1
|
Millan-Solsona R, Brown SR, Zhang L, Madugula SS, Zhao H, Dumerer B, Bible AN, Lavrik NV, Vasudevan RK, Biswas A, Morrell-Falvey JL, Retterer S, Checa M, Collins L. Analysis of biofilm assembly by large area automated AFM. NPJ Biofilms Microbiomes 2025; 11:75. [PMID: 40341406 PMCID: PMC12062311 DOI: 10.1038/s41522-025-00704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/12/2025] [Indexed: 05/10/2025] Open
Abstract
Biofilms are complex microbial communities critical in medical, industrial, and environmental contexts. Understanding their assembly, structure, genetic regulation, interspecies interactions, and environmental responses is key to developing effective control and mitigation strategies. While atomic force microscopy (AFM) offers critically important high-resolution insights on structural and functional properties at the cellular and even sub-cellular level, its limited scan range and labor-intensive nature restricts the ability to link these smaller scale features to the functional macroscale organization of the films. We begin to address this limitation by introducing an automated large area AFM approach capable of capturing high-resolution images over millimeter-scale areas, aided by machine learning for seamless image stitching, cell detection, and classification. Large area AFM is shown to provide a very detailed view of spatial heterogeneity and cellular morphology during the early stages of biofilm formation which were previously obscured. Using this approach, we examined the organization of Pantoea sp. YR343 on PFOTS-treated glass surfaces. Our findings reveal a preferred cellular orientation among surface-attached cells, forming a distinctive honeycomb pattern. Detailed mapping of flagella interactions suggests that flagellar coordination plays a role in biofilm assembly beyond initial attachment. Additionally, we use large-area AFM to characterize surface modifications on silicon substrates, observing a significant reduction in bacterial density. This highlights the potential of this method for studying surface modifications to better understand and control bacterial adhesion and biofilm formation.
Collapse
Affiliation(s)
- Ruben Millan-Solsona
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Spenser R Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lance Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sita Sirisha Madugula
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - HuanHuan Zhao
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, USA
| | - Blythe Dumerer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Amber N Bible
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Nickolay V Lavrik
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Rama K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Arpan Biswas
- University of Tennessee-Oak Ridge Innovation Institute, Knoxville, TN, 37996, USA
| | | | - Scott Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Martí Checa
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
2
|
Hiralal A, Ley P, van Dijk JR, Li C, Pankratov D, Alingapoyil Choyikutty J, Pankratova G, Geelhoed JS, Vasquez-Cardenas D, Reimers CE, Meysman FJR. A novel cable bacteria species with a distinct morphology and genomic potential. Appl Environ Microbiol 2025:e0250224. [PMID: 40261324 DOI: 10.1128/aem.02502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Cable bacteria form a group of multicellular prokaryotes that enable electron transfer over centimeter-scale distances within marine and freshwater sediments. To this end, the periplasm of these filamentous bacteria contains specialized conductive fibers, which extend along the full length of each filament and incorporate a novel Ni-containing NiBiD cofactor. Currently, the cable bacteria include two recognized genera, Candidatus Electrothrix and Candidatus Electronema, but the genetic and morphological diversity within the clade remains underexplored. Here, we report the isolation and characterization of a novel cable bacteria species from an intertidal estuarine mudflat within Yaquina Bay (Oregon, USA). A clonal enrichment culture of a single strain (designated YB6) was generated, and filaments were subjected to genomic, morphological, spectroscopic, and electrical characterization. Strain YB6 shares key physiological traits with other cable bacteria, such as long-distance electron conduction and the presence of the nickel bis(dithiolene) cofactor. At the same time, YB6 exhibits distinctive morphological features, including pronounced surface ridges that are up to three times wider than in other cable bacteria. Additionally, filaments are extensively enveloped by extracellular sheaths. Genomic analysis reveals that strain YB6 harbors metabolic pathways and genes found in both the Ca. Electrothrix and Ca. Electronema genera. Phylogenetic and phylogenomic analyses indicate that strain YB6 represents a novel species (average nucleotide identity <95%) that forms an early branch within the Ca. Electrothrix clade. The proposed name is Ca. Electrothrix yaqonensis sp. nov., honoring the Yako'n tribe of Native Americans whose ancestral lands encompassed Yaquina Bay.IMPORTANCEThis study expands our understanding of the genetic and morphological diversity of cable bacteria, a group of prokaryotes with a unique metabolism based on long-range conduction. We present the detailed morphological and genomic characterization of a novel species: Ca. Electrothrix yaqonensis, strain YB6, isolated from an intertidal estuarine mudflat. Importantly, the strain exhibits a distinctive ridge morphology (harboring the conductive fibers) and abundant formation of extracellular sheaths. Genomic analysis reveals that YB6 shares metabolic features with both Ca. Electrothrix and Ca. Electronema genera.
