1
|
Soderstedt CJ, Yuan Y, Vigil SA, Ford HH, Fratarcangeli M, Lin Z, Chen JG, Moreno-Hernandez IA. Oxidized Overlayers of Ruthenium and Iridium as Electrocatalysts for Anodic Reactions. J Am Chem Soc 2025. [PMID: 40401913 DOI: 10.1021/jacs.5c04767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Renewable energy technologies often rely on rutile tetravalent oxides, such as ruthenium(IV) oxide and iridium(IV) oxide, to catalyze anodic reactions that are paired with fuel formation. Herein, we report the synthesis of angstrom-scale and nanoscale oxidized overlayers of ruthenium (o-RuOx) and iridium (o-IrOx) from simple aqueous precursors grown on earth-abundant supports and state-of-the-art oxide electrocatalysts. The resulting overlayers exhibit distinct redox features and chemical states as indicated by cyclic voltammetry, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. The electrocatalysts exhibit increased activity towards anodic reactions. In particular, annealed o-RuOx grown on TiO2 (a-TiO2/o-RuOx) results in an electrocatalyst with an overpotential of 213, 206, and 14 mV at 10 mA cm-2 for the oxygen evolution reaction (OER) in acid, the OER in base, and the chlorine evolution reaction, respectively. The activity of a-TiO2/o-RuOx corresponds to a 47.7×, 117.4×, and 1.3× increase in ruthenium mass activity compared to RuO2 towards the OER in acid, the OER in base, and the chlorine evolution reaction, respectively. These findings highlight the unique chemistry of oxidized overlayers and their potential to meet operational demands for renewable energy technologies.
Collapse
Affiliation(s)
- Conner J Soderstedt
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yong Yuan
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - S Avery Vigil
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Heber H Ford
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Matteo Fratarcangeli
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ziqing Lin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | | |
Collapse
|
2
|
Moss GC, Binninger T, Rajan ZSHS, Itota BJ, Kooyman PJ, Susac D, Mohamed R. Perchlorate Fusion-Hydrothermal Synthesis of Nano-Crystalline IrO 2: Leveraging Stability and Oxygen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412237. [PMID: 40159796 PMCID: PMC12087815 DOI: 10.1002/smll.202412237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Iridium oxides are the state-of-the-art oxygen evolution reaction (OER) electrocatalysts in proton-exchange-membrane water electrolyzers (PEMWEs), but their high cost and scarcity necessitate improved utilization. Crystalline rutile-type iridium dioxide (IrO2) offers superior stability under acidic OER conditions compared to amorphous iridium oxide (IrOx). However, the higher synthesis temperatures required for crystalline phase formation result in lower OER activity due to the loss in active surface area. Herein, a novel perchlorate fusion-hydrothermal (PFHT) synthesis method to produce nano-crystalline rutile-type IrO2 with enhanced OER performance is presented. This low-temperature approach involves calcination at a mild temperature (300 °C) in the presence of a strong oxidizing agent, sodium perchlorate (NaClO4), followed by hydrothermal treatment at 180 °C, yielding small (≈2 nm) rutile-type IrO2 nanoparticles with high mass-specific OER activity, achieving 95 A gIr -1 at 1.525 VRHE in ex situ glass-cell testing. Most importantly, the catalyst displays superior stability under harsh accelerated stress test conditions compared to commercial iridium oxides. The exceptional activity of the catalyst is confirmed with in situ PEMWE single-cell evaluations. This demonstrates that the PFHT synthesis method leverages the superior intrinsic properties of nano-crystalline IrO2, effectively overcoming the typical trade-offs between OER activity and catalyst stability.
Collapse
Affiliation(s)
- Genevieve C. Moss
- HySA/Catalysis Centre of CompetenceCatalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownCape Town7701South Africa
| | - Tobias Binninger
- Theory and Computation of Energy Materials (IET‐3)Institute of Energy TechnologiesForschungszentrum Jülich GmbH52425JülichGermany
| | - Ziba S. H. S. Rajan
- HySA/Catalysis Centre of CompetenceCatalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownCape Town7701South Africa
| | - Bamato J. Itota
- HySA/Catalysis Centre of CompetenceCatalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownCape Town7701South Africa
| | - Patricia J. Kooyman
- SARChI Chair Nanomaterials for CatalysisCatalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownCape Town7701South Africa
| | - Darija Susac
- HySA/Catalysis Centre of CompetenceCatalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownCape Town7701South Africa
| | - Rhiyaad Mohamed
- HySA/Catalysis Centre of CompetenceCatalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownCape Town7701South Africa
| |
Collapse
|
3
|
Alzate-Vargas L, Falling LJ, Laha S, Lotsch B, Chiou JW, Chan TS, Pong WF, Chuang CH, Velasco Vélez JJ, Jones TE. Electron deficient oxygen species in highly OER active iridium anodes characterized by X-ray absorption and emission spectroscopy. Phys Chem Chem Phys 2025; 27:9252-9261. [PMID: 40237166 DOI: 10.1039/d4cp03415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Water splitting is a promising technology for storing energy, yet it is challenged by the lack of stable anode materials that can overcome the sluggishness of the oxygen evolution reaction (OER). Iridium oxides are among the most active and stable OER catalysts, however how these materials achieve their performance remains under discussion. The activity of iridium based materials has been attributed to both high metal oxidation states and the appearance of O 2p holes. Herein we employ a combination of techniques-X-ray absorption at the Ir LII,III-edge, X-ray absorption and emission at the O K-edge, along with ab initio methods-to identify and characterize ligand holes present in highly OER-active X-ray amorphous oxides. We find, in agreement with the original proposition based on X-ray absorption measurement at the O K-edge, that O 2p holes are present in these materials and can be associated with the increased activity during OER.
Collapse
Affiliation(s)
| | - Lorenz J Falling
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
- School of Natural Sciences, Technical University Munich, 85748, Munich, Germany
| | - Sourav Laha
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, West Bengal-713209, India
| | - Bettina Lotsch
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Jau-Wern Chiou
- Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 300 Hsinchu, Taiwan
| | - Way-Faung Pong
- Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan
| | - Cheng-Hao Chuang
- Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan
| | - J J Velasco Vélez
- Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona 08290, Spain
| | - T E Jones
- Theoretical Division, Los Alamos National Laboratory, New Mexico, 87545, USA.
| |
Collapse
|
4
|
Kang J, Fang Y, Yang J, Huang L, Chen Y, Li D, Sun J, Jiang R. Recent Development of Ir- and Ru-Based Electrocatalysts for Acidic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20519-20559. [PMID: 40138357 DOI: 10.1021/acsami.4c22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Proton exchange membrane (PEM) water electrolyzers are one type of the most promising technologies for efficient, nonpolluting and sustainable production of high-purity hydrogen. The anode catalysts account for a very large fraction of cost in PEM water electrolyzer and also determine the lifetime of the electrolyzer. To date, Ir- and Ru-based materials are types of promising catalysts for the acidic oxygen evolution reaction (OER), but they still face challenges of high cost or low stability. Hence, exploring low Ir and stable Ru-based electrocatalysts for acidic OER attracts extensive research interest in recent years. Owing to these great research efforts, significant developments have been achieved in this field. In this review, the developments in the field of Ir- and Ru-based electrocatalysts for acidic OER are comprehensively described. The possible OER mechanisms are first presented, followed by the introduction of the criteria for evaluation of the OER electrocatalysts. The development of Ir- and Ru-based OER electrocatalysts are then elucidated according to the strategies utilized to tune the catalytic performances. Lastly, possible future research in this burgeoning field is discussed.
