1
|
Rowland EC, D'Antuono M, Jermakowicz AM, Ayad NG. Methionine cycle inhibition disrupts antioxidant metabolism and reduces glioblastoma cell survival. J Biol Chem 2025; 301:108349. [PMID: 40015640 PMCID: PMC11994328 DOI: 10.1016/j.jbc.2025.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant adult brain tumor that inevitably recurs with a fatal prognosis. This is due in part to metabolic reprogramming that allows tumors to evade treatment. Therefore, we must uncover the pathways mediating these adaptations to develop novel and effective treatments. We searched for genes that are essential in GBM cells as measured by a whole-genome pan-cancer CRISPR screen available from DepMap and identified the methionine metabolism genes MAT2A and AHCY. We conducted genetic knockdown, evaluated mitochondrial respiration, and performed targeted metabolomics to study the function of these genes in GBM. We demonstrate that MAT2A or AHCY knockdown induces oxidative stress, hinders cellular respiration, and reduces the survival of GBM cells. Furthermore, selective MAT2a or AHCY inhibition reduces GBM cell viability, impairs oxidative metabolism, and shifts the cellular metabolic profile towards oxidative stress and cell death. Mechanistically, MAT2a and AHCY regulate spare respiratory capacity, the redox buffer cystathionine, lipid and amino acid metabolism, and prevent oxidative damage in GBM cells. Our results point to the methionine metabolic pathway as a novel vulnerability point in GBM.
Collapse
Affiliation(s)
- Emma C Rowland
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Matthew D'Antuono
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Anna M Jermakowicz
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Nagi G Ayad
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA.
| |
Collapse
|
2
|
Mu H, Zhang Q, Zuo D, Wang J, Tao Y, Li Z, He X, Meng H, Wang H, Shen J, Sun M, Jiang Y, Zhao W, Han J, Yang M, Wang Z, Lv Y, Yang Y, Xu J, Zhang T, Yang L, Lin J, Tang F, Tang R, Hu H, Cai Z, Sun W, Hua Y. Methionine intervention induces PD-L1 expression to enhance the immune checkpoint therapy response in MTAP-deleted osteosarcoma. Cell Rep Med 2025; 6:101977. [PMID: 39983717 PMCID: PMC11970323 DOI: 10.1016/j.xcrm.2025.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/10/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025]
Abstract
Osteosarcoma (OS), a malignant bone tumor with limited treatment options, exhibits low sensitivity to immune checkpoint therapy (ICT). Through genomics and transcriptomics analyses, we identify a subgroup of OS with methylthioadenosine phosphorylase (MTAP) deletion, which contributes to ICT resistance, leading to a "cold" tumor microenvironment. MTAP-deleted OS relies on methionine metabolism and is sensitive to methionine intervention, achieved through either dietary restriction or inhibition of methionine adenosyltransferase 2a (MAT2A), a key enzyme in methionine metabolism. We further demonstrate that methionine intervention triggers programmed death-ligand 1 (PD-L1) transcription factor IKAROS family zinc finger 1 (IKZF1) and enhances PD-L1 expression in MTAP-deleted OS cells. Methionine intervention also activates the immune-related signaling pathways in MTAP-deleted OS cells and attracts CD8+ T cells, thereby enhancing the efficacy of ICT. Combining methionine intervention with ICT provides a significant survival benefit in MTAP-deleted OS murine models, suggesting a rationale for combination regimens in OS ICT.
Collapse
Affiliation(s)
- Haoran Mu
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jinzeng Wang
- National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yining Tao
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhen Li
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Simcere Zaiming Pharmaceutical Co., Ltd., Shanghai, China
| | - Xin He
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Huanliang Meng
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Hongsheng Wang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jiakang Shen
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengxiong Sun
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Yafei Jiang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Weisong Zhao
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengkai Yang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Yu Lv
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Yuqin Yang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China; Simcere Zaiming Pharmaceutical Co., Ltd., Shanghai, China
| | - Haiyan Hu
- The Drug and Device Phase I Clinical Research Ward/Demonstration Research Ward of Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| | - Yingqi Hua
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| |
Collapse
|
3
|
Briggs KJ, Cottrell KM, Tonini MR, Tsai A, Zhang M, Whittington DA, Zhang W, Lombardo SA, Yoda S, Wilker EW, Meier SR, Yu Y, Teng T, Huang A, Maxwell JP. TNG908 is a brain-penetrant, MTA-cooperative PRMT5 inhibitor developed for the treatment of MTAP-deleted cancers. Transl Oncol 2025; 52:102264. [PMID: 39756156 PMCID: PMC11832951 DOI: 10.1016/j.tranon.2024.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025] Open
Abstract
TNG908 is a clinical stage PRMT5 inhibitor with an MTA-cooperative binding mechanism designed to leverage the synthetic lethal interaction between PRMT5 inhibition and MTAP deletion. MTAP deletion occurs in 10-15 % of all human cancer representing multiple histologies. MTA is a negative regulator of PRMT5 that accumulates as a result of MTAP deletion. In this study, we demonstrate that TNG908 selectively binds the PRMT5·MTA complex driving selective inhibition of PRMT5 in MTAP-null cancers, a mechanism that creates a large therapeutic index relative to first generation PRMT5 inhibitors that have alternative binding mechanisms that are not tumor-selective. Strong preclinical activity in multiple MTAP-deleted xenograft models, as well as demonstrated brain penetrance in preclinical models, support the potential for histology-agnostic clinical development of TNG908 in MTAP-deleted solid tumors, including CNS malignancies. TNG908 is being tested clinically in patients with MTAP-deleted tumors, including glioblastoma, in a Phase I/II clinical trial (NCT05275478).
Collapse
Affiliation(s)
- Kimberly J Briggs
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States.
| | - Kevin M Cottrell
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Matthew R Tonini
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Alice Tsai
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Minjie Zhang
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Douglas A Whittington
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Wenhai Zhang
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Steven A Lombardo
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Satoshi Yoda
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Erik W Wilker
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Samuel R Meier
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Yi Yu
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Teng Teng
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - Alan Huang
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| | - John P Maxwell
- Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States
| |
Collapse
|
4
|
Li C, Lan X, Li X, Fu Y, Gui G, Li X, Shen Y, Gan Z, Huang M, Zha X. Discovery of 2(1 H)-Quinoxalinone Derivatives as Potent and Selective MAT2A Inhibitors for the Treatment of MTAP-Deficient Cancers. J Med Chem 2025; 68:1222-1244. [PMID: 39760448 DOI: 10.1021/acs.jmedchem.4c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Methionine adenosyltransferase 2A (MAT2A) has emerged as a synthetic lethal drug target in cancers bearing homozygous methylthioadenosine phosphorylase (MTAP) gene deletion. Despite the remarkable progress in the discovery and development of MAT2A inhibitors, current understanding about the selectivity of these compounds toward MTAP-deficient cancers is relatively limited. To improve the selectivity of MAT2A inhibitors for MTAP-deficient cancers remains a significant challenge. We herein reported the discovery of a series of novel MAT2A inhibitors with a 2(1H)-quinoxalinone scaffold through structure-based drug design and systematic SAR exploration. Among them, compound 28 exhibited good inhibitory activity against the enzymatic activity of MAT2A, and the significantly improved selectivity in killing MTAP-deficient cancer cells. Compound 28 also showed favorable pharmacokinetic properties and the improved in vivo anticancer activity in MTAP-deficient tumor models. These findings suggest new directions for the discovery and development of highly selective MAT2A inhibitors.