Collapse
Affiliation(s)
- Anwar Hiralal
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Philip Ley
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jesper R van Dijk
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Cheng Li
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
- Integrated Science and Technology, School of Integrated Sciences, James Madison University, Harrisonburg, Virginia, USA
- Biological & Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Dmitrii Pankratov
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | - Galina Pankratova
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jeanine S Geelhoed
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Diana Vasquez-Cardenas
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Clare E Reimers
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Filip J R Meysman
- Research Group Geobiology, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
3
|
Digel L, Justesen ML, Madsen NS, Fransaert N, Wouters K, Bonné R, Plum-Jensen LE, Marshall IPG, Jensen PB, Nicolas-Asselineau L, Drace T, Bøggild A, Hansen JL, Schramm A, Bøjesen ED, Nielsen LP, Manca JV, Boesen T. Comparison of cable bacteria genera reveals details of their conduction machinery. EMBO Rep 2025; 26:1749-1767. [PMID: 39962228 PMCID: PMC11976967 DOI: 10.1038/s44319-025-00387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 04/09/2025] Open
Abstract
Cable bacteria are centimeter-long multicellular bacteria conducting electricity through periplasmic conductive fibers (PCFs). Using single-strain enrichments of the genera Electrothrix and Electronema we systematically investigate variations and similarities in morphology and electrical properties across both genera. Electrical conductivity of different PCFs spans three orders of magnitude warranting further investigations of the plasticity of their conduction machinery. Using electron microscopy and elemental analyses, we show that the two cable bacteria genera have similar cell envelopes and cell-cell junction ultrastructures. Iron, sulfur, and nickel signals are co-localized with the PCFs, indicating key functional roles of these elements. The PCFs are organized as stranded rope-like structures composed of multiple strands. Furthermore, we report lamellae-like structures formed at the cell-cell junctions with a core layer connecting to the PCFs, and intriguing vesicle-like inner membrane invaginations below the PCFs. Finally, using bioinformatic tools, we identify a cytochrome family with predicted structural homology to known multi-heme nanowire proteins from other electroactive microorganisms and suggest that these cytochromes can play a role in the extra- or intercellular electron conduction of cable bacteria.
Collapse
Affiliation(s)
- Leonid Digel
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- Department of Biology, Aarhus University, 8000, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Mads L Justesen
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Nikoline S Madsen
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | | | - Koen Wouters
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- X-LAB, UHasselt, 3500, Hasselt, Belgium
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
| | - Robin Bonné
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Lea E Plum-Jensen
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Ian P G Marshall
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Pia B Jensen
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
| | - Louison Nicolas-Asselineau
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Taner Drace
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
- EMBION - The Danish National Cryo-EM Facility - Aarhus Node, Aarhus University, 8000, Aarhus, Denmark
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
- EMBION - The Danish National Cryo-EM Facility - Aarhus Node, Aarhus University, 8000, Aarhus, Denmark
| | - John L Hansen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus, Denmark
| | - Andreas Schramm
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Espen D Bøjesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
- Aarhus University Centre for Integrated Materials Research, Aarhus University, 8000, Aarhus, Denmark
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
- Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | | | - Thomas Boesen
- Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark.
- EMBION - The Danish National Cryo-EM Facility - