1
|
Ito T, Suzuki T, Sakai Y, Nishioka K, Itoh Y, Sakamoto K, Ikemura N, Matoba S, Kanda Y, Takagi J, Okamoto T, Tahara K, Hoshino A. Engineered ACE2 decoy in dry powder form for inhalation: A novel therapy for SARS-CoV-2 variants. Mol Ther Methods Clin Dev 2025; 33:101459. [PMID: 40276779 PMCID: PMC12019485 DOI: 10.1016/j.omtm.2025.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
The persistent threat of SARS-CoV-2 and the emergence of new variants has prompted the development of a novel, easily administered modality that can overcome viral mutations. The engineered ACE2 decoy shows neutralizing activity comparable to monoclonal antibodies and is broadly effective against SARS-CoV-2 variants and ACE2-utilizing sarbecoviruses. In addition to intravenous administration, this decoy has shown antiviral efficacy through nebulized aerosol inhalation in murine and primate models, offering a dose-sparing advantage. Clinically, dry powder formulation is ideal for convenience and storage but poses challenges for protein biologics. This study developed a freeze-dried spray formulation of the ACE2 decoy for inhalation. The trehalose and leucine-based excipient maintained neutralizing activity and prevented aggregate formation. The dry powder showed aerodynamic distribution from bronchi to alveoli, aiding protection against SARS-CoV-2 infections. Neutralizing activity, structural stability, and powder dispersibility were preserved after 6 months of storage. In a mouse model of SARS-CoV-2 infection, significant reductions in viral replication and lung pathology were observed with intratracheal administration 24 h post-infection. The ACE2 decoy retained activity against recent JN.1 and current KP.3 strains, confirming its robust efficacy against viral mutations. This ACE2 decoy powder inhalant is a self-administered, next-generation treatment addressing the ongoing immune-evading evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Takaaki Ito
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Tatsuya Suzuki
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Keisuke Nishioka
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yumi Itoh
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kentarou Sakamoto
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Nariko Ikemura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Laboratory of Nanofiber Technology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Föderl-Höbenreich E, Izadi S, Hofacker L, Kienzl NF, Castilho A, Strasser R, Tarrés-Freixas F, Cantero G, Roca N, Pérez M, Lorca-Oró C, Usai C, Segalés J, Vergara-Alert J, Mach L, Zatloukal K. An ACE2-Fc decoy produced in glycoengineered plants neutralizes ancestral and newly emerging SARS-CoV-2 variants and demonstrates therapeutic efficacy in hamsters. Sci Rep 2025; 15:11307. [PMID: 40175560 PMCID: PMC11965572 DOI: 10.1038/s41598-025-95494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Newly emerging SARS-CoV-2 variants of concern (VOCs) continue to drive COVID-19 waves and are typically associated with immune escape and increased resistance to current therapeutics including monoclonal antibodies. By contrast, VOCs still display strong binding to the host cell receptor ACE2. Consistent with these properties, we have now found that a soluble ACE2-Fc decoy produced in glycoengineered plants effectively neutralizes different SARS-CoV-2 isolates and exhibits even increased potency against VOCs as compared to an ancestral virus strain. In a golden Syrian hamster model, therapeutic intranasal delivery of ACE2-Fc effectively reduced weight loss and SARS-CoV-2 replication in the lungs when administered 24 h post-inoculation. This protective effect was not observed upon treatment of the infected animals with a non-binding ACE2-Fc mutant, demonstrating that the plant-derived ACE2-Fc decoy interferes specifically with the attachment of the virus to host cells. The results obtained provide support for further development of decoy-based antiviral approaches by plant molecular pharming.
Collapse
Affiliation(s)
| | - Shiva Izadi
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Lara Hofacker
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Nikolaus F Kienzl
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Alexandra Castilho
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Richard Strasser
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Ferran Tarrés-Freixas
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Guillermo Cantero
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Núria Roca
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Mònica Pérez
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Cristina Lorca-Oró
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Carla Usai
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Lukas Mach
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria.
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
3
|
Tran V, Nguyen N, Renkes S, Nguyen KT, Nguyen T, Alexandrakis G. Current and Near-Future Technologies to Quantify Nanoparticle Therapeutic Loading Efficiency and Surface Coating Efficiency with Targeted Moieties. Bioengineering (Basel) 2025; 12:362. [PMID: 40281721 PMCID: PMC12025210 DOI: 10.3390/bioengineering12040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Active targeting nanoparticles are a new generation of drug and gene delivery systems with the potential for greatly improved therapeutics delivery compared to conventional nanomedicine approaches. Despite their potential, the translation of active targeting nanoparticles faces challenges in production scale-up and batch consistency. Accurate quality control methods for nanoparticle therapeutic payload and coating characterization are critical for attaining the desired levels of batch repeatability, drug/gene loading efficiency, targeting molecule coating effectiveness, and safety profiles. Current limitations in nanoparticle characterization technologies, such as relying on ensemble-average analysis, pose challenges in assessing the drug/gene content and surface modification heterogeneity, which can greatly affect therapeutic outcomes. Single-molecule analysis technologies have emerged as a promising alternative, offering rich information on heterogeneity and stochastic variations between nanoparticle batches. This review first evaluates and identifies the challenges of traditional nanoparticle characterization tools that rely on indirect, bulk solution quantification methods. Subsequently, newly emerging characterization technologies are introduced for the quantification of therapeutic loading and targeted moiety coating efficiencies with single-nanoparticle resolution, to help guide researchers towards advancing the translation of active targeting nanoparticles into the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; (V.T.); (N.N.); (S.R.); (K.T.N.)
| | - George Alexandrakis
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; (V.T.); (N.N.); (S.R.); (K.T.N.)
| |
Collapse
|
4
|
Suzuki Y, Miyazaki T, Ida Y, Suzuki T, Itoh Y, Nakao S, Kondo K, Kubara K, Nishioka K, Muto H, Watari R, Hirayama T, Kakiuchi D, Sato S, Inoue S, Uemoto Y, Mukai Y, Hoshino A, Okamoto T, Matsui J. In vivo production of engineered ACE2 decoy protects lungs from SARS-CoV-2 infection. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102467. [PMID: 40027884 PMCID: PMC11869860 DOI: 10.1016/j.omtn.2025.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants repeatedly evade the immune system within short periods. Thus, next-generation therapeutics that are resistant to mutations and can be rapidly supplied to individuals in an emergency are required. Here, we designed an mRNA encoding an engineered angiotensin-converting enzyme 2 (ACE2) decoy, 3N39v4, composed of high-affinity ACE2 and a human immunoglobulin G Fc domain. The 3N39v4-encoded mRNA was encapsulated in lipid nanoparticles for efficient in vivo delivery. Systemic delivery of mRNA in mice resulted in a dose-dependent expression of 3N39v4 in plasma (20-261 μg/mL at 1-10 mg/kg) with sufficient tolerability. An improved pharmacokinetic profile of the produced protein was compared to injection of the 3N39v4 protein. In vivo-expressed 3N39v4 exhibited broad neutralization against nine SARS-CoV-2 variants and other sarbecoviruses, including the currently circulating Omicron subvariants JN.1 and BA.2.86. A single intravenous injection of 3N39v4-encoded mRNA resulted in a robust, dose-dependent improvement in the outcomes of mice infected with SARS-CoV-2. The mRNA treatment in monkeys produced 3N39v4 in sera, which inhibited the replication of the authentic viruses. The rapid development of mRNA drugs highlights the potential of mRNA-encoded ACE2 decoys in emergencies to combat diverse SARS-CoV-2 variants, including future variants.
Collapse
Affiliation(s)
- Yuta Suzuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Takayuki Miyazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Yoko Ida
- Kobe Research Laboratories, Eisai Co., Ltd., Kobe 650-0047, Japan
| | - Tatsuya Suzuki
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yumi Itoh
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shuto Nakao
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Keita Kondo
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Keisuke Nishioka
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroki Muto
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Ryuji Watari
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | | | - Dai Kakiuchi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Shinya Sato
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Satoshi Inoue
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Yoshifumi Uemoto
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| | - Yohei Mukai
- Kobe Research Laboratories, Eisai Co., Ltd., Kobe 650-0047, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Junji Matsui
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki 300-2635, Japan
| |
Collapse
|
5
|
Batlle D, Hassler L, Wysocki J. ACE2, From the Kidney to SARS-CoV-2: Donald Seldin Award Lecture 2023. Hypertension 2025; 82:166-180. [PMID: 39624896 DOI: 10.1161/hypertensionaha.124.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ACE2 (angiotensin-converting enzyme 2) is a monocarboxypeptidase that cleaves Ang II (angiotensin II) among other substrates. ACE2 is present in the cell membrane of many organs, most abundantly in epithelial cells of kidney proximal tubules and the small intestine, and also exists in soluble forms in plasma and body fluids. Membrane-bound ACE2 exerts a renoprotective action by metabolizing Ang II and therefore attenuating the undesirable actions of excess Ang II. Therefore, soluble ACE2, by downregulating this peptide, may exert a therapeutic action. Our laboratory has designed ACE2 truncates that pass the glomerular filtration barrier to target the kidney renin-angiotensin system directly and, therefore, compensate for loss of kidney membrane-bound ACE2. Membrane-bound ACE2 is also the essential receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Soluble ACE2 proteins have been studied as a way to intercept SARS-CoV-2 from binding to membrane-bound ACE2 and prevent cell entry of SARS-CoV-2 altogether. We bioengineered a soluble ACE2 protein, termed ACE2 618-DDC-ABD, with increased binding affinity for SARS-CoV-2 and prolonged duration of action, which, when administered intranasally, provides near-complete protection from lethality in k18hACE2 mice infected with different SARS-CoV-2 variants. The main advantage of soluble ACE2 proteins for the neutralization of SARS-CoV-2 is their immediate onset of action and universality for current and future emerging SARS-CoV-2 variants. It is notable that ACE2 is critically involved in 2 dissimilar functions: as a receptor for cell entry of many coronaviruses and as an enzyme in the metabolism of Ang II, and yet in both cases, it is a therapeutic target.
Collapse
Affiliation(s)
- Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
6
|
Jung J, Kwon S, Sung JS, Bae HE, Kang MJ, Jose J, Lee M, Pyun JC. Screened Fv-Antibodies against the Angiotensin-Converting Enzyme 2 (ACE2) Receptor Neutralizing the Infection of SARS-CoV-2. ACS Pharmacol Transl Sci 2024; 7:3914-3920. [PMID: 39698273 PMCID: PMC11651164 DOI: 10.1021/acsptsci.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
For the prevention of SARS-CoV-2 infection, four Fv-antibodies with binding affinity for the ACE2 receptor were screened from an Fv-antibody library. The screened Fv-antibodies were expressed as soluble proteins and estimated to have a high binding affinity, comparable to that between SARS-CoV-2 and the ACE2 receptor. The interaction between the Fv-antibodies and the ACE2 receptor was analyzed using docking simulation, and the significant binding affinity of the screened Fv-antibodies was attributed to the homology in amino acid sequence with the ACE2 receptor. The neutralizing activities of the Fv-antibodies were demonstrated using a cell-based infection assay based on four pseudo-virus types with SARS-CoV-2 variant spike proteins (Wild-type D614, Delta B.1.617.2, and Omicron BA.2, and Omicron BA.4/5).