Collapse
Affiliation(s)
- Chunzheng Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaojing Lan
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinge Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Yixian Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaodong Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yanyan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhenjie Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Huang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
5
|
Gounder M, Johnson M, Heist RS, Shapiro GI, Postel-Vinay S, Wilson FH, Garralda E, Wulf G, Almon C, Nabhan S, Aguado-Fraile E, He P, Romagnoli M, Hossain M, Narayanaswamy R, Sadou-Dubourgnoux A, Cooper M, Askoxylakis V, Burris HA, Tabernero J. MAT2A inhibitor AG-270/S095033 in patients with advanced malignancies: a phase I trial. Nat Commun 2025; 16:423. [PMID: 39762248 PMCID: PMC11704051 DOI: 10.1038/s41467-024-55316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Homozygous MTAP deletion occurs in ~15% of cancers, making them vulnerable to decreases in the concentration of S-adenosylmethionine (SAM). AG-270/S095033 is an oral, potent, reversible inhibitor of methionine adenosyltransferase 2 A (MAT2A), the enzyme primarily responsible for the synthesis of SAM. We report results from the first-in-human, phase 1 trial of AG-270/S095033 as monotherapy in patients with advanced malignancies (ClinicalTrials.gov Identifier: NCT03435250). Eligible patients had tumors with homozygous deletion of CDKN2A/MTAP and/or loss of MTAP protein by immunohistochemistry. Patients received AG-270/S095033 once daily (QD) or twice daily (BID) in 28-day cycles. The primary objective was to assess the maximum tolerated dose (MTD) of AG-270/S095033. Secondary objectives included safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and efficacy. Forty patients were treated with AG-270/S095033. Plasma concentrations of AG-270/S095033 increased with dose. Maximal reductions in plasma SAM concentrations ranged from 54% to 70%. Analysis of paired tumor biopsies showed decreases in levels of symmetrically di-methylated arginine (SDMA) residues. Reversible increases in liver function tests, thrombocytopenia, anemia and fatigue were common treatment-related toxicities. Two partial responses were observed; five additional patients achieved radiographically confirmed stable disease for ≥16 weeks. AG-270/S095033 has a manageable safety profile. Our data provide preliminary evidence of clinical activity and proof-of-mechanism for MAT2A inhibition.
Collapse
Affiliation(s)
- Mrinal Gounder
- Memorial Sloan Kettering Cancer Center; Weill Cornell Medical College, New York, NY, USA
| | | | | | | | - Sophie Postel-Vinay
- Institut Gustave Roussy and U981 INSERM, Villejuif, France
- University College of London, England, UK
| | | | | | - Gerburg Wulf
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | | - Mohammad Hossain
- Agios Pharmaceuticals Inc., Cambridge, MA, USA
- Servier, Boston, USA
| | | | | | - Michael Cooper
- Agios Pharmaceuticals Inc., Cambridge, MA, USA
- Servier, Boston, USA
| | | | | | | |
Collapse
|
6
|
Hu M, Chen X. A review of the known MTA-cooperative PRMT5 inhibitors. RSC Adv 2024; 14:39653-39691. [PMID: 39691229 PMCID: PMC11650783 DOI: 10.1039/d4ra05497k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5), an epigenetic target with significant clinical potential, is closely associated with the occurrence and development of a range of tumours and has attracted considerable interest from the pharmaceutical industry and academic research communities. According to incomplete statistics, more than 10 PRMT5 inhibitors for cancer therapy have entered clinical trials in recent years. Among them, the second-generation PRMT5 inhibitors developed based on the synthetic lethal strategy demonstrate considerable clinical application value. This suggests that, following the precedent of poly ADP ribose polymerase (PARP), PRMT5 has the potential to become the next clinically applicable synthetic lethal target. However, due to the inherent dose-limiting toxicity of epigenetic target inhibitors, none of these PRMT5 inhibitors has been approved for marketing to date. In light of this, we have conducted a review of the design thoughts and the structure-activity relationship (SAR) of known methylthioadenosine (MTA)-cooperative PRMT5 inhibitors. Additionally, we have analysed the clinical safety of representative first- and second-generation PRMT5 inhibitors. This paper discusses the in vivo vulnerability of the aromatic amine moiety of the second-generation PRMT5 inhibitor based on its structure. It also considers the potential nitrosamine risk factors associated with the preparation process.
Collapse
Affiliation(s)
- Mei Hu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University 1-1 Xiangling Road Luzhou Sichuan 646000 People's Republic of China
| | - Xiang Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University 1-1 Xiangling Road Luzhou Sichuan 646000 People's Republic of China
| |
Collapse
|
7
|
Korimerla N, Meghdadi B, Haq I, Wilder-Romans K, Xu J, Becker N, Zhu Z, Kalev P, Qi N, Evans C, Kachman M, Zhao Z, Lin A, Scott AJ, O'Brien A, Kothari A, Sajjakulnukit P, Zhang L, Palavalasa S, Peterson ER, Hyer ML, Marjon K, Sleger T, Morgan MA, Lyssiotis CA, Stone EM, Ferris SP, Lawrence TS, Nagrath D, Zhou W, Wahl DR. Reciprocal links between methionine metabolism, DNA repair and therapy resistance in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624542. [PMID: 39651281 PMCID: PMC11623687 DOI: 10.1101/2024.11.20.624542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Glioblastoma (GBM) is uniformly lethal due to profound treatment resistance. Altered cellular metabolism is a key mediator of GBM treatment resistance. Uptake of the essential sulfur-containing amino acid methionine is drastically elevated in GBMs compared to normal cells, however, it is not known how this methionine is utilized or whether it relates to GBM treatment resistance. Here, we find that radiation acutely increases the levels of methionine-related metabolites in a variety of treatment-resistant GBM models. Stable isotope tracing studies further revealed that radiation acutely activates methionine to S-adenosyl methionine (SAM) conversion through an active signaling event mediated by the kinases of the DNA damage response. In vivo tumor SAM synthesis increases after radiation, while normal brain SAM production remains unchanged, indicating a tumor- specific metabolic alteration to radiation. Pharmacological and dietary strategies to block methionine to SAM conversion slowed DNA damage response and increased cell death following radiation in vitro. Mechanistically, these effects are due to depletion of DNA repair proteins and are reversed by SAM supplementation. These effects are selective to GBMs lacking the methionine salvage enzyme methylthioadenosine phosphorylase. Pharmacological inhibition of SAM synthesis hindered tumor growth in flank and orthotopic in vivo GBM models when combined with radiation. By contrast, methionine depletion does not reduce tumor SAM levels and fails to radiosensitize intracranial models, indicating depleting SAM, as opposed to simply lowering methionine, is critical for hindering tumor growth in intracranial models of GBM. These results highlight a new signaling link between DNA damage and SAM synthesis and define the metabolic fates of methionine in GBM in vivo . Inhibiting radiation-induced SAM synthesis slows DNA repair and augments radiation efficacy in GBM. Using MAT2A inhibitors to deplete SAM may selectively overcome treatment resistance in GBMs with defective methionine salvage while sparing normal brain.
