1
|
Mark JR, Titus AM, Staley HA, Alvarez S, Mahn S, McFarland NR, Wallings RL, Tansey MG. Peripheral immune cell response to stimulation stratifies Parkinson's disease progression from prodromal to clinical stages. Commun Biol 2025; 8:716. [PMID: 40341772 PMCID: PMC12062209 DOI: 10.1038/s42003-025-08088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025] Open
Abstract
The motor stage of Parkinson's disease (PD) can be preceded for years by a prodromal stage characterized by non-motor symptoms like REM sleep behavior disorder (RBD), hyposmia, and constipation. Here, we show that multiple stages of idiopathic PD, including the pre-motor prodromal stage, can be stratified according to the inflammatory responses to stimulation of peripheral blood mononuclear cells ex vivo. IFNγ stimulation of isolated monocytes reveals increased stimulation-dependent secretion of TNF, IL-1β, and IL-8 in prodromal PD relative to moderate stage PD. Additionally, T cells stimulated with CD3/CD28 co-stimulatory beads show diminished proinflammatory cytokine secretion in early-moderate PD relative to prodromal. Receiver operating characteristic curves demonstrate that several cytokines produced by stimulated monocytes show high predictive utility for distinguishing prodromal PD individuals from neurologically healthy controls. Moreover, immune stimulation reveals deficits in CD8+ T-cell mitochondrial health in moderate PD, with relative mitochondrial health in CD8+ T cells being positively correlated with stimulation-dependent secretion of IL-1β, IL-8, and IL-10 in T cells from prodromal PD subjects. Dysregulated mitochondrial health in immune cells may contribute to peripheral inflammation and PD progression, and ex vivo stimulation-based assays have the potential to reveal novel biomarkers for patient stratification and progression with immune endophenotypes.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Hannah A Staley
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Stephan Alvarez
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Savanna Mahn
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Nikolaus R McFarland
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology and Stark Neuroscience Research Institute, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
- Department of Neurology and Stark Neuroscience Research Institute, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Boyd DF, Jordan SV, Balachandran S. ZBP1-driven cell death in severe influenza. Trends Microbiol 2025; 33:521-532. [PMID: 39809680 DOI: 10.1016/j.tim.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Influenza A virus (IAV) infections can cause life-threatening illness in humans. The severity of disease is directly linked to virus replication in the alveoli of the lower respiratory tract. In particular, the lytic death of infected alveolar epithelial cells (AECs) is a major driver of influenza severity. Recent studies have begun to define the molecular mechanisms by which IAV triggers lytic cell death. Z-form nucleic-acid-binding protein 1 (ZBP1) senses replicating IAV and drives programmed cell death (PCD) in infected cells, including apoptosis and necroptosis in AECs and pyroptosis in myeloid cells. Necroptosis and pyroptosis, both lytic forms of death, contribute to pathogenesis during severe infections. Pharmacological blockade of necroptosis shows strong therapeutic potential in mouse models of lethal influenza. We suggest that targeting ZBP1-initiated necroinflammatory cell lysis, either alone or in combination antiviral drugs, will provide clinical benefit in severe influenza.
Collapse
Affiliation(s)
- David F Boyd
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | - Summer Vaughn Jordan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
3
|
Quiñones-Parra SM, Gras S, Nguyen THO, Farenc C, Szeto C, Rowntree LC, Chaurasia P, Sant S, Boon ACM, Jayasinghe D, Rimmelzwaan GF, Petersen J, Doherty PC, Uldrich AP, Littler DR, Rossjohn J, Kedzierska K. Molecular determinants of cross-strain influenza A virus recognition by αβ T cell receptors. Sci Immunol 2025; 10:eadn3805. [PMID: 39919196 DOI: 10.1126/sciimmunol.adn3805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
Cross-reactive αβ T cell receptors (TCRs) recognizing multiple peptide variants can provide effective control of rapidly evolving viruses yet remain understudied. By screening 12 naturally occurring influenza-derived HLA-B*35:01-restricted nucleoprotein (NP)418-426 epitopes (B*35:01-NP418) that emerged since 1918 within influenza A viruses, including 2024 A/H5N1 viruses, we identified functional broadly cross-reactive T cells universally recognizing NP418 variants. Binding studies demonstrated that TCR cross-reactivity was concomitant with diminished antigen sensitivity. Primary human B*35:01/NP418+CD8+ T cell lines displayed reduced cross-reactivity in the absence of CD8 coreceptor binding, validating the low avidity of cross-reactive B*35:01-NP418+CD8+ T cell responses. Six TCR-HLA-B*35:01/NP418 crystal structures showed how cross-reactive TCRs recognized multiple B*35:01/NP418 epitope variants. Specific TCR interactions were formed with invariant and conserved peptide-HLA features, thus remaining distal from highly varied positions of the NP418 epitope. Our study defines molecular mechanisms associated with extensive TCR cross-reactivity toward naturally occurring viral variants highly relevant to universal protective immunity against influenza.
Collapse
Affiliation(s)
- Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Christopher Szeto
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dhilshan Jayasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Harris EM, Chamseddine S, Chu A, Senkpeil L, Nikiciuk M, Bourdine A, Magin L, Al-Musa A, Woods B, Ozdogan E, Saker S, van Konijnenburg DPH, Yee CS, Nelson RW, Lee P, Halyabar O, Hale RC, Day-Lewis M, Henderson LA, Nguyen AA, Elkins M, Ohsumi TK, Gutierrez-Arcelus M, Peyper JM, Platt CD, Grace RF, LaBere B, Chou J. T cell and autoantibody profiling for primary immune regulatory disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.02.25.24303331. [PMID: 38464255 PMCID: PMC10925364 DOI: 10.1101/2024.02.25.24303331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Limited clinical tools exist for characterizing primary immune regulatory disorders (PIRD), which are often diagnoses of exclusion. Increased CD4+CXCR5+PD1+ circulating T follicular helper (cTfh) cell percentages have been identified as a marker of active disease in some, but not all, autoimmune disorders. Objective To develop a diagnostic approach that combines measurements of cellular and serologic autoimmunity. Methods We recruited 71 controls and 101 pediatric patients with PIRD with autoimmunity. Flow cytometry was used to measure CD4+CXCR5+ T cells expressing the chemokine receptors CXCR3 and/or CCR6. IgG and IgA autoantibodies were quantified in 56 patients and 20 controls using a microarray featuring 1616 full-length, conformationally intact protein antigens. The 97.5th percentile in the controls serves as the upper limit of normal for percentages of cTfh cells, CD4+CXCR5+ T cells expressing CXCR3 and/or CCR6, and autoantibody intensity and number. Results We found that 27.7% of patients had increased percentages of CD4+CXCR5+PD1+ cTfh cells and 42.5% had increased percentages of CD4+CXCR5+ cells expressing CXCR3 and/or CCR6. Patients had significantly more diverse IgG and IgA autoantibodies than controls and 37.5% had increased numbers of high-titer autoantibodies. Integrating measurements of cTfh cells, CD4+CXCR5+ T cells with CXCR3 and/or CCR6, and numbers of high-titer autoantibodies had 71.4% sensitivity (95% CI: 0.5852 - 0.8158) and 85% specificity (95% CI: 0.6396 - 0.9476) for patients with PIRD compared to controls. Conclusion By integrating CD4+ T cell phenotyping and total burden of autoantibodies, this approach provides additional tools for the diagnosis of PIRD lacking clinical diagnostic criteria.
