIHN is not available. Here, we provide a description of changes in cell numbers of fibroblasts, HF dermal papilla, endothelial cells, keratinocytes (interfollicular epidermis, HF-infundibulum, HF-isthmus, HF-bulge (basal and suprabasal), HF-hair germ) and immune cells (macrophages, monocytes, dendritic cells, T cells (CD4+, CD8+, CD4+/CD8+, regulatory T cells) and neutrophils) based on flow cytometric analysis. We compared unwounded skin with large wounds (1.5 × 1.5 cm) at different time points after wounding. We found that non-immune dermal cells have the largest share in the skin at all time points studied, and that the number of epidermal cells started increasing nine days after wounding, which precede isthmus cells and bulge cells, mirroring the development of hair follicles. Monocytes and neutrophils represent most myeloid cells in wounds and remain in wounds even beyond the inflammatory phase of wound healing. Macrophages can be identified as inflammatory and alternative cells and are also found in wounds even in the late remodeling phase of wound healing. Lastly, we provide information about T cells in large wounds. Most T cells in the wounds were CD8+ at all time points and expressed γδTCR, which was previously thought to be expressed mainly on CD4+. We also report the existence of double positive CD4/CD8. Our study provides a guide in terms of time points suitable for the further study of cell subpopulations aiming to dissect the cellular heterogeneity in WIHN. Our results might set the base for the comparison of WIHN between control mice and animals manipulated to influence HF neogenesis and the full understanding of the responsible actors allowing for HF regeneration.
Collapse
|
38
|
Jayadev R, Morais MRPT, Ellingford JM, Srinivasan S, Naylor RW, Lawless C, Li AS, Ingham JF, Hastie E, Chi Q, Fresquet M, Koudis NM, Thomas HB, O’Keefe RT, Williams E, Adamson A, Stuart HM, Banka S, Smedley D, Genomics England Research Consortium, Sherwood DR, Lennon R. A basement membrane discovery pipeline uncovers network complexity, regulators, and human disease associations. SCIENCE ADVANCES 2022; 8:eabn2265. [PMID: 35584218 PMCID: PMC9116610 DOI: 10.1126/sciadv.abn2265] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/22/2022] [Indexed: 05/17/2023]
Abstract
Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in C. elegans and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFβ. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in LAMA5, MPZL2, and MATN2 and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Mychel R. P. T. Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jamie M. Ellingford
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Sandhya Srinivasan
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Richard W. Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Anna S. Li
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jack F. Ingham
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Eric Hastie
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Nikki-Maria Koudis
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Huw B. Thomas
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Raymond T. O’Keefe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Emily Williams
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Antony Adamson
- Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Helen M. Stuart
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Damian Smedley
- William Harvey Research Institute, Charterhouse Square, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Genomics England Research Consortium
- William Harvey Research Institute, Charterhouse Square, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
- Genomics England, London, UK
| | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
39
|
Boudra R, Woappi Y, Wang D, Xu S, Wells M, Schmults CD, Lian CG, Ramsey MR. Regulation of 5-Hydroxymethylcytosine by TET2 Contributes to Squamous Cell Carcinoma Tumorigenesis. J Invest Dermatol 2022; 142:1270-1279.e2. [PMID: 34695415 PMCID: PMC9033889 DOI: 10.1016/j.jid.2021.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
DNA methylation is a key regulatory event controlling a variety of physiological processes and can have dramatic effects on gene transcription. Methylated cytosine (5-methylcytosine) can be oxidized by the TET family of enzymes to 5-hydroxymethylcytosine (5-hmC), a key intermediate in the demethylation cycle, and 5-hmC levels are reduced in malignancies such as acute myeloid leukemia and melanoma. We constructed a tissue microarray of human cutaneous squamous cell carcinoma tumors and found a global reduction in 5-hmC levels compared with that in the adjacent skin. Using a murine K14-CreER system, we have found that loss of Tet2 promotes carcinogen-induced squamous cell carcinoma and cooperates with loss of Tp53 to drive spontaneous squamous cell carcinoma tumors in epithelial tissues. Analysis of changes in 5-hmC and gene expression after loss of Tet2 in the epidermis revealed focal alterations in 5-hmC levels and an increase in hair follicle transient amplifying cell genes along with a reduction in epidermal differentiation genes. These results show a role for TET2 in epidermal lineage specification, consistent with reported roles for TET enzymes in controlling lineage commitment in hematopoietic stem cells and embryonic stem cells and establishing TET2 as a bone fide tumor suppressor in squamous cell carcinoma.
Collapse
Affiliation(s)
- Rafik Boudra
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yvon Woappi
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diana Wang
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shuyun Xu
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Wells
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chrysalyne D Schmults
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew R Ramsey
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
40
|
Kemppainen AV, Finnilä MA, Heikkinen A, Härönen H, Izzi V, Kauppinen S, Saarakkala S, Pihlajaniemi T, Koivunen J. The CMS19 disease model specifies a pivotal role for collagen XIII in bone homeostasis. Sci Rep 2022; 12:5866. [PMID: 35393492 PMCID: PMC8990013 DOI: 10.1038/s41598-022-09653-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the COL13A1 gene result in congenital myasthenic syndrome type 19 (CMS19), a disease of neuromuscular synapses and including various skeletal manifestations, particularly facial dysmorphisms. The phenotypic consequences in Col13a1 null mice (Col13a1−/−) recapitulate the muscle findings of the CMS19 patients. Collagen XIII (ColXIII) is exists as two forms, a transmembrane protein and a soluble molecule. While the Col13a1−/− mice have poorly formed neuromuscular junctions, the prevention of shedding of the ColXIII ectodomain in the Col13a1tm/tm mice results in acetylcholine receptor clusters of increased size and complexity. In view of the bone abnormalities in CMS19, we here studied the tubular and calvarial bone morphology of the Col13a1−/− mice. We discovered several craniofacial malformations, albeit less pronounced ones than in the human disease, and a reduction of cortical bone mass in aged mice. In the Col13a1tm/tm mice, where ColXIII is synthesized but the ectodomain shedding is prevented due to a mutation in a protease recognition sequence, the cortical bone mass decreased as well with age and the cephalometric analyses revealed significant craniofacial abnormalities but no clear phenotypical pattern. To conclude, our data indicates an intrinsic role for ColXIII, particularly the soluble form, in the upkeep of bone with aging and suggests the possibility of previously undiscovered bone pathologies in patients with CMS19.
Collapse
Affiliation(s)
- A V Kemppainen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - M A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - A Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - H Härönen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - V Izzi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.,Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Foundation for the Finnish Cancer Institute, Tukholmankatu 8, 00130, Helsinki, Finland
| | - S Kauppinen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - T Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - J Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
| |
Collapse
|