Collapse
|
8
|
Pulous FE, Steurer B, Pun FW, Zhang M, Ren F, Zhavoronkov A. MAT2A inhibition combats metabolic and transcriptional reprogramming in cancer. Drug Discov Today 2024; 29:104189. [PMID: 39306235 DOI: 10.1016/j.drudis.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Metabolic and transcriptional reprogramming are crucial hallmarks of carcinogenesis that present exploitable vulnerabilities for the development of targeted anticancer therapies. Through controlling the balance of the cellular methionine (MET) metabolite pool, MET adenosyl transferase 2 alpha (MAT2A) regulates crucial steps during metabolism and the epigenetic control of transcription. The aberrant function of MAT2A has been shown to drive malignant transformation through metabolic addiction, transcriptional rewiring, and immune modulation of the tumor microenvironment (TME). Moreover, MAT2A sustains the survival of 5'-methylthioadenosine phosphorylase (MTAP)-deficient tumors, conferring synthetic lethality to cancers with MTAP loss, a genetic alteration that occurs in ∼15% of all cancers. Thus, the pharmacological inhibition of MAT2A is emerging as a desirable therapeutic strategy to combat tumor growth. Here, we review the latest insights into MAT2A biology, focusing on its roles in both metabolic addiction and gene expression modulation in the TME, outline the current landscape of MAT2A inhibitors, and highlight the most recent clinical developments and opportunities for MAT2A inhibition as a novel anti-tumor therapy.
Collapse
Affiliation(s)
- Fadi E Pulous
- Insilico Medicine US Inc, 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, USA
| | - Barbara Steurer
- Insilico Medicine US Inc, 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, USA
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd, Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, China
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, China
| | - Alex Zhavoronkov
- Insilico Medicine US Inc, 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, USA; Insilico Medicine Hong Kong Ltd, Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR, China; Insilico Medicine AI Ltd, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE.
| |
Collapse
|
9
|
Yu Z, Kuang Y, Xue L, Ma X, Li T, Yuan L, Li M, Xue G, Li Z, Tang F, Tang J, Shan J, Wang W, Tang R, Zhou F. SCR-7952, a highly selective MAT2A inhibitor, demonstrates synergistic antitumor activities in combination with the S-adenosylmethionine-competitive or the methylthioadenosine-cooperative protein arginine methyltransferase 5 inhibitors in methylthioadenosine phosphorylase-deleted tumors. MedComm (Beijing) 2024; 5:e705. [PMID: 39309689 PMCID: PMC11413503 DOI: 10.1002/mco2.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024] Open
Abstract
The metabolic enzyme methionine adenosyltransferase 2A (MAT2A) was found to elicit synthetic lethality in methylthioadenosine phosphorylase (MTAP)-deleted cancers, which occur in about 15% of all cancers. Here, we described a novel MAT2A inhibitor, SCR-7952 with potent and selective antitumor effects on MTAP-deleted cancers in both in vitro and in vivo. The cryo-EM data indicated the high binding affinity and the allosteric binding site of SCR-7952 on MAT2A. Different from AG-270, SCR-7952 exhibited little influence on metabolic enzymes and did not increase the plasma levels of bilirubin. A systematic evaluation of combination between SCR-7952 and different types of protein arginine methyltransferase 5 (PRMT5) inhibitors indicated remarkable synergistic interactions between SCR-7952 and the S-adenosylmethionine-competitive or the methylthioadenosine-cooperative PRMT5 inhibitors, but not substrate-competitive ones. The mechanism was via the aggravated inhibition of PRMT5 and FANCA splicing perturbations. These results indicated that SCR-7952 could be a potential therapeutic candidate for the treatment of MTAP-deleted cancers, both monotherapy and in combination with PRMT5 inhibitors.
Collapse
Affiliation(s)
- Zhiyong Yu
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Yi Kuang
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Liting Xue
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Xuan Ma
- Department of Thoracic SurgeryThe Affiliated Xiangshan Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Tingting Li
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Linlin Yuan
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
| | - Mengying Li
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Grace Xue
- Weston High SchoolWestonMassachusettsUSA
| | - Zhen Li
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Feng Tang
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
| | - Jianxing Tang
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Jinwen Shan
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Weijie Wang
- Department of Thoracic SurgeryThe Affiliated Xiangshan Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Feng Zhou
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| |
Collapse
|
10
|
Curvello R, Berndt N, Hauser S, Loessner D. Recreating metabolic interactions of the tumour microenvironment. Trends Endocrinol Metab 2024; 35:518-532. [PMID: 38212233 DOI: 10.1016/j.tem.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Tumours are heterogeneous tissues containing diverse populations of cells and an abundant extracellular matrix (ECM). This tumour microenvironment prompts cancer cells to adapt their metabolism to survive and grow. Besides epigenetic factors, the metabolism of cancer cells is shaped by crosstalk with stromal cells and extracellular components. To date, most experimental models neglect the complexity of the tumour microenvironment and its relevance in regulating the dynamics of the metabolism in cancer. We discuss emerging strategies to model cellular and extracellular aspects of cancer metabolism. We highlight cancer models based on bioengineering, animal, and mathematical approaches to recreate cell-cell and cell-matrix interactions and patient-specific metabolism. Combining these approaches will improve our understanding of cancer metabolism and support the development of metabolism-targeting therapies.