Collapse
Affiliation(s)
- Jaeyong Jung
- Department
of Materials Science and Engineering, Yonsei
University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Soonil Kwon
- Department
of Materials Science and Engineering, Yonsei
University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jeong Soo Sung
- Department
of Materials Science and Engineering, Yonsei
University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hyung Eun Bae
- Department
of Materials Science and Engineering, Yonsei
University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Min-Jung Kang
- Korea
Institute of Science and Technology (KIST), Seoul 02456, Korea
| | - Joachim Jose
- Institute
of Pharmaceutical and Medical Chemistry, Westfälischen Wilhelms-Universität Münster, 48149Müenster, Germany
| | - Misu Lee
- Division
of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
- Institute
for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jae-Chul Pyun
- Department
of Materials Science and Engineering, Yonsei
University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
7
|
Cavazzini D, Levati E, Germani S, Ta BL, Monica L, Bolchi A, Donofrio G, Garrapa V, Ottonello S, Montanini B. Broad Neutralization Capacity of an Engineered Thermostable Three-Helix Angiotensin-Converting Enzyme 2 Polypeptide Targeting the Receptor-Binding Domain of SARS-CoV-2. Int J Mol Sci 2024; 25:12319. [PMID: 39596383 PMCID: PMC11594380 DOI: 10.3390/ijms252212319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The mutational drift of SARS-CoV-2 and the appearance of multiple variants, including the latest Omicron variant and its sub-lineages, has significantly reduced (and in some cases abolished) the protective efficacy of Wuhan spike-antigen-based vaccines and therapeutic antibodies. One of the most functionally constrained and thus largely invariable regions of the spike protein is the one involved in the interaction with the ACE2 receptor mediating the cellular entry of SARS-CoV-2. Engineered ACE2, both as a full-length protein or as an engineered polypeptide fragment, has been shown to be capable of preventing the host-cell binding of all viral variants and to be endowed with potent SARS-CoV-2 neutralization activity both in vitro and in vivo. Here, we report on the biochemical and antiviral properties of rationally designed ACE2 N-terminal, three-helix fragments that retain a native-like conformation. One of these fragments, designated as PRP8_3H and produced in recombinant form, bears structure-stabilizing and binding-affinity enhancing mutations in α-helix-I and in both α-helix I and II, respectively. While the native-like, unmodified three α-helices ACE2 fragment proved to be thermally unstable and without any detectable pseudovirion neutralization capacity, PRP8_3H was found to be highly thermostable and capable of binding to the SARS-CoV-2 spike receptor-binding domain with nanomolar affinity and to neutralize both Wuhan and Omicron spike-expressing pseudovirions at (sub)micromolar concentrations. PRP8_3H thus lends itself as a highly promising ACE2 decoy prototype suitable for a variety of formulations and prophylactic applications.
Collapse
Affiliation(s)
- Davide Cavazzini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (D.C.); (E.L.); (A.B.); (S.O.)
| | - Elisabetta Levati
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (D.C.); (E.L.); (A.B.); (S.O.)
| | - Saveria Germani
- Preclinics GMBH, 14482 Potsdam, Germany; (S.G.); (B.L.T.); (L.M.)
| | - Bao Loc Ta
- Preclinics GMBH, 14482 Potsdam, Germany; (S.G.); (B.L.T.); (L.M.)
| | - Lara Monica
- Preclinics GMBH, 14482 Potsdam, Germany; (S.G.); (B.L.T.); (L.M.)
| | - Angelo Bolchi
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (D.C.); (E.L.); (A.B.); (S.O.)
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124 Parma, Italy
| | - Gaetano Donofrio
- Department of Medical Veterinary Science, University of Parma, 43126 Parma, Italy;
| | | | - Simone Ottonello
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (D.C.); (E.L.); (A.B.); (S.O.)
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124 Parma, Italy
| | - Barbara Montanini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (D.C.); (E.L.); (A.B.); (S.O.)
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124 Parma, Italy
| |
Collapse
|
8
|
Kim YS, Kim M, Park HM, Kim HJ, Ryu SE. Disulfide Bond Engineering of Soluble ACE2 for Thermal Stability Enhancement. Int J Mol Sci 2024; 25:9919. [PMID: 39337407 PMCID: PMC11432317 DOI: 10.3390/ijms25189919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Although the primary pandemic of SARS-CoV-2 is over, there are concerns about the resurgence of the next wave of related viruses, including a wide range of variant viruses. The soluble ACE2 (sACE2) inhibits the SARS-CoV-2 spike protein ACE2 interaction and has potential as a variant-independent therapeutic against SARS-CoV-2. Here, we introduce novel disulfide bonds in the wild-type sACE2-Fc by structure-guided mutagenesis, aiming to improve its stability. The stability of each mutant was assessed by a thermal shift assay to screen mutants with increased thermal stability. As a result, we identified a mutant sACE2-Fc with a significantly increased melting temperature. X-ray crystal structure determination of the sACE2 mutant confirmed the correct formation of the designed disulfide bond, and there were no significant structural disturbances. We also proved that the thermostable sACE2-Fc preserved the spike protein binding affinity comparable to the wild-type sACE2-Fc in both molecular and cellular environments, suggesting its therapeutic potential.
Collapse
Affiliation(s)
- Yoon Soo Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Myeongbin Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Hye Min Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Hyun Jin Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| |
Collapse
|
9
|
Skeeters S, Bagale K, Stepanyuk G, Thieker D, Aguhob A, Chan KK, Dutzar B, Shalygin S, Shajahan A, Yang X, DaRosa PA, Frazier E, Sauer MM, Bogatzki L, Byrnes-Blake KA, Song Y, Azadi P, Tarcha E, Zhang L, Procko E. Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation. Mol Ther Methods Clin Dev 2024; 32:101301. [PMID: 39185275 PMCID: PMC11342882 DOI: 10.1016/j.omtm.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.
Collapse
Affiliation(s)
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | - Sergei Shalygin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | - Yifan Song
- Cyrus Biotechnology, Seattle, WA 98121, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erik Procko
- Cyrus Biotechnology, Seattle, WA 98121, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
11
|
Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol 2024; 15:1433531. [PMID: 39188722 PMCID: PMC11345197 DOI: 10.3389/fimmu.2024.1433531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Post-COVID-19 condition is recognized as a multifactorial disorder, with persistent presence of viral antigens, discordant immunity, delayed viral clearance, and chronic inflammation. Obesity has emerged as an independent risk factor for both SARS-CoV-2 infection and its subsequent sequelae. In this study, we aimed to predict the molecular mechanisms linking obesity and post-COVID-19 distress. Viral antigen-exposed adipose tissues display remarkable levels of viral receptors, facilitating viral entry, deposition, and chronic release of inflammatory mediators and cells in patients. Subsequently, obesity-associated inflammatory insults are predicted to disturb cellular and humoral immunity by triggering abnormal cell differentiation and lymphocyte exhaustion. In particular, the decline in SARS-CoV-2 antibody titers and T-cell exhaustion due to chronic inflammation may account for delayed virus clearance and persistent activation of inflammatory responses. Taken together, obesity-associated defective immunity is a critical control point of intervention against post-COVID-19 progression, particularly in subjects with chronic metabolic distress.
Collapse
Affiliation(s)
- Soonwoo Jang
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
| | - Wooyoung Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
12
|
Ameratunga R, Jordan A, Lehnert K, Leung E, Mears ER, Snell R, Steele R, Woon ST. SARS-CoV-2 evolution has increased resistance to monoclonal antibodies and first-generation COVID-19 vaccines: Is there a future therapeutic role for soluble ACE2 receptors for COVID-19? Antiviral Res 2024; 227:105894. [PMID: 38677595 DOI: 10.1016/j.antiviral.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
COVID-19 has caused calamitous health, economic and societal consequences. Although several COVID-19 vaccines have received full authorization for use, global deployment has faced political, financial and logistical challenges. The efficacy of first-generation COVID-19 vaccines is waning and breakthrough infections are allowing ongoing transmission and evolution of SARS-CoV-2. Furthermore, COVID-19 vaccine efficacy relies on a functional immune system. Despite receiving three primary doses and three or more heterologous boosters, some immunocompromised patients may not be adequately protected by COVID-19 vaccines and remain vulnerable to severe disease. The evolution of new SARS-CoV-2 variants has also resulted in the rapid obsolescence of monoclonal antibodies. Convalescent plasma from COVID-19 survivors has produced inconsistent results. New drugs such as Paxlovid (nirmatrelvir/ritonavir) are beyond the reach of low- and middle-income countries. With widespread use of Paxlovid, it is likely nirmatrelvir-resistant clades of SARS-CoV-2 will emerge in the future. There is thus an urgent need for new effective anti-SARS-CoV-2 treatments. The in vitro efficacy of soluble ACE2 against multiple SARS-CoV-2 variants including omicron (B.1.1.529), was recently described using a competitive ELISA assay as a surrogate marker for virus neutralization. This indicates soluble wild-type ACE2 receptors are likely to be resistant to viral evolution. Nasal and inhaled treatment with soluble ACE2 receptors has abrogated severe disease in animal models of COVID-19. There is an urgent need for clinical trials of this new class of antiviral therapeutics, which could complement vaccines and Paxlovid.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Anthony Jordan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily R Mears
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Dick JK, Hicks D, Krishna VD, Sangala JA, Zandstra BT, Baehr C, Verbeek JS, Cragg MS, Cheeran MCJ, Pravetoni M, Hart GT. ACE2 decoy Fc-fusions and bi-specific killer engager (BiKEs) require Fc engagement for in vivo efficacy against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599956. [PMID: 38948747 PMCID: PMC11212978 DOI: 10.1101/2024.06.20.599956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
SARS-CoV-2 virus has continued to evolve over time necessitating the adaptation of vaccines to maintain efficacy. Monoclonal antibodies (mAbs) against SARS-CoV-2 were a key line of defense for unvaccinated or immunocompromised individuals. However, these mAbs are now ineffective against current SARS-CoV-2 variants. Here, we tested three aspects of αSARS-CoV-2 therapeutics. First, we tested whether Fc engagement is necessary for in vivo clearance of SARS-CoV-2. Secondly, we tested bi-specific killer engagers (BiKEs) that simultaneously engage SARS-CoV-2 and a specific Fc receptor. Benefits of these engagers include the ease of manufacturing, stability, more cell-specific targeting, and high affinity binding to Fc receptors. Using both mAbs and BiKEs, we found that both neutralization and Fc receptor engagement were necessary for effective SARS-CoV-2 clearance. Thirdly, due to ACE2 being necessary for viral entry, ACE2 will maintain binding to SARS-CoV-2 despite viral evolution. Therefore, we used an ACE2 decoy Fc-fusion or BiKE, instead of an anti-SARS-CoV-2 antibody sequence, as a potential therapeutic that would withstand viral evolution. We found that the ACE2 decoy approach also required Fc receptor engagement and, unlike traditional neutralizing antibodies against specific variants, enabled the clearance of two distinct SARS-CoV-2 variants. These data show the importance of Fc engagement for mAbs, the utility of BiKEs as therapies for infectious disease, and the in vivo effectiveness of the ACE2 decoy approach. With further studies, we predict combining neutralization, the cellular response, and this ACE2 decoy approach will benefit individuals with ineffective antibody levels. Abbreviations ACE2, scFv, mAb, BiKE, COVID-19, Fc, CD16, CD32b, CD64, d.p.i. Key points With equal dosing, both neutralization and Fc engagement are necessary for the optimal efficacy of in vivo antibodies and bi-specific killer engagers (BiKEs) against SARS-CoV-2. BiKEs can clear SARS-CoV-2 virus and protect against severe infection in the hACE2-K18 mouse model. ACE2 decoys as part of Fc-fusions or BiKEs provide in vivo clearance of two disparate SARS-CoV-2 variants.