Collapse
Affiliation(s)
- Emily M. Harris
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Chamseddine
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne Chu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Northeastern University, Boston, MA
| | - Leetah Senkpeil
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew Nikiciuk
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Northeastern University, Boston, MA
| | - Aleksandra Bourdine
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Logan Magin
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amer Al-Musa
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Woods
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sarife Saker
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Christina S.K. Yee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan W. Nelson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Pui Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca C. Hale
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan Day-Lewis
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan A. Nguyen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan Elkins
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Toshiro K. Ohsumi
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Craig D. Platt
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachael F. Grace
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Brenna LaBere
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Current affiliation: Division of Allergy and Immunology, Phoenix Children’s Hospital, Phoenix, AZ 85016
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Mai KL, Pan WQ, Lin ZS, Wang Y, Yang ZF. Pathogenesis of influenza and SARS-CoV-2 co-infection at the extremes of age: decipher the ominous tales of immune vulnerability. ADVANCED BIOTECHNOLOGY 2025; 3:5. [PMID: 39883362 DOI: 10.1007/s44307-025-00057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
The co-circulation of influenza and SARS-CoV-2 has led to co-infection events, primarily affecting children and older adults, who are at higher risk for severe disease. Although co-infection prevalence is relatively low, it is associated with worse outcomes compared to mono-infections. Previous studies have shown that the outcomes of co-infection depend on multiple factors, including viral interference, virus-host interaction and host response. Children and the elderly exhibit distinct patterns of antiviral response, which involve airway epithelium, mucociliary clearance, innate and adaptive immune cells, and inflammatory mediators. This review explores the pathogeneses of SARS-CoV-2 and influenza co-infection, focusing on the antiviral responses in children and the elderly. By comparing immature immunity in children and immune senescence in older adults, we aim to provide insights for the clinical management of severe co-infection cases.
Collapse
Affiliation(s)
- Kai-Lin Mai
- Henan University College of Medicine, Kaifeng, 475004, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wei-Qi Pan
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zheng-Shi Lin
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yang Wang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Zi-Feng Yang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
6
|
Mark JR, Titus AM, Staley HA, Alvarez S, Mahn S, McFarland NR, Wallings RL, Tansey MG. Peripheral immune cell response to stimulation stratifies Parkinson's disease progression from prodromal to clinical stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.625499. [PMID: 39677794 PMCID: PMC11643067 DOI: 10.1101/2024.12.05.625499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The motor stage of idiopathic Parkinson's disease (iPD) can be preceded for years by a prodromal stage characterized by non-motor symptoms like REM sleep behavior disorder (RBD). Here, we show that multiple stages of iPD, including the pre-motor prodromal stage, can be stratified according to the inflammatory and immunometabolic responses to stimulation of peripheral blood mononuclear cells ex vivo. We identified increased stimulation-dependent secretion of TNF, IL-1β, and IL-8 in monocytes from RBD patients and showed diminished proinflammatory cytokine secretion in monocytes and T cells in early and moderate stages of PD. Mechanistically, immune activation revealed deficits in CD8+ T-cell mitochondrial health in moderate PD, and relative mitochondrial health in CD8+ T cells was positively correlated with stimulation-dependent T-cell cytokine secretion across the PD spectrum. Dysregulated immunometabolism may drive peripheral inflammation and PD progression, and ex vivo stimulation-based assays have potential to reveal novel biomarkers for patient stratification and progression with immune endophenotypes.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Hannah A Staley
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Stephan Alvarez
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Savanna Mahn
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Nikolaus R McFarland
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Mosmann TR, McMichael AJ, LeVert A, McCauley JW, Almond JW. Opportunities and challenges for T cell-based influenza vaccines. Nat Rev Immunol 2024; 24:736-752. [PMID: 38698082 DOI: 10.1038/s41577-024-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.
Collapse
Affiliation(s)
- Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | | | | | - Jeffrey W Almond
- The Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Jia X, Crawford JC, Gebregzabher D, Monson EA, Mettelman RC, Wan Y, Ren Y, Chou J, Novak T, McQuilten HA, Clarke M, Bachem A, Foo IJ, Fritzlar S, Carrera Montoya J, Trenerry AM, Nie S, Leeming MG, Nguyen THO, Kedzierski L, Littler DR, Kueh A, Cardamone T, Wong CY, Hensen L, Cabug A, Laguna JG, Agrawal M, Flerlage T, Boyd DF, Van de Velde LA, Habel JR, Loh L, Koay HF, van de Sandt CE, Konstantinov IE, Berzins SP, Flanagan KL, Wakim LM, Herold MJ, Green AM, Smallwood HS, Rossjohn J, Thwaites RS, Chiu C, Scott NE, Mackenzie JM, Bedoui S, Reading PC, Londrigan SL, Helbig KJ, Randolph AG, Thomas PG, Xu J, Wang Z, Chua BY, Kedzierska K. High expression of oleoyl-ACP hydrolase underpins life-threatening respiratory viral diseases. Cell 2024; 187:4586-4604.e20. [PMID: 39137778 DOI: 10.1016/j.cell.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah-/- mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease.
Collapse
Affiliation(s)
- Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jeremy Chase Crawford
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Infectious Diseases Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Deborah Gebregzabher
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ebony A Monson
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robert C Mettelman
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yanmin Wan
- Shanghai Public Health Clinical Centre and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yanqin Ren
- Shanghai Public Health Clinical Centre, Fudan University, Shanghai 201508, China
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tanya Novak
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Michele Clarke
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Annabell Bachem
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Isabelle J Foo
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Dene R Littler
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Andrew Kueh
- Walter Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Tina Cardamone
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira Cabug
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jaime Gómez Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group, University of Córdoba, International Excellence Agrifood Campus "CeiA3", 14014 Córdoba, Spain
| | - Mona Agrawal
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David F Boyd
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Lee-Ann Van de Velde
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Igor E Konstantinov
- Department of Cardiothoracic Surgery, Royal Children's Hospital, University of Melbourne, Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Parkville, VIC 3052, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; School of Health and Biomedical Science, RMIT University, Bundoora, VIC 3083, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Marco J Herold
- Walter Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Amanda M Green
- Center for Infectious Diseases Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Karla J Helbig
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA; Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, USA
| | - Paul G Thomas
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Infectious Diseases Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, USA
| | - Jianqing Xu
- Shanghai Public Health Clinical Centre and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Zhongfang Wang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, USA.
| |
Collapse
|
10
|
Verstegen NJM, Hagen RR, Kreher C, Kuijper LH, Dijssel JVD, Ashhurst T, Kummer LYL, Palomares Cabeza V, Steenhuis M, Duurland MC, Jongh RD, Schoot CEVD, Konijn VAL, Mul E, Kedzierska K, van Dam KPJ, Stalman EW, Boekel L, Wolbink G, Tas SW, Killestein J, Rispens T, Wieske L, Kuijpers TW, Eftimov F, van Kempen ZLE, van Ham SM, Ten Brinke A, van de Sandt CE. T cell activation markers CD38 and HLA-DR indicative of non-seroconversion in anti-CD20-treated patients with multiple sclerosis following SARS-CoV-2 mRNA vaccination. J Neurol Neurosurg Psychiatry 2024; 95:855-864. [PMID: 38548324 PMCID: PMC11347213 DOI: 10.1136/jnnp-2023-332224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/19/2024] [Indexed: 08/18/2024]
Abstract
BACKGROUND Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. METHODS In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). RESULTS Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. CONCLUSION These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS.
