1
|
Berger AH, Oftedal BE, Wolff ASB, Husebye ES, Knappskog PM, Bratland E, Johansson S. High-resolution transcriptional impact of AIRE: effects of pathogenic variants p.Arg257Ter, p.Cys311Tyr, and polygenic risk variant p.Arg471Cys. Front Immunol 2025; 16:1572789. [PMID: 40330469 PMCID: PMC12053179 DOI: 10.3389/fimmu.2025.1572789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction The Autoimmune Regulator, AIRE, acts as a transcriptional regulator in the thymus, facilitating ectopic expression of thousands of genes important for the process of negative T-cell selection and immunological tolerance to self. Pathogenic variants in the gene encoding AIRE are causing Autoimmune polyendocrine syndrome type 1 (APS-1), defined by multiorgan autoimmunity and chronic mucocutaneous candidiasis. More recently, Genome Wide Association Studies (GWAS) have also implicated AIRE in several common organ-specific autoimmune diseases including autoimmune primary adrenal insufficiency, type 1 diabetes and pernicious anemia. Methods We developed a highly sensitive cell-system approach based on HEK293FT cells transfected with AIRE that allowed us to characterise and functionally evaluate the transcriptional potential of genetic variants in the AIRE gene. By utilizing RNAseq with an average read depth of 100 million reads and 12 replicates per condition we have the statistical power and sensitivity to characterize the AIRE induced transcriptome in depth. Results We confirm that our cell system recapitulates the expression of the vast majority of known AIRE induced genes including well-characterised tissue restricted antigens (TRAs). Our approach also increases the total number of identified AIRE induced genes by an order of magnitude compared to previously published strategies, including a comprehensive number of clinically relevant autoantigens. Discussion Our cell-system approach differentiates between categories of AIRE variants on the transcriptional level, including the nonsense variant p.R257* (near complete loss of function), the p.C311Y variant associated with dominantly inherited APS-1 (severely impaired function), and the polygenic risk variant p.R471C (slightly increased function) linked to common organ-specific autoimmunity. The increased activity of p.R471C compared to wildtype indicates different molecular mechanisms for monogenic and polygenic AIRE related autoimmunity. We find that AIRE induced expression is characterised by a small absolute increase in expression levels of genes of both high and low tissue specificity.
Collapse
Affiliation(s)
- Amund Holte Berger
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | | | - Anette Susanne Bøe Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Eystein Sverre Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Per Morten Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Milani L, Alver M, Laur S, Reisberg S, Haller T, Aasmets O, Abner E, Alavere H, Allik A, Annilo T, Fischer K, Hofmeister R, Hudjashov G, Jõeloo M, Kals M, Karo-Astover L, Kasela S, Kolde A, Krebs K, Krigul KL, Kronberg J, Kruusmaa K, Kukuškina V, Kõiv K, Lehto K, Leitsalu L, Lind S, Luitva LB, Läll K, Lüll K, Metsalu K, Metspalu M, Mõttus R, Nelis M, Nikopensius T, Nurm M, Nõukas M, Oja M, Org E, Palover M, Palta P, Pankratov V, Pantiukh K, Pervjakova N, Pujol-Gualdo N, Reigo A, Reimann E, Smit S, Rogozina D, Särg D, Taba N, Talvik HA, Teder-Laving M, Tõnisson N, Vaht M, Vainik U, Võsa U, Yelmen B, Esko T, Kolde R, Mägi R, Vilo J, Laisk T, Metspalu A. The Estonian Biobank's journey from biobanking to personalized medicine. Nat Commun 2025; 16:3270. [PMID: 40188112 PMCID: PMC11972354 DOI: 10.1038/s41467-025-58465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/04/2025] [Indexed: 04/07/2025] Open
Abstract
Large biobanks have set a new standard for research and innovation in human genomics and implementation of personalized medicine. The Estonian Biobank was founded a quarter of a century ago, and its biological specimens, clinical, health, omics, and lifestyle data have been included in over 800 publications to date. What makes the biobank unique internationally is its translational focus, with active efforts to conduct clinical studies based on genetic findings, and to explore the effects of return of results on participants. In this review, we provide an overview of the Estonian Biobank, highlight its strengths for studying the effects of genetic variation and quantitative phenotypes on health-related traits, development of methods and frameworks for bringing genomics into the clinic, and its role as a driving force for implementing personalized medicine on a national level and beyond.
Collapse
Affiliation(s)
- Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Maris Alver
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Sven Laur
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- STACC, Tartu, Estonia
| | - Sulev Reisberg
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- STACC, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Oliver Aasmets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Erik Abner
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helene Alavere
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Annely Allik
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tarmo Annilo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Robin Hofmeister
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Georgi Hudjashov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Maarja Jõeloo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mart Kals
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Liis Karo-Astover
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anastassia Kolde
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kertu Liis Krigul
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jaanika Kronberg
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Karoliina Kruusmaa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Viktorija Kukuškina
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kadri Kõiv
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kelli Lehto
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Liis Leitsalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Sirje Lind
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Laura Birgit Luitva
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kreete Lüll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kristjan Metsalu
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - René Mõttus
- Institute of Psychology, University of Tartu, Tartu, Estonia
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Mari Nelis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tiit Nikopensius
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Miriam Nurm
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Margit Nõukas
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marek Oja
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Elin Org
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marili Palover
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Palta
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Vasili Pankratov
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kateryna Pantiukh
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Natalia Pervjakova
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Natàlia Pujol-Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Reigo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Steven Smit
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Diana Rogozina
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Dage Särg
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Nele Taba
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Harry-Anton Talvik
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- STACC, Tartu, Estonia
| | - Maris Teder-Laving
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Neeme Tõnisson
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mariliis Vaht
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Uku Vainik
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Psychology, University of Tartu, Tartu, Estonia
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Burak Yelmen
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Raivo Kolde
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- STACC, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
3
|
Pathare ADS, Džigurski J, Pujol-Gualdo N, Rukins V, Peters M, Mägi R, Salumets A, Saare M, Laisk T. A large-scale genome-wide association study on female genital tract polyps highlights role of DNA repair, cell proliferation, and cell growth. Hum Reprod 2025; 40:750-763. [PMID: 39986329 DOI: 10.1093/humrep/deaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/05/2025] [Indexed: 02/24/2025] Open
Abstract
STUDY QUESTION Can a large-scale genome-wide association study (GWAS) meta-analysis identify genomic risk loci and likely involved genes for female genital tract (FGT) polyps, provide insights into the biological mechanism underlying their development, and inform of potential overlap with other traits, including endometrial cancer? SUMMARY ANSWER GWAS meta-analysis of FGT polyps highlights potentially shared mechanisms between polyp development and cancerous processes. WHAT IS KNOWN ALREADY Small-scale candidate gene studies have focused on biological processes such as oestrogen stimulation and inflammation to clarify the biology behind FGT polyps. However, the exact mechanism for the development of polyps is still elusive. At the same time, a genome-wide approach, which has become the gold standard in complex disease genetics, has never been used to uncover the genetics of the FGT polyps. STUDY DESIGN, SIZE, DURATION We performed a GWAS meta-analysis including a total of 36 984 women with FGT polyps (International Classification of Diseases (ICD-10) diagnosis code N84) and 420 993 female controls (without N84 code) of European ancestry from the FinnGen study (11 092 cases and 94 394 controls), Estonian Biobank (EstBB, 14 008 cases and 112 799 controls), and the Pan-UKBB study (11 884 cases and 213 800 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS GWAS meta-analysis and functional annotation of GWAS signals were performed to identify genetic risk loci and prioritize genes in associated loci. To explore associations with other traits, we performed a look-up of associated variants across multiple traits and health conditions, genetic correlation analysis, and phenome-wide association study (PheWAS) with ICD-10 diagnosis codes. MAIN RESULTS AND THE ROLE OF CHANCE Our GWAS meta-analysis revealed 16 significant (P < 5 × 10-8) genomic risk loci. Based on exonic variants in GWAS signals, we prioritized EEFSEC, ODF3, PRIM1, PLCE1, LRRC34/MYNN, EXO1, and CHEK2 which are involved in DNA repair, cell proliferation, and cell growth. Several of the identified genomic loci have previously been linked to endometrial cancer and/or uterine fibroids, highlighting the potentially shared mechanisms underlying tissue overgrowth and cancerous processes. Genetic correlation analysis revealed a positive correlation with body mass index and reproductive traits, that can be classified as symptoms or risk factors of endometrial polyps (EPs), whereas a negative correlation was observed between FGT polyps and both menopause (genetic correlation estimate (rg) = -0.29, SE = 0.08, P = 8.8×10-4) and sex hormone-binding globulin (SHBG) (rg = -0.22, SE = 0.04, P = 2.4×10-8). On the phenotypic level, the strongest associations were observed with endometriosis, uterine fibroids, and excessive, frequent, and irregular menstruation. LARGE SCALE DATA The complete GWAS summary statistics will be made available after publication through the GWAS Catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION In this study, we focused broadly on FGT polyps and did not differentiate between the polyp subtypes. Considering the prevalence of FGT polyp subtypes, we assumed that most women included in the study had EPs. Further research on the expression profile of FGT polyps could complement the GWAS study to substantiate the functional importance of the identified variants. WIDER IMPLICATIONS OF THE FINDINGS The study findings have the potential to significantly enhance our understanding of the genetic mechanisms involved, paving the way for future functional follow-up, which in turn could improve the diagnosis, risk assessment, and targeted treatment options, since surgery is the only line of treatment available for diagnosed polyps. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by European Union through the European Regional Development Fund Project No. 2014-2020.4.01.15-0012 GENTRANSMED. Computations were performed in the High-Performance Computing Center of the University of Tartu. The study was also supported by the Estonian Research Council (grant no. PRG1076 and MOBJD1056) and Horizon 2020 innovation grant (ERIN, grant no. EU952516). All the authors declared no conflict of interest.