Collapse
Affiliation(s)
- Jianghao Kang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yunpeng Fang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Yang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Luo Huang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Chen
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Deng Li
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Sun
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ruibin Jiang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Feng W, Chang B, Ren Y, Kong D, Tao HB, Zhi L, Khan MA, Aleisa R, Rueping M, Zhang H. Proton Exchange Membrane Water Splitting: Advances in Electrode Structure and Mass-Charge Transport Optimization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416012. [PMID: 40035170 PMCID: PMC12004895 DOI: 10.1002/adma.202416012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Proton exchange membrane water electrolysis (PEMWE) represents a promising technology for renewable hydrogen production. However, the large-scale commercialization of PEMWE faces challenges due to the need for acid oxygen evolution reaction (OER) catalysts with long-term stability and corrosion-resistant membrane electrode assemblies (MEA). This review thoroughly examines the deactivation mechanisms of acidic OER and crucial factors affecting assembly instability in complex reaction environments, including catalyst degradation, dynamic behavior at the MEA triple-phase boundary, and equipment failures. Targeted solutions are proposed, including catalyst improvements, optimized MEA designs, and operational strategies. Finally, the review highlights perspectives on strict activity/stability evaluation standards, in situ/operando characteristics, and practical electrolyzer optimization. These insights emphasize the interrelationship between catalysts, MEAs, activity, and stability, offering new guidance for accelerating the commercialization of PEMWE catalysts and systems.
Collapse
Affiliation(s)
- Wenting Feng
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Bin Chang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Debin Kong
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Linjie Zhi
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Mohd Adnan Khan
- Fuels & Chemicals DivisionResearch & Development Center, Saudi AramcoDhahran31311Saudi Arabia
| | - Rashed Aleisa
- Fuels & Chemicals DivisionResearch & Development Center, Saudi AramcoDhahran31311Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Zhang N, Liu X, Zhong H, Liu W, Bao D, Zeng J, Wang D, Ma C, Zhang X. Local Oxygen Vacancy-Mediated Oxygen Exchange for Active and Durable Acidic Water Oxidation. Angew Chem Int Ed Engl 2025:e202503246. [PMID: 40139981 DOI: 10.1002/anie.202503246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/08/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Developing an active and durable acidic oxygen evolution reaction (OER) catalyst is vital for implementing a proton exchange membrane water electrolyzer (PEMWE) in sustainable hydrogen production. However, it remains dauntingly challenging to balance high activity and long-term stability under harsh acidic and oxidizing conditions. Herein, through developing the universal rare-earth participated pyrolysis-leaching approach, we customized the active and long lifespan pseudo-amorphous IrOx with locally ordered rutile IrO2 and unique defect sites (IrOx-3Nd). IrOx-3Nd achieved a low overpotential of 206 mV and long-term durability of 2200 h with a slow degradation rate of 0.009 mV h-1 at 10 mA cm-2, and, more importantly, high efficiency in PEMWE (1.68 V at 1 A cm-2 for 1000 h) for practical hydrogen production. Utilizing in situ characterizations and theoretical calculations, we found that lattice oxygen vacancies (Ov) and contracted Ir-O in locally ordered rutile IrO2 induced the Ov-modulated lattice oxygen exchange process, wherein thermodynamically spontaneous occupation of surface hydroxyl groups on Ov and effective promotion of O─O coupling and lattice oxygen recovery accounted for enhanced activity and durability. This work underscores the importance of tailor-made local configuration in boosting activity and durability of OER catalyst and different insights into the promotion mechanism.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
| | - Haixia Zhong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| | - Di Bao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239, Zhangheng Road, Pudong new District, Shanghai, 201204, P.R. China
| | - Depeng Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| | - Caini Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
7
|
Liu Y, Wang Y, Li H, Kim MG, Duan Z, Talat K, Lee JY, Wu M, Lee H. Effectiveness of strain and dopants on breaking the activity-stability trade-off of RuO 2 acidic oxygen evolution electrocatalysts. Nat Commun 2025; 16:1717. [PMID: 39962051 PMCID: PMC11832934 DOI: 10.1038/s41467-025-56638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Ruthenium dioxide electrocatalysts for acidic oxygen evolution reaction suffer from mediocre activity and rather instability induced by high ruthenium-oxygen covalency. Here, the tensile strained strontium and tantalum codoped ruthenium dioxide nanocatalysts are synthesized via a molten salt-assisted quenching strategy. The tensile strained spacially elongates the ruthenium-oxygen bond and reduces covalency, thereby inhibiting the lattice oxygen participation and structural decomposition. The synergistic electronic modulations among strontium-tantalum-ruthenium groups both optimize deprotonation on oxygen sites and intermediates absorption on ruthenium sites, lowering the reaction energy barrier. Those result in a well-balanced activity-stability profile, confirmed by comprehensive experimental and theoretical analyses. Our strained electrode demonstrates an overpotential of 166 mV at 10 mA cm-2 in 0.5 M H2SO4 and an order of magnitude higher S-number, indicating comparable stability compared to bare catalyst. It exhibits negligible degradation rates within the long-term operation of single cell and PEM electrolyzer. This study elucidates the effectiveness of tensile strain and strategic doping in enhancing the activity and stability of ruthenium-based catalysts for acidic oxygen evolution reactions.
Collapse
Affiliation(s)
- Yang Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, PR China
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
- Suzhou Research Institute, Shandong University, Suzhou, PR China
| | - Yixuan Wang
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ziyang Duan
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kainat Talat
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, PR China
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea.
- Creative Research Institute, Sungkyunkwan University, Suwon, Republic of Korea.
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
8
|
Wang S, Shi Y, Shen T, Wang G, Sun Y, Wang G, Xiao L, Yan C, Wang C, Liu H, Wang Y, Liao H, Zhuang L, Wang D. Strong Heteroatomic Bond-Induced Confined Restructuring on Ir-Mn Intermetallics Enable Robust PEM Water Electrolyzers. Angew Chem Int Ed Engl 2025; 64:e202420470. [PMID: 39726992 DOI: 10.1002/anie.202420470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Low-iridium acid-stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir-based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade-off. Under working conditions, the strong heteroatom-bonded structure triggers rational surface-confined reconstruction to form self-stabilizing amorphous (oxy)hydroxides on the model Ir-Mn intermetallic (IMC). Combined in situ/ex situ characterizations and theoretical analysis demonstrate that the induced strong covalent Ir-O-Mn units in the catalytic layer weaken the formation barrier of OOH* and promote the preferential dynamic replenishment/conversion pathway of H2O molecules to suppress the uncontrollable participation of lattice oxygen (about 2.6 times lower than that of pure Ir). Thus, a PEM cell with Ir-Mn IMC as anode "pre-electrocatalyst" (0.24 mgIr cm-2) delivers an impressive performance (3.0 A cm-2@1.851 V@80 °C) and runs stably at 2.0 A cm-2 for more than 2,000 h with the cost of USD 0.98 per kg H2, further validating its promising application. This work highlights surface-confined evolution triggered by strong heteroatom bonds, providing insights into the design of catalysts involving surface reconstruction.
Collapse
Affiliation(s)
- Shuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yan Shi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guangzhe Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yue Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Minis-try of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Gongwei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Changfeng Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430072, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - Honggang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Minis-try of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
9
|
He N, Yuan Z, Wu C, Xi S, Xiong J, Huang Y, Lian G, Du Z, Liu L, Wu D, Chen Z, Tu W, Zou Z, Tong SY. Efficient Nitrate to Ammonia Conversion on Bifunctional IrCu 4 Alloy Nanoparticles. ACS NANO 2025; 19:4684-4693. [PMID: 39825843 DOI: 10.1021/acsnano.4c15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Electrochemical nitrate reduction (NO3RR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu4 alloy nanoparticles as a bifunctional catalyst to achieve efficient NO3RR and OER while suppressing the unwanted HER. This is achieved by operating the NO3RR at positive potentials using the IrCu4 catalyst, which allows a Faradaic efficiency of 93.6% for NO3RR. When applied to OER catalysis, the IrCu4 alloy also shows excellent results, with a relatively low overpotential of 260 mV at 10 mA cm-2. Stable ammonia production can be achieved for 50 h in a 16 cm2 flow electrolyzer in simulated working conditions. Our research provides a pathway for optimizing NO3RR through bifunctional catalysts in a tandem approach.