Collapse
|
14
|
An K, Yang X, Luo M, Yan J, Xu P, Zhang H, Li Y, Wu S, Warshel A, Bai C. Mechanistic study of the transmission pattern of the SARS-CoV-2 omicron variant. Proteins 2024; 92:705-719. [PMID: 38183172 PMCID: PMC11059747 DOI: 10.1002/prot.26663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
The omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) characterized by 30 mutations in its spike protein, has rapidly spread worldwide since November 2021, significantly exacerbating the ongoing COVID-19 pandemic. In order to investigate the relationship between these mutations and the variant's high transmissibility, we conducted a systematic analysis of the mutational effect on spike-angiotensin-converting enzyme-2 (ACE2) interactions and explored the structural/energy correlation of key mutations, utilizing a reliable coarse-grained model. Our study extended beyond the receptor-binding domain (RBD) of spike trimer through comprehensive modeling of the full-length spike trimer rather than just the RBD. Our free-energy calculation revealed that the enhanced binding affinity between the spike protein and the ACE2 receptor is correlated with the increased structural stability of the isolated spike protein, thus explaining the omicron variant's heightened transmissibility. The conclusion was supported by our experimental analyses involving the expression and purification of the full-length spike trimer. Furthermore, the energy decomposition analysis established those electrostatic interactions make major contributions to this effect. We categorized the mutations into four groups and established an analytical framework that can be employed in studying future mutations. Additionally, our calculations rationalized the reduced affinity of the omicron variant towards most available therapeutic neutralizing antibodies, when compared with the wild type. By providing concrete experimental data and offering a solid explanation, this study contributes to a better understanding of the relationship between theories and observations and lays the foundation for future investigations.
Collapse
Affiliation(s)
- Ke An
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China
| | - Xianzhi Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Mengqi Luo
- College of Management, Shenzhen University, Shenzhen, 518060, China
| | - Junfang Yan
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Peiyi Xu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Honghui Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Yuqing Li
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China
| |
Collapse
|
15
|
Hwang J, Kim BK, Moon S, Park W, Kim KW, Yoon JH, Oh H, Jung S, Park Y, Kim S, Kim M, Kim S, Jung Y, Park M, Kim JH, Jung ST, Kim SJ, Kim YS, Chung WJ, Song MS, Kweon DH. Conversion of Host Cell Receptor into Virus Destructor by Immunodisc to Neutralize Diverse SARS-CoV-2 Variants. Adv Healthc Mater 2024; 13:e2302803. [PMID: 38329411 DOI: 10.1002/adhm.202302803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/29/2023] [Indexed: 02/09/2024]
Abstract
The decreasing efficacy of antiviral drugs due to viral mutations highlights the challenge of developing a single agent targeting multiple strains. Using host cell viral receptors as competitive inhibitors is promising, but their low potency and membrane-bound nature have limited this strategy. In this study, the authors show that angiotensin-converting enzyme 2 (ACE2) in a planar membrane patch can effectively neutralize all tested severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that emerged during the COVID-19 pandemic. The ACE2-incorporated membrane patch implemented using nanodiscs replicated the spike-mediated membrane fusion process outside the host cell, resulting in virus lysis, extracellular RNA release, and potent antiviral activity. While neutralizing antibodies became ineffective as the SARS-CoV-2 evolved to better penetrate host cells the ACE2-incorporated nanodiscs became more potent, highlighting the advantages of using receptor-incorporated nanodiscs for antiviral purposes. ACE2-incorporated immunodisc, an Fc fusion nanodisc developed in this study, completely protected humanized mice infected with SARS-CoV-2 after prolonged retention in the airways. This study demonstrates that the incorporation of viral receptors into immunodisc transforms the entry gate into a potent virucide for all current and future variants, a concept that can be extended to different viruses.
Collapse
Affiliation(s)
- Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Beom Kyu Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wonbeom Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyunseok Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Center, Mvrix Inc., Anyang, 14058, Republic of Korea
| | - Sangwon Jung
- Research Center, Mvrix Inc., Anyang, 14058, Republic of Korea
| | - Youngseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suhyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Misoo Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soomin Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jun-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Center, Mvrix Inc., Anyang, 14058, Republic of Korea
| |
Collapse
|
16
|
Vishweshwaraiah YL, Hnath B, Wang J, Chandler M, Mukherjee A, Yennawar NH, Booker SJ, Afonin KA, Dokholyan NV. A Piecewise Design Approach to Engineering a Miniature ACE2 Mimic to Bind SARS-CoV-2. ACS APPLIED BIO MATERIALS 2024; 7:3238-3246. [PMID: 38700999 PMCID: PMC11586090 DOI: 10.1021/acsabm.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues its global spread, the exploration of novel therapeutic and diagnostic strategies is still needed. The virus enters host cells by binding the angiotensin-converting enzyme 2 (ACE2) receptor through the spike protein. Here, we develop an engineered, small, stable, and catalytically inactive version of ACE2, termed miniature ACE2 (mACE2), designed to bind the spike protein with high affinity. Employing a magnetic nanoparticle-based assay, we harnessed the strong binding affinity of mACE2 to develop a sensitive and specific platform for the detection or neutralization of SARS-CoV-2. Our findings highlight the potential of engineered mACE2 as a valuable tool in the fight against SARS-CoV-2. The success of developing such a small reagent based on a piecewise molecular design serves as a proof-of-concept approach for the rapid deployment of such agents to diagnose and fight other viral diseases.
Collapse
Affiliation(s)
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Arnab Mukherjee
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- The Howard Hughes Medical Institute, Penn State University, University Park, Pennsylvania 16802, United States
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| | - Squire J Booker
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- The Howard Hughes Medical Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry & Molecular Biology, Penn State University, University Park, Pennsylvania 16802, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| |
Collapse
|
17
|
Li J, Huang Q, Liang Y, Jiang J, Yang Y, Feng J, Tan X, Li T. The Potential Mechanisms of Arrhythmia in Coronavirus disease-2019. Int J Med Sci 2024; 21:1366-1377. [PMID: 38818469 PMCID: PMC11134579 DOI: 10.7150/ijms.94578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) leads to coronavirus disease-2019 (COVID-19) which can cause severe cardiovascular complications including myocardial injury, arrhythmias, acute coronary syndrome and others. Among these complications, arrhythmias are considered serious and life-threatening. Although arrhythmias have been associated with factors such as direct virus invasion leading to myocardial injury, myocarditis, immune response disorder, cytokine storms, myocardial ischemia/hypoxia, electrolyte abnormalities, intravascular volume imbalances, drug interactions, side effects of COVID-19 vaccines and autonomic nervous system dysfunction, the exact mechanisms of arrhythmic complications in patients with COVID-19 are complex and not well understood. In the present review, the literature was extensively searched to investigate the potential mechanisms of arrhythmias in patients with COVID-19. The aim of the current review is to provide clinicians with a comprehensive foundation for the prevention and treatment of arrhythmias associated with long COVID-19.
Collapse
Affiliation(s)
- Jianhong Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiuyuan Huang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Yifan Liang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
18
|
Guo H, Ha S, Botten JW, Xu K, Zhang N, An Z, Strohl WR, Shiver JW, Fu TM. SARS-CoV-2 Omicron: Viral Evolution, Immune Evasion, and Alternative Durable Therapeutic Strategies. Viruses 2024; 16:697. [PMID: 38793580 PMCID: PMC11125895 DOI: 10.3390/v16050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the SARS-CoV-2 Omicron virus has gained dominance worldwide, its continual evolution with unpredictable mutations and patterns has revoked all authorized immunotherapeutics. Rapid viral evolution has also necessitated several rounds of vaccine updates in order to provide adequate immune protection. It remains imperative to understand how Omicron evolves into different subvariants and causes immune escape as this could help reevaluate the current intervention strategies mostly implemented in the clinics as emergency measures to counter the pandemic and, importantly, develop new solutions. Here, we provide a review focusing on the major events of Omicron viral evolution, including the features of spike mutation that lead to immune evasion against monoclonal antibody (mAb) therapy and vaccination, and suggest alternative durable options such as the ACE2-based experimental therapies superior to mAbs to address this unprecedented evolution of Omicron virus. In addition, this type of unique ACE2-based virus-trapping molecules can counter all zoonotic SARS coronaviruses, either from unknown animal hosts or from established wild-life reservoirs of SARS-CoV-2, and even seasonal alpha coronavirus NL63 that depends on human ACE2 for infection.
Collapse
Affiliation(s)
- Hailong Guo
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Sha Ha
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Jason W. Botten
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kai Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
19
|
Liu S, Chen H, Chen X, Luo N, Peraramelli S, Gong X, Zhang MJ, Ou L. Utilizing noncatalytic ACE2 protein mutant as a competitive inhibitor to treat SARS-CoV-2 infection. Front Immunol 2024; 15:1365803. [PMID: 38646520 PMCID: PMC11032047 DOI: 10.3389/fimmu.2024.1365803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Angiotensin converting-enzyme 2 (ACE2) is an enzyme catalyzing the conversion of angiotensin 2 into angiotensin 1-7. ACE2 also serves as the receptor of several coronaviruses, including SARS-CoV-1 and SARS-CoV-2. Therefore, ACE2 could be utilized as a therapeutic target for treating these coronaviruses, ideally lacking enzymatic function. Methods Based on structural analysis, specific mutations were introduced to generate mutants of ACE2 and ACE2-Fc (fusion protein of ACE2 and Fc region of IgG1). The enzyme activity, binding affinity, and neutralization abilities were measured. Results and discussion As predicted, five mutants (AMI081, AMI082, AMI083, AMI084, AMI090) have completely depleted ACE2 enzymatic activities. More importantly, enzyme-linked receptor-ligand assay (ELRLA) and surface plasmon resonance (SPR) results showed that 2 mutants (AMI082, AMI090) maintained binding activity to the viral spike proteins of SARS-CoV-1 and SARS-CoV-2. In An in vitro neutralization experiment using a pseudovirus, SARS-CoV-2 S1 spike protein-packed lentivirus particles, was also performed, showing that AMI082 and AMI090 significantly reduced GFP transgene expression. Further, in vitro virulent neutralization assays using SARS-CoV-2 (strain name: USA-WA1/2020) showed that AMI082 and AMI090 had remarkable inhibitory effects, indicated by comparable IC50 to wildtype ACE2 (5.33 µg/mL). In addition to the direct administration of mutant proteins, an alternative strategy for treating COVID-19 is through AAV delivery to achieve long-lasting effects. Therefore, AAV5 encoding AMI082 and AMI090 were packaged and transgene expression was assessed. In summary, these ACE2 mutants represent a novel approach to prevent or treat COVID-19 and other viruses with the same spike protein.