Collapse
Affiliation(s)
- Amruta D S Pathare
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jelisaveta Džigurski
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Natàlia Pujol-Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Valentina Rukins
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Merli Saare
- Celvia CC, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Gunchenko M, Shapiro C, Jain S, Doozandeh H. Aplastic anaemia, pernicious anaemia and autoimmune thyroiditis following an episode of EBV-associated hepatitis. BMJ Case Rep 2025; 18:e262950. [PMID: 40000037 DOI: 10.1136/bcr-2024-262950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Epstein-Barr virus (EBV) affects over 90% of the global population and has been linked to several autoimmune disorders. This report describes a patient with EBV-associated hepatitis who subsequently developed aplastic anaemia, pernicious anaemia and autoimmune thyroiditis. The patient was treated with an immunosuppressive regimen with gradual improvement in his pancytopenia and autoimmune thyroiditis. This report highlights the importance of a comprehensive evaluation and close monitoring of patients presenting with acute or recent EBV infection. Clinicians are urged to recognise autoimmune sequelae, as early intervention can be life-saving.
Collapse
MESH Headings
- Humans
- Anemia, Aplastic/etiology
- Anemia, Aplastic/virology
- Anemia, Aplastic/drug therapy
- Anemia, Aplastic/diagnosis
- Male
- Anemia, Pernicious/etiology
- Anemia, Pernicious/drug therapy
- Anemia, Pernicious/virology
- Anemia, Pernicious/diagnosis
- Thyroiditis, Autoimmune/drug therapy
- Thyroiditis, Autoimmune/etiology
- Thyroiditis, Autoimmune/virology
- Thyroiditis, Autoimmune/diagnosis
- Epstein-Barr Virus Infections/complications
- Hepatitis, Viral, Human/complications
- Immunosuppressive Agents/therapeutic use
- Adult
Collapse
Affiliation(s)
- Melissa Gunchenko
- Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Chandler Shapiro
- Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Shivi Jain
- Internal Medicine, Hematology/Oncology, Rush University Medical Center, Chicago, Illinois, USA
| | | |
Collapse
|
5
|
Giraud M, Peterson P. The Autoimmune Regulator (AIRE) Gene, The Master Activator of Self-Antigen Expression in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:199-221. [PMID: 40067588 DOI: 10.1007/978-3-031-77921-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
It has been more than 20 years since the AIRE gene was discovered. The mutations in the AIRE gene cause a rare and life-threatening autoimmune disease with severe manifestations against a variety of organs. Since the identification of the AIRE gene in 1997, more than two decades of investigations have revealed key insights into the role of AIRE and its mode of action. These studies have shown that AIRE uniquely induces the expression of thousands of tissue-restricted self-antigens in the thymus. These self-antigens are presented to developing T cells, resulting in the deletion of the self-reactive T cells and the generation of regulatory T cells. Thus, AIRE is a master guardian in establishing and maintaining central immune tolerance.
Collapse
Affiliation(s)
- Matthieu Giraud
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
6
|
Wolff ASB, Oftedal BE. Aire Mutations and Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:223-246. [PMID: 40067589 DOI: 10.1007/978-3-031-77921-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Autoimmune diseases were first recognized by Mackay and Macfarlane Burnet in 1962 (Burnet and Mackay 1962). It is defined as the failure of an organism to tolerate its own cells and tissue, resulting in an aberrant immune response by lymphocytes (T-cell-driven disease) and/or antibodies (B-cell-driven disease). Autoimmune diseases can be divided into systemic autoimmune diseases and specific organ- or body-system diseases, including the endocrine, gastro-intestinal, and neurological systems, and it's not uncommon for individuals to experience multiple autoimmune conditions simultaneously. Autoimmune diseases affect ~10% of the population (Conrad et al. 2023), causing chronic suffering, vital organ failure, and premature death at the level of cancer and cardiovascular diseases. The rising incidence of these disorders poses a significant challenge to healthcare systems, underscoring the critical need to elucidate disease mechanisms and translate these into effective diagnostic tests and therapeutics. Current therapeutic strategies are predominantly confined to symptomatic relief through replacement therapy and broad-spectrum anti-inflammatory drugs, often resulting in increased disease burden, diminished life quality, and elevated mortality rates. Most autoimmune diseases are likely a result of a combination of different genetic and environmental factors. However, there are a few exemptions, like the autoimmune polyendocrine syndrome type 1 (APS-1) caused by mutations in the Autoimmune Regulator (AIRE) gene.
Collapse
Affiliation(s)
- Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
7
|
AlMoosa ES, Al Ghadeer HA, Alatiya JE, Aldairam WH, Alhamrani AM, Alarbash AA, Alamer AT, AlHelal MT, Alkhawajah AM, AlDaif ZY, Alarab YA, Al Hani MF, Alhamdan AY, AlWassel AI, Alshabaan AA. The Prevalence of Autoimmune Diseases Among Children With Type I Diabetes Mellitus. Cureus 2024; 16:e76272. [PMID: 39845243 PMCID: PMC11753791 DOI: 10.7759/cureus.76272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 01/24/2025] Open
Abstract
Background Type I diabetes mellitus (T1DM) is a prevalent chronic illness that typically manifests in childhood. In patients who are genetically predisposed to diabetes, complex interactions between environmental and genetic factors play a role in the development of type 1 diabetes. There is proof that the onset of type 1 diabetes raises the possibility of developing additional autoimmune conditions. This has to do with the hereditary predisposition to these illnesses. As the autoimmune process in pancreatic beta cells advances, it may also impact other organs, leading to the emergence of autoimmune diseases that are either organ-specific or organ-nonspecific. Purpose The purpose of this study is to determine the prevalence of autoimmune disorders among children who are diagnosed with T1DM in Al-Ahsa, Saudi Arabia, and assess the potential impact of these conditions on other comorbidities. Methods Over the course of three years, from 2020 to 2023, children with T1DM were the subjects of this descriptive retrospective cross-sectional study conducted in the Endocrinology and Diabetes Unit of the Maternity and Children's Hospital in Al-Ahsa, Saudi Arabia. There were 281 participants in total. Clinical and laboratory research was conducted on autoimmune T1DM. Results A total of 281 T1DM children were investigated, with 59.9% being female and 43.1% being male. The mean age was 12.8 ± 3.3 years, and the mean disease duration at the end of follow-up was 6.6 ± 2.9 years. Among these participants, 5.3% were diagnosed with at least one autoimmune disease (AID). Celiac disease is the most commonly reported AID, accounting for 56.3%, followed by hypothyroidism (31.3%). An increased risk of developing AIDs was linked to significant associations between older age (>10 years old) and longer duration of DM (p<0.05). Conclusion The data show a high prevalence of autoimmune comorbidities among pediatric T1DM patients treated at our department. The findings highlight the importance of regular screenings in facilitating timely diagnosis and intervention, which is critical in promoting the well-being and normative development of pediatric patients.