Collapse
Affiliation(s)
- Rodrigo Curvello
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Daniela Loessner
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Center of Biomaterials, Dresden, Germany; Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. JCI Insight 2024; 9:e174329. [PMID: 38815134 PMCID: PMC11383364 DOI: 10.1172/jci.insight.174329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Philippa A. Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Kelly O. Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Isaac S. Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank M. Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
12
|
Bin P, Wang C, Zhang H, Yan Y, Ren W. Targeting methionine metabolism in cancer: opportunities and challenges. Trends Pharmacol Sci 2024; 45:395-405. [PMID: 38580603 DOI: 10.1016/j.tips.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Reprogramming of methionine metabolism is a conserved hallmark of tumorigenesis. Recent studies have revealed mechanisms regulating methionine metabolism within the tumor microenvironment (TME) that drive both cancer development and antitumor immunity evasion. In this review article we summarize advancements in our understanding of tumor regulation of methionine metabolism and therapies in development that target tumor methionine metabolism. We also delineate the challenges of methionine blockade therapies in cancer and discuss emerging strategies to address them.
Collapse
Affiliation(s)
- Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hangchao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuqi Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
He H, Wang Z, Peng X, Qing L, Zhang Y, Fu S, Xu J, Li Y, Zhang S. Identification of a Sonically Activated Degrader of Methionine Adenosyltransferase 2A by an in Silico Approach Assisted with the Hole-Electron Analysis. J Med Chem 2024; 67:543-554. [PMID: 38166392 DOI: 10.1021/acs.jmedchem.3c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Small molecules capable of modulating methionine adenosyltransferase 2A (MAT2A) are of significant interest in precise cancer therapeutics. Herein, we raised the hole-electron Coulombic attraction as a reliable molecular descriptor for predicting the reactive oxygen generation capacity of MAT2A inhibitors, based on which we discovered compound H3 as a sonically activated degrader of MAT2A. Upon sonication, H3 can generate reactive oxygen species to specifically degrade cellular MAT2A via rapid oxidative reactions. Combination of H3 and sonication induced 87% MAT2A depletion in human colon cancer cells, thus elevating its antiproliferation effects by 8-folds. In vivo, H3 had a favorable pharmacokinetic profile (bioavailability = 77%) and ADME properties. Owing to the MAT2A degradation merits, H3 at a dosage of 10 mg/kg induced 31% tumor regression in xenograft colon tumor models. The significantly boosted antitumor potency can potentially alleviate the toxicity of high-dose MAT2A inhibitors to normal cells and tissues, especially to the liver.
Collapse
Affiliation(s)
- Huan He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Ziwei Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xueke Peng
- Guiyang Healthcare Vocational University, Guiyang 550081, P. R. China
| | - Luolong Qing
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yu Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Shaojuan Fu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Juan Xu
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, P. R. China
| | - Yuanyuan Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Silong Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
14
|
Bedard GT, Gilaj N, Peregrina K, Brew I, Tosti E, Shaffer K, Tyler PC, Edelmann W, Augenlicht LH, Schramm VL. Combined inhibition of MTAP and MAT2a mimics synthetic lethality in tumor models via PRMT5 inhibition. J Biol Chem 2024; 300:105492. [PMID: 38000655 PMCID: PMC10770533 DOI: 10.1016/j.jbc.2023.105492] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.
Collapse
Affiliation(s)
- Gabriel T Bedard
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nord Gilaj
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Chemistry, Lehman College, Bronx, New York, USA
| | - Karina Peregrina
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Isabella Brew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Karl Shaffer
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Leonard H Augenlicht
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
15
|
Valera PS, Plou J, García I, Astobiza I, Viera C, M. Aransay A, Martin JE, Sasselli IR, Carracedo A, Liz-Marzán LM. SERS analysis of cancer cell-secreted purines reveals a unique paracrine crosstalk in MTAP-deficient tumors. Proc Natl Acad Sci U S A 2023; 120:e2311674120. [PMID: 38109528 PMCID: PMC10756296 DOI: 10.1073/pnas.2311674120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
The tumor microenvironment (TME) is a dynamic pseudoorgan that shapes the development and progression of cancers. It is a complex ecosystem shaped by interactions between tumor and stromal cells. Although the traditional focus has been on the paracrine communication mediated by protein messengers, recent attention has turned to the metabolic secretome in tumors. Metabolic enzymes, together with exchanged substrates and products, have emerged as potential biomarkers and therapeutic targets. However, traditional techniques for profiling secreted metabolites in complex cellular contexts are limited. Surface-enhanced Raman scattering (SERS) has emerged as a promising alternative due to its nontargeted nature and simplicity of operation. Although SERS has demonstrated its potential for detecting metabolites in biological settings, its application in deciphering metabolic interactions within multicellular systems like the TME remains underexplored. In this study, we introduce a SERS-based strategy to investigate the secreted purine metabolites of tumor cells lacking methylthioadenosine phosphorylase (MTAP), a common genetic event associated with poor prognosis in various cancers. Our SERS analysis reveals that MTAP-deficient cancer cells selectively produce methylthioadenosine (MTA), which is taken up and metabolized by fibroblasts. Fibroblasts exposed to MTA exhibit: i) molecular reprogramming compatible with cancer aggressiveness, ii) a significant production of purine derivatives that could be readily recycled by cancer cells, and iii) the capacity to secrete purine derivatives that induce macrophage polarization. Our study supports the potential of SERS for cancer metabolism research and reveals an unprecedented paracrine crosstalk that explains TME reprogramming in MTAP-deleted cancers.
Collapse
Affiliation(s)
- Pablo S. Valera
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Departamento de Química Aplicada, Universidad del País Vasco/Euskal Herriko Universitatea (UPV/EHU), Donostia-San Sebastián20018, Spain
| | - Javier Plou
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
- Center for Cooperative Research in Nanoscience (CIC nanoGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20018, Spain
| | - Isabel García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC),Madrid28029, Spain
| | - Cristina Viera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
| | - Ana M. Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Biomedical Research Networking Center in hepatic diseases, Derio48160, Spain
| | - José E. Martin
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
| | - Ivan R. Sasselli
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Fisica de Materiales, Consejo Superior de Investigaciones Cientificas-Universidad del País Vasco/Euskal Herriko Universitatea (CSIC-UPV)/EHU), Donostiarra-San Sebastián20018, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC),Madrid28029, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao48009, Spain
- Translational Prostate Cancer Research Lab, Center for Cooperative Research in Biosciences-Basurto, Biocruces Bizkaia Health Research Institute, Derio48160, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco/Euskal Herriko Universitatea (UPV/EHU), Leioa48940, Spain
| | - Luis M. Liz-Marzán
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao48009, Spain
- Cinbio, Universidade de Vigo, Vigo36310, Spain
| |
Collapse
|
16
|
Li Q, Zang Y, An D, Liu L, Jiang W, Liu R, Su J, Yang J, Li L, Zhang X. Discovery of Potent and Oral Bioavailable MAT2A Inhibitors for the Treatment of MTAP-Deleted Tumors. ACS Med Chem Lett 2023; 14:1876-1881. [PMID: 38116423 PMCID: PMC10726448 DOI: 10.1021/acsmedchemlett.3c00488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Inhibition of methionine adenosyltransferase 2A (MAT2A) has received significant interest because of its implication as a synthetic lethal target in methylthioadenosine phosphorylase (MTAP)-deleted cancers. Here, we report the discovery of a series of 3H-pyrido[1,2-c]pyrimidin-3-one derivatives as novel MAT2A inhibitors. The selected compound 30 exhibited high potency for MAT2A inhibition and a favorable pharmacokinetic profile. Furthermore, in an HCT-116 MTAP-deleted xenograft model, compound 30 showed better in vivo potency than current clinical compound AG-270.