Collapse
|
20
|
Yathindranath V, Safa N, Tomczyk MM, Dolinsky V, Miller DW. Lipid Nanoparticle-Based Inhibitors for SARS-CoV-2 Host Cell Infection. Int J Nanomedicine 2024; 19:3087-3108. [PMID: 38562613 PMCID: PMC10984206 DOI: 10.2147/ijn.s448005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lingering threat to public health has fueled the search for effective therapeutics to treat SARS-CoV-2. This study aimed to develop lipid nanoparticle (LNP) inhibitors of SARS-CoV-2 entry to reduce viral infection in the nose and upper airway. Methods Two types of LNP formulations were prepared following a microfluidic mixing method. The LNP-Trap consisted of DOPC, DSPC, cholesterol, and DSPE-PEG-COOH modified with various spike protein binding ligands, including ACE2 peptide, recombinant human ACE2 (rhACE2) or monoclonal antibody to spike protein (mAb). The LNP-Trim consisted of ionizing cationic DLin-MC3-DMA, DSPC, cholesterol, and DMG-PEG lipids encapsulating siACE2 or siTMPRSS2. Both formulations were assayed for biocompatibility and cell uptake in airway epithelial cells (Calu-3). Functional assessment of activity was performed using SARS-CoV-2 spike protein binding assays (LNP-Trap), host receptor knockdown (LNP-Trim), and SARS-CoV-2 pseudovirus neutralization assay (LNP-Trap and LNP-Trim). Localization and tissue distribution of fluorescently labeled LNP formulations were assessed in mice following intranasal administration. Results Both LNP formulations were biocompatible based on cell impedance and MTT cytotoxicity studies in Calu-3 cells at concentrations as high as 1 mg/mL. LNP-Trap formulations were able to bind spike protein and inhibit pseudovirus infection by 90% in Calu-3 cells. LNP-Trim formulations reduced ACE2 and TMPRSS2 at the mRNA (70% reduction) and protein level (50% reduction). The suppression of host targets in Calu-3 cells treated with LNP-Trim resulted in over 90% inhibition of pseudovirus infection. In vivo studies demonstrated substantial retention of LNP-Trap and LNP-Trim in the nasal cavity following nasal administration with minimal systemic exposure. Conclusion Both LNP-Trap and LNP-Trim formulations were able to safely and effectively inhibit SARS-CoV-2 pseudoviral infection in airway epithelial cells. These studies provide proof-of-principle for a localized treatment approach for SARS-CoV-2 in the upper airway.
Collapse
Affiliation(s)
- Vinith Yathindranath
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Centre, Health Science Centre, Winnipeg, MB, Canada
| | - Nura Safa
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Centre, Health Science Centre, Winnipeg, MB, Canada
| | - Mateusz Marek Tomczyk
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute Manitoba, Health Science Centre, Winnipeg, MB, Canada
| | - Vernon Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute Manitoba, Health Science Centre, Winnipeg, MB, Canada
| | - Donald W Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Centre, Health Science Centre, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
22
|
Cianfarini C, Hassler L, Wysocki J, Hassan A, Nicolaescu V, Elli D, Gula H, Ibrahim AM, Randall G, Henkin J, Batlle D. Soluble Angiotensin-Converting Enzyme 2 Protein Improves Survival and Lowers Viral Titers in Lethal Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Type 2 Infection with the Delta Variant. Cells 2024; 13:203. [PMID: 38334597 PMCID: PMC10854654 DOI: 10.3390/cells13030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) utilizes angiotensin-converting enzyme 2 (ACE2) as its main receptor for cell entry. We bioengineered a soluble ACE2 protein termed ACE2 618-DDC-ABD that has increased binding to SARS-CoV-2 and prolonged duration of action. Here, we investigated the protective effect of this protein when administered intranasally to k18-hACE2 mice infected with the aggressive SARS-CoV-2 Delta variant. k18-hACE2 mice were infected with the SARS-CoV-2 Delta variant by inoculation of a lethal dose (2 × 104 PFU). ACE2 618-DDC-ABD (10 mg/kg) or PBS was administered intranasally six hours prior and 24 and 48 h post-viral inoculation. All animals in the PBS control group succumbed to the disease on day seven post-infection (0% survival), whereas, in contrast, there was only one casualty in the group that received ACE2 618-DDC-ABD (90% survival). Mice in the ACE2 618-DDC-ABD group had minimal disease as assessed using a clinical score and stable weight, and both brain and lung viral titers were markedly reduced. These findings demonstrate the efficacy of a bioengineered soluble ACE2 decoy with an extended duration of action in protecting against the aggressive Delta SARS-CoV-2 variant. Together with previous work, these findings underline the universal protective potential against current and future emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Cosimo Cianfarini
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
- Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Abdelsabour Hassan
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Vlad Nicolaescu
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Derek Elli
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Haley Gula
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Amany M. Ibrahim
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Glenn Randall
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Jin H, Gong Y, Cheng L, Zhu Y, Zhang Z, He Y. Susceptibility and Resistance of SARS-CoV-2 Variants to LCB1 and Its Multivalent Derivatives. Viruses 2023; 16:36. [PMID: 38257736 PMCID: PMC10819472 DOI: 10.3390/v16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
LCB1 is a computationally designed three-helix miniprotein that precisely targets the spike (S) receptor-binding motif (RBM) of SARS-CoV-2, exhibiting remarkable antiviral efficacy; however, emerging SARS-CoV-2 variants could substantially compromise its neutralization effectiveness. In this study, we constructed two multivalent LCB1 fusion proteins termed LCB1T and LCB1T-Fc, and characterized their potency in inhibiting SARS-CoV-2 pseudovirus and authentic virus in vitro. In the inhibition of various SARS-CoV-2 variants, the two LCB1 fusion proteins exhibited markedly improved inhibitory activities compared to LCB1 as anticipated; however, it was observed that relative to the D614G mutation hosting variant, the variants Delta, Lambda, and Omicron BQ.1.1, XBB, XBB.1.5, and EG.5.1 caused various degrees of resistance to the two fusion proteins' inhibition, with XBB, XBB.1.5, and EG.5.1 variants showing high-level resistance. Moreover, we demonstrated that bat coronavirus RaTG13 and pangolin coronavirus PCoV-GD/PCoV-GX were highly sensitive to two LCB1 fusion proteins, but not LCB1, inhibition. Importantly, our findings revealed a notable decrease in the blocking capacity of the multivalent LCB1 inhibitor on the interaction between the virus's RBD/S and the cell receptor ACE2 when confronted with the XBB variant compared to WT and the Omicron BA.1 variant. In conclusion, our studies provide valuable insights into the antiviral profiling of multivalent LCB1 inhibitors and offer a promising avenue for the development of novel broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Hongliang Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| | - Yani Gong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| | - Lin Cheng
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China;
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China;
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| |
Collapse
|
24
|
Chêne A, Desrames A, Tomlinson A, Ruffié C, Tangy F, Gamain B. An ACE2-Based Bimodular Fusion Protein Enables Reorientation of Endogenous Anti-Epstein-Barr Virus Antibodies Toward SARS-CoV-2 Spike. J Infect Dis 2023; 228:1675-1679. [PMID: 37562051 DOI: 10.1093/infdis/jiad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
The use of soluble recombinant angiotensin-converting enzyme 2 (rACE2) as a decoy capable of blocking SARS-CoV-2 entry into cells has been envisaged as a therapeutic strategy to reduce viral loads in patients with severe COVID-19. We engineered a novel form of rACE2, fused to the Epstein-Barr virus antigen P18F3 (rACE2-P18F3), to reorient a preexisting humoral response toward Epstein-Barr virus against SARS-CoV-2 particles. Recombinant ACE2-P18F3 was able to bind to the SARS-CoV-2 spike protein, neutralize viral entry into cells, and promote the phagocytosis of spheres coated with different spike variants by monocytic cells. The results position rACE2-P18F3 as a promising therapeutic candidate to universally block coronavirus cell entry and clear viral particles.
Collapse
Affiliation(s)
- Arnaud Chêne
- INSERM, BIGR, Université Paris Cité, and Université des Antilles
| | | | - Alice Tomlinson
- INSERM, BIGR, Université Paris Cité, and Université des Antilles
| | - Claude Ruffié
- Innovation Lab: Vaccines, Institut Pasteur, Université Paris Cité, Paris, France
| | - Frédéric Tangy
- Innovation Lab: Vaccines, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoît Gamain
- INSERM, BIGR, Université Paris Cité, and Université des Antilles
| |
Collapse
|
25
|
Benjakul S, Anthi AK, Kolderup A, Vaysburd M, Lode HE, Mallery D, Fossum E, Vikse EL, Albecka A, Ianevski A, Kainov D, Karlsen KF, Sakya SA, Nyquist-Andersen M, Gjølberg TT, Moe MC, Bjørås M, Sandlie I, James LC, Andersen JT. A pan-SARS-CoV-2-specific soluble angiotensin-converting enzyme 2-albumin fusion engineered for enhanced plasma half-life and needle-free mucosal delivery. PNAS NEXUS 2023; 2:pgad403. [PMID: 38077689 PMCID: PMC10703496 DOI: 10.1093/pnasnexus/pgad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 02/29/2024]
Abstract
Immunocompromised patients often fail to raise protective vaccine-induced immunity against the global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Although monoclonal antibodies have been authorized for clinical use, most have lost their ability to potently neutralize the evolving Omicron subvariants. Thus, there is an urgent need for treatment strategies that can provide protection against these and emerging SARS-CoV-2 variants to prevent the development of severe coronavirus disease 2019. Here, we report on the design and characterization of a long-acting viral entry-blocking angiotensin-converting enzyme 2 (ACE2) dimeric fusion molecule. Specifically, a soluble truncated human dimeric ACE2 variant, engineered for improved binding to the receptor-binding domain of SARS-CoV-2, was fused with human albumin tailored for favorable engagement of the neonatal fragment crystallizable receptor (FcRn), which resulted in enhanced plasma half-life and allowed for needle-free transmucosal delivery upon nasal administration in human FcRn-expressing transgenic mice. Importantly, the dimeric ACE2-fused albumin demonstrated potent neutralization of SARS-CoV-2 immune escape variants.