Collapse
Affiliation(s)
- Eman S AlMoosa
- Paediatrics, Maternity and Children Hospital, Al-Ahsa, SAU
| | | | | | | | | | | | - Ali T Alamer
- Paediatrics, Maternity and Children Hospital, Al-Ahsa, SAU
| | | | | | | | - Yaser A Alarab
- Paediatrics, Maternity and Children Hospital, Al-Ahsa, SAU
| | | | | | | | | |
Collapse
|
8
|
Bez P, Ceraudo M, Vianello F, Rattazzi M, Scarpa R. Where AIRE we now? Where AIRE we going? Curr Opin Allergy Clin Immunol 2024; 24:448-456. [PMID: 39440452 PMCID: PMC11537476 DOI: 10.1097/aci.0000000000001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE OF REVIEW The purpose of the review is to describe the most recent advancement in understanding of the pivotal role of autoimmune regulator ( AIRE ) gene expression in central and peripheral tolerance, and the implications of its impairment in the genetic and pathogenesis of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) manifestations with insight into possible treatment options. RECENT FINDINGS AIRE gene expression has an important role of central and peripheral tolerance. Different AIRE gene mutations cause APECED, whereas polymorphisms and some variants may be implicated in development of other more frequently autoimmune diseases. Impaired negative T cell selection, reduction of T regulatory function, altered germinal center response, activated B cells and production of autoantibodies explain the development of autoimmunity in APECED. Recent data suggest that an excessive interferon-γ response may be the primer driver of the associated organ damage. Therefore, Janus kinase (JAK)-inhibitors may be promising therapies for treatment of broad spectrum of manifestations. SUMMARY AIRE has a pivotal role in immune tolerance. Disruption of this delicate equilibrium results in complex immune perturbation, ranging from severe autoimmunity, like APECED, to more common organ-specific disorders. Therefore, a deeper understanding of the correlation between AIRE function and clinical phenotype is warranted given the potential translational implication in clinical practice.
Collapse
Affiliation(s)
- Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso
| | - Martina Ceraudo
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso
- Deparment of Medicine (DIMED)
| | - Fabrizio Vianello
- Hematology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso
- Deparment of Medicine (DIMED)
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso
- Deparment of Medicine (DIMED)
| |
Collapse
|
9
|
Lessard S, Chao M, Reis K, Beauvais M, Rajpal DK, Sloane J, Palta P, Klinger K, de Rinaldis E, Shameer K, Chatelain C. Leveraging large-scale multi-omics evidences to identify therapeutic targets from genome-wide association studies. BMC Genomics 2024; 25:1111. [PMID: 39563277 DOI: 10.1186/s12864-024-10971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Therapeutic targets supported by genetic evidence from genome-wide association studies (GWAS) show higher probability of success in clinical trials. GWAS is a powerful approach to identify links between genetic variants and phenotypic variation; however, identifying the genes driving associations identified in GWAS remains challenging. Integration of molecular quantitative trait loci (molQTL) such as expression QTL (eQTL) using mendelian randomization (MR) and colocalization analyses can help with the identification of causal genes. Careful interpretation remains warranted because eQTL can affect the expression of multiple genes within the same locus. METHODS We used a combination of genomic features that include variant annotation, activity-by-contact maps, MR, and colocalization with molQTL to prioritize causal genes across 4,611 disease GWAS and meta-analyses from biobank studies, namely FinnGen, Estonian Biobank and UK Biobank. RESULTS Genes identified using this approach are enriched for gold standard causal genes and capture known biological links between disease genetics and biology. In addition, we find that eQTL colocalizing with GWAS are statistically enriched for corresponding disease-relevant tissues. We show that predicted directionality from MR is generally consistent with matched drug mechanism of actions (> 85% for approved drugs). Compared to the nearest gene mapping method, genes supported by multi-omics evidences displayed higher enrichment in approved therapeutic targets (risk ratio 1.75 vs. 2.58 for genes with the highest level of support). Finally, using this approach, we detected anassociation between the IL6 receptor signal transduction gene IL6ST and polymyalgia rheumatica, an indication for which sarilumab, a monoclonal antibody against IL-6, has been recently approved. CONCLUSIONS Combining variant annotation, activity-by-contact maps, and molQTL increases performance to identify causal genes, while informing on directionality which can be translated to successful target identification and drug development.
Collapse
Affiliation(s)
- Samuel Lessard
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | - Michael Chao
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | - Kadri Reis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mathieu Beauvais
- Digital R&D Data & Computational Sciences, Sanofi, Gentilly, France
| | - Deepak K Rajpal
- Translational Sciences, Sanofi, Framingham, MA, USA
- Pre-Clinical and Translational Sciences, Takeda, MA, USA
| | - Jennifer Sloane
- Immunology & Inflammation Development, Sanofi, Cambridge, MA, USA
| | - Priit Palta
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | | | - Khader Shameer
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | - Clément Chatelain
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA.
| |
Collapse
|
10
|
Brownlie RJ, Salmond RJ. Regulation of T Cell Signaling and Immune Responses by PTPN22. Mol Cell Biol 2024; 44:443-452. [PMID: 39039893 PMCID: PMC11486154 DOI: 10.1080/10985549.2024.2378810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) play central roles in the regulation of cell signaling, organismal development, cellular differentiation and proliferation, and cancer. In the immune system, PTPs regulate the activation, differentiation and effector function of lymphocytes and myeloid cells whilst single-nucleotide polymorphisms (SNPs) in PTP-encoding genes have been identified as risk factors for the development of autoimmunity. In this review we describe the roles for PTP nonreceptor type 22 (PTPN22) in the regulation of T lymphocyte signaling and activation in autoimmunity, infection and cancer. We summarize recent progress in our understanding of the regulation of PTPN22 activity, the impact of autoimmune disease-associated PTPN22 SNPs on T cell responses and describe approaches to harness PTPN22 as a target to improve T cell-based immunotherapies in cancer.
Collapse
|
11
|
Brad GF, Nicoară DM, Scutca AC, Bugi MA, Asproniu R, Olariu LG, Jugănaru I, Cristun LI, Mărginean O. Exploring Chronic Hypocalcemia: Insights into Autoimmune Polyglandular Syndrome Type 1-A Case Study and Literature Review. J Clin Med 2024; 13:2368. [PMID: 38673639 PMCID: PMC11051075 DOI: 10.3390/jcm13082368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hypocalcemia is a common occurrence in pediatric patients, attributed to various causes and presenting with diverse clinical manifestations. A prompt evaluation is necessary to determine its underlying cause, whether it presents acutely or chronically, and to tailor treatment based on its severity. Among the potential causes of chronic hypocalcemia, primary hypoparathyroidism stands out. The case of a seven-year-old male patient with hypocalcemia reported in this article serves as an illustration, wherein targeted next-generation sequencing revealed a homozygous p.R257X mutation in the AIRE gene, indicative of autoimmune polyendocrine syndrome type 1 (APS-1). It poses challenges due to its multisystemic nature and involvement of specific autoantibodies, often leading to underdiagnosis, owing to its rarity, varied manifestations, and incomplete penetrance. A comprehensive review of the APS-1 literature was conducted to provide insights into the clinical manifestations, genetic spectrum, potential immunological mechanisms, and current medical strategies. Additionally, the recognition of AIRE gene mutations is crucial for facilitating genetic diagnosis, prognosis, and potential treatment strategies for APS-1. The management of such cases involves individualized approaches to treatment, regular monitoring, medication adjustments, and the early identification of associated conditions.
Collapse
Affiliation(s)
- Giorgiana-Flavia Brad
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (G.-F.B.); (A.-C.S.); (R.A.); (L.-G.O.); (I.J.); (O.M.)
- 1st Department of Pediatrics, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania;
| | - Delia-Maria Nicoară
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (G.-F.B.); (A.-C.S.); (R.A.); (L.-G.O.); (I.J.); (O.M.)
| | - Alexandra-Cristina Scutca
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (G.-F.B.); (A.-C.S.); (R.A.); (L.-G.O.); (I.J.); (O.M.)
- 1st Department of Pediatrics, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania;
| | - Meda-Ada Bugi
- 1st Department of Pediatrics, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania;
- Research Center for Disturbances of Growth and Development in Children BELIVE, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Raluca Asproniu
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (G.-F.B.); (A.-C.S.); (R.A.); (L.-G.O.); (I.J.); (O.M.)
- 1st Department of Pediatrics, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania;
| | - Laura-Gratiela Olariu
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (G.-F.B.); (A.-C.S.); (R.A.); (L.-G.O.); (I.J.); (O.M.)