Collapse
Affiliation(s)
- Ning He
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhi Yuan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Chao Wu
- Agency for Science, Technology and Research, Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Singapore 627833, Republic of Singapore
| | - Shibo Xi
- Agency for Science, Technology and Research, Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Singapore 627833, Republic of Singapore
| | - Jingjing Xiong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Yucong Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zefan Du
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Laihao Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Dawei Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Wenguang Tu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Shuk-Yin Tong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
10
|
Zeng T, Chen J, Yu ZH, Tse ECM. CuFe Cooperativity at the Membrane-Electrode Interface Elicits a Tandem 2e -+2e - Mechanism for Exclusive O 2-To-H 2O Electroreduction. J Am Chem Soc 2024; 146:31757-31767. [PMID: 39405398 PMCID: PMC11583977 DOI: 10.1021/jacs.4c10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
High O2 reduction reaction (ORR) kinetics and exclusive 4e- pathway selectivity are keys to realizing a sustainable society. However, nonprecious electrocatalysts at present cannot enhance the ORR turnover frequency and H2O Faradaic efficiency (FE) concurrently. To address these two challenges, hybrid bilayer membrane (HBM) electrodes with earth-abundant metal centers are developed to control proton-coupled electron transfer (PCET) in ORR. Here, an oxidase-inspired CuFe active site is supported on a tris(2-pyridylmethyl)amine HBM and explored as a unique interface for efficient ORR. This bimetallic HBM displayed an ORR activity 1.4 times higher than the monometallic systems and exhibited the highest FE for H2O (∼94%) among Cu-, Fe-, Ni-, and Co-based HBMs. Contrary to previous studies where the ORR current decreases upon embedding the metal center in a hydrophobic lipid environment, here, the incorporation of a nitrile-terminated proton carrier at the HBM interface boosts the ORR current by 1.7 folds relative to the case where the catalytic site is directly exposed to protons in solution. This intriguing dual improvement is supported by density function theory calculations where an additional 2e-+2e- mechanism occurs in parallel to the direct 4e- pathway, highlighting the synergistic effect of the CuFe HBM for facilitating high-performance ORR. A Zn-air battery is constructed using this CuFe HBM for the first time, further demonstrating that the knowledge gained from this HBM technology holds practical values in real-life applications. These findings on interfacial PCET are envisioned to spark new design principles for future catalysts with optimal electrochemical properties for advanced energy conversion schemes.
Collapse
Affiliation(s)
- Tian Zeng
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Jiu Chen
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Zuo Hang Yu
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Edmund C M Tse
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, Hong Kong
| |
Collapse
|
11
|
Roiron C, Wang C, Zenyuk IV, Atanassov P. Oxygen 1s X-ray Photoelectron Spectra of Iridium Oxides as a Descriptor of the Amorphous-Rutile Character of the Surface. J Phys Chem Lett 2024; 15:11217-11223. [PMID: 39485926 PMCID: PMC11571203 DOI: 10.1021/acs.jpclett.4c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/03/2024]
Abstract
Characterization of the surface of iridium oxide (IrOx) materials is of crucial importance to understand catalysts for the oxygen evolution reaction (OER) in low-temperature water electrolysis. While much of our current knowledge is based on well-defined single-crystal surfaces, surface-sensitive techniques like X-ray photoelectronic spectroscopy (XPS) are relevant to characterize the nanostructures considered. In this work, we describe a simple approach to use oxygen 1s spectra as an identifier of the amorphous/crystalline characteristics of iridium oxide structures from purely amorphous to purely crystalline. This conceptual approach was validated on seven commercially available materials. The presence of oxygen-associated defects in the surface moieties/species is shown even for purely crystalline materials with defect concentration increasing with greater amorphous character. This methodology provides us with an accessible ex situ descriptor of the catalyst surface as a baseline for further studies of the impact on catalytic properties.
Collapse
Affiliation(s)
- Camille Roiron
- Department of Chemical and
Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Cliffton Wang
- Department of Chemical and
Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Iryna V. Zenyuk
- Department of Chemical and
Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Plamen Atanassov
- Department of Chemical and
Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
12
|
Pittkowski RK, Punke S, Anker AS, Bornet A, Magnard NP, Schlegel N, Graversen LG, Quinson J, Dworzak A, Oezaslan M, Kirkensgaard JJK, Mirolo M, Drnec J, Arenz M, Jensen KMØ. Monitoring the Structural Changes in Iridium Nanoparticles during Oxygen Evolution Electrocatalysis with Operando X-ray Total Scattering. J Am Chem Soc 2024; 146:27517-27527. [PMID: 39344255 PMCID: PMC11468871 DOI: 10.1021/jacs.4c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Understanding the structure of nanoparticles under (electro)catalytic operating conditions is crucial for uncovering structure-property relationships. By combining operando X-ray total scattering and pair distribution function analysis with operando small-angle X-ray scattering (SAXS), we obtained comprehensive structural information on ultrasmall (<3 nm) iridium nanoparticles and tracked their changes during oxygen evolution reaction (OER) in acid. When subjected to electrochemical conditions at reducing potentials, the metallic Ir nanoparticles are found to be decahedral. The iridium oxide formed in the electrochemical oxidation contains small rutile-like clusters composed of edge- and corner-connected [IrO6] octahedra of a very confined range. These rutile domains are smaller than 1 nm. Combined with complementary SAXS data analysis to extract the particle size, we find that the OER-active iridium oxide phase lacks crystalline order. Additionally, we observe an iridium oxide contraction under OER conditions, which is confirmed by operando X-ray absorption spectroscopy. Our results highlight the need for multitechnique operando studies for a complete understanding of the electrochemically formed Ir oxide active in OER.
Collapse
Affiliation(s)
- Rebecca K. Pittkowski
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Stefanie Punke
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Andy S. Anker
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Aline Bornet
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | - Nicolas Schlegel
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Laura G. Graversen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jonathan Quinson
- Biological
and Chemical Engineering Department, Aarhus
University, 40 Åbogade, 8200 Aarhus, Denmark
| | - Alexandra Dworzak
- Technical
Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Mehtap Oezaslan
- Technical
Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Jacob J. K. Kirkensgaard
- Niels
Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Department
of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Marta Mirolo
- ESRF—The
European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Jakub Drnec
- ESRF—The
European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Matthias Arenz
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Kirsten M. Ø. Jensen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Qiao Y, Pan Y, Fan W, Long G, Zhang F. Polyoxometalate-incorporated NiFe-based oxyhydroxides for enhanced oxygen evolution reaction in alkaline media. Chem Commun (Camb) 2024; 60:11287-11290. [PMID: 39301687 DOI: 10.1039/d4cc03874f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
NiFe-based oxyhydroxides are promising electrocatalysts for the oxygen evolution reaction (OER) in alkaline media, but further enhancing their OER performance remains a significant challenge. Herein, we in situ incorporated polyoxometalates into NiFe oxyhydroxides to form a homogeneous/heterogeneous hybrid material, which induces the electronic interaction between Ni, Fe and Mo sites, as revealed by a variety of characterization experiments and theoretical calculations. The resulting hybrid electrocatalyst delivers a low overpotential of 203 mV at 10 mA cm-2 and a TOF of 2.34 s-1 at 1.53 V in alkaline media. This work presents a critical step towards developing high-performance OER catalysts by constructing metal-POM hybrids.
Collapse
Affiliation(s)
- Yuyan Qiao
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, 332005, China
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yanqiu Pan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, China.