Collapse
Affiliation(s)
- Sopisa Benjakul
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Aina Karen Anthi
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Anette Kolderup
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Marina Vaysburd
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Heidrun Elisabeth Lode
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Donna Mallery
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Even Fossum
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Elisabeth Lea Vikse
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Anna Albecka
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00290, Finland
| | - Karine Flem Karlsen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
| | - Siri Aastedatter Sakya
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Mari Nyquist-Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Torleif Tollefsrud Gjølberg
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Morten C Moe
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Magnar Bjørås
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo 0371, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jan Terje Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| |
Collapse
|
26
|
Bernardotto S, Frasson I, Faravelli S, Morelli A, Schiavon E, Moscatiello GY, Violatto MB, Pinnola A, Canciani A, Mattarei A, Rossi G, Brini M, Pasetto L, Bonetto V, Bigini P, Forneris F, Richter SN, Morpurgo M. Efficient SARS-CoV-2 infection antagonization by rhACE2 ectodomain multimerized onto the Avidin-Nucleic-Acid-NanoASsembly. Biomaterials 2023; 303:122394. [PMID: 38007919 DOI: 10.1016/j.biomaterials.2023.122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Nanodecoy systems based on analogues of viral cellular receptors assembled onto fluid lipid-based membranes of nano/extravescicles are potential new tools to complement classic therapeutic or preventive antiviral approaches. The need for lipid-based membranes for transmembrane receptor anchorage may pose technical challenges along industrial translation, calling for alternative geometries for receptor multimerization. Here we developed a semisynthetic self-assembling SARS-CoV-2 nanodecoy by multimerizing the biotin labelled virus cell receptor -ACE2- ectodomain onto a poly-avidin nanoparticle (NP) based on the Avidin-Nucleic-Acid-NanoASsembly-ANANAS. The ability of the assembly to prevent SARS-CoV-2 infection in human lung cells and the affinity of the ACE2:viral receptor-binding domain (RBD) interaction were measured at different ACE2:NP ratios. At ACE2:NP = 30, 90 % SARS-CoV-2 infection inhibition at ACE2 nanomolar concentration was registered on both Wuhan and Omicron variants, with ten-fold higher potency than the monomeric protein. Lower and higher ACE2 densities were less efficient suggesting that functional recognition between multi-ligand NPs and multi-receptor virus surfaces requires optimal geometrical relationships. In vivo studies in mice showed that the biodistribution and safety profiles of the nanodecoy are potentially suitable for preventing viral infection upon nasal instillation. Viral receptor multimerization using ANANAS is a convenient process which, in principle, could be rapidly adapted to counteract also other viral infections.
Collapse
Affiliation(s)
- Simone Bernardotto
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine (DMM), University of Padova, Via A. Gabelli, 63, 35121, Padova, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Annalisa Morelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Elisa Schiavon
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy
| | - Giulia Yuri Moscatiello
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Martina Bruna Violatto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Alberta Pinnola
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Anselmo Canciani
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Andrea Mattarei
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy
| | - Gianpaolo Rossi
- Department of Medicine (DIMED), University of Padova, Via Giustiniani, 2, 35131, Padova, Italy
| | - Marisa Brini
- Department of Biology (DIBIO), Viale G. Colombo, 3, 35131, Padova, Italy
| | - Laura Pasetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Valentina Bonetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine (DMM), University of Padova, Via A. Gabelli, 63, 35121, Padova, Italy; Microbiology and Virology Unit, Padua University Hospital, 35121, Padua, Italy.
| | - Margherita Morpurgo
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy.
| |
Collapse
|
27
|
Erol I, Kotil SE, Ortakci F, Durdagi S. Exploring the binding capacity of lactic acid bacteria derived bacteriocins against RBD of SARS-CoV-2 Omicron variant by molecular simulations. J Biomol Struct Dyn 2023; 41:10774-10784. [PMID: 36591650 DOI: 10.1080/07391102.2022.2158934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/10/2022] [Indexed: 01/03/2023]
Abstract
The changes in the SARS-CoV-2 genome have resulted in the emergence of new variants. Some of the variants have been classified as variants of concern (VOC). These strains have higher transmission rate and improved fitness. One of the prevalent were the Omicron variant. Unlike previous VOCs, the Omicron possesses fifteen mutations on the spike protein's receptor binding domain (RBD). The modifications of spike protein's key amino acid residues facilitate the virus' binding capability against ACE2, resulting in an increase in the infectiousness of Omicron variant. Consequently, investigating the prevention and treatment of the Omicron variant is crucial. In the present study, we aim to explore the binding capacity of twenty-two bacteriocins derived from Lactic Acid Bacteria (LAB) against the Omicron variant by using protein-peptidedocking and molecular dynamics (MD) simulations. The Omicron variant RBD was prepared by introducing fifteen mutations using PyMol. The protein-peptide complexes were obtained using HADDOCK v2.4 docking webserver. Top scoring complexes obtained from HADDOCK webserver were retrieved and submitted to the PRODIGY server for the prediction of binding energies. RBD-bacteriocin complexes were subjected to MD simulations. We discovered promising peptide-based therapeutic candidates for the inhibition of Omicron variant for example Salivaricin B, Pediocin PA 1, Plantaricin W, Lactococcin mmfii and Enterocin A. The lead bacteriocins, except Enterocin A, are biosynthesized by food-grade lactic acid bacteria. Our study puts forth a preliminary information regarding potential utilization of food-grade LAB-derived bacteriocins, particularly Salivaricin B and Pediocin PA 1, for Covid-19 treatment and prophylaxis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Seyfullah Enes Kotil
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Fatih Ortakci
- Bioengineering Department, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
- School of Pharmacy, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
28
|
Narayanan KK, Amaya M, Tsang N, Yin R, Jays A, Broder CC, Shukla D, Procko E. Sequence basis for selectivity of ephrin-B2 ligand for Eph receptors and pathogenic henipavirus G glycoproteins. J Virol 2023; 97:e0062123. [PMID: 37931130 PMCID: PMC10688352 DOI: 10.1128/jvi.00621-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and regulates multiple cell developmental and signaling processes. It also functions as the cell entry receptor for Nipah virus and Hendra virus, zoonotic viruses that can cause respiratory and/or neurological symptoms in humans with high mortality. Here, we investigate the sequence basis of EFNB2 specificity for binding the Nipah virus attachment G glycoprotein over Eph receptors. We then use this information to engineer EFNB2 as a soluble decoy receptor that specifically binds the attachment glycoproteins of the Nipah virus and other related henipaviruses to neutralize infection. These findings further mechanistic understanding of protein selectivity and may facilitate the development of diagnostics or therapeutics against henipavirus infection.
Collapse
Affiliation(s)
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Natalie Tsang
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Alka Jays
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois, USA
- Cyrus Biotechnology, Seattle, Washington, USA
| |
Collapse
|
29
|
Sawula E, Miersch S, Jong ED, Li C, Chou FY, Tang JK, Saberianfar R, Harding J, Sidhu SS, Nagy A. Cell-based passive immunization for protection against SARS-CoV-2 infection. Stem Cell Res Ther 2023; 14:318. [PMID: 37932852 PMCID: PMC10629160 DOI: 10.1186/s13287-023-03556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Immunologically impaired individuals respond poorly to vaccines, highlighting the need for additional strategies to protect these vulnerable populations from COVID-19. While monoclonal antibodies (mAbs) have emerged as promising tools to manage infectious diseases, the transient lifespan of neutralizing mAbs in patients limits their ability to confer lasting, passive prophylaxis from SARS-CoV-2. Here, we attempted to solve this problem by combining cell and mAb engineering in a way that provides durable immune protection against viral infection using safe and universal cell therapy. METHODS Mouse embryonic stem cells equipped with our FailSafe™ and induced allogeneic cell tolerance technologies were engineered to express factors that potently neutralize SARS-CoV-2, which we call 'neutralizing biologics' (nBios). We subcutaneously transplanted the transgenic cells into mice and longitudinally assessed the ability of the cells to deliver nBios into circulation. To do so, we quantified plasma nBio concentrations and SARS-CoV-2 neutralizing activity over time in transplant recipients. Finally, using similar cell engineering strategies, we genetically modified FailSafe™ human-induced pluripotent stem cells to express SARS-CoV-2 nBios. RESULTS Transgenic mouse embryonic stem cells engineered for safety and allogeneic-acceptance can secrete functional and potent SARS-CoV-2 nBios. As a dormant, subcutaneous tissue, the transgenic cells and their differentiated derivatives long-term deliver a supply of protective nBio titers in vivo. Moving toward clinical relevance, we also show that human-induced pluripotent stem cells, similarly engineered for safety, can secrete highly potent nBios. CONCLUSIONS Together, these findings show the promise and potential of using 'off-the-shelf' cell products that secrete neutralizing antibodies for sustained protective immunity against current and future viral pathogens of public health significance.
Collapse
Affiliation(s)
- Evan Sawula
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Shane Miersch
- The Anvil Institute, University of Waterloo, Waterloo, ON, Canada
| | - Eric D Jong
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Chengjin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Fang-Yu Chou
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jean Kit Tang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Reza Saberianfar
- The Anvil Institute, University of Waterloo, Waterloo, ON, Canada
| | - Jeffrey Harding
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Sachdev S Sidhu
- The Anvil Institute, University of Waterloo, Waterloo, ON, Canada
| | - Andras Nagy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
30
|
Sun CP, Chiu CW, Wu PY, Tsung SI, Lee IJ, Hu CW, Hsu MF, Kuo TJ, Lan YH, Chen LY, Ng HY, Chung MJ, Liao HN, Tseng SC, Lo CH, Chen YJ, Liao CC, Chang CS, Liang JJ, Draczkowski P, Puri S, Chang YC, Huang JS, Chen CC, Kau JH, Chen YH, Liu WC, Wu HC, Danny Hsu ST, Wang IH, Tao MH. Development of AAV-delivered broadly neutralizing anti-human ACE2 antibodies against SARS-CoV-2 variants. Mol Ther 2023; 31:3322-3336. [PMID: 37689971 PMCID: PMC10638075 DOI: 10.1016/j.ymthe.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.
Collapse
Affiliation(s)
- Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Wen Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ping-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Szu-I Tsung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - I-Jung Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Hu
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tzu-Jiun Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hua Lan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Yao Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Yee Ng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Jhe Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ni Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheng-Che Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Hui Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Jiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Shin Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Sarita Puri
- Department of Bioscience, University of Milan, Milan, Italy
| | - Yuan-Chih Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jing-Siou Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Chun Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
| | - I-Hsuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
31
|
Wang Z, Zhao C, Li C, Liu S, Ding J, He C, Liu J, Dong B, Yang Z, Liu Q, Zhu H, Liu Y. Molecular PET/CT mapping of rhACE2 distribution and quantification in organs to aid in SARS-CoV-2 targeted therapy. J Med Virol 2023; 95:e29221. [PMID: 38009705 DOI: 10.1002/jmv.29221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, poses a significant threat to public health. Angiotensin-converting enzyme 2 (ACE2) is a key receptor for SARS-CoV-2 infection. Recombinant human ACE2 (RhACE2), as a soluble supplement for human ACE2, can competitively block SARS-CoV-2 infection. In this study, a mouse organ in situ rhACE2 high aggregation model was constructed for the first time, and in vivo real-time positron emission tomography (PET) imaging of rhACE2 in the mouse model was performed using an ACE2-specific agent 68 Ga-HZ20. This radiotracer exhibits reliable radiochemical properties in vitro and maintains a high affinity for rhACE2 in vivo. In terms of probe uptake, 68 Ga-HZ20 showed a good target-to-nontarget ratio and was rapidly cleared from the circulatory system and excreted by the kidneys and urinary system. PET imaging with this radiotracer can noninvasively and accurately monitor the content and distribution of rhACE2 in the body, which clarifies that rhACE2 can aggregate in multiple organs, suggesting the preventive and therapeutic potential of rhACE2 for SARS-CoV-2 and COVID-19.