- 1st Department of Pediatrics, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania;
| | - Iulius Jugănaru
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (G.-F.B.); (A.-C.S.); (R.A.); (L.-G.O.); (I.J.); (O.M.)
- 1st Department of Pediatrics, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania;
- Research Center for Disturbances of Growth and Development in Children BELIVE, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Lucian-Ioan Cristun
- Ph.D. School Department, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| | - Otilia Mărginean
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (G.-F.B.); (A.-C.S.); (R.A.); (L.-G.O.); (I.J.); (O.M.)
- 1st Department of Pediatrics, Children’s Emergency Hospital ‘Louis Turcanu’, 300011 Timisoara, Romania;
- Research Center for Disturbances of Growth and Development in Children BELIVE, ‘Victor Babes’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Maihofer AX, Ratanatharathorn A, Hemmings SMJ, Costenbader KH, Michopoulos V, Polimanti R, Rothbaum AO, Seedat S, Mikita EA, Smith AK, Salem RM, Shaffer RA, Wu T, Sebat J, Ressler KJ, Stein MB, Koenen KC, Wolf EJ, Sumner JA, Nievergelt CM. Effects of genetically predicted posttraumatic stress disorder on autoimmune phenotypes. Transl Psychiatry 2024; 14:172. [PMID: 38561342 PMCID: PMC10984931 DOI: 10.1038/s41398-024-02869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Observational studies suggest that posttraumatic stress disorder (PTSD) increases risk for various autoimmune diseases. Insights into shared biology and causal relationships between these diseases may inform intervention approaches to PTSD and co-morbid autoimmune conditions. We investigated the shared genetic contributions and causal relationships between PTSD, 18 autoimmune diseases, and 3 immune/inflammatory biomarkers. Univariate MiXeR was used to contrast the genetic architectures of phenotypes. Genetic correlations were estimated using linkage disequilibrium score regression. Bi-directional, two-sample Mendelian randomization (MR) was performed using independent, genome-wide significant single nucleotide polymorphisms; inverse variance weighted and weighted median MR estimates were evaluated. Sensitivity analyses for uncorrelated (MR PRESSO) and correlated horizontal pleiotropy (CAUSE) were also performed. PTSD was considerably more polygenic (10,863 influential variants) than autoimmune diseases (median 255 influential variants). However, PTSD evidenced significant genetic correlation with nine autoimmune diseases and three inflammatory biomarkers. PTSD had putative causal effects on autoimmune thyroid disease (p = 0.00009) and C-reactive protein (CRP) (p = 4.3 × 10-7). Inferences were not substantially altered by sensitivity analyses. Additionally, the PTSD-autoimmune thyroid disease association remained significant in multivariable MR analysis adjusted for genetically predicted inflammatory biomarkers as potential mechanistic pathway variables. No autoimmune disease had a significant causal effect on PTSD (all p values > 0.05). Although causal effect models were supported for associations of PTSD with CRP, shared pleiotropy was adequate to explain a putative causal effect of CRP on PTSD (p = 0.18). In summary, our results suggest a significant genetic overlap between PTSD, autoimmune diseases, and biomarkers of inflammation. PTSD has a putative causal effect on autoimmune thyroid disease, consistent with existing epidemiologic evidence. A previously reported causal effect of CRP on PTSD is potentially confounded by shared genetics. Together, results highlight the nuanced links between PTSD, autoimmune disorders, and associated inflammatory signatures, and suggest the importance of targeting related pathways to protect against disease and disability.
Collapse
Affiliation(s)
- Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
- South African Medical Research Council/Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Renato Polimanti
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alex O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Research and Outcomes, Skyland Trail, Atlanta, GA, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape, South Africa
- South African Medical Research Council/Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizabeth A Mikita
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Richard A Shaffer
- Department of Epidemiology and Health Sciences, Naval Health Research Center, San Diego, CA, USA
| | - Tianying Wu
- Division of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, CA, USA
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
13
|
Elliott A, Walters RK, Pirinen M, Kurki M, Junna N, Goldstein JI, Reeve MP, Siirtola H, Lemmelä SM, Turley P, Lahtela E, Mehtonen J, Reis K, Elnahas AG, Reigo A, Palta P, Esko T, Mägi R, Palotie A, Daly MJ, Widén E. Distinct and shared genetic architectures of gestational diabetes mellitus and type 2 diabetes. Nat Genet 2024; 56:377-382. [PMID: 38182742 PMCID: PMC10937370 DOI: 10.1038/s41588-023-01607-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/07/2023] [Indexed: 01/07/2024]
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder affecting more than 16 million pregnancies annually worldwide1,2. GDM is related to an increased lifetime risk of type 2 diabetes (T2D)1-3, with over a third of women developing T2D within 15 years of their GDM diagnosis. The diseases are hypothesized to share a genetic predisposition1-7, but few studies have sought to uncover the genetic underpinnings of GDM. Most studies have evaluated the impact of T2D loci only8-10, and the three prior genome-wide association studies of GDM11-13 have identified only five loci, limiting the power to assess to what extent variants or biological pathways are specific to GDM. We conducted the largest genome-wide association study of GDM to date in 12,332 cases and 131,109 parous female controls in the FinnGen study and identified 13 GDM-associated loci, including nine new loci. Genetic features distinct from T2D were identified both at the locus and genomic scale. Our results suggest that the genetics of GDM risk falls into the following two distinct categories: one part conventional T2D polygenic risk and one part predominantly influencing mechanisms disrupted in pregnancy. Loci with GDM-predominant effects map to genes related to islet cells, central glucose homeostasis, steroidogenesis and placental expression.
Collapse
Grants
- R00 AG062787 NIA NIH HHS
- R01 MH101244 NIMH NIH HHS
- A.E. was a research Scholar supported by Sarnoff Cardiovascular Research Foundation
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- Academy of Finland (Suomen Akatemia)
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- The FinnGen project is funded by two grants from Business Finland (HUS 4685/31/2016 and UH 4386/31/2016) and by eleven industry partners (AbbVie Inc, AstraZeneca UK Ltd, Biogen MA Inc, Celgene Corporation, Celgene International II Sàrl, Genentech Inc, Merck Sharp & Dohme Corp, Pfizer Inc., GlaxoSmithKline, Sanofi, Maze Therapeutics Inc., Janssen Biotech Inc).
- EstBB GWAS analysis is supported by research funding from the Estonian Research Council: Team grant PRG1291 and PRG1911.
Collapse
Affiliation(s)
- Amanda Elliott
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Raymond K Walters
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Mitja Kurki
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Nella Junna
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Jacqueline I Goldstein
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mary Pat Reeve
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Harri Siirtola
- TAUCHI Research Center, Faculty of Information Technology and Communication Sciences (ITC), Tampere University, Tampere, Finland
| | - Susanna M Lemmelä
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Patrick Turley
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA
- Department of Economics, University of Southern California, Los Angeles, CA, USA
| | - Elisa Lahtela
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Mehtonen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Kadri Reis
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Anu Reigo
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Priit Palta
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Aarno Palotie
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Sjøgren T, Bjune JI, Husebye ES, Oftedal BE, Wolff ASB. Regulatory T cells in autoimmune primary adrenal insufficiency. Clin Exp Immunol 2024; 215:47-57. [PMID: 37578839 PMCID: PMC10776243 DOI: 10.1093/cei/uxad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
Primary adrenal insufficiency (PAI) is most often caused by an autoimmune destruction of the adrenal cortex resulting in failure to produce cortisol and aldosterone. The aetiology is thought to be a combination of genetic and environmental risk factors, leading to breakdown of immunological tolerance. Regulatory T cells (Tregs) are deficient in many autoimmune disorders, but it is not known whether they contribute to development of PAI. We aimed to investigate the frequency and function of naive and expanded Tregs in patients with PAI and polyendocrine syndromes compared to age- and gender-matched healthy controls. Flow cytometry was used to assess the frequency and characterize functional markers of blood Tregs in PAI (N = 15). Expanded Treg suppressive abilities were assessed with a flow cytometry based suppression assay (N = 20), while bulk RNA-sequencing was used to examine transcriptomic differences (N = 16) and oxygen consumption rate was measured by a Seahorse cell metabolic assay (N = 11). Our results showed that Treg frequency and suppressive capacity were similar between patients and controls. An increased expression of killer-cell leptin-like receptors and mitochondrial genes was revealed in PAI patients, but their expanded Tregs did not display signs of mitochondrial dysfunction. Our findings do not support a clear role for Tregs in the contribution of PAI development.