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
14
|
Chen L, Zhao W, Zhang J, Liu M, Jia Y, Wang R, Chai M. Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403845. [PMID: 38940392 DOI: 10.1002/smll.202403845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Indexed: 06/29/2024]
Abstract
As the anode reaction of proton exchange membrane water electrolysis (PEMWE), the acidic oxygen evolution reaction (OER) is one of the main obstacles to the practical application of PEMWE due to its sluggish four-electron transfer process. The development of high-performance acidic OER electrocatalysts has become the key to improving the reaction kinetics. To date, although various excellent acidic OER electrocatalysts have been widely researched, Ir-based nanomaterials are still state-of-the-art electrocatalysts. Hence, a comprehensive and in-depth understanding of the reaction mechanism of Ir-based electrocatalysts is crucial for the precise optimization of catalytic performance. In this review, the origin and nature of the conventional adsorbate evolution mechanism (AEM) and the derived volcanic relationship on Ir-based electrocatalysts for acidic OER processes are summarized and some optimization strategies for Ir-based electrocatalysts based on the AEM are introduced. To further investigate the development strategy of high-performance Ir-based electrocatalysts, several unconventional OER mechanisms including dual-site mechanism and lattice oxygen mediated mechanism, and their applications are introduced in detail. Thereafter, the active species on Ir-based electrocatalysts at acidic OER are summarized and classified into surface Ir species and O species. Finally, the future development direction and prospect of Ir-based electrocatalysts for acidic OER are put forward.
Collapse
Affiliation(s)
- Ligang Chen
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Juntao Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Min Liu
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Yin Jia
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Ruzhi Wang
- Institute of Advanced Energy Materials and Devices, College of Material Science and Engineering; Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Maorong Chai
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| |
Collapse
|
15
|
Doo G, Bae H, Park J, Hyun J, Kim I, Lee DW, Oh E, Kim HT. Designing a Schottky Barrier-Free Interface for a Highly Conductive Anode in Proton Exchange Membrane Water Electrolysis. ACS NANO 2024; 18:23331-23340. [PMID: 39151059 DOI: 10.1021/acsnano.4c06373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Iridium, the most widely used anode catalyst in proton exchange membrane water electrolysis (PEMWE), must be used minimally due to its high price and limited supply. However, reducing iridium loading poses challenges due to abnormally large anode polarization. Herein, we present an anode catalyst layer (CL) based on a one-dimensional iridium nanofiber that enables a high current density operation of 3 A cm-2 at 1.86 V, even at an ultralow loading (0.07 mgIr cm-2). The performance is maintained even with a Pt coating-free porous transport layer (PTL) because our nanofiber CL circumvents the interfacial electron transport problem caused by the native oxide on the Ti PTL. We attribute this to the low work function and the low-ionomer-exposed surface of the nanofiber CL, which prevent the formation of Schottky contact at the native oxide interface. These results highlight the significance of optimizing the electronic properties of the CL/PTL interface for low-iridium-loading PEMWE.
Collapse
Affiliation(s)
- Gisu Doo
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Hanmin Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeesoo Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jonghyun Hyun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ilju Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong Wook Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Euntaek Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Tak Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Esterhuizen JA, Mathur A, Goldsmith BR, Linic S. High-Performance Iridium-Molybdenum Oxide Electrocatalysts for Water Oxidation in Acid: Bayesian Optimization Discovery and Experimental Testing. J Am Chem Soc 2024; 146:5511-5522. [PMID: 38373924 DOI: 10.1021/jacs.3c13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Ir oxides are costly and scarce catalysts for oxygen evolution reaction (OER) in acid. There has been extensive interest in developing alternatives that are either Ir-free or require smaller amounts of Ir to drive the reactions at acceptable rates. One design strategy is to identify Ir-based mixed oxides that achieve similar performance while requiring smaller amounts of Ir. The obstacle to this strategy has been a very large phase space of the Ir-based mixed metal oxides, in terms of the metals combined with Ir and the different crystallographic structures of the mixed oxides, which prevents a thorough exploration of possible materials. In this work, we developed a workflow that uses machine-learning-aided Bayesian optimization in combination with density functional theory to make the exploration of this phase space plausible. This screening identified Mo as a promising dopant for forming acid-tolerant Ir-based oxides for the OER. We synthesized and characterized the Ir-Mo mixed oxides in the form of thin-film electrocatalysts with a known surface area. We show that these mixed oxides exhibited overpotentials ∼30 mV lower than a pure Ir control while maintaining 24% lower Ir dissolution rates than the Ir control. These findings suggest that Mo is a promising dopant and highlight the promise of machine learning to guide the experimental exploration and optimization of catalytic materials.
Collapse
Affiliation(s)
- Jacques A Esterhuizen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Aarti Mathur
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| |
Collapse
|
17
|
Marsh P, Huang MH, Xia X, Tran I, Atanassov P, Cao H. Polarization Conforms Performance Variability in Amorphous Electrodeposited Iridium Oxide pH Sensors: A Thorough Surface Chemistry Investigation. SENSORS (BASEL, SWITZERLAND) 2024; 24:962. [PMID: 38339679 PMCID: PMC10856937 DOI: 10.3390/s24030962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Electrodeposited amorphous hydrated iridium oxide (IrOx) is a promising material for pH sensing due to its high sensitivity and the ease of fabrication. However, durability and variability continue to restrict the sensor's effectiveness. Variation in probe films can be seen in both performance and fabrication, but it has been found that performance variation can be controlled with potentiostatic conditioning (PC). To make proper use of this technique, the morphological and chemical changes affecting the conditioning process must be understood. Here, a thorough study of this material, after undergoing PC in a pH-sensing-relevant potential regime, was conducted by voltammetry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Fitting of XPS data was performed, guided by raw trends in survey scans, core orbitals, and valence spectra, both XPS and UPS. The findings indicate that the PC process can repeatably control and conform performance and surface bonding to desired calibrations and distributions, respectively; PC was able to reduce sensitivity and offset ranges to as low as ±0.7 mV/pH and ±0.008 V, respectively, and repeat bonding distributions over ~2 months of sample preparation. Both Ir/O atomic ratios (shifting from 4:1 to over 4.5:1) and fitted components assigned hydroxide or oxide states based on the literature (low-voltage spectra being almost entirely with suggested hydroxide components, and high-voltage spectra almost entirely with suggested oxide components) trend across the polarization range. Self-consistent valence, core orbital, and survey quantitative trends point to a likely mechanism of ligand conversion from hydroxide to oxide, suggesting that the conditioning process enforces specific state mixtures that include both theoretical Ir(III) and Ir(IV) species, and raising the conditioning potential alters the surface species from an assumed mixture of Ir species to more oxidized Ir species.
Collapse
Affiliation(s)
- Paul Marsh
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA 92697, USA; (P.M.); (M.-H.H.)
| | - Mao-Hsiang Huang
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA 92697, USA; (P.M.); (M.-H.H.)
| | - Xing Xia
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA 92697, USA; (P.M.); (M.-H.H.)
| | - Ich Tran
- Irvine Materials Research Institute, University of California Irvine, Irvine, CA 92697, USA;
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA;
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Hung Cao
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA 92697, USA; (P.M.); (M.-H.H.)
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
- Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Wang W, Chen J, Tse ECM. Synergy between Cu and Co in a Layered Double Hydroxide Enables Close to 100% Nitrate-to-Ammonia Selectivity. J Am Chem Soc 2023; 145:26678-26687. [PMID: 38051561 PMCID: PMC10723069 DOI: 10.1021/jacs.3c08084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Nitrate electroreduction (NO3RR) holds promise as an energy-efficient strategy for the removal of toxic nitrate to restore the natural nitrogen cycle and mitigate the adverse impacts caused by overfertilization from suboptimal agricultural practices. However, existing catalysts suffer from limited electrocatalytic activity, poor selectivity, inadequate durability, and low scalability. To address this quadrilemma, in this study, we developed a cost-effective layered double hydroxide (LDH) electrocatalyst with a lamellar structure that presents trimetallic CuCoAl active sites on the nanomaterial surface. This codoping design enabled electrochemical upcycling of nitrate into ammonia exclusively and efficiently with an onset potential at 0 V vs RHE, where the electrocatalytic process is less energy intensive and has a lower carbon footprint than conventional practices. The synergistic interaction among Cu, Co, and Al further afforded a 99.5% Faradic efficiency (FE) and a yield rate of 0.22 mol h-1 g-1 for nitrate-to-ammonia electroreduction, surpassing the performance of state-of-the-art nonprecious metal NO3RR electrocatalysts over an extended operation period. To gain insights into the origin of the catalytic performance observed on LDH, control materials were employed to elucidate the roles of Cu and Co. Cu was found to improve the NO3RR onset potential despite displaying limited FE for ammonia synthesis, while Co was discovered to suppress the formation of nitrite byproduct though requiring large overpotential. Simulated wastewater containing phosphate and sulfate, which are typically present in industrial effluents, was used to further investigate the effect of electrolytes on NO3RR. Intriguingly, the use of phosphate buffer resulted in a superior yield rate and FE for ammonia production while simultaneously inhibiting nitrite byproduct formation compared with the sulfate case. These experimental findings were supported by density functional theory (DFT) calculations, which explored the adsorption strength of nitrate adducts adjacent to coadsorbed electrolytes on the LDH surface. Additionally, the relative free energies of NO3RR species were also computed to examine the proton-coupled electron transfer (PCET) mechanism on CuCoAl LDH, shedding light on the potential-dependent step (PDS) and the exclusive selectivity for nitrate-to-ammonia conversion. The CuCoAl LDH developed here offers scalability by eliminating the need for precious metals, rendering this earth-abundant catalyst particularly appealing for sustainable nitrate electrovalorization technology.