Collapse
Affiliation(s)
- Zilei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuangui Li
- Department of Nuclear Medicine, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Song Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chengxue He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiayue Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Qi Liu
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- International Cancer Center, Department of medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Youping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
32
|
Hino T, Omura SN, Nakagawa R, Togashi T, Takeda SN, Hiramoto T, Tasaka S, Hirano H, Tokuyama T, Uosaki H, Ishiguro S, Kagieva M, Yamano H, Ozaki Y, Motooka D, Mori H, Kirita Y, Kise Y, Itoh Y, Matoba S, Aburatani H, Yachie N, Karvelis T, Siksnys V, Ohmori T, Hoshino A, Nureki O. An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell 2023; 186:4920-4935.e23. [PMID: 37776859 DOI: 10.1016/j.cell.2023.08.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
SpCas9 and AsCas12a are widely utilized as genome-editing tools in human cells. However, their relatively large size poses a limitation for delivery by cargo-size-limited adeno-associated virus (AAV) vectors. The type V-F Cas12f from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been harnessed as a compact genome-editing tool. Here, we developed an approach, combining deep mutational scanning and structure-informed design, to successfully generate two AsCas12f activity-enhanced (enAsCas12f) variants. Remarkably, the enAsCas12f variants exhibited genome-editing activities in human cells comparable with those of SpCas9 and AsCas12a. The cryoelectron microscopy (cryo-EM) structures revealed that the mutations stabilize the dimer formation and reinforce interactions with nucleic acids to enhance their DNA cleavage activities. Moreover, enAsCas12f packaged with partner genes in an all-in-one AAV vector exhibited efficient knock-in/knock-out activities and transcriptional activation in mice. Taken together, enAsCas12f variants could offer a minimal genome-editing platform for in vivo gene therapy.
Collapse
Affiliation(s)
- Tomohiro Hino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoshi N Omura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryoya Nakagawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoki Togashi
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan; Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-0942, Japan
| | - Satoru N Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takafumi Hiramoto
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan
| | - Satoshi Tasaka
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hisato Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Soh Ishiguro
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC V6S 0L4, Canada
| | - Madina Kagieva
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC V6S 0L4, Canada
| | - Hiroyuki Yamano
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yuki Ozaki
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideto Mori
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0035, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshiaki Kise
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; Curreio, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Nozomu Yachie
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC V6S 0L4, Canada; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan; Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Tautvydas Karvelis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan; Center for Gene Therapy Research, Jichi Medical University, Tochigi 329-0498, Japan.
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
33
|
Sun J, Liu X, Zhang S, Li M, Zhang Q, Chen J. Molecular insights and optimization strategies for the competitive binding of engineered ACE2 proteins: a multiple replica molecular dynamics study. Phys Chem Chem Phys 2023; 25:28479-28496. [PMID: 37846774 DOI: 10.1039/d3cp03392a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to spread globally, and rapid viral evolution and the emergence of new variants pose challenges to pandemic control. During infection, the spike protein of SARS-CoV-2 interacts with the human ACE2 protein via its receptor binding domain (RBD), and it is known that engineered forms of ACE2 can compete with wild-type (WT) ACE2 for binding to inhibit infection. Here, we conducted multiple replica molecular dynamics (MRMD) simulations to study the mechanisms of the engineered ACE2 variants 3N39 and 3N94 and provide directions for optimization. Our findings reveal that engineered ACE2 is notably more efficacious in systems that show weaker binding to WT ACE2 (i.e., WT and BA.1 RBD), but also faces immune escape as the virus evolves. Moreover, by modifying residue types near the binding interface, engineered ACE2 alters the electrostatic potential distribution and reconfigures the hydrogen bonding network, which results in modified binding to the RBD. However, this structural rearrangement does not occur in all RBD variants. In addition, we identified potentially engineerable beneficial residues and potentially engineerable detrimental residues in both ACE2 and RBD. Functional conservation can thus enable the optimization of these residues and improve the binding competitiveness of engineered ACE2, which therefore provides additional immune escape prevention. Finally, we conclude that these findings have implications for understanding the mechanisms responsible for engineered ACE2 and can help us to develop engineered ACE2 proteins that show superior performance.
Collapse
Affiliation(s)
- Jiahao Sun
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Meng Li
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| |
Collapse
|
34
|
Kolesov DE, Gaiamova EA, Orlova NA, Vorobiev II. Dimeric ACE2-FC Is Equivalent to Monomeric ACE2 in the Surrogate Virus Neutralization Test. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1274-1283. [PMID: 37770394 DOI: 10.1134/s0006297923090079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/30/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the main cellular receptor for the dangerous sarbecoviruses SARS-CoV and SARS-CoV-2. Its recombinant extracellular domain is used to monitor the level of protective humoral immune response to a viral infection or vaccine using the surrogate virus neutralization test (sVNT). Soluble ACE2 is also considered as an option for antiviral therapy potentially insensitive to the changes in the SARS-CoV-2 spike protein. Extensive testing of the samples of patient's serum by the sVNT method requires using preparations of ACE2 or ACE2 conjugates with constant properties. We have previously obtained a cell line that is a producer of a soluble monomeric ACE2 and showed that this ACE2 variant can be used in sVNT, preferably as a conjugate with horseradish peroxidase. A cell line that generates an ACE2-Fc fusion protein with high productivity, more than 150 mg/liter of the target protein when cultured in a stirred flask, was obtained for producing a stable and universally applicable form of soluble ACE2. The affinity-purified ACE2-Fc fusion contains a mixture of dimeric and tetrameric forms, but allows obtaining linear response curves for inhibition of binding with the receptor-binding domain of the SARS-CoV-2 spike protein by antibodies. The ACE2-Fc-HRP-based sVNT testing system can be used for practical measurements of the levels of virus-neutralizing antibodies against various circulating variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Denis E Kolesov
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Elizaveta A Gaiamova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Nadezhda A Orlova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Ivan I Vorobiev
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
35
|
Llewellyn GN, Chen HY, Rogers GL, Huang X, Sell PJ, Henley JE, Cannon PM. Comparison of SARS-CoV-2 entry inhibitors based on ACE2 receptor or engineered Spike-binding peptides. J Virol 2023; 97:e0068423. [PMID: 37555663 PMCID: PMC10506483 DOI: 10.1128/jvi.00684-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
With increasing resistance of SARS-CoV-2 variants to antibodies, there is interest in developing entry inhibitors that target essential receptor-binding regions of the viral Spike protein and thereby present a high bar for viral resistance. Such inhibitors could be derivatives of the viral receptor, ACE2, or peptides engineered to interact specifically with the Spike receptor-binding pocket. We compared the efficacy of a series of both types of entry inhibitors, constructed as fusions to an antibody Fc domain. Such a design can increase protein stability and act to both neutralize free virus and recruit effector functions to clear infected cells. We tested the reagents against prototype variants of SARS-CoV-2, using both Spike pseudotyped vesicular stomatitis virus vectors and replication-competent viruses. These analyses revealed that an optimized ACE2 derivative could neutralize all variants we tested with high efficacy. In contrast, the Spike-binding peptides had varying activities against different variants, with resistance observed in the Spike proteins from Beta, Gamma, and Omicron (BA.1 and BA.5). The resistance mapped to mutations at Spike residues K417 and N501 and could be overcome for one of the peptides by linking two copies in tandem, effectively creating a tetrameric reagent in the Fc fusion. Finally, both the optimized ACE2 and tetrameric peptide inhibitors provided some protection to human ACE2 transgenic mice challenged with the SARS-CoV-2 Delta variant, which typically causes death in this model within 7-9 days. IMPORTANCE The increasing resistance of SARS-CoV-2 variants to therapeutic antibodies has highlighted the need for new treatment options, especially in individuals who do not respond to vaccination. Receptor decoys that block viral entry are an attractive approach because of the presumed high bar to developing viral resistance. Here, we compare two entry inhibitors based on derivatives of the ACE2 receptor, or engineered peptides that bind to the receptor-binding pocket of the SARS-CoV-2 Spike protein. In each case, the inhibitors were fused to immunoglobulin Fc domains, which can further enhance therapeutic properties, and compared for activity against different SARS-CoV-2 variants. Potent inhibition against multiple SARS-CoV-2 variants was demonstrated in vitro, and even relatively low single doses of optimized reagents provided some protection in a mouse model, confirming their potential as an alternative to antibody therapies.
Collapse
Affiliation(s)
- George N. Llewellyn
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Geoffrey L. Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Philip J. Sell
- The Hastings Foundation and The Wright Foundation Laboratories, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jill E. Henley
- The Hastings Foundation and The Wright Foundation Laboratories, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
36
|
Urano E, Itoh Y, Suzuki T, Sasaki T, Kishikawa JI, Akamatsu K, Higuchi Y, Sakai Y, Okamura T, Mitoma S, Sugihara F, Takada A, Kimura M, Nakao S, Hirose M, Sasaki T, Koketsu R, Tsuji S, Yanagida S, Shioda T, Hara E, Matoba S, Matsuura Y, Kanda Y, Arase H, Okada M, Takagi J, Kato T, Hoshino A, Yasutomi Y, Saito A, Okamoto T. An inhaled ACE2 decoy confers protection against SARS-CoV-2 infection in preclinical models. Sci Transl Med 2023; 15:eadi2623. [PMID: 37647387 DOI: 10.1126/scitranslmed.adi2623] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
The Omicron variant continuously evolves under the humoral immune pressure exerted by vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the resulting Omicron subvariants display further immune evasion and antibody escape. An engineered angiotensin-converting enzyme 2 (ACE2) decoy composed of high-affinity ACE2 and an IgG1 Fc domain could offer an alternative modality to neutralize SARS-CoV-2. We previously reported its broad spectrum and therapeutic potential in rodent models. Here, we demonstrate that the engineered ACE2 decoy retains neutralization activity against Omicron subvariants, including the currently emerging XBB and BQ.1 strains, which completely evade antibodies currently in clinical use. SARS-CoV-2, under the suboptimal concentration of neutralizing drugs, generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against the engineered ACE2 decoy. Furthermore, inhalation of aerosolized decoys improved the outcomes of rodents infected with SARS-CoV-2 at a 20-fold lower dose than that of intravenous administration. Last, the engineered ACE2 decoy exhibited therapeutic efficacy for cynomolgus macaques infected with SARS-CoV-2. These results indicate that this engineered ACE2 decoy represents a promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation could be considered as a noninvasive approach to enhance the efficacy of COVID-19 treatments.