Collapse
Affiliation(s)
- Niels J M Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruth R Hagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christine Kreher
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jet van den Dijssel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute, and The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Laura Y L Kummer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Virginia Palomares Cabeza
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariël C Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rivka de Jongh
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Veronique A L Konijn
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Mul
- Research Facilities, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Koos P J van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center location Reade, Amsterdam, The Netherlands
| | - Gertjan Wolbink
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center location Reade, Amsterdam, The Netherlands
| | - Sander W Tas
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zoé L E van Kempen
- Department of Neurology, Amsterdam UMC, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Carolien E van de Sandt
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Eisa M, Gomez-Escobar E, Bédard N, Abdeltawab NF, Flores N, Mazouz S, Fieffé-Bédard A, Sakayan P, Gridley J, Abdel-Hakeem MS, Bruneau J, Grakoui A, Shoukry NH. Coordinated expansion of memory T follicular helper and B cells mediates spontaneous clearance of HCV reinfection. Front Immunol 2024; 15:1403769. [PMID: 38947319 PMCID: PMC11211980 DOI: 10.3389/fimmu.2024.1403769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Follicular helper T cells are essential for helping in the maturation of B cells and the production of neutralizing antibodies (NAbs) during primary viral infections. However, their role during recall responses is unclear. Here, we used hepatitis C virus (HCV) reinfection in humans as a model to study the recall collaborative interaction between circulating CD4 T follicular helper cells (cTfh) and memory B cells (MBCs) leading to the generation of NAbs. Methods We evaluated this interaction longitudinally in subjects who have spontaneously resolved primary HCV infection during a subsequent reinfection episode that resulted in either another spontaneous resolution (SR/SR, n = 14) or chronic infection (SR/CI, n = 8). Results Both groups exhibited virus-specific memory T cells that expanded upon reinfection. However, early expansion of activated cTfh (CD4+CXCR5+PD-1+ICOS+FoxP3-) occurred in SR/SR only. The frequency of activated cTfh negatively correlated with time post-infection. Concomitantly, NAbs and HCV-specific MBCs (CD19+CD27+IgM-E2-Tet+) peaked during the early acute phase in SR/SR but not in SR/CI. Finally, the frequency of the activated cTfh1 (CXCR3+CCR6-) subset correlated with the neutralization breadth and potency of NAbs. Conclusion These results underscore a key role for early activation of cTfh1 cells in helping antigen-specific B cells to produce NAbs that mediate the clearance of HCV reinfection.
Collapse
Affiliation(s)
- Mohamed Eisa
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Elsa Gomez-Escobar
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Nourtan F. Abdeltawab
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, Newgiza University, Giza, Egypt
| | - Nicol Flores
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Sabrina Mazouz
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Alizée Fieffé-Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Patrick Sakayan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - John Gridley
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Mohamed S. Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine familiale et département d’urgence, Université de Montréal, Montréal, QC, Canada
| | - Arash Grakoui
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Bliss CM, Nachbagauer R, Mariottini C, Cuevas F, Feser J, Naficy A, Bernstein DI, Guptill J, Walter EB, Berlanda-Scorza F, Innis BL, García-Sastre A, Palese P, Krammer F, Coughlan L. A chimeric haemagglutinin-based universal influenza virus vaccine boosts human cellular immune responses directed towards the conserved haemagglutinin stalk domain and the viral nucleoprotein. EBioMedicine 2024; 104:105153. [PMID: 38805853 PMCID: PMC11154122 DOI: 10.1016/j.ebiom.2024.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).
Collapse
Affiliation(s)
- Carly M Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Cancer & Genetics and Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Mariottini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Frans Cuevas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jodi Feser
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Abdi Naficy
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - David I Bernstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Guptill
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, NC, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA; University of Maryland School of Medicine, Center for Vaccine Development and Global Health (CVD), Baltimore, MD 21201, USA.
| |
Collapse
|
13
|
Chen L, Hua J, He X. Bioinformatics analysis identifies a key gene HLA_DPA1 in severe influenza-associated immune infiltration. BMC Genomics 2024; 25:257. [PMID: 38454348 PMCID: PMC10918912 DOI: 10.1186/s12864-024-10184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Severe influenza is a serious global health issue that leads to prolonged hospitalization and mortality on a significant scale. The pathogenesis of this infectious disease is poorly understood. Therefore, this study aimed to identify the key genes associated with severe influenza patients necessitating invasive mechanical ventilation. METHODS The current study utilized two publicly accessible gene expression profiles (GSE111368 and GSE21802) from the Gene Expression Omnibus database. The research focused on identifying the genes exhibiting differential expression between severe and non-severe influenza patients. We employed three machine learning algorithms, namely the Least Absolute Shrinkage and Selection Operator regression model, Random Forest, and Support Vector Machine-Recursive Feature Elimination, to detect potential key genes. The key gene was further selected based on the diagnostic performance of the target genes substantiated in the dataset GSE101702. A single-sample gene set enrichment analysis algorithm was applied to evaluate the participation of immune cell infiltration and their associations with key genes. RESULTS A total of 44 differentially expressed genes were recognized; among them, we focused on 10 common genes, namely PCOLCE2, HLA_DPA1, LOC653061, TDRD9, MPO, HLA_DQA1, MAOA, S100P, RAP1GAP, and CA1. To ensure the robustness of our findings, we employed overlapping LASSO regression, Random Forest, and SVM-RFE algorithms. By utilizing these algorithms, we were able to pinpoint the aforementioned 10 genes as potential biomarkers for distinguishing between both cases of influenza (severe and non-severe). However, the gene HLA_DPA1 has been recognized as a crucial factor in the pathological condition of severe influenza. Notably, the validation dataset revealed that this gene exhibited the highest area under the receiver operating characteristic curve, with a value of 0.891. The use of single-sample gene set enrichment analysis has provided valuable insights into the immune responses of patients afflicted with severe influenza that have further revealed a categorical correlation between the expression of HLA_DPA1 and lymphocytes. CONCLUSION The findings indicated that the HLA_DPA1 gene may play a crucial role in the immune-pathological condition of severe influenza and could serve as a promising therapeutic target for patients infected with severe influenza.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical College of Nanjing University, No 188, Lingshan North Road, Qixia District, Nanjing, 210046, China.
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Song WW, Wan MY, She JY, Zhao SL, Liu DJ, Chang HY, Deng L. Sequential Immunizations with Influenza Neuraminidase Protein Followed by Peptide Nanoclusters Induce Heterologous Protection. Viruses 2024; 16:77. [PMID: 38257777 PMCID: PMC10819419 DOI: 10.3390/v16010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Enhancing cross-protections against diverse influenza viruses is desired for influenza vaccinations. Neuraminidase (NA)-specific antibody responses have been found to independently correlate with a broader influenza protection spectrum. Here, we report a sequential immunization regimen that includes priming with NA protein followed by boosting with peptide nanoclusters, with which targeted enhancement of antibody responses in BALB/c mice to certain cross-protective B-cell epitopes of NA was achieved. The nanoclusters were fabricated via desolvation with absolute ethanol and were only composed of composite peptides. Unlike KLH conjugates, peptide nanoclusters would not induce influenza-unrelated immunity. We found that the incorporation of a hemagglutinin peptide of H2-d class II restriction into the composite peptides could be beneficial in enhancing the NA peptide-specific antibody response. Of note, boosters with N2 peptide nanoclusters induced stronger serum cross-reactivities to heterologous N2 and even heterosubtypic N7 and N9 than triple immunizations with the prototype recombinant tetrameric (rt) N2. The mouse challenge experiments with HK68 H3N2 also demonstrated the strong effectiveness of the peptide nanocluster boosters in conferring heterologous protection.