Collapse
Affiliation(s)
- Wanying Wang
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| | - Jiu Chen
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| | - Edmund C. M. Tse
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| |
Collapse
|
19
|
Wintzheimer S, Luthardt L, Cao KLA, Imaz I, Maspoch D, Ogi T, Bück A, Debecker DP, Faustini M, Mandel K. Multifunctional, Hybrid Materials Design via Spray-Drying: Much more than Just Drying. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306648. [PMID: 37840431 DOI: 10.1002/adma.202306648] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.
Collapse
Affiliation(s)
- Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Leoni Luthardt
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Andreas Bück
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Damien P Debecker
- Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1, 348, Louvain-la-Neuve, Belgium
| | - Marco Faustini
- Sorbonne Université, Collège de France, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
20
|
Jung HS, Cho KJ, Joo S, Lee M, Kim MY, Kwon IH, Song NW, Shim JH, Neuman KC. Mesoporous Polydopamine-Encapsulated Fluorescent Nanodiamonds: A Versatile Platform for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33425-33436. [PMID: 37341540 PMCID: PMC10361080 DOI: 10.1021/acsami.3c05443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
Fluorescent nanodiamonds (FNDs) are versatile nanomaterials with promising properties. However, efficient functionalization of FNDs for biomedical applications remains challenging. In this study, we demonstrate mesoporous polydopamine (mPDA) encapsulation of FNDs. The mPDA shell is generated by sequential formation of micelles via self-assembly of Pluronic F127 (F127) with 1,3,5-trimethyl benzene (TMB) and composite micelles via oxidation and self-polymerization of dopamine hydrochloride (DA). The surface of the mPDA shell can be readily functionalized with thiol-terminated methoxy polyethylene glycol (mPEG-SH), hyperbranched polyglycerol (HPG), and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The PEGylated FND@mPDA particles are efficiently taken up by, and employed as a fluorescent imaging probe for, HeLa cells. HPG-functionalized FND@mPDA is conjugated with an amino-terminated oligonucleotide to detect microRNA via hybridization. Finally, the increased surface area of the mPDA shell permits efficient loading of doxorubicin hydrochloride. Further modification with TPGS increases drug delivery efficiency, resulting in high toxicity to cancer cells.
Collapse
Affiliation(s)
- Hak-Sung Jung
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Kyung-Jin Cho
- Data
Convergence Drug Research Center, Korea
Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sihwa Joo
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Mina Lee
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Myeong Yun Kim
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Ik Hwan Kwon
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Nam Woong Song
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Jeong Hyun Shim
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
- Department
of Applied Measurement Science, University
of Science and Technology, Daejeon 34113, Republic
of Korea
| | - Keir C. Neuman
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
21
|
Berruyer P, Cibaka-Ndaya C, Pinon A, Sanchez C, Drisko GL, Emsley L. Imaging Radial Distribution Functions of Complex Particles by Relayed Dynamic Nuclear Polarization. J Am Chem Soc 2023; 145:9700-9707. [PMID: 37075271 PMCID: PMC10760979 DOI: 10.1021/jacs.3c01279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 04/21/2023]
Abstract
The physical properties of many modern multi-component materials are determined by their internal microstructure. Tools capable of characterizing complex nanoscale architectures in composite materials are, therefore, essential to design materials with targeted properties. Depending on the morphology and the composition, structures may be measured by laser diffraction, scattering methods, or by electron microscopy. However, it can be difficult to obtain contrast in materials where all the components are organic, which is typically the case for formulated pharmaceuticals, or multi-domain polymers. In nuclear magnetic resonance (NMR) spectroscopy, chemical shifts allow a clear distinction between organic components and can in principle provide the required chemical contrast. Here, we introduce a method to obtain radial images of the internal structure of multi-component particles from NMR measurements of the relay of nuclear hyperpolarization obtained from dynamic nuclear polarization. The method is demonstrated on two samples of hybrid core-shell particles composed of a core of polystyrene with a shell of mesostructured silica filled with the templating agent CTAB and is shown to yield accurate images of the core-shell structures with a nanometer resolution.
Collapse
Affiliation(s)
- Pierrick Berruyer
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Cynthia Cibaka-Ndaya
- Université
de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France
| | - Arthur Pinon
- Swedish
NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 41390, Sweden
| | - Clément Sanchez
- Sorbonne
Université, CNRS, Collège de France, UMR 7574, Chimie
de la Matière Condensée de Paris, Paris F-75005, France
- Institute
for Advanced Study (USIAS), University of
Strasbourg, Strasbourg 67083, France
- University
of Bordeaux, Pessac F-33600, France
| | - Glenna L. Drisko
- Université
de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
22
|
Huo W, Zhou X, Jin Y, Xie C, Yang S, Qian J, Cai D, Ge Y, Qu Y, Nie H, Yang Z. Rhenium Suppresses Iridium (IV) Oxide Crystallization and Enables Efficient, Stable Electrochemical Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207847. [PMID: 36772894 DOI: 10.1002/smll.202207847] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Indexed: 05/11/2023]
Abstract
IrO2 as benchmark electrocatalyst for acidic oxygen evolution reaction (OER) suffers from its low activity and poor stability. Modulating the coordination environment of IrO2 by chemical doping is a methodology to suppress Ir dissolution and tailor adsorption behavior of active oxygen intermediates on interfacial Ir sites. Herein, the Re-doped IrO2 with low crystallinity is rationally designed as highly active and robust electrocatalysts for acidic OER. Theoretical calculations suggest that the similar ionic sizes of Ir and Re impart large spontaneous substitution energy and successfully incorporate Re into the IrO2 lattice. Re-doped IrO2 exhibits a much larger migration energy from IrO2 surface (0.96 eV) than other dopants (Ni, Cu, and Zn), indicating strong confinement of Re within the IrO2 lattice for suppressing Ir dissolution. The optimal catalysts (Re: 10 at%) exhibit a low overpotential of 255 mV at 10 mA cm-2 and a high stability of 170 h for acidic OER. The comprehensive mechanism investigations demonstrate that the unique structural arrangement of the Ir active sites with Re-dopant imparts high performance of catalysts by minimizing Ir dissolution, facilitating *OH adsorption and *OOH deprotonation, and lowering kinetic barrier during OER. This study provides a methodology for designing highly-performed catalysts for energy conversion.