Collapse
Affiliation(s)
- Emiko Urano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Takanori Sasaki
- Collaborative Research Center for Okayama Medical Innovation Center, Dentistry, and Pharmaceutical Sciences, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-0082, Japan
| | - Jun-Ichi Kishikawa
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Kanako Akamatsu
- Department of Oncogene, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
| | - Shuya Mitoma
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2155, Japan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Akira Takada
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Mari Kimura
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shuto Nakao
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Mika Hirose
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Tadahiro Sasaki
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Ritsuko Koketsu
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shunya Tsuji
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 565-0871, Japan
| | - Tatsuo Shioda
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 565-0871, Japan
| | - Hisashi Arase
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Okada
- Department of Oncogene, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Oncogene Research, World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Junichi Takagi
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takayuki Kato
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
- Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Mie, 514-8507, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2155, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, 889-2155, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, 889-2155, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
37
|
Mitsui Y, Suzuki T, Kuniyoshi K, Inamo J, Yamaguchi K, Komuro M, Watanabe J, Edamoto M, Li S, Kouno T, Oba S, Hosoya T, Masuhiro K, Naito Y, Koyama S, Sakaguchi N, Standley DM, Shin JW, Akira S, Yasuda S, Miyazaki Y, Kochi Y, Kumanogoh A, Okamoto T, Satoh T. Expression of the readthrough transcript CiDRE in alveolar macrophages boosts SARS-CoV-2 susceptibility and promotes COVID-19 severity. Immunity 2023; 56:1939-1954.e12. [PMID: 37442134 DOI: 10.1016/j.immuni.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Lung infection during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via the angiotensin-I-converting enzyme 2 (ACE2) receptor induces a cytokine storm. However, the precise mechanisms involved in severe COVID-19 pneumonia are unknown. Here, we showed that interleukin-10 (IL-10) induced the expression of ACE2 in normal alveolar macrophages, causing them to become vectors for SARS-CoV-2. The inhibition of this system in hamster models attenuated SARS-CoV-2 pathogenicity. Genome-wide association and quantitative trait locus analyses identified a IFNAR2-IL10RB readthrough transcript, COVID-19 infectivity-enhancing dual receptor (CiDRE), which was highly expressed in patients harboring COVID-19 risk variants at the IFNAR2 locus. We showed that CiDRE exerted synergistic effects via the IL-10-ACE2 axis in alveolar macrophages and functioned as a decoy receptor for type I interferons. Collectively, our data show that high IL-10 and CiDRE expression are potential risk factors for severe COVID-19. Thus, IL-10R and CiDRE inhibitors might be useful COVID-19 therapies.
Collapse
Affiliation(s)
- Yuichi Mitsui
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kanako Kuniyoshi
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Jun Inamo
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kensuke Yamaguchi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mariko Komuro
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Junya Watanabe
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mio Edamoto
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Songling Li
- Laboratory of Systems Immunology, World Premier Institute Immunology Frontier Research Center, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Seiya Oba
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | - Daron M Standley
- Laboratory of Systems Immunology, World Premier Institute Immunology Frontier Research Center, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Shizuo Akira
- Innate Cell Therapy Inc., Osaka 530-0017, Japan; Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan; Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Satoh
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Innate Cell Therapy Inc., Osaka 530-0017, Japan.
| |
Collapse
|
38
|
Wang G, Liu X, Wang K, Gao Y, Li G, Baptista-Hon DT, Yang XH, Xue K, Tai WH, Jiang Z, Cheng L, Fok M, Lau JYN, Yang S, Lu L, Zhang P, Zhang K. Deep-learning-enabled protein-protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution. Nat Med 2023; 29:2007-2018. [PMID: 37524952 DOI: 10.1038/s41591-023-02483-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/28/2023] [Indexed: 08/02/2023]
Abstract
Host-pathogen interactions and pathogen evolution are underpinned by protein-protein interactions between viral and host proteins. An understanding of how viral variants affect protein-protein binding is important for predicting viral-host interactions, such as the emergence of new pathogenic SARS-CoV-2 variants. Here we propose an artificial intelligence-based framework called UniBind, in which proteins are represented as a graph at the residue and atom levels. UniBind integrates protein three-dimensional structure and binding affinity and is capable of multi-task learning for heterogeneous biological data integration. In systematic tests on benchmark datasets and further experimental validation, UniBind effectively and scalably predicted the effects of SARS-CoV-2 spike protein variants on their binding affinities to the human ACE2 receptor, as well as to SARS-CoV-2 neutralizing monoclonal antibodies. Furthermore, in a cross-species analysis, UniBind could be applied to predict host susceptibility to SARS-CoV-2 variants and to predict future viral variant evolutionary trends. This in silico approach has the potential to serve as an early warning system for problematic emerging SARS-CoV-2 variants, as well as to facilitate research on protein-protein interactions in general.
Collapse
Affiliation(s)
- Guangyu Wang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Xiaohong Liu
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- UCL Cancer Institute, University College London, London, UK
| | - Kai Wang
- Department of Big Data and Biomedical Artificial Intelligence, National Biomedical Imaging Center, College of Future Technology, Peking University and Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yuanxu Gao
- Guangzhou National Laboratory, Guangzhou, China
| | - Gen Li
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Daniel T Baptista-Hon
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China
| | - Xiaohong Helena Yang
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Wa Hou Tai
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zeyu Jiang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
| | - Linling Cheng
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China
| | - Manson Fok
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Johnson Yiu-Nam Lau
- Departments of Biology and Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ligong Lu
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China
| | - Ping Zhang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
| | - Kang Zhang
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China.
- Department of Big Data and Biomedical Artificial Intelligence, National Biomedical Imaging Center, College of Future Technology, Peking University and Peking-Tsinghua Center for Life Sciences, Beijing, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China.
| |
Collapse
|
39
|
Moriyama S, Anraku Y, Taminishi S, Adachi Y, Kuroda D, Kita S, Higuchi Y, Kirita Y, Kotaki R, Tonouchi K, Yumoto K, Suzuki T, Someya T, Fukuhara H, Kuroda Y, Yamamoto T, Onodera T, Fukushi S, Maeda K, Nakamura-Uchiyama F, Hashiguchi T, Hoshino A, Maenaka K, Takahashi Y. Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants. Nat Commun 2023; 14:4198. [PMID: 37452031 PMCID: PMC10349087 DOI: 10.1038/s41467-023-39890-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
SARS-CoV-2 Omicron subvariants have evolved to evade receptor-binding site (RBS) antibodies that exist in diverse individuals as public antibody clones. We rationally selected RBS antibodies resilient to mutations in emerging Omicron subvariants. Y489 was identified as a site of virus vulnerability and a common footprint of broadly neutralizing antibodies against the subvariants. Multiple Y489-binding antibodies were encoded by public clonotypes and additionally recognized F486, potentially accounting for the emergence of Omicron subvariants harboring the F486V mutation. However, a subclass of antibodies broadly neutralized BA.4/BA.5 variants via hydrophobic binding sites of rare clonotypes along with high mutation-resilience under escape mutation screening. A computationally designed antibody based on one of the Y489-binding antibodies, NIV-10/FD03, was able to bind XBB with any 486 mutation and neutralized XBB.1.5. The structural basis for the mutation-resilience of this Y489-binding antibody group may provide important insights into the design of therapeutics resistant to viral escape.
Collapse
Affiliation(s)
- Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Shunta Taminishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
- Department of Life Science and Medical Bioscience, Waseda University; Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University; Kyoto, Kyoto, 606-8507, Japan
| | - Taiyou Someya
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Hideo Fukuhara
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Fukumi Nakamura-Uchiyama
- Department of Infectious Diseases, Tokyo Metropolitan Bokutoh Hospital; Sumida-ku, Tokyo, 130-8575, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University; Kyoto, Kyoto, 606-8507, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
40
|
Hassler L, Wysocki J, Ahrendsen JT, Ye M, Gelarden I, Nicolaescu V, Tomatsidou A, Gula H, Cianfarini C, Forster P, Khurram N, Singer BD, Randall G, Missiakas D, Henkin J, Batlle D. Intranasal soluble ACE2 improves survival and prevents brain SARS-CoV-2 infection. Life Sci Alliance 2023; 6:e202301969. [PMID: 37041017 PMCID: PMC10098141 DOI: 10.26508/lsa.202301969] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
A soluble ACE2 protein bioengineered for long duration of action and high affinity to SARS-CoV-2 was administered either intranasally (IN) or intraperitoneally (IP) to SARS-CoV-2-inoculated k18hACE2 mice. This decoy protein (ACE2 618-DDC-ABD) was given either IN or IP, pre- and post-inoculation, or IN, IP, or IN + IP but only post-inoculation. Survival by day 5 was 0% in untreated mice, 40% in the IP-pre, and 90% in the IN-pre group. In the IN-pre group, brain histopathology was essentially normal and lung histopathology significantly improved. Consistent with this, brain SARS-CoV-2 titers were undetectable and lung titers reduced in the IN-pre group. When ACE2 618-DDC-ABD was administered only post-inoculation, survival was 30% in the IN + IP, 20% in the IN, and 20% in the IP group. We conclude that ACE2 618-DDC-ABD results in markedly improved survival and provides organ protection when given intranasally as compared with when given either systemically or after viral inoculation, and that lowering brain titers is a critical determinant of survival and organ protection.
Collapse
Affiliation(s)
- Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Minghao Ye
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ian Gelarden
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Anastasia Tomatsidou
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Cosimo Cianfarini
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Forster
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nigar Khurram
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
41
|
Kegler A, Drewitz L, Arndt C, Daglar C, Rodrigues Loureiro L, Mitwasi N, Neuber C, González Soto KE, Bartsch T, Baraban L, Ziehr H, Heine M, Nieter A, Moreira-Soto A, Kühne A, Drexler JF, Seliger B, Laube M, Máthé D, Pályi B, Hajdrik P, Forgách L, Kis Z, Szigeti K, Bergmann R, Feldmann A, Bachmann M. A novel ACE2 decoy for both neutralization of SARS-CoV-2 variants and killing of infected cells. Front Immunol 2023; 14:1204543. [PMID: 37383226 PMCID: PMC10293748 DOI: 10.3389/fimmu.2023.1204543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to millions of infections and deaths worldwide. As this virus evolves rapidly, there is a high need for treatment options that can win the race against new emerging variants of concern. Here, we describe a novel immunotherapeutic drug based on the SARS-CoV-2 entry receptor ACE2 and provide experimental evidence that it cannot only be used for (i) neutralization of SARS-CoV-2 in vitro and in SARS-CoV-2-infected animal models but also for (ii) clearance of virus-infected cells. For the latter purpose, we equipped the ACE2 decoy with an epitope tag. Thereby, we converted it to an adapter molecule, which we successfully applied in the modular platforms UniMAB and UniCAR for retargeting of either unmodified or universal chimeric antigen receptor-modified immune effector cells. Our results pave the way for a clinical application of this novel ACE2 decoy, which will clearly improve COVID-19 treatment.