Collapse
Affiliation(s)
- Wen-Wen Song
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
| | - Mu-Yang Wan
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
| | - Jia-Yue She
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
| | - Shi-Long Zhao
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
| | - De-Jian Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
| | - Hai-Yan Chang
- College of Life Sciences, Hunan Normal University, Changsha 410082, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
- Beijing Weimiao Biotechnology Co., Ltd., Haidian District, Beijing 100093, China
| |
Collapse
|
15
|
Wang C, Khatun MS, Zhang Z, Allen MJ, Chen Z, Ellsworth CR, Currey JM, Dai G, Tian D, Bach K, Yin XM, Traina-Dorge V, Rappaport J, Maness NJ, Blair RV, Kolls JK, Pociask DA, Qin X. COVID-19 and influenza infections mediate distinct pulmonary cellular and transcriptomic changes. Commun Biol 2023; 6:1265. [PMID: 38092883 PMCID: PMC10719262 DOI: 10.1038/s42003-023-05626-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
SARS-CoV-2 infection can cause persistent respiratory sequelae. However, the underlying mechanisms remain unclear. Here we report that sub-lethally infected K18-human ACE2 mice show patchy pneumonia associated with histiocytic inflammation and collagen deposition at 21 and 45 days post infection (DPI). Transcriptomic analyses revealed that compared to influenza-infected mice, SARS-CoV-2-infected mice had reduced interferon-gamma/alpha responses at 4 DPI and failed to induce keratin 5 (Krt5) at 6 DPI in lung, a marker of nascent pulmonary progenitor cells. Histologically, influenza- but not SARS-CoV-2-infected mice showed extensive Krt5+ "pods" structure co-stained with stem cell markers Trp63/NGFR proliferated in the pulmonary consolidation area at both 7 and 14 DPI, with regression at 21 DPI. These Krt5+ "pods" structures were not observed in the lungs of SARS-CoV-2-infected humans or nonhuman primates. These results suggest that SARS-CoV-2 infection fails to induce nascent Krt5+ cell proliferation in consolidated regions, leading to incomplete repair of the injured lung.
Collapse
Affiliation(s)
- Chenxiao Wang
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mst Shamima Khatun
- Department of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Zhe Zhang
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Michaela J Allen
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Zheng Chen
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Calder R Ellsworth
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Joshua M Currey
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Guixiang Dai
- Department of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Konrad Bach
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Vicki Traina-Dorge
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Robert V Blair
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Jay K Kolls
- Department of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Derek A Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
D’Orso S, Pirronello M, Verdiani A, Rossini A, Guerrera G, Picozza M, Sambucci M, Misiti A, De Marco L, Salvia A, Caltagirone C, Giardina E, Battistini L, Borsellino G. Primary and Recall Immune Responses to SARS-CoV-2 in Breakthrough Infection. Vaccines (Basel) 2023; 11:1705. [PMID: 38006037 PMCID: PMC10675240 DOI: 10.3390/vaccines11111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breakthrough infections in SARS-CoV-2 vaccinated individuals are an ideal circumstance for the simultaneous exploration of both the vaccine-induced memory reaction to the spike (S) protein and the primary response to the membrane (M) and nucleocapsid (N) proteins generated by natural infection. We monitored 15 healthcare workers who had been vaccinated with two doses of Pfizer BioNTech BNT162b2 and were then later infected with the SARS-CoV-2 B.1.617.2. (Delta) variant, analysing the antiviral humoral and cellular immune responses. Natural infection determined an immediate and sharp rise in anti-RBD antibody titres and in the frequency of both S-specific antibody secreting cells (ASCs) and memory B lymphocytes. T cells responded promptly to infection by activating and expanding already at 2-5 days. S-specific memory and emerging M- and N-specific T cells both expressed high levels of activation markers and showed effector capacity with similar kinetics but with different magnitude. The results show that natural infection with SARS-CoV-2 in vaccinated individuals induces fully functional and rapidly expanding T and B lymphocytes in concert with the emergence of novel virus-specific T cells. This swift and punctual response also covers viral variants and captures a paradigmatic case of a healthy adaptive immune reaction to infection with a mutating virus.
Collapse
Affiliation(s)
- Silvia D’Orso
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Marta Pirronello
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Alice Verdiani
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Angelo Rossini
- Medical Services, Santa Lucia Foundation IRCCS, 00179 Rome, Italy; (A.R.); (A.S.)
| | - Gisella Guerrera
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Mario Picozza
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Manolo Sambucci
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Andrea Misiti
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Lorenzo De Marco
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Antonino Salvia
- Medical Services, Santa Lucia Foundation IRCCS, 00179 Rome, Italy; (A.R.); (A.S.)
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy;
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy;
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Giovanna Borsellino
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| |
Collapse
|
17
|
Zhang W, Clemens EB, Kedzierski L, Chua BY, Mayo M, Lonzi C, Hinchcliff A, Rigas V, Middleton BF, Binks P, Rowntree LC, Allen LF, Tan HX, Petersen J, Chaurasia P, Krammer F, Wheatley AK, Kent SJ, Rossjohn J, Miller A, Lynar S, Nelson J, Nguyen THO, Davies J, Kedzierska K. Broad spectrum SARS-CoV-2-specific immunity in hospitalized First Nations peoples recovering from COVID-19. Immunol Cell Biol 2023; 101:964-974. [PMID: 37725525 PMCID: PMC10872797 DOI: 10.1111/imcb.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.
Collapse
Affiliation(s)
- Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Mark Mayo
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Claire Lonzi
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | | | - Vanessa Rigas
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | | | - Paula Binks
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD 4810, Australia
| | - Sarah Lynar
- Menzies School of Health Research, Darwin, NT 0811, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Jane Nelson
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT 0811, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- Center for Influenza Disease and Emergence Response (CIDER), Melbourne, VIC 3000, Australia
| |
Collapse
|
18
|
Ramasamy R. COVID-19 Vaccines for Optimizing Immunity in the Upper Respiratory Tract. Viruses 2023; 15:2203. [PMID: 38005881 PMCID: PMC10674974 DOI: 10.3390/v15112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Rapid development and deployment of vaccines greatly reduced mortality and morbidity during the COVID-19 pandemic. The most widely used COVID-19 vaccines approved by national regulatory authorities require intramuscular administration. SARS-CoV-2 initially infects the upper respiratory tract, where the infection can be eliminated with little or no symptoms by an effective immune response. Failure to eliminate SARS-CoV-2 in the upper respiratory tract results in lower respiratory tract infections that can lead to severe disease and death. Presently used intramuscularly administered COVID-19 vaccines are effective in reducing severe disease and mortality, but are not entirely able to prevent asymptomatic and mild infections as well as person-to-person transmission of the virus. Individual and population differences also influence susceptibility to infection and the propensity to develop severe disease. This article provides a perspective on the nature and the mode of delivery of COVID-19 vaccines that can optimize protective immunity in the upper respiratory tract to reduce infections and virus transmission as well as severe disease.
Collapse
Affiliation(s)
- Ranjan Ramasamy
- ID-FISH Technology Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA
| |
Collapse
|
19
|
Ramasamy R. Overview of immunological & virological factors driving the evolution & global spread of SARS-CoV-2 variants. Indian J Med Res 2023; 158:257-268. [PMID: 37815068 PMCID: PMC10720969 DOI: 10.4103/ijmr.ijmr_2591_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 10/11/2023] Open
Abstract
The SARS-CoV-2, a highly infectious positive strand RNA virus first identified in December 2019, has produced multiple genetic variants that have rapidly and sequentially spread worldwide during the coronavirus disease 2019 (COVID-19) pandemic. Genetic changes in SARS-CoV-2 for greater infectivity, replication and transmission were selected during the early stages of the pandemic. More recently, after widespread infection and vaccination, SARS-CoV-2 variants that evade antigen-specific adaptive immunity, have begun to be selected. This article provides an overview of the molecular immunological and virological factors underlying the origin and global spread of important SARS-CoV-2 variant lineages.