Collapse
Affiliation(s)
- Thea Sjøgren
- Endocrine Medicine Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jan-Inge Bjune
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Eystein S Husebye
- Endocrine Medicine Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bergithe E Oftedal
- Endocrine Medicine Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- Endocrine Medicine Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Peterson P. Novel Insights into the Autoimmunity from the Genetic Approach of the Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:3-18. [PMID: 38467969 DOI: 10.1007/978-981-99-9781-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic inborn error of autoimmunity that is caused by damaging germline variants in the AIRE gene and clinically manifests with multiple autoimmune diseases in patients. Studies on the function of the AIRE gene, discovered in 1997, have contributed to fundamental aspects of human immunology as they have been important in understanding the basic mechanism of immune balance between self and non-self. This chapter looks back to the discovery of the AIRE gene, reviews its main properties, and discusses the key findings of its function in the thymus. However, more recent autoantibody profilings in APECED patients have highlighted a gap in our knowledge of the disease pathology and point to the need to revisit the current paradigm of AIRE function. The chapter reviews these new findings in APECED patients, which potentially trigger new thoughts on the mechanism of immune tolerance.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
16
|
Pujol Gualdo N, Mägi R, Laisk T. Genome-wide association study meta-analysis supports association between MUC1 and ectopic pregnancy. Hum Reprod 2023; 38:2516-2525. [PMID: 37877466 PMCID: PMC10694401 DOI: 10.1093/humrep/dead217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/08/2023] [Indexed: 10/26/2023] Open
Abstract
STUDY QUESTION Can we identify genetic variants associated with ectopic pregnancy by undertaking the first genome-wide association study (GWAS) leveraging two large-scale biobank initiatives? SUMMARY ANSWER We identified two novel genome-wide significant associations with ectopic pregnancy, highlighting MUC1 (mucin 1) as the most plausible affected gene. WHAT IS KNOWN ALREADY Ectopic pregnancy is an important cause of maternal morbidity and mortality worldwide. Despite being a common early pregnancy complication, the genetic predisposition to this condition remains understudied and no large scale genetic studies have been performed so far. STUDY DESIGN, SIZE, DURATION A GWAS meta-analysis including 7070 women with ectopic pregnancy and 248 810 controls from Estonian Biobank and the FinnGen study. PARTICIPANTS/MATERIALS, SETTING, METHODS We identified ectopic pregnancy cases from national registers by ICD (International Classification of Disease) codes (ICD-10 O00), and all remaining women were considered controls. We carried out standard GWAS meta-analysis and additionally annotated GWAS signals, analysed co-localization with quantitative trait loci, estimated genetic correlations and identified associated phenotypes to characterize the genetic signals, as well as to analyse the genetic and phenotypic relationships with the condition. MAIN RESULTS AND THE ROLE OF CHANCE We identified two genome-wide significant loci on chromosomes 1 (rs4971091, P = 5.32×10-9) and 10 (rs11598956, P = 2.41×10-8) potentially associated with ectopic pregnancy. Follow-up analyses propose MUC1, which codes for an epithelial glycoprotein with an important role in barrier function, as the most likely candidate gene for the association on chromosome 1. We also characterize the phenotypic and genetic correlations with other phenotypes, identifying a genetic correlation with smoking and diseases of the (genito)urinary and gastrointestinal system, and phenotypic correlations with various reproductive health diagnoses, reflecting the previously known epidemiological associations. LARGE SCALE DATA The GWAS meta-analysis summary statistics are available from the GWAS Catalogue (GCST90272883). LIMITATIONS, REASONS FOR CAUTION The main limitation is that the findings are based on European-based ancestry populations, with limited data on other populations, and we only captured maternal genomes. Additionally, further larger meta-analysis or independent studies are needed to validate these findings. WIDER IMPLICATIONS OF THE FINDINGS This study encourages the use of large-scale genetic datasets to unravel genetic factors linked to ectopic pregnancy, which is difficult to study in experimental settings. Increased sample size might bring additional genetic factors associating with ectopic pregnancy and inform its heritability. Altogether, our results provide more insight into the biology of ectopic pregnancy and, accordingly, the biological processes governing embryo implantation. STUDY FUNDING/COMPETING INTEREST(S) N.P.G. was supported by MATER Marie Sklodowska-Curie which received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 813707. This study was funded by European Union through the European Regional Development Fund Project No. 2014-2020.4.01.15-0012 GENTRANSMED. Computations were performed in the High-Performance Computing Center of University of Tartu. The authors declare no competing interests.
Collapse
Affiliation(s)
- Natàlia Pujol Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | | | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Wolff ASB, Kucuka I, Oftedal BE. Autoimmune primary adrenal insufficiency -current diagnostic approaches and future perspectives. Front Endocrinol (Lausanne) 2023; 14:1285901. [PMID: 38027140 PMCID: PMC10667925 DOI: 10.3389/fendo.2023.1285901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The adrenal glands are small endocrine glands located on top of each kidney, producing hormones regulating important functions in our body like metabolism and stress. There are several underlying causes for adrenal insufficiency, where an autoimmune attack by the immune system is the most common cause. A number of genes are known to confer early onset adrenal disease in monogenic inheritance patterns, usually genetic encoding enzymes of adrenal steroidogenesis. Autoimmune primary adrenal insufficiency is usually a polygenic disease where our information recently has increased due to genome association studies. In this review, we go through the physiology of the adrenals before explaining the different reasons for adrenal insufficiency with a particular focus on autoimmune primary adrenal insufficiency. We will give a clinical overview including diagnosis and current treatment, before giving an overview of the genetic causes including monogenetic reasons for adrenal insufficiency and the polygenic background and inheritance pattern in autoimmune adrenal insufficiency. We will then look at the autoimmune mechanisms underlying autoimmune adrenal insufficiency and how autoantibodies are important for diagnosis. We end with a discussion on how to move the field forward emphasizing on the clinical workup, early identification, and potential targeted treatment of autoimmune PAI.
Collapse
Affiliation(s)
- Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Isil Kucuka
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Oftedal BE, Berger AH, Bruserud Ø, Goldfarb Y, Sulen A, Breivik L, Hellesen A, Ben-Dor S, Haffner-Krausz R, Knappskog PM, Johansson S, Wolff AS, Bratland E, Abramson J, Husebye ES. A partial form of AIRE deficiency underlies a mild form of autoimmune polyendocrine syndrome type 1. J Clin Invest 2023; 133:e169704. [PMID: 37909333 PMCID: PMC10617782 DOI: 10.1172/jci169704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations in the autoimmune regulator (AIRE) gene. Most patients present with severe chronic mucocutaneous candidiasis and organ-specific autoimmunity from early childhood, but the clinical picture is highly variable. AIRE is crucial for negative selection of T cells, and scrutiny of different patient mutations has previously highlighted many of its molecular mechanisms. In patients with a milder adult-onset phenotype sharing a mutation in the canonical donor splice site of intron 7 (c.879+1G>A), both the predicted altered splicing pattern with loss of exon 7 (AireEx7-/-) and normal full-length AIRE mRNA were found, indicating leaky rather than abolished mRNA splicing. Analysis of a corresponding mouse model demonstrated that the AireEx7-/- mutant had dramatically impaired transcriptional capacity of tissue-specific antigens in medullary thymic epithelial cells but still retained some ability to induce gene expression compared with the complete loss-of-function AireC313X-/- mutant. Our data illustrate an association between AIRE activity and the severity of autoimmune disease, with implications for more common autoimmune diseases associated with AIRE variants, such as primary adrenal insufficiency, pernicious anemia, type 1 diabetes, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Bergithe Eikeland Oftedal
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medicine and
| | - Amund Holte Berger
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Øyvind Bruserud
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medicine and
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Andre Sulen
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Lars Breivik
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medicine and
| | - Alexander Hellesen
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities and
| | | | - Per M. Knappskog
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anette S.B. Wolff
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medicine and
| | - Eirik Bratland
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eystein Sverre Husebye
- Department of Clinical Science and KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
- Department of Medicine and
| |
Collapse
|
19
|
Kamada K, Kawano O, Yakuwa S, Wakasa K, Uetake K. Pernicious Anemia in an Adult with Trisomy 21. Case Reports Immunol 2023; 2023:2747756. [PMID: 37663274 PMCID: PMC10474957 DOI: 10.1155/2023/2747756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/09/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Pernicious anemia is an autoimmune disease caused by the malabsorption of vitamin B12. It usually appears in the elderly. People with trisomy 21 are susceptible to autoimmune diseases. This susceptibility is thought to be due to altered expression of the AIRE gene, which is located in the 21q22.3 region. Although pernicious anemia is not common in people with trisomy 21, AIRE is pointed out as a susceptibility gene of pernicious anemia in a genome-wide association study. Here, we report a man with trisomy 21, who suffered from the pernicious anemia. When he was in his 30 s, he visited our hospital because of diarrhea and poor oral intake. He showed thrombocytopenic purpura-like features, and was diagnosed as pernicious anemia. After supplementation of vitamin B12, he recovered from the illness. The reason for his early onset may be because of trisomy 21. Altered expression of AIRE might trigger the disease.