Collapse
Affiliation(s)
- Qun Li
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Yang Zang
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Dan An
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Lifei Liu
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Wen Jiang
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Rongchen Liu
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Jiangtao Su
- Hubei
University of Technology, Wuhan, 430068, China
| | - Jun Yang
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
- Humanwell
Pharmaceuticals US Inc. 421 Sovereign Court, Ballwin, Missouri 63011, United States
| | - Lie Li
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Xuejun Zhang
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| |
Collapse
|
17
|
Zhou S, Zhao X, Zhang S, Tian X, Wang X, Mu Y, Li F, Zhao AZ, Zhao Z. Prognosis prediction based on methionine metabolism genes signature in gliomas. BMC Med Genomics 2023; 16:317. [PMID: 38057821 PMCID: PMC10699061 DOI: 10.1186/s12920-023-01754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Glioma cells have increased intake and metabolism of methionine, which can be monitored with 11 C-L-methionine. However, a short half-life of 11 C (~ 20 min) limits its application in clinical practice. It is necessary to develop a methionine metabolism genes-based prediction model for a more convenient prediction of glioma survival. METHODS We evaluated the patterns of 29 methionine metabolism genes in glioma from the Cancer Genome Atlas (TCGA). A risk model was established using Lasso regression analysis and Cox regression. The reliability of the prognostic model was validated in derivation and validation cohorts (Chinese Glioma Genome Atlas; CGGA). GO, KEGG, GSEA and ESTIMATE analyses were performed for biological functions and immune characterization. RESULTS Our results showed that a majority of the methionine metabolism genes (25 genes) were involved in the overall survival of glioma (logrank p and Cox p < 0.05). A 7-methionine metabolism prognostic signature was significantly related to a poor clinical prognosis and overall survival of glioma patients (C-index = 0.83). Functional analysis revealed that the risk model was correlated with immune responses and with epithelial-mesenchymal transition. Furthermore, the nomogram integrating the signature of methionine metabolism genes manifested a strong prognostic ability in the training and validation groups. CONCLUSIONS The current model had the potential to improve the understanding of methionine metabolism in gliomas and contributed to the development of precise treatment for glioma patients, showing a promising application in clinical practice.
Collapse
Affiliation(s)
- Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Xianan Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Shiwei Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Xue Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Xuepeng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Yunping Mu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006, Guangzhou, Guangdong Province, China.
| |
Collapse
|
18
|
Engstrom LD, Aranda R, Waters L, Moya K, Bowcut V, Vegar L, Trinh D, Hebbert A, Smith CR, Kulyk S, Lawson JD, He L, Hover LD, Fernandez-Banet J, Hallin J, Vanderpool D, Briere DM, Blaj A, Marx MA, Rodon J, Offin M, Arbour KC, Johnson ML, Kwiatkowski DJ, Jänne PA, Haddox CL, Papadopoulos KP, Henry JT, Leventakos K, Christensen JG, Shazer R, Olson P. MRTX1719 Is an MTA-Cooperative PRMT5 Inhibitor That Exhibits Synthetic Lethality in Preclinical Models and Patients with MTAP-Deleted Cancer. Cancer Discov 2023; 13:2412-2431. [PMID: 37552839 PMCID: PMC10618744 DOI: 10.1158/2159-8290.cd-23-0669] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
Previous studies implicated protein arginine methyltransferase 5 (PRMT5) as a synthetic lethal target for MTAP-deleted (MTAP del) cancers; however, the pharmacologic characterization of small-molecule inhibitors that recapitulate the synthetic lethal phenotype has not been described. MRTX1719 selectively inhibited PRMT5 in the presence of MTA, which is elevated in MTAP del cancers, and inhibited PRMT5-dependent activity and cell viability with >70-fold selecti-vity in HCT116 MTAP del compared with HCT116 MTAP wild-type (WT) cells. MRTX1719 demonstrated dose-dependent antitumor activity and inhibition of PRMT5-dependent SDMA modification in MTAP del tumors. In contrast, MRTX1719 demonstrated minimal effects on SDMA and viability in MTAP WT tumor xenografts or hematopoietic cells. MRTX1719 demonstrated marked antitumor activity across a panel of xenograft models at well-tolerated doses. Early signs of clinical activity were observed including objective responses in patients with MTAP del melanoma, gallbladder adenocarcinoma, mesothelioma, non-small cell lung cancer, and malignant peripheral nerve sheath tumors from the phase I/II study. SIGNIFICANCE PRMT5 was identified as a synthetic lethal target for MTAP del cancers; however, previous PRMT5 inhibitors do not selectively target this genotype. The differentiated binding mode of MRTX1719 leverages the elevated MTA in MTAP del cancers and represents a promising therapy for the ∼10% of patients with cancer with this biomarker. See related commentary by Mulvaney, p. 2310. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
| | - Ruth Aranda
- Mirati Therapeutics, Inc., San Diego, California
| | - Laura Waters
- Mirati Therapeutics, Inc., San Diego, California
| | - Krystal Moya
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Laura Vegar
- Mirati Therapeutics, Inc., San Diego, California
| | - David Trinh
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | | | | | - Leo He
- Monoceros Biosciences LLC, San Diego, California
| | | | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | | | | | - Alice Blaj
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Offin
- Department of Medicine, Division of Clinical Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathryn C. Arbour
- Department of Medicine, Division of Clinical Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa L. Johnson
- Sarah Cannon Research Institute Tennessee Oncology, Nashville, Tennessee
| | - David J. Kwiatkowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Pasi A. Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Candace L. Haddox
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jason T. Henry
- Sarah Cannon Research Institute at HealthOne, Denver, Colorado
| | | | | | | | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| |
Collapse
|
19
|
Gjuka D, Adib E, Garrison K, Chen J, Zhang Y, Li W, Boutz D, Lamb C, Tanno Y, Nassar A, El Zarif T, Kale N, Rakaee M, Mouhieddine TH, Alaiwi SA, Gusev A, Rogers T, Gao J, Georgiou G, Kwiatkowski DJ, Stone E. Enzyme-mediated depletion of methylthioadenosine restores T cell function in MTAP-deficient tumors and reverses immunotherapy resistance. Cancer Cell 2023; 41:1774-1787.e9. [PMID: 37774699 PMCID: PMC10591910 DOI: 10.1016/j.ccell.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Chromosomal region 9p21 containing tumor suppressors CDKN2A/B and methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic deletions in cancer. 9p21 loss is correlated with reduced tumor-infiltrating lymphocytes (TILs) and resistance to immune checkpoint inhibitor (ICI) therapy. Previously thought to be caused by CDKN2A/B loss, we now show that it is loss of MTAP that leads to poor outcomes on ICI therapy and reduced TIL density. MTAP loss causes accumulation of methylthioadenosine (MTA) both intracellularly and extracellularly and profoundly impairs T cell function via the inhibition of protein arginine methyltransferase 5 (PRMT5) and by adenosine receptor agonism. Administration of MTA-depleting enzymes reverses this immunosuppressive effect, increasing TILs and drastically impairing tumor growth and importantly, synergizes well with ICI therapy. As several studies have shown ICI resistance in 9p21/MTAP null/low patients, we propose that MTA degrading therapeutics may have substantial therapeutic benefit in these patients by enhancing ICI effectiveness.