Collapse
|
20
|
Zhang W, Rowntree LC, Muttucumaru R, Damelang T, Aban M, Hurt AC, Auladell M, Esterbauer R, Wines B, Hogarth M, Turner SJ, Wheatley AK, Kent SJ, Patil S, Avery S, Morrissey O, Chung AW, Koutsakos M, Nguyen THO, Cheng AC, Kotsimbos TC, Kedzierska K. Robust immunity to influenza vaccination in haematopoietic stem cell transplant recipients following reconstitution of humoral and adaptive immunity. Clin Transl Immunology 2023; 12:e1456. [PMID: 37383182 PMCID: PMC10294294 DOI: 10.1002/cti2.1456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
Objectives Influenza causes significant morbidity and mortality, especially in high-risk populations. Although current vaccination regimens are the best method to combat annual influenza disease, vaccine efficacy can be low in high-risk groups, such as haematopoietic stem cell transplant (HSCT) recipients. Methods We comprehensively assessed humoral immunity, antibody landscapes, systems serology and influenza-specific B-cell responses, together with their phenotypes and isotypes, to the inactivated influenza vaccine (IIV) in HSCT recipients in comparison to healthy controls. Results Inactivated influenza vaccine significantly increased haemagglutination inhibition (HAI) titres in HSCT recipients, similar to healthy controls. Systems serology revealed increased IgG1 and IgG3 antibody levels towards the haemagglutinin (HA) head, but not to neuraminidase, nucleoprotein or HA stem. IIV also increased frequencies of total, IgG class-switched and CD21loCD27+ influenza-specific B cells, determined by HA probes and flow cytometry. Strikingly, 40% of HSCT recipients had markedly higher antibody responses towards A/H3N2 vaccine strain than healthy controls and showed cross-reactivity to antigenically drifted A/H3N2 strains by antibody landscape analysis. These superior humoral responses were associated with a greater time interval after HSCT, while multivariant analyses revealed the importance of pre-existing immune memory. Conversely, in HSCT recipients who did not respond to the first dose, the second IIV dose did not greatly improve their humoral response, although 50% of second-dose patients reached a seroprotective HAI titre for at least one of vaccine strains. Conclusions Our study demonstrates efficient, although time-dependent, immune responses to IIV in HSCT recipients, and provides insights into influenza vaccination strategies targeted to immunocompromised high-risk groups.
Collapse
Affiliation(s)
- Wuji Zhang
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Louise C Rowntree
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | | | - Timon Damelang
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Malet Aban
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Aeron C Hurt
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Product Development Medical Affairs, Infectious DiseasesF. Hoffmann-La Roche LtdBaselSwitzerland
| | - Maria Auladell
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Robyn Esterbauer
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | | | | | - Stephen J Turner
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of MicrobiologyMonash UniversityClaytonVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Sushrut Patil
- Malignant Haematology and Stem Cell Transplantation Service, Department of Clinical HaematologyThe Alfred HospitalMelbourneVICAustralia
| | - Sharon Avery
- Malignant Haematology and Stem Cell Transplantation Service, Department of Clinical HaematologyThe Alfred HospitalMelbourneVICAustralia
| | - Orla Morrissey
- Department of Infectious DiseasesAlfred HealthMelbourneVICAustralia
| | - Amy W Chung
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Marios Koutsakos
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Thi HO Nguyen
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Allen C Cheng
- School of Public Health and Preventive MedicineMonash UniversityClaytonVICAustralia
- Infection Prevention and Healthcare Epidemiology UnitAlfred HealthMelbourneVICAustralia
| | - Tom C Kotsimbos
- Department of Respiratory MedicineThe Alfred HospitalMelbourneVICAustralia
- Department of Medicine, Central Clinical School, The Alfred HospitalMonash UniversityMelbourneVICAustralia
| | - Katherine Kedzierska
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoJapan
| |
Collapse
|
21
|
Yunis J, Short KR, Yu D. Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends Microbiol 2023; 31:644-656. [PMID: 36635162 PMCID: PMC9829516 DOI: 10.1016/j.tim.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host-pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus-host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.
Collapse
Affiliation(s)
- Joseph Yunis
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
22
|
Nguyen THO, Rowntree LC, Allen LF, Chua BY, Kedzierski L, Lim C, Lasica M, Tennakoon GS, Saunders NR, Crane M, Chee L, Seymour JF, Anderson MA, Whitechurch A, Clemens EB, Zhang W, Chang SY, Habel JR, Jia X, McQuilten HA, Minervina AA, Pogorelyy MV, Chaurasia P, Petersen J, Menon T, Hensen L, Neil JA, Mordant FL, Tan HX, Cabug AF, Wheatley AK, Kent SJ, Subbarao K, Karapanagiotidis T, Huang H, Vo LK, Cain NL, Nicholson S, Krammer F, Gibney G, James F, Trevillyan JM, Trubiano JA, Mitchell J, Christensen B, Bond KA, Williamson DA, Rossjohn J, Crawford JC, Thomas PG, Thursky KA, Slavin MA, Tam CS, Teh BW, Kedzierska K. Robust SARS-CoV-2 T cell responses with common TCRαβ motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells. Cell Rep Med 2023; 4:101017. [PMID: 37030296 PMCID: PMC10040362 DOI: 10.1016/j.xcrm.2023.101017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Chhay Lim
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Masa Lasica
- Department of Haematology, St Vincent's Hospital, Fitzroy, VIC 3065, Australia; Department of Haematology, Eastern Health, Box Hill, VIC 3128, Australia
| | - G Surekha Tennakoon
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Natalie R Saunders
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Megan Crane
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lynette Chee
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Seymour
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mary Ann Anderson
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Ashley Whitechurch
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jessica A Neil
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira F Cabug
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia; Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Han Huang
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lynn K Vo
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Natalie L Cain
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Grace Gibney
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Janine M Trevillyan
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jeni Mitchell
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Britt Christensen
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia; Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Katherine A Bond
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Deborah A Williamson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CF14 4XN Cardiff, UK
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karin A Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Constantine S Tam
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| |
Collapse
|
23
|
Chen L, Hua J, He X. Co-expression network analysis identifies potential candidate hub genes in severe influenza patients needing invasive mechanical ventilation. BMC Genomics 2022; 23:703. [PMID: 36243706 PMCID: PMC9569050 DOI: 10.1186/s12864-022-08915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a contagious disease that affects people of all ages and is linked to considerable mortality during epidemics and occasional outbreaks. Moreover, effective immunological biomarkers are needed for elucidating aetiology and preventing and treating severe influenza. Herein, we aimed to evaluate the key genes linked with the disease severity in influenza patients needing invasive mechanical ventilation (IMV). Three gene microarray data sets (GSE101702, GSE21802, and GSE111368) from blood samples of influenza patients were made available by the Gene Expression Omnibus (GEO) database. The GSE101702 and GSE21802 data sets were combined to create the training set. Hub indicators for IMV patients with severe influenza were determined using differential expression analysis and Weighted correlation network analysis (WGCNA) from the training set. The receiver operating characteristic curve (ROC) was also used to evaluate the hub genes from the test set's diagnostic accuracy. Different immune cells' infiltration levels in the expression profile and their correlation with hub gene markers were examined using single-sample gene set enrichment analysis (ssGSEA). RESULTS In the present study, we evaluated a total of 447 differential genes. WGCNA identified eight co-expression modules, with the red module having the strongest correlation with IMV patients. Differential genes were combined to obtain 3 hub genes (HLA-DPA1, HLA-DRB3, and CECR1). The identified genes were investigated as potential indicators for patients with severe influenza who required IMV using the least absolute shrinkage and selection operator (LASSO) approach. The ROC showed the diagnostic value of the three hub genes in determining the severity of influenza. Using ssGSEA, it has been revealed that the expression of key genes was negatively correlated with neutrophil activation and positively associated with adaptive cellular immune response. CONCLUSION We evaluated three novel hub genes that could be linked to the immunopathological mechanism of severe influenza patients who require IMV treatment and could be used as potential biomarkers for severe influenza prevention and treatment.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital With Nanjing Medical University, No.300 Guangzhou Road, Nanjing city, 210029, Jiangsu Province, China.
| |
Collapse
|
24
|
Chua BY, Sekiya T, Koutsakos M, Nomura N, Rowntree LC, Nguyen THO, McQuilten HA, Ohno M, Ohara Y, Nishimura T, Endo M, Itoh Y, Habel JR, Selva KJ, Wheatley AK, Wines BD, Hogarth PM, Kent SJ, Chung AW, Jackson DC, Brown LE, Shingai M, Kedzierska K, Kida H. Immunization with inactivated whole virus particle influenza virus vaccines improves the humoral response landscape in cynomolgus macaques. PLoS Pathog 2022; 18:e1010891. [PMID: 36206307 PMCID: PMC9581423 DOI: 10.1371/journal.ppat.1010891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.