Collapse
Affiliation(s)
- Kentaro Kamada
- Department of Pediatrics, Obihiro Kosei Hospital, Nishi 6-jo Minami 8-1, Obihiro, Hokkaido 080-0016, Japan
| | - Osamu Kawano
- Department of Pediatrics, Obihiro Kosei Hospital, Nishi 6-jo Minami 8-1, Obihiro, Hokkaido 080-0016, Japan
- Okurayama-gakuin, 20-2 Miharashi-cho, Otaru, Hokkaido 047-0263, Japan
| | - Satoshi Yakuwa
- Department of Pediatrics, Obihiro Kosei Hospital, Nishi 6-jo Minami 8-1, Obihiro, Hokkaido 080-0016, Japan
| | - Kentaro Wakasa
- Department of Hematology, Obihiro Kosei Hospital, Nishi 6-jo Minami 8-1, Obihiro, Hokkaido 080-0016, Japan
| | - Kimiaki Uetake
- Department of Pediatrics, Obihiro Kosei Hospital, Nishi 6-jo Minami 8-1, Obihiro, Hokkaido 080-0016, Japan
| |
Collapse
|
20
|
Iwamuro M, Tanaka T, Otsuka M. Update in Molecular Aspects and Diagnosis of Autoimmune Gastritis. Curr Issues Mol Biol 2023; 45:5263-5275. [PMID: 37504250 PMCID: PMC10378041 DOI: 10.3390/cimb45070334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Recent studies have advanced our understanding of the pathophysiology of autoimmune gastritis, particularly its molecular aspects. The most noteworthy recent advancement lies in the identification of several candidate genes implicated in the pathogenesis of pernicious anemia through genome-wide association studies. These genes include PTPN22, PNPT1, HLA-DQB1, and IL2RA. Recent studies have also directed attention towards other genes such as ATP4A, ATP4B, AIRE, SLC26A7, SLC26A9, and BACH2 polymorphism. In-depth investigations have been conducted on lymphocytes and cytokines, including T helper 17 cells, interleukin (IL)-17A, IL-17E, IL-17F, IL-21, IL-19, tumor necrosis factor-α, IL-15, transforming growth factor-β1, IL-13, and diminished levels of IL-27. Animal studies have explored the involvement of roseolovirus and H. pylori in relation to the onset of the disease and the process of carcinogenesis, respectively. Recent studies have comprehensively examined the involvement of autoantibodies, serum pepsinogen, and esophagogastroduodenoscopy in the diagnosis of autoimmune gastritis. The current focus lies on individuals demonstrating atypical presentations of the disease, including those diagnosed in childhood, those yielding negative results for autoantibodies, and those lacking the typical endoscopic characteristics of mucosal atrophy. Here, we discuss the recent developments in this field, focusing on genetic predisposition, epigenetic modifications, lymphocytes, cytokines, oxidative stress, infectious agents, proteins, microRNAs, autoantibodies, serum pepsinogen, gastrin, esophagogastroduodenoscopy and microscopic findings, and the risk of gastric neoplasm.
Collapse
Affiliation(s)
- Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
21
|
Oftedal BE, Assing K, Baris S, Safgren SL, Johansen IS, Jakobsen MA, Babovic-Vuksanovic D, Agre K, Klee EW, Majcic E, Ferré EM, Schmitt MM, DiMaggio T, Rosen LB, Rahman MO, Chrysis D, Giannakopoulos A, Garcia MT, González-Granado LI, Stanley K, Galant-Swafford J, Suwannarat P, Meyts I, Lionakis MS, Husebye ES. Dominant-negative heterozygous mutations in AIRE confer diverse autoimmune phenotypes. iScience 2023; 26:106818. [PMID: 37235056 PMCID: PMC10206195 DOI: 10.1016/j.isci.2023.106818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1) is an autosomal recessive disease characterized by severe and childhood onset organ-specific autoimmunity caused by mutations in the autoimmune regulator (AIRE) gene. More recently, dominant-negative mutations within the PHD1, PHD2, and SAND domains have been associated with an incompletely penetrant milder phenotype with later onset familial clustering, often masquerading as organ-specific autoimmunity. Patients with immunodeficiencies or autoimmunity where genetic analyses revealed heterozygous AIRE mutations were included in the study and the dominant-negative effects of the AIRE mutations were functionally assessed in vitro. We here report additional families with phenotypes ranging from immunodeficiency, enteropathy, and vitiligo to asymptomatic carrier status. APS-1-specific autoantibodies can hint to the presence of these pathogenic AIRE variants although their absence does not rule out their presence. Our findings suggest functional studies of heterozygous AIRE variants and close follow-up of identified individuals and their families.
Collapse
Affiliation(s)
- Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kristian Assing
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Safa Baris
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Stephanie L. Safgren
- Center for Individualized Medicine, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | | | | | | | - Eric W. Klee
- Mayo Clinic, Department of Quantitative Health Sciences, Rochester, MN, USA
| | - Emina Majcic
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elise M.N. Ferré
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Monica M. Schmitt
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tom DiMaggio
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lindsey B. Rosen
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Muhammad Obaidur Rahman
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Dionisios Chrysis
- Department of Pediatrics, Division of Pediatric Endocrinology, Medical School, University of Patras, Rion, Greece
| | - Aristeidis Giannakopoulos
- Department of Pediatrics, Division of Pediatric Endocrinology, Medical School, University of Patras, Rion, Greece
| | - Maria Tallon Garcia
- Pediatric Hematology and Oncology Department, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Luis Ignacio González-Granado
- Unidad de Inmunodeficiencias, Pediatría, Instituto de Investigación Hospital 12 de Octubre, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Katherine Stanley
- Mid-Atlantic Permanente Medical Group, Kaiser Permanente MidAtlantic, Rockville, MD, USA
| | | | - Pim Suwannarat
- Mid-Atlantic Permanente Medical Group, Kaiser Permanente MidAtlantic, Rockville, MD, USA
| | - Isabelle Meyts
- Department of Pediatrics, University Hospital Leuven, Laboratory for Inborn Errors of Immunity, Department of Microbiology Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
22
|
Ihara T, Ihara N, Kushima R, Haruma K. Rapid Progression of Autoimmune Gastritis after Helicobacter pylori Eradication Therapy. Intern Med 2023; 62:1603-1609. [PMID: 36261377 PMCID: PMC10292996 DOI: 10.2169/internalmedicine.0533-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/04/2022] [Indexed: 04/07/2023] Open
Abstract
We herein report a case of autoimmune gastritis (AIG) with rapid progression after Helicobacter pylori eradication therapy. The patient's previous gastritis had followed the course of type B gastritis before eradication therapy for many years. Immediately after eradication, we diagnosed her with AIG and carefully followed changes in the endoscopic and histopathological findings and serum markers. All of these clinical findings showed significant atrophic progression in the corporal area for approximately three years. We concluded that H. pylori eradication therapy exacerbated AIG in this case.
Collapse
Affiliation(s)
| | | | - Ryoji Kushima
- Department of Pathology, Shiga University of Medical Science, Japan
| | - Ken Haruma
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Japan
| |
Collapse
|
23
|
Abstract
Autoimmune gastritis (AIG) typically exhibits the characteristics of type A gastritis and has been classified as a separate disease from type B gastritis that corresponds to Helicobacter pylori gastritis. However, many reports have suggested the involvement of H. pylori infection in the pathogenesis of AIG. In our two cases, the patients' previous gastritis exhibited a clear pattern in which H. pylori gastritis had progressed over many years, but ultimately transitioned to AIG with its spontaneous disappearance. These findings suggest that some cases of AIG might originate from long-standing H. pylori gastritis.