Collapse
Affiliation(s)
- Donjeta Gjuka
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Elio Adib
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kendra Garrison
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuxue Zhang
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenjiao Li
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Boutz
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Candice Lamb
- Department of Chemical Engineering, University of Texas, Austin, TX, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Yuri Tanno
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Amin Nassar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Talal El Zarif
- Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Neil Kale
- Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mehrdad Rakaee
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA
| | - Sarah Abou Alaiwi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Gusev
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Rogers
- Children's Medical Center Research Institute, University of Texas Southwestern, Dallas, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas, Austin, TX, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA
| | | | - Everett Stone
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA; Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA.
| |
Collapse
|
20
|
Bray C, Balcells C, McNeish IA, Keun HC. The potential and challenges of targeting MTAP-negative cancers beyond synthetic lethality. Front Oncol 2023; 13:1264785. [PMID: 37795443 PMCID: PMC10546069 DOI: 10.3389/fonc.2023.1264785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Approximately 15% of cancers exhibit loss of the chromosomal locus 9p21.3 - the genomic location of the tumour suppressor gene CDKN2A and the methionine salvage gene methylthioadenosine phosphorylase (MTAP). A loss of MTAP increases the pool of its substrate methylthioadenosine (MTA), which binds to and inhibits activity of protein arginine methyltransferase 5 (PRMT5). PRMT5 utilises the universal methyl donor S-adenosylmethionine (SAM) to methylate arginine residues of protein substrates and regulate their activity, notably histones to regulate transcription. Recently, targeting PRMT5, or MAT2A that impacts PRMT5 activity by producing SAM, has shown promise as a therapeutic strategy in oncology, generating synthetic lethality in MTAP-negative cancers. However, clinical development of PRMT5 and MAT2A inhibitors has been challenging and highlights the need for further understanding of the downstream mediators of drug effects. Here, we discuss the rationale and methods for targeting the MAT2A/PRMT5 axis for cancer therapy. We evaluate the current limitations in our understanding of the mechanism of MAT2A/PRMT5 inhibitors and identify the challenges that must be addressed to maximise the potential of these drugs. In addition, we review the current literature defining downstream effectors of PRMT5 activity that could determine sensitivity to MAT2A/PRMT5 inhibition and therefore present a rationale for novel combination therapies that may not rely on synthetic lethality with MTAP loss.
Collapse
Affiliation(s)
- Chandler Bray
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Cristina Balcells
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Hector C. Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
22
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550731. [PMID: 37546939 PMCID: PMC10402161 DOI: 10.1101/2023.07.26.550731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The non-physiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels impact therapeutic response by performing drug screening in human plasma-like medium (HPLM). We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that has recently failed in phase 3 clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism waste product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. Structural modelling studies suggest that uric acid interacts with the tubulin-rigosertib complex and may act as an uncompetitive inhibitor of rigosertib. These results offer a possible explanation for the failure of rigosertib in clinical trials and demonstrate the utility of physiological media to achieve in vitro results that better represent human therapeutic responses.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Philippa A. Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Kelly O. Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL
| | - Isaac S. Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Frank M. Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| |
Collapse
|
23
|
Minami JK, Morrow D, Bayley NA, Fernandez EG, Salinas JJ, Tse C, Zhu H, Su B, Plawat R, Jones A, Sammarco A, Liau LM, Graeber TG, Williams KJ, Cloughesy TF, Dixon SJ, Bensinger SJ, Nathanson DA. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell 2023; 41:1048-1060.e9. [PMID: 37236196 PMCID: PMC10330677 DOI: 10.1016/j.ccell.2023.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Malignant tumors exhibit heterogeneous metabolic reprogramming, hindering the identification of translatable vulnerabilities for metabolism-targeted therapy. How molecular alterations in tumors promote metabolic diversity and distinct targetable dependencies remains poorly defined. Here we create a resource consisting of lipidomic, transcriptomic, and genomic data from 156 molecularly diverse glioblastoma (GBM) tumors and derivative models. Through integrated analysis of the GBM lipidome with molecular datasets, we identify CDKN2A deletion remodels the GBM lipidome, notably redistributing oxidizable polyunsaturated fatty acids into distinct lipid compartments. Consequently, CDKN2A-deleted GBMs display higher lipid peroxidation, selectively priming tumors for ferroptosis. Together, this study presents a molecular and lipidomic resource of clinical and preclinical GBM specimens, which we leverage to detect a therapeutically exploitable link between a recurring molecular lesion and altered lipid metabolism in GBM.