Collapse
Affiliation(s)
- Brendon Y. Chua
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Toshiki Sekiya
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hayley A. McQuilten
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | | | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Parkville, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David C. Jackson
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lorena E. Brown
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Masashi Shingai
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Katherine Kedzierska
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hiroshi Kida
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Kedzierska K, Nguyen THO. PD-1 blockade unblocks immune responses to vaccination. Nat Immunol 2022; 23:1135-1137. [PMID: 35902636 DOI: 10.1038/s41590-022-01254-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Verstegen NJM, Hagen RR, van den Dijssel J, Kuijper LH, Kreher C, Ashhurst T, Kummer LYL, Steenhuis M, Duurland M, de Jongh R, de Jong N, van der Schoot CE, Bos AV, Mul E, Kedzierska K, van Dam KPJ, Stalman EW, Boekel L, Wolbink G, Tas SW, Killestein J, van Kempen ZLE, Wieske L, Kuijpers TW, Eftimov F, Rispens T, van Ham SM, ten Brinke A, van de Sandt CE. Immune dynamics in SARS-CoV-2 experienced immunosuppressed rheumatoid arthritis or multiple sclerosis patients vaccinated with mRNA-1273. eLife 2022; 11:e77969. [PMID: 35838348 PMCID: PMC9337853 DOI: 10.7554/elife.77969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patients affected by different types of autoimmune diseases, including common conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants. Methods The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HCs) before and 7 days after the first and second vaccination. Results OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to HCs and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2-specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells. Conclusions Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients may still benefit from vaccination by inducing a broad CD8+ T cell response which has been associated with milder disease outcome. The delayed vaccine-induced IgG kinetics in RA-MTX patients indicate an increased risk after the first vaccination, which might require additional shielding or alternative strategies such as treatment interruptions in vulnerable patients. Funding This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).
Collapse
Affiliation(s)
- Niels JM Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Ruth R Hagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Jet van den Dijssel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Christine Kreher
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Thomas Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute, and The University of SydneySydneyAustralia
- School of Medical Sciences, Faculty of Medicine and Health, The University of SydneySydneyAustralia
| | - Laura YL Kummer
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Mariel Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Rivka de Jongh
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Nina de Jong
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Amélie V Bos
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Erik Mul
- Department of Research Facilities, Sanquin ResearchAmsterdamNetherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido UniversitySapporoJapan
| | - Koos PJ van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and immunology CenterAmsterdamNetherlands
| | - Gertjan Wolbink
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Rheumatology, Amsterdam Rheumatology and immunology CenterAmsterdamNetherlands
| | - Sander W Tas
- Amsterdam Rheumatology and immunology Center, Department of Rheumatology and Clinical Immunology, University of AmsterdamAmsterdamNetherlands
| | - Joep Killestein
- Amsterdam UMC, Vrije Universiteit, Department of NeurologyAmsterdamNetherlands
| | - Zoé LE van Kempen
- Amsterdam UMC, Vrije Universiteit, Department of NeurologyAmsterdamNetherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
- Department of Clinical Neurophysiology, St Antonius HospitalNieuwegeinNetherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, University of AmsterdamAmsterdamNetherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Carolien E van de Sandt
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
27
|
Rowntree LC, Nguyen THO, Kedzierski L, Neeland MR, Petersen J, Crawford JC, Allen LF, Clemens EB, Chua B, McQuilten HA, Minervina AA, Pogorelyy MV, Chaurasia P, Tan HX, Wheatley AK, Jia X, Amanat F, Krammer F, Allen EK, Sonda S, Flanagan KL, Jumarang J, Pannaraj PS, Licciardi PV, Kent SJ, Bond KA, Williamson DA, Rossjohn J, Thomas PG, Tosif S, Crawford NW, van de Sandt CE, Kedzierska K. SARS-CoV-2-specific T cell memory with common TCRαβ motifs is established in unvaccinated children who seroconvert after infection. Immunity 2022; 55:1299-1315.e4. [PMID: 35750048 PMCID: PMC9174177 DOI: 10.1016/j.immuni.2022.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022]
Abstract
As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαβ repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαβ motifs in unvaccinated seroconverted children after their first virus encounter.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Melanie R Neeland
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jan Petersen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Brendon Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Priyanka Chaurasia
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sabrina Sonda
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; Department of Immunology and Pathology, Monash University, Commercial Road, Melbourne, VIC 3004, Australia; School of Health and Biomedical Science, RMIT University, Melbourne, VIC 3000, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Jaycee Jumarang
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Pia S Pannaraj
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Departments of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Katherine A Bond
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | - Deborah A Williamson
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shidan Tosif
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia; Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, VIC 3000, Australia
| | - Nigel W Crawford
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia; Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, VIC 3000, Australia; Royal Children's Hospital Melbourne, Immunisation Service, Melbourne, VIC 3000, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
28
|
Zhang W, Chua BY, Selva KJ, Kedzierski L, Ashhurst TM, Haycroft ER, Shoffner-Beck SK, Hensen L, Boyd DF, James F, Mouhtouris E, Kwong JC, Chua KYL, Drewett G, Copaescu A, Dobson JE, Rowntree LC, Habel JR, Allen LF, Koay HF, Neil JA, Gartner MJ, Lee CY, Andersson P, Khan SF, Blakeway L, Wisniewski J, McMahon JH, Vine EE, Cunningham AL, Audsley J, Thevarajan I, Seemann T, Sherry NL, Amanat F, Krammer F, Londrigan SL, Wakim LM, King NJC, Godfrey DI, Mackay LK, Thomas PG, Nicholson S, Arnold KB, Chung AW, Holmes NE, Smibert OC, Trubiano JA, Gordon CL, Nguyen THO, Kedzierska K. SARS-CoV-2 infection results in immune responses in the respiratory tract and peripheral blood that suggest mechanisms of disease severity. Nat Commun 2022; 13:2774. [PMID: 35589689 PMCID: PMC9120039 DOI: 10.1038/s41467-022-30088-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.
Collapse
Affiliation(s)
- Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Kevin J Selva
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | - Ebene R Haycroft
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | | | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - David F Boyd
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Effie Mouhtouris
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Jason C Kwong
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Kyra Y L Chua
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - George Drewett
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Ana Copaescu
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Julie E Dobson
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jessica A Neil
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Matthew J Gartner
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Michigan, USA
| | - Patiyan Andersson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sadid F Khan
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Luke Blakeway
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Jessica Wisniewski
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - James H McMahon
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Victorian Infectious Diseases Services, The Royal Melbourne Hospital and Doherty Department University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, VIC, Australia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Norelle L Sherry
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Nicholas J C King
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Viral Immunopathology Laboratory, Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Michigan, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC, Australia
- Data Analytics Research and Evaluation (DARE) Centre, Austin Health and University of Melbourne, Heidelberg, VIC, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
- Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC, Australia
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.
- Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC, Australia.
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC, Australia.
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC, Australia.
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
29
|
Hensen L, Illing PT, Rowntree LC, Davies J, Miller A, Tong SYC, Habel JR, van de Sandt CE, Flanagan K, Purcell AW, Kedzierska K, Clemens EB. T Cell Epitope Discovery in the Context of Distinct and Unique Indigenous HLA Profiles. Front Immunol 2022; 13:812393. [PMID: 35603215 PMCID: PMC9121770 DOI: 10.3389/fimmu.2022.812393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.