Collapse
Affiliation(s)
| | | | - Ryoji Kushima
- Department of Pathology, Shiga University of Medical Science, Japan
| |
Collapse
|
24
|
Polyakova V, Bodunova N, Rumyantsev K, Khatkov I, Bordin D, Bilyalov A, Sviridov P, Yanova T. Genetic Determinants of Autoimmune Gastritis. BIONANOSCIENCE 2023; 13:322-329. [DOI: 10.1007/s12668-023-01068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
|
25
|
Almaghrabi S, Lovewell T, Azzouz M, Tazi Ahnini R. Characterisation of APS-1 Experimental Models Is Crucial for Development of Novel Therapies. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7960443. [PMID: 36685668 PMCID: PMC9848810 DOI: 10.1155/2023/7960443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Autoimmune polyglandular syndrome type 1 (APS-1) is an inherited autosomal disorder. The most common clinical features of the disease include adrenocortical failure, hypoparathyroidism (HP), and chronic mucocutaneous candidiasis (CMC). APS-1 is caused by mutations in the autoimmune regulator (AIRE) gene. AIRE is a transcriptional factor involved in the regulation of thousands of genes in the thymus. It facilitates central tolerance by promoting the ectopic expression of tissue-specific antigens (TSAs) in medullary thymic epithelial cells (mTECs), leading to the deletion of self-reactive thymocytes. Several Aire-deficient mice were developed separately, on different backgrounds; seven published Aire knockout mice show a variety of phenotypes depending on the strain used to generate the experimental model. The first Aire-deficient mice were generated on a "black 6" background almost 20 years ago. The model showed mild phenotype with relatively modest penetrance compared to models generated on BALBc or NOD backgrounds. The generation of all these experimental models is crucial for development and testing new therapeutics as well as reading the response to treatments.
Collapse
Affiliation(s)
- Sarah Almaghrabi
- Department of Infection, Immunity and Cardiovascular Disease, Sheffield, UK
| | - Thomas Lovewell
- Department of Infection, Immunity and Cardiovascular Disease, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITRaN), Department of Neuroscience, The Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Rachid Tazi Ahnini
- Department of Infection, Immunity and Cardiovascular Disease, Sheffield, UK
| |
Collapse
|
26
|
Sjøgren T, Bratland E, Røyrvik EC, Grytaas MA, Benneche A, Knappskog PM, Kämpe O, Oftedal BE, Husebye ES, Wolff ASB. Screening patients with autoimmune endocrine disorders for cytokine autoantibodies reveals monogenic immune deficiencies. J Autoimmun 2022; 133:102917. [PMID: 36191466 DOI: 10.1016/j.jaut.2022.102917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Autoantibodies against type I interferons (IFN) alpha (α) and omega (ω), and interleukins (IL) 17 and 22 are a hallmark of autoimmune polyendocrine syndrome type 1 (APS-1), caused by mutations in the autoimmune regulator (AIRE) gene. Such antibodies are also seen in a number of monogenic immunodeficiencies. OBJECTIVES To determine whether screening for cytokine autoantibodies (anti-IFN-ω and anti-IL22) can be used to identify patients with monogenic immune disorders. METHODS A novel ELISA assay was employed to measure IL22 autoantibodies in 675 patients with autoimmune primary adrenal insufficiency (PAI) and a radio immune assay (RIA) was used to measure autoantibodies against IFN-ω in 1778 patients with a variety of endocrine diseases, mostly of autoimmune aetiology. Positive cases were sequenced for all coding exons of the AIRE gene. If no AIRE mutations were found, we applied next generation sequencing (NGS) to search for mutations in immune related genes. RESULTS We identified 29 patients with autoantibodies against IFN-ω and/or IL22. Of these, four new APS-1 cases with disease-causing variants in AIRE were found. In addition, we identified two patients with pathogenic heterozygous variants in CTLA4 and NFKB2, respectively. Nine rare variants in other immune genes were identified in six patients, although further studies are needed to determine their disease-causing potential. CONCLUSION Screening of cytokine autoantibodies can efficiently identify patients with previously unknown monogenic and possible oligogenic causes of autoimmune and immune deficiency diseases. This information is crucial for providing personalised treatment and follow-up of patients and their relatives.
Collapse
Affiliation(s)
- Thea Sjøgren
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Marianne Aa Grytaas
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Andreas Benneche
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Per M Knappskog
- Department of Clinical Science, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Olle Kämpe
- KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.
| |
Collapse
|
27
|
Associations of Genetically Predicted Vitamin B 12 Status across the Phenome. Nutrients 2022; 14:nu14235031. [PMID: 36501061 PMCID: PMC9740080 DOI: 10.3390/nu14235031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Variation in vitamin B12 levels has been associated with a range of diseases across the life-course, the causal nature of which remains elusive. We aimed to interrogate genetically predicted vitamin B12 status in relation to a plethora of clinical outcomes available in the UK Biobank. Genome-wide association study (GWAS) summary data obtained from a Danish and Icelandic cohort of 45,576 individuals were used to identify 8 genetic variants associated with vitamin B12 levels, serving as genetic instruments for vitamin B12 status in subsequent analyses. We conducted a Mendelian randomisation (MR)-phenome-wide association study (PheWAS) of vitamin B12 status with 945 distinct phenotypes in 439,738 individuals from the UK Biobank using these 8 genetic instruments to proxy alterations in vitamin B12 status. We used external GWAS summary statistics for replication of significant findings. Correction for multiple testing was taken into consideration using a 5% false discovery rate (FDR) threshold. MR analysis identified an association between higher genetically predicted vitamin B12 status and lower risk of vitamin B deficiency (including all B vitamin deficiencies), serving as a positive control outcome. We further identified associations between higher genetically predicted vitamin B12 status and a reduced risk of megaloblastic anaemia (OR = 0.35, 95% CI: 0.20-0.50) and pernicious anaemia (0.29, 0.19-0.45), which was supported in replication analyses. Our study highlights that higher genetically predicted vitamin B12 status is potentially protective of risk of vitamin B12 deficiency associated with pernicious anaemia diagnosis, and reduces risk of megaloblastic anaemia. The potential use of genetically predicted vitamin B12 status in disease diagnosis, progression and management remains to be investigated.
Collapse
|
28
|
Røyrvik EC, Husebye ES. The genetics of autoimmune Addison disease: past, present and future. Nat Rev Endocrinol 2022; 18:399-412. [PMID: 35411072 DOI: 10.1038/s41574-022-00653-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune Addison disease is an endocrinopathy that is fatal if not diagnosed and treated in a timely manner. Its rarity has hampered unbiased studies of the predisposing genetic factors. A 2021 genome-wide association study, explaining up to 40% of the genetic susceptibility, has revealed new disease loci and reproduced some of the previously reported associations, while failing to reproduce others. Credible risk loci from both candidate gene and genome-wide studies indicate that, like one of its most common comorbidities, type 1 diabetes mellitus, Addison disease is primarily caused by aberrant T cell behaviour. Here, we review the current understanding of the genetics of autoimmune Addison disease and its position in the wider field of autoimmune disorders. The mechanisms that could underlie the effects on the adrenal cortex are also discussed.
Collapse
Affiliation(s)
- Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway.
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
29
|
Fierabracci A, Belcastro E, Carbone E, Pagliarosi O, Palma A, Pacillo L, Giancotta C, Zangari P, Finocchi A, Cancrini C, Delfino DV, Cappa M, Betterle C. In Search for the Missing Link in APECED-like Conditions: Analysis of the AIRE Gene in a Series of 48 Patients. J Clin Med 2022; 11:3242. [PMID: 35683627 PMCID: PMC9181695 DOI: 10.3390/jcm11113242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Autoimmune diseases are a heterogeneous group of disorders of the immune system. They can cluster in the same individual, revealing various preferential associations for polyendocrine autoimmune syndromes. Clinical observation, together with advances in genetics and the understanding of pathophysiological processes, has further highlighted that autoimmunity can be associated with immunodeficiency; autoimmunity may even be the first primary immunodeficiency manifestation. Analysis of susceptibility genes for the development of these complex phenotypes is a fundamental issue. In this manuscript, we revised the clinical and immunologic features and the presence of AIRE gene variations in a cohort of 48 patients affected by high polyautoimmunity complexity, i.e., APECED-like conditions, also including patients affected by primary immunodeficiency. Our results evidenced a significant association of the S278R polymorphism of the AIRE gene with APECED-like conditions, including both patients affected by autoimmunity and immunodeficiency and patients with polyautoimmunity compared to healthy controls. A trend of association was also observed with the IVS9+6 G>A polymorphism. The results of this genetic analysis emphasize the need to look for additional genetic determinants playing in concert with AIRE polymorphisms. This will help to improve the diagnostic workup and ensure a precision medicine approach to targeted therapies in APECED-like patients.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (E.B.); (E.C.); (O.P.)
| | - Eugenia Belcastro
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (E.B.); (E.C.); (O.P.)
| | - Elena Carbone
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (E.B.); (E.C.); (O.P.)
| | - Olivia Pagliarosi
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; (E.B.); (E.C.); (O.P.)
| | - Alessia Palma
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (A.F.); (C.C.)