Collapse
Affiliation(s)
- Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Laura Drewitz
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cansu Daglar
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Liliana Rodrigues Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicola Mitwasi
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Christin Neuber
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Karla Elizabeth González Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Larysa Baraban
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Holger Ziehr
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Markus Heine
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Annabel Nieter
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Andres Moreira-Soto
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Barbara Seliger
- Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute of Translational Immunology, Medical High School, Brandenburg an der Havel, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, In Vivo Imaging Advanced Core Facility, Szeged, Hungary
- CROmed Translational Research Ltd., Budapest, Hungary
| | - Bernadett Pályi
- National Biosafety Laboratory, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
| | - Polett Hajdrik
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Forgách
- Semmelweis University School of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Zoltán Kis
- National Biosafety Laboratory, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
42
|
Tada T, Minnee J, Landau NR. Vectored immunoprophylaxis and treatment of SARS-CoV-2 infection in a preclinical model. Proc Natl Acad Sci U S A 2023; 120:e2303509120. [PMID: 37252952 PMCID: PMC10266030 DOI: 10.1073/pnas.2303509120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Vectored immunoprophylaxis was first developed as a means of establishing engineered immunity to HIV using an adenoassociated viral vector expressing a broadly neutralizing antibody. We applied this concept to establish long-term prophylaxis against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a mouse model using adenoassociated virus and lentiviral vectors expressing a high-affinity angiotensin-converting enzyme 2 (ACE2) decoy. Administration of decoy-expressing (adenoassociated virus) AAV2.retro and AAV6.2 vectors by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and was active against SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective therapeutically when administered postinfection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Microbiology, New York University (NYU) Grossman School of Medicine, New York, NY10016
| | - Julia Minnee
- Department of Microbiology, New York University (NYU) Grossman School of Medicine, New York, NY10016
| | - Nathaniel R. Landau
- Department of Microbiology, New York University (NYU) Grossman School of Medicine, New York, NY10016
| |
Collapse
|
43
|
Havranek B, Lindsey GW, Higuchi Y, Itoh Y, Suzuki T, Okamoto T, Hoshino A, Procko E, Islam SM. A computationally designed ACE2 decoy has broad efficacy against SARS-CoV-2 omicron variants and related viruses in vitro and in vivo. Commun Biol 2023; 6:513. [PMID: 37173421 PMCID: PMC10177734 DOI: 10.1038/s42003-023-04860-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a 'decoy' to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.
Collapse
Affiliation(s)
- Brandon Havranek
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
- ComputePharma, LLC., Chicago, IL, USA
| | | | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
- Cyrus Biotechnology, Inc., Seattle, WA, USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- ComputePharma, LLC., Chicago, IL, USA.
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA.
| |
Collapse
|
44
|
Izadi S, Vavra U, Melnik S, Grünwald-Gruber C, Föderl-Höbenreich E, Sack M, Zatloukal K, Glössl J, Stöger E, Mach L, Castilho A, Strasser R. In planta deglycosylation improves the SARS-CoV-2 neutralization activity of recombinant ACE2-Fc. Front Bioeng Biotechnol 2023; 11:1180044. [PMID: 37207124 PMCID: PMC10190127 DOI: 10.3389/fbioe.2023.1180044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
SARS-CoV-2 infects human cells via binding of the viral spike glycoprotein to its main cellular receptor, angiotensin-converting enzyme 2 (ACE2). The spike protein-ACE2 receptor interaction is therefore a major target for the development of therapeutic or prophylactic drugs to combat coronavirus infections. Various engineered soluble ACE2 variants (decoys) have been designed and shown to exhibit virus neutralization capacity in cell-based assays and in vivo models. Human ACE2 is heavily glycosylated and some of its glycans impair binding to the SARS-CoV-2 spike protein. Therefore, glycan-engineered recombinant soluble ACE2 variants might display enhanced virus-neutralization potencies. Here, we transiently co-expressed the extracellular domain of ACE2 fused to human Fc (ACE2-Fc) with a bacterial endoglycosidase in Nicotiana benthamiana to produce ACE2-Fc decorated with N-glycans consisting of single GlcNAc residues. The endoglycosidase was targeted to the Golgi apparatus with the intention to avoid any interference of glycan removal with concomitant ACE2-Fc protein folding and quality control in the endoplasmic reticulum. The in vivo deglycosylated ACE2-Fc carrying single GlcNAc residues displayed increased affinity to the receptor-binding domain (RBD) of SARS-CoV-2 as well as improved virus neutralization activity and thus is a promising drug candidate to block coronavirus infection.
Collapse
Affiliation(s)
- Shiva Izadi
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Ulrike Vavra
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | | | | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Josef Glössl
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva Stöger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Lukas Mach
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Alexandra Castilho
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
45
|
Kaizuka Y, Machida R. Antiviral Activity of Cell Membrane-Bound Amphiphilic Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5408-5417. [PMID: 37014318 PMCID: PMC10081831 DOI: 10.1021/acs.langmuir.3c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/21/2023] [Indexed: 05/11/2023]
Abstract
We demonstrate that cholesterol-modified polyethylene glycol has antiviral activity, exerted by anchoring to plasma membranes and sterically inhibiting viruses from entering cells. These polymers distribute sparsely on cell membranes even at binding saturation. However, the polymers have sufficient elastic repulsion energy to repel various kinds of viruses with sizes larger than the mean distances between anchored polymers, including SARS-CoV-2 pseudoparticles. Our strategy can be applied to protect the epithelium from viruses. When these polymers are applied to the epithelium, they localize on the apical surface due to the tight junction barriers, resulting in surface-only coating. Therefore, these polymers can prevent the entry of viruses into cells of the epithelium with minimal disturbance to lateral cell-cell interactions and organizations.
Collapse
Affiliation(s)
- Yoshihisa Kaizuka
- National Institute for Materials Science, 1-2-1
Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Rika Machida
- National Institute for Materials Science, 1-2-1
Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
46
|
Cantoni D, Grove J. Low hanging fruit for combatting SARS-CoV-2? EMBO Rep 2023; 24:e56979. [PMID: 36876512 PMCID: PMC10074046 DOI: 10.15252/embr.202356979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Entry of SARS-CoV-2 into human respiratory cells, mediated by the spike protein, is absolutely dependent on the cellular receptor ACE2 (angiotensin-converting enzyme-2). This makes ACE2 an attractive target for therapeutic intervention in COVID-19. In this issue, Zuo et al. discover that vitamin C, an essential nutrient and common dietary supplement, can target ACE2 for ubiquitin-dependent degradation, resulting in the inhibition of SARS-CoV-2 infection (Zuo et al, 2023). The study identifies novel mechanisms of cellular ACE2 regulation and may inform the design of therapeutics targeting SARS-2 and related coronaviruses.
Collapse
Affiliation(s)
- Diego Cantoni
- MRC‐University of Glasgow Centre for Virus Research, University of GlasgowGlasgowUK
| | - Joe Grove
- MRC‐University of Glasgow Centre for Virus Research, University of GlasgowGlasgowUK
| |
Collapse
|
47
|
Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins. INFORMATICS IN MEDICINE UNLOCKED 2023; 38:101230. [PMID: 36974159 PMCID: PMC10030444 DOI: 10.1016/j.imu.2023.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
The challenges posed by COVID-19's emergence have led to a search for its therapies. There is no cure for COVID-19 infection yet, but there is significant progress in vaccine formulation for prophylaxis and drug development (such as paxlovid) for high-risk patients. As a contribution to the ongoing quest for solutions, this study shows potent phytocompounds identification as inhibitors of SARS-CoV-2 targets using in silico methods. We used virtual screening, molecular docking, and molecular dynamics (MD) simulations to investigate the interaction of some phytochemicals with 3CLpro, ACE2, and PLpro proteins crucial to the SARS-CoV-2 viral cycle. The predicted docking scores range from −5.5 to −9.4 kcal/mol, denoting appreciable binding of these compounds to the SARS-CoV-2 proteins and presenting a multitarget inhibition for COVID-19. Some phytocompounds interact favorably at non-active sites of the enzymes. For instance, MD simulation shows that an identified site on PLpro is stable and likely an allosteric region for inhibitor binding and modulation. These phytocompounds could be developed into effective therapy against COVID-19 and probed as potential multitarget-directed ligands and drug candidates against the SARS-CoV-2 virus. The study unveils drug repurposing, selectivity, allosteric site targeting, and multitarget-directed ligand in one piece. These concepts are three distinct approaches in the drug design and discovery pipeline.
Collapse
|
48
|
Alcantara MC, Higuchi Y, Kirita Y, Matoba S, Hoshino A. Deep Mutational Scanning to Predict Escape from Bebtelovimab in SARS-CoV-2 Omicron Subvariants. Vaccines (Basel) 2023; 11:vaccines11030711. [PMID: 36992294 DOI: 10.3390/vaccines11030711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The major concern with COVID-19 therapeutic monoclonal antibodies is the loss of efficacy against continuously emerging variants of SARS-CoV-2. To predict antibody efficacy against future Omicron subvariants, we conducted deep mutational scanning (DMS) encompassing all single mutations of the receptor-binding domain of the BA.2 strain utilizing an inverted infection assay with an ACE2-harboring virus and library spike-expressing cells. In the case of bebtelovimab, which preserves neutralization activity against BA.2 and BA.5, a broad range of amino acid substitutions at K444, V445, and G446, and some substitutions at P499 and T500, were indicated to achieve the antibody escape. Among subvariants with current rises in case numbers, BA2.75 with G446S partially evaded neutralization by bebtelovimab, while complete evasion was observed in XBB with V445P and BQ.1 with K444T. This is consistent with the DMS results against BA.2, highlighting the potential of DMS as a predictive tool for antibody escape.
Collapse
Affiliation(s)
- Mellissa C Alcantara
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
49
|
Remesh SG, Merz GE, Brilot AF, Chio US, Rizo AN, Pospiech TH, Lui I, Laurie MT, Glasgow J, Le CQ, Zhang Y, Diwanji D, Hernandez E, Lopez J, Mehmood H, Pawar KI, Pourmal S, Smith AM, Zhou F, DeRisi J, Kortemme T, Rosenberg OS, Glasgow A, Leung KK, Wells JA, Verba KA. Computational pipeline provides mechanistic understanding of Omicron variant of concern neutralizing engineered ACE2 receptor traps. Structure 2023; 31:253-264.e6. [PMID: 36805129 PMCID: PMC9936628 DOI: 10.1016/j.str.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor-binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with stabilized Spike ectodomain. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high-affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high-affinity (0.53-4.2 nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron and Delta pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.
Collapse
Affiliation(s)
- Soumya G Remesh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gregory E Merz
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Axel F Brilot
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexandrea N Rizo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas H Pospiech
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mathew T Laurie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeff Glasgow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chau Q Le
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yun Zhang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Devan Diwanji
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evelyn Hernandez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jocelyne Lopez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hevatib Mehmood
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Komal Ishwar Pawar
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sergei Pourmal
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amber M Smith
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fengbo Zhou
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; QBI, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; The University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Oren S Rosenberg
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anum Glasgow
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Kliment A Verba
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA; QBI, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
50
|
England C, TrejoMartinez J, PerezSanchez P, Karki U, Xu J. Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19. Life (Basel) 2023; 13:617. [PMID: 36983772 PMCID: PMC10054913 DOI: 10.3390/life13030617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world's health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19's impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.
Collapse
Affiliation(s)
- Corbin England
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | | | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|