Collapse
Affiliation(s)
- Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD, Australia
| | - Steven Y. C. Tong
- Menzies School of Health Research, Darwin, NT, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Katie L. Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - E. Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
30
|
Koutsakos M, Lee WS, Reynaldi A, Tan HX, Gare G, Kinsella P, Liew KC, Taiaroa G, Williamson DA, Kent HE, Stadler E, Cromer D, Khoury DS, Wheatley AK, Juno JA, Davenport MP, Kent SJ. The magnitude and timing of recalled immunity after breakthrough infection is shaped by SARS-CoV-2 variants. Immunity 2022; 55:1316-1326.e4. [PMID: 35690062 PMCID: PMC9135796 DOI: 10.1016/j.immuni.2022.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
Vaccination against SARS-CoV-2 protects from infection and improves clinical outcomes in breakthrough infections, likely reflecting residual vaccine-elicited immunity and recall of immunological memory. Here, we define the early kinetics of spike-specific humoral and cellular immunity after vaccination of seropositive individuals and after Delta or Omicron breakthrough infection in vaccinated individuals. Early longitudinal sampling revealed the timing and magnitude of recall, with the phenotypic activation of B cells preceding an increase in neutralizing antibody titers. While vaccination of seropositive individuals resulted in robust recall of humoral and T cell immunity, recall of vaccine-elicited responses was delayed and variable in magnitude during breakthrough infections and depended on the infecting variant of concern. While the delayed kinetics of immune recall provides a potential mechanism for the lack of early control of viral replication, the recall of antibodies coincided with viral clearance and likely underpins the protective effects of vaccination against severe COVID-19.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Grace Gare
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paul Kinsella
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kwee Chin Liew
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - George Taiaroa
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Helen E Kent
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eva Stadler
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia.
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
31
|
Innate and Adaptive Immune Responses in the Upper Respiratory Tract and the Infectivity of SARS-CoV-2. Viruses 2022; 14:v14050933. [PMID: 35632675 PMCID: PMC9143801 DOI: 10.3390/v14050933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence shows the nasal epithelium to be the initial site of SARS-CoV-2 infection, and that early and effective immune responses in the upper respiratory tract (URT) limit and eliminate the infection in the URT, thereby preventing infection of the lower respiratory tract and the development of severe COVID-19. SARS-CoV-2 interferes with innate immunity signaling and evolves mutants that can reduce antibody-mediated immunity in the URT. Recent genetic and immunological advances in understanding innate immunity to SARS-CoV-2 in the URT, and the ability of prior infections as well as currently available injectable and potential intranasal COVID-19 vaccines to generate anamnestic adaptive immunity in the URT, are reviewed. It is suggested that the more detailed investigation of URT immune responses to all types of COVID-19 vaccines, and the development of safe and effective COVID-19 vaccines for intranasal administration, are important needs.
Collapse
|
32
|
Wang Z, Yang X, Mei X, Zhou Y, Tang Z, Li G, Zhong J, Yu M, Huang M, Su X, Lin B, Cao P, Yang J, Ran P. SARS-CoV-2-specific CD4 + T cells are associated with long-term persistence of neutralizing antibodies. Signal Transduct Target Ther 2022; 7:132. [PMID: 35461307 PMCID: PMC9034077 DOI: 10.1038/s41392-022-00978-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Understanding the decay and maintenance of long-term SARS-CoV-2 neutralizing antibodies in infected or vaccinated people and how vaccines protect against other SARS-CoV-2 variants is critical for assessing public vaccination plans. Here, we measured different plasm antibody levels 2 and 12 months after disease onset, including anti-RBD, anti-N, total neutralizing antibodies, and two neutralizing-antibody clusters. We found that total neutralizing antibodies declined more slowly than total anti-RBD and anti-N IgG, and the two neutralizing-antibody clusters decayed even more slowly than total neutralizing antibodies. Interestingly, the level of neutralizing antibodies at 12 months after disease onset was significantly lower than that at 2 months but more broadly neutralized SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Lambda (C.37). Significant immune escape by the Omicron variant (B.1.1.529) was also observed 2 months post-recovery. Furthermore, we revealed that a high percentage of virus-specific CD4+ T cells and cTfh1 were associated with a slower decline in humoral immunity, accompanied by higher levels of CXCR3 ligands such as CXCL9 and CXCL10, higher frequency of cTfh1, and lower levels of cTfh2 and cTfh17. Our data highlight the importance of coordinating T-cell and humoral immunity to achieve long-term protective immunity.
Collapse
Affiliation(s)
- Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyun Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xinyue Mei
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhiqiang Tang
- The Second People's Hospital of Changde, Hunan, China
| | - Guichang Li
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jiaying Zhong
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Mengqiu Yu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Huang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaoling Su
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Bijia Lin
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pengxing Cao
- School of mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - Ji Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Koutsakos M, Kedzierska K, Nguyen THO. Evaluation of Human Circulating T Follicular Helper Cells in Influenza- and SARS-CoV-2-Specific B Cell Immunity. Methods Mol Biol 2022; 2380:201-209. [PMID: 34802133 DOI: 10.1007/978-1-0716-1736-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Generation of effective immune protection against viral infection and vaccination depends greatly on a successful engagement and stimulation of adaptive immune B cells and a specialized CD4+ T cell subset called T follicular helper cells (TFH cells). Since TFH cells primarily reside in lymphoid tissues, they can be challenging to study in human settings. However, a counterpart of these cells, circulating TFH (cTFH) cells, can be detected in peripheral blood. Assessment of cTFH cells serves as an informative marker of humoral responses following viral infection and vaccination and can be predictive of antibody titers. Here, we describe a comprehensive flow cytometry detection method for dissecting cTFH subsets and activation, together with the assessment of antibody-secreting cells (ASCs), from a small volume of human whole blood. This approach allows the investigation of cellular events that underpin successful immune responses following influenza and SARS-CoV-2 infection/vaccination in humans and is applicable to other viral disease settings.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
34
|
Reijnders TDY, Schuurman AR, van der Poll T. The Immune Response to Respiratory Viruses: From Start to Memory. Semin Respir Crit Care Med 2021; 42:759-770. [PMID: 34918319 DOI: 10.1055/s-0041-1736459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomedical research has long strived to improve our understanding of the immune response to respiratory viral infections, an effort that has become all the more important as we live through the consequences of a pandemic. The disease course of these infections is shaped in large part by the actions of various cells of the innate and adaptive immune systems. While these cells are crucial in clearing viral pathogens and establishing long-term immunity, their effector mechanisms may also escalate into excessive, tissue-destructive inflammation detrimental to the host. In this review, we describe the breadth of the immune response to infection with respiratory viruses such as influenza and respiratory syncytial virus. Throughout, we focus on the host rather than the pathogen and try to describe shared patterns in the host response to different viruses. We start with the local cells of the airways, onto the recruitment and activation of innate and adaptive immune cells, followed by the establishment of local and systemic memory cells key in protection against reinfection. We end by exploring how respiratory viral infections can predispose to bacterial superinfection.