Collapse
Affiliation(s)
- Wenjing Huo
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yuwei Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Canquan Xie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Shuo Yang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yongjie Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
23
|
Yang L, Shi L, Chen H, Liang X, Tian B, Zhang K, Zou Y, Zou X. A Highly Active, Long-Lived Oxygen Evolution Electrocatalyst Derived from Open-Framework Iridates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208539. [PMID: 36586400 DOI: 10.1002/adma.202208539] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The acidic oxygen evolution reaction underpins several important electrical-to-chemical energy conversions, and this energy-intensive process relies industrially on iridium-based electrocatalysts. Here, phase-selective synthesis of metastable strontium iridates with open-framework structure and their unexpected transformation into a highly active, ultrastable oxygen evolution nano-electrocatalyst are presented. This transformation involves two major steps: Sr2+ /H+ ion exchange in acid and in situ structural rearrangement under electrocatalysis conditions. Unlike its dense perovskite-structured polymorphs, the open-framework iridates have the ability to undergo rapid proton exchange in acid without framework amorphization. The resulting protonated iridates further reconstruct into ultrasmall, surface-hydroxylated, (200) crystal plane-oriented rutile nanocatalyst, instead of the common amorphous IrOx Hy phase, during acidic oxygen evolution. Such microstructural characteristics are found to benefit both the oxidation of hydroxyls and the formation of OO bonds in electrocatalytic cycle. As a result, the open-framework iridate derived nanocatalyst gives a comparable catalytic activity to the most active iridium-based oxygen evolution electrocatalysts in acid, and retains its catalytic activity for more than 1000 h.
Collapse
Affiliation(s)
- Lan Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lei Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Boyuan Tian
- State Key Laboratory of Advanced Transmission Technology, State Grid Smart Grid Research Institute Co., Ltd, Changping District, Beijing, 102209, P. R. China
| | - Kexin Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
24
|
Seo Y, Yoon Y, Lee M, Jang M, Kim TH, Kim Y, Yoo HY, Min J, Lee T. Rapid electrochemical biosensor composed of DNA probe/iridium nanoparticle bilayer for Aphanizomenon flos-aquae detection in fresh water. Colloids Surf B Biointerfaces 2023; 225:113218. [PMID: 36871331 DOI: 10.1016/j.colsurfb.2023.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Toxic cyanobacteria pose a serious threat to aquatic ecosystems and require adequate detection and control systems. Aphanizomenon flos-aquae is a harmful cyanobacterium that produces the toxicant saxitoxin. Therefore, it is necessary to detect the presence of A. flos-aquae in lakes and rivers. We proposed a rapid electrochemical biosensor composed of DNA primer/iridium nanoparticles (IrNP) bilyer for the detection of A. flos-aquae in freshwater. The extracted A. flos-aquae gene (rbcL-rbcX) is used as a target, and it was fixed to the electrode using a 5'-thiolated DNA primer (capture probe). Then, Avidin@IrNPs complex for amplification of electrical signals was bound to the target through a 3'-biotinylated DNA primer (detection probe). To rapidly detect the target, an alternating current electrothermal flow technique was introduced in the detection step, which could reduce the detection time to within 20 min. To confirm the biosensor fabrication, atomic force microscopy was used to investigate the surface morphology. To evaluate the biosensor performance, cyclic voltammetry and electrochemical impedance spectroscopy were used. The target gene was detected at a concentration of 9.99 pg/mL in tap water, and the detection range was 0.1 ng/mL to 103 ng/mL with high selectivity. Based on the combined system, we employed A. flos-aquae in tap water. This rapid cyanobacteria detection system is a powerful tool for CyanoHABs in the field.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Myoungro Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea.
| | - Junhong Min
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
25
|
Sun Y, Yan J, Gao Y, Ji T, Chen S, Wang C, Lu P, Li Y, Liu Y. Fabrication of Highly Oriented Ultrathin Zirconium Metal-Organic Framework Membrane from Nanosheets towards Unprecedented Gas Separation. Angew Chem Int Ed Engl 2023; 62:e202216697. [PMID: 36790362 DOI: 10.1002/anie.202216697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Concurrent regulation of crystallographic orientation and thickness of zirconium metal-organic framework (Zr-MOF) membranes is challenging but promising for their performance enhancement. In this study, we pioneered the fabrication of uniform triangular-shaped, 40 nm thick UiO-66 nanosheet (NS) seeds by employing an anisotropic etching strategy. Through innovating confined counter-diffusion-assisted epitaxial growth, highly (111)-oriented 165 nm-thick UiO-66 membrane was prepared. The significant reduction in thickness and diffusion barrier in the framework endowed the membrane with unprecedented CO2 permeance (2070 GPU) as well as high CO2 /N2 selectivity (35.4), which surpassed the performance limits of state-of-the-art polycrystalline MOF membranes. In addition, highly (111)-oriented 180 nm-thick NH2 -UiO-66 membrane showing superb H2 /CO2 separation performance with H2 permeance of 1230 GPU and H2 /CO2 selectivity of 41.3, was prepared with the above synthetic procedure.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Yunlei Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Sixing Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Peng Lu
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China.,School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China.,Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology, 116024, Dalian, China
| |
Collapse
|
26
|
Zou J, Lin Y, Yang C. Covalency triggers high catalytic activity of amorphous molybdenum oxides for oxidative desulfurization. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
27
|
Mallick L, Chakraborty B. Ionic γ-FeO(OH) Nanocrystal Stabilized by Small Isopolymolybdate Clusters as Reactive Core for Water Oxidation. Chemistry 2023; 29:e202203033. [PMID: 36310518 DOI: 10.1002/chem.202203033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
At near neutral to basic pH, hydrolysis-induced aggregation to insoluble bulk iron-oxide is often regarded as the pitfalls of molecular iron clusters. Iron-oxide nanocrystals are encouragingly active over the molecular clusters and/or bulk oxides albeit, stabilizing such nanostructures in aqueous pH and under turnover condition remain a perdurable challenge. Herein, an Anderson-type [Mo7 O24 ]6- isopolyanion, a small (dimension ca. 0.85 nm) isolable polyoxometalate (POM) possessing only {31} atoms, has been introduced for the first time as a covalent linker to stabilize an infinitely stable and aqueous-soluble γ-FeO(OH) nanocore. During the hydrothermal isolation of the material, a partial dissociation of the parent [Mo7 O24 ]6- may lead to the in situ generation of few analogous [Mox Oy ]n- clusters, proved by Raman study, which can also participate in stabilizing the γ-FeO(OH) nanocore, Mox Oy @FeO(OH). However, due to high ionic charge on {Mo=O} terminals of the [Mox Oy ]n- , they are covalently linked via MoVI -μ2 O-FeIII bridging to γ-FeO(OH) core in Mox Oy @FeO(OH), established by numerous spectroscopic and microscopic evidence. Such bonding mode is more likely as precedent from the coordination motif documented in the transition metal clusters stabilized by this POM. The γ-FeO(OH) nanocore of Mox Oy @FeO(OH) behaves as potent active center for electrochemical water oxidation with a overpotential, 263 mV @ 10 mA cm-2 , lower than that observed for bare γ-FeO(OH). Despite of some molybdenum dissolution from the POM ligands to the electrolyte, residual anionic POM fragments covalently bound to the OER active γ-FeO(OH) core of the Mox Oy @FeO(OH) makes the surface predominantly ionic that results in an ordered electrical double layer to promote a better charge transport across the electrode-electrolyte junction, less likely in bulk γ-FeO(OH).
Collapse
Affiliation(s)
- Laxmikanta Mallick
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
| |
Collapse
|
28
|
Krivina RA, Zlatar M, Stovall TN, Lindquist GA, Eascalera-López D, Cook AK, Hutchison JE, Cherevko S, Boettcher SW. Oxygen Evolution Electrocatalysis in Acids: Atomic Tuning of the Stability Number for Submonolayer IrO x on Conductive Oxides from Molecular Precursors. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Raina A. Krivina
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Matej Zlatar
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - T. Nathan Stovall
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Grace A. Lindquist
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Daniel Eascalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - James E. Hutchison
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
| | - Shannon W. Boettcher
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
29
|
Retuerto M, Pascual L, Torrero J, Salam MA, Tolosana-Moranchel Á, Gianolio D, Ferrer P, Kayser P, Wilke V, Stiber S, Celorrio V, Mokthar M, Sanchez DG, Gago AS, Friedrich KA, Peña MA, Alonso JA, Rojas S. Highly active and stable OER electrocatalysts derived from Sr 2MIrO 6 for proton exchange membrane water electrolyzers. Nat Commun 2022; 13:7935. [PMID: 36566246 PMCID: PMC9789951 DOI: 10.1038/s41467-022-35631-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Proton exchange membrane water electrolysis is a promising technology to produce green hydrogen from renewables, as it can efficiently achieve high current densities. Lowering iridium amount in oxygen evolution reaction electrocatalysts is critical for achieving cost-effective production of green hydrogen. In this work, we develop catalysts from Ir double perovskites. Sr2CaIrO6 achieves 10 mA cm-2 at only 1.48 V. The surface of the perovskite reconstructs when immersed in an acidic electrolyte and during the first catalytic cycles, resulting in a stable surface conformed by short-range order edge-sharing IrO6 octahedra arranged in an open structure responsible for the high performance. A proton exchange membrane water electrolysis cell is developed with Sr2CaIrO6 as anode and low Ir loading (0.4 mgIr cm-2). The cell achieves 2.40 V at 6 A cm-2 (overload) and no loss in performance at a constant 2 A cm-2 (nominal load). Thus, reducing Ir use without compromising efficiency and lifetime.