Collapse
Affiliation(s)
- Jenna K Minami
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Danielle Morrow
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth G Fernandez
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer J Salinas
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Tse
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Henan Zhu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Baolong Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rhea Plawat
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anthony Jones
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alessandro Sammarco
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linda M Liau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kevin J Williams
- UCLA Lipidomics Core, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy F Cloughesy
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Lipidomics Core, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Fan N, Zhang Y, Zou S. Methylthioadenosine phosphorylase deficiency in tumors: A compelling therapeutic target. Front Cell Dev Biol 2023; 11:1173356. [PMID: 37091983 PMCID: PMC10113547 DOI: 10.3389/fcell.2023.1173356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
The methionine salvage pathway is responsible for recycling sulfur-containing metabolites to methionine. This salvage pathway has been found to be implicated in cell apoptosis, proliferation, differentiation and inflammatory response. Methylthioadenosine phosphorylase (MTAP) catalyzes the reversible phosphorolysis of 5′-methylthioadenosine, a by-product produced from polyamine biosynthesis. The MTAP gene is located adjacent to the cyclin-dependent kinase inhibitor 2A gene and co-deletes with CDKN2A in nearly 15% of tumors. Moreover, MTAP-deleted tumor cells exhibit greater sensitivity to methionine depletion and to the inhibitors of purine synthesis. In this review, we first summarized the molecular structure and expression of MTAP in tumors. Furthermore, we discussed PRMT5 and MAT2A as a potential vulnerability for MTAP-deleted tumors. The complex and dynamic role of MTAP in diverse malignancies has also been discussed. Finally, we demonstrated the implications for the treatment of MTAP-deleted tumors.
Collapse
Affiliation(s)
- Na Fan
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Suyun Zou
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Suyun Zou,
| |
Collapse
|
25
|
Patro CPK, Biswas N, Pingle SC, Lin F, Anekoji M, Jones LD, Kesari S, Wang F, Ashili S. MTAP loss: a possible therapeutic approach for glioblastoma. J Transl Med 2022; 20:620. [PMID: 36572880 PMCID: PMC9791736 DOI: 10.1186/s12967-022-03823-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma is the most lethal form of brain tumor with a recurrence rate of almost 90% and a survival time of only 15 months post-diagnosis. It is a highly heterogeneous, aggressive, and extensively studied tumor. Multiple studies have proposed therapeutic approaches to mitigate or improve the survival for patients with glioblastoma. In this article, we review the loss of the 5'-methylthioadenosine phosphorylase (MTAP) gene as a potential therapeutic approach for treating glioblastoma. MTAP encodes a metabolic enzyme required for the metabolism of polyamines and purines leading to DNA synthesis. Multiple studies have explored the loss of this gene and have shown its relevance as a therapeutic approach to glioblastoma tumor mitigation; however, other studies show that the loss of MTAP does not have a major impact on the course of the disease. This article reviews the contrasting findings of MTAP loss with regard to mitigating the effects of glioblastoma, and also focuses on multiple aspects of MTAP loss in glioblastoma by providing insights into the known findings and some of the unexplored areas of this field where new approaches can be imagined for novel glioblastoma therapeutics.
Collapse
Affiliation(s)
- C. Pawan K. Patro
- CureScience, 5820 Oberlin Dr, 202, San Diego, CA 92121 USA ,grid.4280.e0000 0001 2180 6431Present Address: Cancer Science Institute, National University of Singapore, Singapore, 117599 Singapore
| | | | | | - Feng Lin
- CureScience, 5820 Oberlin Dr, 202, San Diego, CA 92121 USA
| | - Misa Anekoji
- CureScience, 5820 Oberlin Dr, 202, San Diego, CA 92121 USA
| | | | - Santosh Kesari
- grid.416507.10000 0004 0450 0360Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John’s Cancer Institute at Providence Saint John’s Health Center, CA 90404 Santa Monica, USA
| | - Feng Wang
- grid.412901.f0000 0004 1770 1022Department of Medical Oncology, Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | | |
Collapse
|
26
|
McLean B, Istadi A, Clack T, Vankan M, Schramek D, Neely GG, Pajic M. A CRISPR Path to Finding Vulnerabilities and Solving Drug Resistance: Targeting the Diverse Cancer Landscape and Its Ecosystem. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200014. [PMID: 36911295 PMCID: PMC9993475 DOI: 10.1002/ggn2.202200014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Cancer is the second leading cause of death globally, with therapeutic resistance being a major cause of treatment failure in the clinic. The dynamic signaling that occurs between tumor cells and the diverse cells of the surrounding tumor microenvironment actively promotes disease progression and therapeutic resistance. Improving the understanding of how tumors evolve following therapy and the molecular mechanisms underpinning de novo or acquired resistance is thus critical for the identification of new targets and for the subsequent development of more effective combination regimens. Simultaneously targeting multiple hallmark capabilities of cancer to circumvent adaptive or evasive resistance may lead to significantly improved treatment response in the clinic. Here, the latest applications of functional genomics tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) editing, to characterize the dynamic cancer resistance mechanisms, from improving the understanding of resistance to classical chemotherapeutics, to deciphering unique mechanisms that regulate tumor responses to new targeted agents and immunotherapies, are discussed. Potential avenues of future research in combating therapeutic resistance, the contribution of tumor-stroma signaling in this setting, and how advanced functional genomics tools can help streamline the identification of key molecular determinants of drug response are explored.
Collapse
Affiliation(s)
- Benjamin McLean
- The Kinghorn Cancer CentreThe Garvan Institute of Medical Research384 Victoria St, DarlinghurstSydneyNew South Wales2010Australia
| | - Aji Istadi
- The Kinghorn Cancer CentreThe Garvan Institute of Medical Research384 Victoria St, DarlinghurstSydneyNew South Wales2010Australia
| | - Teleri Clack
- Dr. John and Anne Chong Lab for Functional GenomicsCharles Perkins CentreCentenary InstituteUniversity of SydneyCamperdownNew South Wales2006Australia
| | - Mezzalina Vankan
- Dr. John and Anne Chong Lab for Functional GenomicsCharles Perkins CentreCentenary InstituteUniversity of SydneyCamperdownNew South Wales2006Australia
| | - Daniel Schramek
- Centre for Molecular and Systems BiologyLunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioM5G 1X5Canada
- Department of Molecular GeneticsFaculty of MedicineUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - G. Gregory Neely
- Dr. John and Anne Chong Lab for Functional GenomicsCharles Perkins CentreCentenary InstituteUniversity of SydneyCamperdownNew South Wales2006Australia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical Research384 Victoria St, DarlinghurstSydneyNew South Wales2010Australia
- St Vincent's Clinical SchoolFaculty of MedicineUniversity of NSW SydneySydneyNew South Wales2052Australia
| |
Collapse
|
27
|
Golikov MV, Valuev-Elliston VT, Smirnova OA, Ivanov AV. Physiological Media in Studies of Cell Metabolism. Mol Biol 2022; 56:629-637. [PMID: 36217338 PMCID: PMC9534458 DOI: 10.1134/s0026893322050077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Changes in cell metabolism accompany the development of a wide spectrum of pathologies including cancer, autoimmune, and inflammatory diseases. Therefore, usage of inhibitors of metabolic enzymes are considered a promising strategy for the development of therapeutic agents. However, the investigation of cellular metabolism is hampered by the significant impact of culture media, which interfere with many cellular processes, thus making cellular models irrelevant. There are numerous reports that show that the results from in vitro systems are not reproduced in in vivo models and patients. Over the last decade a novel approach has emerged, which consists of adaptation of the culture medium composition to that closer to the composition of blood plasma. In 2017‒2019, two plasma-like media were proposed, Plasmax and HPLM. In the review, we have summarized the drawbacks of common media and have analyzed changes in the metabolism of cells cultivated in common and plasma-like media in normal and pathological conditions.