Collapse
Affiliation(s)
- Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex R Schuurman
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Juno JA, Hill DL. T follicular helper cells and their impact on humoral responses during pathogen and vaccine challenge. Curr Opin Immunol 2021; 74:112-117. [PMID: 34861545 DOI: 10.1016/j.coi.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
Abstract
T follicular helper (Tfh) cells are essential for the establishment, maintenance and output of the germinal centre (GC) response. The transient nature of this response, and its location within secondary lymphoid tissues have hampered our understanding of this critical cell type, particularly in humans. A counterpart of GC Tfh cells in peripheral blood has enabled recent discoveries in disease and vaccination settings, while direct sampling of lymph nodes provides exciting new avenues to study GC responses directly in vivo. Tfh differentiation is shaped by the cytokine milieu during inflammation, vaccination and with age, and disease-specific patterns are emerging. An improved understanding of how to support a Tfh response remains key to enhancing vaccine immunity across the lifespan.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne 3000, Victoria, Australia.
| | - Danika L Hill
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd., Melbourne 3004, Victoria, Australia.
| |
Collapse
|
36
|
Koutsakos M, Lee WS, Wheatley AK, Kent SJ, Juno JA. T follicular helper cells in the humoral immune response to SARS-CoV-2 infection and vaccination. J Leukoc Biol 2021; 111:355-365. [PMID: 34730247 PMCID: PMC8667651 DOI: 10.1002/jlb.5mr0821-464r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vaccination remains the most effective mechanism to reduce the impact of COVID‐19. Induction of neutralizing antibodies is a strong correlate of protection from infection and severe disease. An understanding of the cellular events that underpin the generation of effective neutralizing antibodies is therefore key to the development of efficacious vaccines that target emerging variants of concern. Analysis of the immune response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2) infection and vaccination has identified circulating T follicular helper cells (cTFH) as a robust correlate of the neutralizing antibody response. Here, we discuss the analysis of cTFH cells and their lymphoid counterparts in human humoral immune responses during COVID‐19, and in response to vaccination with SARS‐CoV‐2 spike. We discuss the phenotypic heterogeneity of cTFH cells and the utility of cTFH subsets as informative biomarkers for development of humoral immunity. We posit that the analysis of the most effective cTFH will be critical to inducing durable immunity to new variants of SARS‐CoV‐2.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Robust and prototypical immune responses toward influenza vaccines in the high-risk group of Indigenous Australians. Proc Natl Acad Sci U S A 2021; 118:2109388118. [PMID: 34607957 PMCID: PMC8522271 DOI: 10.1073/pnas.2109388118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Abstract
Indigenous populations worldwide are highly susceptible to influenza virus infections. Vaccination with inactivated virus is highly recommended to protect Indigenous populations, including Indigenous Australians. There is no study to date that assessed immune responses induced by the inactivated seasonal influenza vaccine in the Indigenous population. Vaccine recommendations are thus based on data generated for non-Indigenous populations and might not be representative for Indigenous people. We found robust antibody responses to influenza vaccination induced in Indigenous Australians, with activation profiles of cTFH1 cells at the acute response strongly correlating with total change of antibody vaccine titers induced by vaccination. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and subsequent complications. Morbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses. We performed in-depth analyses of T and B cell activation, formation of memory B cells, and antibody profiles and investigated host factors that could contribute to vaccine responses. We found activation profiles of circulating T follicular helper type-1 cells at the early stage correlated strongly with the total change in antibody titers induced by vaccination. Formation of influenza-specific hemagglutinin-binding memory B cells was significantly higher in seroconverters compared with nonseroconverters. In-depth antibody characterization revealed a reduction in immunoglobulin G3 before and after vaccination in the Indigenous Australian population, potentially linked to the increased frequency of the G3m21* allotype. Overall, our data provide evidence that Indigenous populations elicit robust, broad, and prototypical immune responses following immunization with seasonal inactivated influenza vaccines. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and their subsequent complications.
Collapse
|
38
|
Zhang W, Chua B, Selva K, Kedzierski L, Ashhurst T, Haycroft E, Shoffner S, Hensen L, Boyd D, James F, Mouhtouris E, Kwong J, Chua K, Drewett G, Copaescu A, Dobson J, Rowntree L, Habel J, Allen L, Koay HF, Neil J, Gartner M, Lee C, Andersson P, Seemann T, Sherry N, Amanat F, Krammer F, Londrigan S, Wakim L, King N, Godfrey D, Mackay L, Thomas P, Nicholson S, Arnold K, Chung A, Holmes N, Smibert O, Trubiano J, Gordon C, Nguyen T, Kedzierska K. Immune responses in COVID-19 respiratory tract and blood reveal mechanisms of disease severity. RESEARCH SQUARE 2021:rs.3.rs-802084. [PMID: 34462740 PMCID: PMC8404907 DOI: 10.21203/rs.3.rs-802084/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although the respiratory tract is the primary site of SARS-CoV-2 infection and the ensuing immunopathology, respiratory immune responses are understudied and urgently needed to understand mechanisms underlying COVID-19 disease pathogenesis. We collected paired longitudinal blood and respiratory tract samples (endotracheal aspirate, sputum or pleural fluid) from hospitalized COVID-19 patients and non-COVID-19 controls. Cellular, humoral and cytokine responses were analysed and correlated with clinical data. SARS-CoV-2-specific IgM, IgG and IgA antibodies were detected using ELISA and multiplex assay in both the respiratory tract and blood of COVID-19 patients, although a higher receptor binding domain (RBD)-specific IgM and IgG seroconversion level was found in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples was detected only when high levels of RBD-specific antibodies were present. Strikingly, cytokine/chemokine levels and profiles greatly differed between respiratory samples and plasma, indicating that inflammation needs to be assessed in respiratory specimens for the accurate assessment of SARS-CoV-2 immunopathology. Diverse immune cell subsets were detected in respiratory samples, albeit dominated by neutrophils. Importantly, we also showed that dexamethasone and/or remdesivir treatment did not affect humoral responses in blood of COVID-19 patients. Overall, our study unveils stark differences in innate and adaptive immune responses between respiratory samples and blood and provides important insights into effect of drug therapy on immune responses in COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Luca Hensen
- Peter Doherty Institute for Infection and Immunity
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sarah Londrigan
- University of Melbourne at the Peter Doherty Institute for Infection and Immunity
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Nguyen THO, Kedzierska K. Lung-resident Memory CD8+ T Cells in Human Influenza: How Innate are They? Am J Respir Crit Care Med 2021; 204:753-755. [PMID: 34352192 PMCID: PMC8528524 DOI: 10.1164/rccm.202106-1508ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Thi H O Nguyen
- The University of Melbourne, 2281, Melbourne, Victoria, Australia
| | | |
Collapse
|
40
|
Perspective of the Relationship between the Susceptibility to Initial SARS-CoV-2 Infectivity and Optimal Nasal Conditioning of Inhaled Air. Int J Mol Sci 2021; 22:ijms22157919. [PMID: 34360686 PMCID: PMC8348706 DOI: 10.3390/ijms22157919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as with the influenza virus, has been shown to spread more rapidly during winter. Severe coronavirus disease 2019 (COVID-19), which can follow SARS-CoV-2 infection, disproportionately affects older persons and males as well as people living in temperate zone countries with a tropical ancestry. Recent evidence on the importance of adequately warming and humidifying (conditioning) inhaled air in the nasal cavity for reducing SARS-CoV-2 infectivity in the upper respiratory tract (URT) is discussed, with particular reference to: (i) the relevance of air-borne SARS-CoV-2 transmission, (ii) the nasal epithelium as the initial site of SARS-CoV-2 infection, (iii) the roles of type 1 and 3 interferons for preventing viral infection of URT epithelial cells, (iv) weaker innate immune responses to respiratory viral infections in URT epithelial cells at suboptimal temperature and humidity, and (v) early innate immune responses in the URT for limiting and eliminating SARS-CoV-2 infections. The available data are consistent with optimal nasal air conditioning reducing SARS-CoV-2 infectivity of the URT and, as a consequence, severe COVID-19. Further studies on SARS-CoV-2 infection rates and viral loads in the nasal cavity and nasopharynx in relation to inhaled air temperature, humidity, age, gender, and genetic background are needed in this context. Face masks used for reducing air-borne virus transmission can also promote better nasal air conditioning in cold weather. Masks can, thereby, minimise SARS-CoV-2 infectivity and are particularly relevant for protecting more vulnerable persons from severe COVID-19.
Collapse
|