Collapse
Affiliation(s)
- María Retuerto
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| | - Laura Pascual
- Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Jorge Torrero
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Mohamed Abdel Salam
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Álvaro Tolosana-Moranchel
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Diego Gianolio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Paula Kayser
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Vincent Wilke
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Svenja Stiber
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Verónica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mohamed Mokthar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O Box 80200, Jeddah, 21589, Saudi Arabia
| | - Daniel García Sanchez
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Aldo Saul Gago
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Kaspar Andreas Friedrich
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Miguel Antonio Peña
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - José Antonio Alonso
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Sergio Rojas
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
30
|
Gao J, Liu Y, Liu B, Huang KW. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts. ACS NANO 2022; 16:17761-17777. [PMID: 36355040 DOI: 10.1021/acsnano.2c08519] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The water oxidation reaction (or oxygen evolution reaction, OER) plays a critical role in green hydrogen production via water splitting, electrochemical CO2 reduction, and nitrogen fixation. The four-electron and four-proton transfer OER process involves multiple reaction intermediates and elementary steps that lead to sluggish kinetics; therefore, a high overpotential is necessary to drive the reaction. Among the different water-splitting electrolyzers, the proton exchange membrane type electrolyzer has greater advantages, but its anode catalysts are limited to iridium-based materials. The iridium catalyst has been extensively studied in recent years due to its balanced activity and stability for acidic OER, and many exciting signs of progress have been made. In this review, the surface and bulk Pourbaix diagrams of iridium species in an aqueous solution are introduced. The iridium-based catalysts, including metallic or oxides, amorphous or crystalline, single crystals, atomically dispersed or nanostructured, and iridium compounds for OER, are then elaborated. The latest progress of active sites, reaction intermediates, reaction kinetics, and elementary steps is summarized. Finally, future research directions regarding iridium catalysts for acidic OER are discussed.
Collapse
Affiliation(s)
- Jiajian Gao
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
| | - Yan Liu
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore637459
| | - Kuo-Wei Huang
- Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore627833
- KAUST Catalysis Center and Division of Science and Engineering, King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
- Agency for Science, Technology, and Research, Institute of Materials Research and Engineering, Singapore138634
| |
Collapse
|
31
|
De Marco ML, Baaziz W, Sharna S, Devred F, Poleunis C, Chevillot-Biraud A, Nowak S, Haddad R, Odziomek M, Boissière C, Debecker DP, Ersen O, Peron J, Faustini M. High-Entropy-Alloy Nanocrystal Based Macro- and Mesoporous Materials. ACS NANO 2022; 16:15837-15849. [PMID: 36066922 DOI: 10.1021/acsnano.2c05465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-entropy-alloy (HEA) nanoparticles are attractive for several applications in catalysis and energy. Great efforts are currently devoted to establish composition-property relationships to improve catalytic activity or selectivity. Equally importantly, developing practical fabrication methods for shaping HEA-based materials into complex architectures is a key requirement for their utilization in catalysis. However, shaping nano-HEAs into hierarchical structures avoiding demixing or collapse remains a great challenge. Herein, we overcome this issue by introducing a simple soft-chemistry route to fabricate ordered macro- and mesoporous materials based on HEA nanoparticles, with high surface area, thermal stability, and catalytic activity toward CO oxidation. The process is based on spray-drying from an aqueous solution containing five different noble metal precursors and polymer latex beads. Upon annealing, the polymer plays a double role: templating and reducing agent enabling formation of HEA nanoparticle-based porous networks at only 350 °C. The formation mechanism and the stability of the macro- and mesoporous materials were investigated by a set of in situ characterization techniques; notably, in situ transmission electron microscopy unveiled that the porous structure is stable up to 800 °C. Importantly, this process is green, scalable, and versatile and could be potentially extended to other classes of HEA materials.
Collapse
Affiliation(s)
- Maria Letizia De Marco
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Walid Baaziz
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - Sharmin Sharna
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - François Devred
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Claude Poleunis
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | | | - Sophie Nowak
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Ryma Haddad
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Mateusz Odziomek
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Cédric Boissière
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Damien P Debecker
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Ovidiu Ersen
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - Jennifer Peron
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Marco Faustini
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| |
Collapse
|
32
|
Elmaalouf M, Da Silva A, Duran S, Tard C, Comesaña-Hermo M, Gam-Derouich S, Briois V, Alloyeau D, Giraud M, Piquemal JY, Peron J. Green synthesis of water splitting electrocatalysts: IrO 2 nanocages via Pearson's chemistry. Chem Sci 2022; 13:11807-11816. [PMID: 36320917 PMCID: PMC9580478 DOI: 10.1039/d2sc03640a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 12/09/2023] Open
Abstract
Highly porous iridium oxide structures are particularly well-suited for the preparation of porous catalyst layers needed in proton exchange membrane water electrolyzers. Herein, we report the formation of iridium oxide nanostructured cages, via a water-based process performed at room temperature, using cheap Cu2O cubes as the template. In this synthetic approach, based on Pearson's hard and soft acid-base theory, the replacement of the Cu2O core by an iridium shell is permitted by the difference in hardness/softness of cations and anions of the two reactants Cu2O and IrCl3. Calcination followed by acid leaching allow the removal of residual copper oxide cores and leave IrO2 hierarchical porous structures with outstanding activity toward the oxygen evolution reaction. Fundamental understanding of the reaction steps and identification of the intermediates are permitted by coupling a set of ex situ and in situ techniques including operando time-resolved X-ray absorption spectroscopy during the synthesis.
Collapse
Affiliation(s)
| | | | - Silvia Duran
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Cédric Tard
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | | | | | - Valérie Briois
- SOLEIL Synchrotron, UR1-CNRS L'Orme des Merisiers, BP48 91192 Gif-sur-Yvette France
| | - Damien Alloyeau
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques (MPQ) F-75013 Paris France
| | - Marion Giraud
- Université Paris Cité, CNRS, ITODYS F-75013 Paris France
| | | | - Jennifer Peron
- Université Paris Cité, CNRS, ITODYS F-75013 Paris France
| |
Collapse
|
33
|
Odziomek M, Thorimbert F, Boissiere C, Drisko GL, Parola S, Sanchez C, Faustini M. Periodic Nanoporous Inorganic Patterns Directly Made by Self-Ordering of Cracks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204489. [PMID: 35797893 DOI: 10.1002/adma.202204489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Solution-processed inorganic nanoporous films are key components for the vast spectrum of applications ranging from dew harvesting to solar cells. Shaping them into complex architectures required for advanced functionality often needs time-consuming or expensive fabrication. In this work, crack formation is harnessed to pattern porous inorganic films in a single step and without using lithography. Aqueous inks, containing inorganic precursors and polymeric latexes enable evaporation-induced, defect-free periodic arrays of cracks with tunable dimensions over several centimeters. The ink formulation strategy is generalized to more than ten inorganic materials including simple and binary porous oxide and metallic films covering a whole spectrum of properties including insulating, photocatalytic, electrocatalytic, conductive, or electrochromic materials. Notably, this approach enables 3D self-assembly of cracks by stacking several layers of different compositions, yielding periodic assemblies of polygonal shapes and Janus-type patterns. The crack patterned periodic arrays of nanoporous TiO2 diffract light, and are used as temperature-responsive diffraction grating sensors. More broadly, this method represents a unique example of a self-assembly process leading to long-range order (over several centimeters) in a robust and controlled way.