Collapse
Affiliation(s)
- M. V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - O. A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
28
|
Extracellular 5'-methylthioadenosine inhibits intracellular symmetric dimethylarginine protein methylation of FUSE-element binding proteins. J Biol Chem 2022; 298:102367. [PMID: 35963436 PMCID: PMC9467882 DOI: 10.1016/j.jbc.2022.102367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022] Open
Abstract
Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway that converts the polyamine synthesis byproduct 5'-deoxy-5'-methylthioadenosine (MTA) into methionine. Inactivation of MTAP, often by homozygous deletion, is found in both solid and hematologic malignancies and is one of the most frequently observed genetic alterations in human cancer. Previous work established that MTAP-deleted cells accumulate MTA and contain decreased amounts of proteins with arginine residues symmetrically dimethylated (sDMA). These findings led to the hypothesis that accumulation of intracellular MTA inhibits the arginine protein methylase (PRMT5) responsible for bulk protein sDMAylation. Here, we confirm that MTAP-deleted cells have increased MTA accumulation and reduced protein sDMAylation. However, we also show that addition of extracellular MTA can cause a dramatic reduction of the steady-state levels of sDMA-containing proteins in MTAP+ cells, even though no sustained increase in intracellular MTA is found due to catabolism of MTA by MTAP. We determined that inhibition of protein sDMAylation by extracellular MTA occurs within 48 hours, is reversible, and is specific. In addition, we have identified two enhancer-binding proteins, FUBP1 and FUBP3, that are differentially sDMAylated in response to MTAP and MTA. These proteins work via the far upstream element (FUSE)-site located upstream of Myc and other promoters. Using a transcription reporter construct containing the FUSE-site, we demonstrate that MTA addition can reduce transcription, suggesting the reduction in FUBP1 and FUBP3 sDMAylation has functional consequences. Overall, our findings show that extracellular MTA can inhibit protein sDMAylation and that this inhibition can affect FUBP function.
Collapse
|
29
|
Li C, Gui G, Zhang L, Qin A, Zhou C, Zha X. Overview of Methionine Adenosyltransferase 2A (MAT2A) as an Anticancer Target: Structure, Function, and Inhibitors. J Med Chem 2022; 65:9531-9547. [PMID: 35796517 DOI: 10.1021/acs.jmedchem.2c00395] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methionine adenosyltransferase 2A (MAT2A) is a rate-limiting enzyme in the methionine cycle that primarily catalyzes the synthesis of S-adenosylmethionine (SAM) from methionine and adenosine triphosphate (ATP). MAT2A has been recognized as a therapeutic target for the treatment of cancers. Recently, a few MAT2A inhibitors have been reported, and three entered clinical trials to treat solid tumorsor lymphoma with MTAP loss. This review aims to summarize the current understanding of the roles of MAT2A in cancer and the discovery of MAT2A inhibitors. Furthermore, a perspective on the use of MAT2A inhibitors for the treatment of cancer is also discussed. We hope to provide guidance for future drug design and optimization via analysis of the binding modes of known MAT2A inhibitors.
Collapse
Affiliation(s)
- Chunzheng Li
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Zhang
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
30
|
Sowers ML, Sowers LC. Glioblastoma and Methionine Addiction. Int J Mol Sci 2022; 23:7156. [PMID: 35806160 PMCID: PMC9266821 DOI: 10.3390/ijms23137156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma is a fatal brain tumor with a bleak prognosis. The use of chemotherapy, primarily the alkylating agent temozolomide, coupled with radiation and surgical resection, has provided some benefit. Despite this multipronged approach, average patient survival rarely extends beyond 18 months. Challenges to glioblastoma treatment include the identification of functional pharmacologic targets as well as identifying drugs that can cross the blood-brain barrier. To address these challenges, current research efforts are examining metabolic differences between normal and tumor cells that could be targeted. Among the metabolic differences examined to date, the apparent addiction to exogenous methionine by glioblastoma tumors is a critical factor that is not well understood and may serve as an effective therapeutic target. Others have proposed this property could be exploited by methionine dietary restriction or other approaches to reduce methionine availability. However, methionine links the tumor microenvironment with cell metabolism, epigenetic regulation, and even mitosis. Therefore methionine depletion could result in complex and potentially undesirable responses, such as aneuploidy and the aberrant expression of genes that drive tumor progression. If methionine manipulation is to be a therapeutic strategy for glioblastoma patients, it is essential that we enhance our understanding of the role of methionine in the tumor microenvironment.
Collapse
Affiliation(s)
- Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA;
- MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA;
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
31
|
MTAP loss correlates with an immunosuppressive profile in GBM and its substrate MTA stimulates alternative macrophage polarization. Sci Rep 2022; 12:4183. [PMID: 35264604 PMCID: PMC8907307 DOI: 10.1038/s41598-022-07697-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer known for its potent immunosuppressive effects. Loss of Methylthioadenosine Phosphorylase (MTAP) expression, via gene deletion or epigenetic silencing, is one of the most common alterations in GBM. Here we show that MTAP loss in GBM cells is correlated with differential expression of immune regulatory genes. In silico analysis of gene expression profiles in GBM samples revealed that low MTAP expression is correlated with an increased proportion of M2 macrophages. Using in vitro macrophage models, we found that methylthioadenosine (MTA), the metabolite that accumulates as a result of MTAP loss in GBM cells, promotes the immunosuppressive alternative activation (M2) of macrophages. We show that this effect of MTA on macrophages is independent of IL4/IL3 signaling, is mediated by the adenosine A2B receptor, and can be pharmacologically reversed. This study suggests that MTAP loss in GBM cells may contribute to the immunosuppressive tumor microenvironment, and that MTAP status should be considered for characterizing GBM immune states and devising immunotherapy-based approaches for treating MTAP-null GBM.
Collapse
|