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carmela Giancotta
- Immunology and Vaccinology, DPUO, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.G.); (P.Z.)
| | - Paola Zangari
- Immunology and Vaccinology, DPUO, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.G.); (P.Z.)
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (A.F.); (C.C.)
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.P.); (A.F.); (C.C.)
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marco Cappa
- Endocrinology Unit, DPUO, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Corrado Betterle
- Endocrine Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy;
| |
Collapse
|
30
|
Esposito G, Dottori L, Pivetta G, Ligato I, Dilaghi E, Lahner E. Pernicious Anemia: The Hematological Presentation of a Multifaceted Disorder Caused by Cobalamin Deficiency. Nutrients 2022; 14:nu14081672. [PMID: 35458234 PMCID: PMC9030741 DOI: 10.3390/nu14081672] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Pernicious anemia is still a neglected disorder in many medical contexts and is underdiagnosed in many patients. Pernicious anemia is linked to but different from autoimmune gastritis. Pernicious anemia occurs in a later stage of autoimmune atrophic gastritis when gastric intrinsic factor deficiency and consequent vitamin B12 deficiency may occur. The multifaceted nature of pernicious anemia is related to the important role of cobalamin, which, when deficient, may lead to several dysfunctions, and thus, the proteiform clinical presentations of pernicious anemia. Indeed, pernicious anemia may lead to potentially serious long-term complications related to micronutrient deficiencies and their consequences and the development of gastric cancer and type 1 gastric neuroendocrine tumors. When not recognized in a timely manner or when pernicious anemia is diagnosed with delay, these complications may be potentially life-threatening and sometimes irreversible. The current review aimed to focus on epidemiology, pathogenesis, and clinical presentations of pernicious anemia in an attempt to look beyond borders of medical specialties. It aimed to focus on micronutrient deficiencies besides the well-known vitamin B12 deficiency, the diagnostic approach for pernicious anemia, its long-term complications and optimal clinical management, and endoscopic surveillance of patients with pernicious anemia.
Collapse
|
31
|
Venerito M, Sulzer S, Jechorek D. [Clinical management of autoimmune gastritis]. Dtsch Med Wochenschr 2022; 147:451-459. [PMID: 35405749 DOI: 10.1055/a-1520-3562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Autoimmune gastritis (AIG) is a chronic immune-mediated inflammation of the gastric corpus/fundus mucosa leading to progressive atrophy of the oxyntic gastric glands (AOM) and their consecutive loss of function. Possible clinical consequences of AIG include iron deficiency anemia, pernicious anemia, gastric neuroendocrine tumors (gNET), and gastric adenocarcinoma. This article provides a review of interdisciplinary aspects of the diagnosis and treatment of AIG.
Collapse
|
32
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:2548-2559. [DOI: 10.1093/hmg/ddac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
|
33
|
Song M, Camargo MC, Katki HA, Weinstein SJ, Männistö S, Albanes D, Surcel HM, Rabkin CS. Association of Antiparietal Cell and Anti-Intrinsic Factor Antibodies With Risk of Gastric Cancer. JAMA Oncol 2021; 8:268-274. [PMID: 34913949 PMCID: PMC8678897 DOI: 10.1001/jamaoncol.2021.5395] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Question Is there an association between autoantibodies to gastric mucosa and gastric cancer (GC)? Findings In this cohort study of 529 female matched pairs from the Finnish Maternity Cohort and 457 male matched pairs from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, prediagnostic seropositivity to antiparietal cell antibodies was associated with the elevated risk of GC among young women born in 1938 through 1989 during a median of 17 years follow-up but not among older men born in 1916 through 1939 during a median of 11 years follow-up. The magnitude of association was stronger in Helicobacter pylori–seronegative women and most pronounced for tumors in the corpus. Meaning With the waning prevalence of H pylori, autoimmune-driven GC may explain the recent rise of GC incidence among the younger female population. Importance Autoimmune gastritis is an alternative cause of gastric carcinogenesis. This cause may be gaining importance with declining prevalence of chronic Helicobacter pylori infection. Objective To determine the association of prediagnostic autoantibodies to gastric mucosa with gastric cancer (GC) risk. Design, Setting, and Participants This cohort study used nested GC case-control analyses within separate Finnish cohorts of women of reproductive age (Finnish Maternity Cohort [FMC]; born 1938-1989) and older men (Alpha-Tocopherol, Beta-Carotene Cancer Prevention [ATBC] Study; born 1916-1939). There were 529 and 457 matched pairs from the FMC and ATBC Study, respectively, with mean participant ages of 30.5 and 57.5 years and medians of 17 and 11 years from baseline to cancer diagnosis. Data analyses were performed between August 2019 and November 2020. Exposures Antiparietal cell antibodies (APCAs), anti-intrinsic factor antibodies, and anti–H pylori antibodies were measured in baseline serum using immunoassays. Main Outcomes and Measures Autoantibody associations were estimated by odds ratios (ORs) and 95% CIs. Results Of the 529 control participants in the FMC and 457 control participants in the ATBC Study, 53 (10%) women and 35 (7.7%) men were APCA seropositive, respectively, whereas 146 (28%) women and 329 (72%) men were H pylori seropositive. In the FMC, APCA seropositivity was statistically significantly associated with GC risk among H pylori-seronegative women (OR, 5.52; 95% CI, 3.16-9.64) but not H pylori-seropositive women (OR, 1.29; 95% CI, 0.64-2.60; P for interaction = .002). The APCA association with H pylori seronegativity was strongest for tumors in the fundus and corpus (OR, 24.84; 95% CI, 8.49-72.72). In the ATBC Study, APCA seropositivity was not associated with GC among either H pylori–seronegative men (OR, 0.99; 95% CI, 0.32-3.04) or H pylori–seropositive men (OR, 1.06; 95% CI, 0.60-1.88). In both cohorts, anti-intrinsic factor antibody seroprevalence was less than 2% among cases as well as controls and not statistically associated with GC risk. Conclusions and Relevance Results of this cohort study demonstrate that autoantibody positivity may reflect subclinical autoimmune gastritis in younger women. The findings among young females and corpus subsite align with increasing cancer incidence trends for these groups. Stronger autoimmune associations in H pylori-seronegative individuals support a model of autoimmune gastritis replacing H pylori as the driving factor.
Collapse
Affiliation(s)
- Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hormuzd A Katki
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Satu Männistö
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Heljä-Marja Surcel
- Faculty of Medicine, University of Oulu, Oulu, Finland.,Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
34
|
Ferré EMN, Schmitt MM, Lionakis MS. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Front Pediatr 2021; 9:723532. [PMID: 34790633 PMCID: PMC8591095 DOI: 10.3389/fped.2021.723532] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), also known as autoimmune polyglandular syndrome type-1 (APS-1), is a rare monogenic autoimmune disease caused by loss-of-function mutations in the autoimmune regulator (AIRE) gene. AIRE deficiency impairs immune tolerance in the thymus and results in the peripheral escape of self-reactive T lymphocytes and the generation of several cytokine- and tissue antigen-targeted autoantibodies. APECED features a classic triad of characteristic clinical manifestations consisting of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism, and primary adrenal insufficiency (Addison's disease). In addition, APECED patients develop several non-endocrine autoimmune manifestations with variable frequencies, whose recognition by pediatricians should facilitate an earlier diagnosis and allow for the prompt implementation of targeted screening, preventive, and therapeutic strategies. This review summarizes our current understanding of the genetic, immunological, clinical, diagnostic, and treatment features of APECED.
Collapse
Affiliation(s)
| | | | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
35
|
Oikonomou V, Break TJ, Gaffen SL, Moutsopoulos NM, Lionakis MS. Infections in the monogenic autoimmune syndrome APECED. Curr Opin Immunol 2021; 72:286-297. [PMID: 34418591 PMCID: PMC8578378 DOI: 10.1016/j.coi.2021.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh PA, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|