Collapse
Affiliation(s)
- Mateusz Odziomek
- Sorbonne Université, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, Paris, F-75005, France
- Université de Paris, CNRS, UMR 7086, ITODYS, 15 rue J-A de Baïf, Paris, F-75013, France
| | - Fanny Thorimbert
- Sorbonne Université, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, Paris, F-75005, France
| | - Cedric Boissiere
- Sorbonne Université, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, Paris, F-75005, France
| | - Glenna L Drisko
- CNRS Université de Bordeaux, Bordeaux INP, Université de Bordeaux, UMR 5026, ICMCB, Pessac, F-33600, France
| | - Stephane Parola
- Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d'Italie, Lyon, F69364, France
| | - Clement Sanchez
- Sorbonne Université, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, Paris, F-75005, France
| | - Marco Faustini
- Sorbonne Université, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, Paris, F-75005, France
| |
Collapse
|
34
|
Li T, Deng Y, Rong X, He C, Zhou M, Tang Y, Zhou H, Cheng C, Zhao C. Nanostructures and catalytic atoms engineering of tellurium‐based materials and their roles in electrochemical energy conversion. SMARTMAT 2022. [DOI: 10.1002/smm2.1142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuting Deng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Xiao Rong
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chao He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Department of Physics, Chemistry and Pharmacy, Danish Institute for Advanced Study (DIAS) University of Southern Denmark Odense Denmark
| | - Mi Zhou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuanjiao Tang
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Hongju Zhou
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chong Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
| | - Changsheng Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
- College of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
35
|
Zhang H, Geng S, Ouyang M, Yadegari H, Xie F, Riley DJ. A Self-Reconstructed Bifunctional Electrocatalyst of Pseudo-Amorphous Nickel Carbide @ Iron Oxide Network for Seawater Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200146. [PMID: 35338616 PMCID: PMC9131433 DOI: 10.1002/advs.202200146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/02/2022] [Indexed: 05/19/2023]
Abstract
Here, a sol-gel method is used to prepare a Prussian blue analogue (NiFe-PBA) precursor with a 2D network, which is further annealed to an Fe3 O4 /NiCx composite (NiFe-PBA-gel-cal), inheriting the ultrahigh specific surface area of the parent structure. When the composite is used as both anode and cathode catalyst for overall water splitting, it requires low voltages of 1.57 and 1.66 V to provide a current density of 100 mA cm-2 in alkaline freshwater and simulated seawater, respectively, exhibiting no obvious attenuation over a 50 h test. Operando Raman spectroscopy and X-ray photoelectron spectroscopy indicate that NiOOH2-x active species containing high-valence Ni3+ /Ni4+ are in situ generated from NiCx during the water oxidation. Density functional theory calculations combined with ligand field theory reveal that the role of high valence states of Ni is to trigger the production of localized O 2p electron holes, acting as electrophilic centers for the activation of redox reactions for oxygen evolution reaction. After hydrogen evolution reaction, a series of ex situ and in situ investigations indicate the reduction from Fe3+ to Fe2+ and the evolution of Ni(OH)2 are the origin of the high activity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Materials and London Center for NanotechnologyImperial College LondonLondonSW7 2AZUK
| | - Songyuan Geng
- Department of ChemistryImperial College LondonLondonSW7 2AZUK
| | - Mengzheng Ouyang
- Department of Earth Science and EngineeringImperial College LondonLondonSW7 2AZUK
| | - Hossein Yadegari
- Department of Materials and London Center for NanotechnologyImperial College LondonLondonSW7 2AZUK
| | - Fang Xie
- Department of Materials and London Center for NanotechnologyImperial College LondonLondonSW7 2AZUK
| | - D. Jason Riley
- Department of Materials and London Center for NanotechnologyImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
36
|
Han X, Wu G, Du J, Pi J, Yan M, Hong X. Metal and metal oxide amorphous nanomaterials towards electrochemical applications. Chem Commun (Camb) 2021; 58:223-237. [PMID: 34878467 DOI: 10.1039/d1cc04141j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amorphous nanomaterials have aroused extensive interest due to their unique properties. Their performance is highly related with their distinct atomic arrangements, which have no long-range order but possess short- to medium-range order. Herein, an overview of state-of-the-art synthesis methods of amorphous nanomaterials, structural characteristics and their electrochemical properties is presented. Advanced characterization methods for analyzing and proving the local order of amorphous structures, such as X-ray absorption fine structure spectroscopy, atomic electron tomography and nanobeam electron diffraction, are introduced. Various synthesis strategies for amorphous nanomaterials are covered, especially the salt-assisted metal organic decomposition method to prepare ultrathin amorphous nanosheets. Furthermore, the design and structure-activity relationship of amorphous nanomaterials towards electrochemical applications, including electrocatalysts and battery anode/cathode materials, is discussed.
Collapse
Affiliation(s)
- Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Junyi Du
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Jinglin Pi
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Muyu Yan
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
37
|
Cai ZX, Goou H, Ito Y, Tokunaga T, Miyauchi M, Abe H, Fujita T. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem Sci 2021; 12:11306-11315. [PMID: 34667541 PMCID: PMC8447928 DOI: 10.1039/d1sc01981c] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
High-entropy alloys (HEAs) are near-equimolar alloys comprising five or more elements. In recent years, catalysis using HEAs has attracted considerable attention across various fields. Herein, we demonstrate the facile synthesis of nanoporous ultra-high-entropy alloys (np-UHEAs) with hierarchical porosity via dealloying. These np-UHEAs contain up to 14 elements, namely, Al, Ag, Au, Co, Cu, Fe, Ir, Mo, Ni, Pd, Pt, Rh, Ru, and Ti. Furthermore, they exhibit high catalytic activities and electrochemical stabilities in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic media, superior to that of commercial Pt/graphene and IrO2 catalysts. Our results offer valuable insights for the selection of elements as catalysts for various applications.
Collapse
Affiliation(s)
- Ze-Xing Cai
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami City Kochi 782-8502 Japan
| | - Hiromi Goou
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami City Kochi 782-8502 Japan
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba Tsukuba 305-8573 Japan
| | - Tomoharu Tokunaga
- Institute of Materials and Systems for Sustainability, Nagoya University Nagoya 464-8603 Japan
| | - Masahiro Miyauchi
- Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Hideki Abe
- National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Takeshi Fujita
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami City Kochi 782-8502 Japan
| |
Collapse
|
38
|
Duran S, Elmaalouf M, Odziomek M, Piquemal J, Faustini M, Giraud M, Peron J, Tard C. Electrochemical Active Surface Area Determination of Iridium‐Based Mixed Oxides by Mercury Underpotential Deposition. ChemElectroChem 2021. [DOI: 10.1002/celc.202100649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Silvia Duran
- Laboratoire de Chimie Moléculaire (LCM), CNRS École Polytechnique Institut Polytechnique de Paris 91120 Palaiseau France
| | - Marine Elmaalouf
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J-A de Baïf 75013 Paris France
| | - Mateusz Odziomek
- Sorbonne Université, CNRS Collège de France, UMR 7574 Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Jean‐Yves Piquemal
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J-A de Baïf 75013 Paris France
| | - Marco Faustini
- Sorbonne Université, CNRS Collège de France, UMR 7574 Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Marion Giraud
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J-A de Baïf 75013 Paris France
| | - Jennifer Peron
- Université de Paris ITODYS, CNRS, UMR 7086 15 rue J-A de Baïf 75013 Paris France
| | - Cédric Tard
- Laboratoire de Chimie Moléculaire (LCM), CNRS École Polytechnique Institut Polytechnique de Paris 91120 Palaiseau France
| |
Collapse
|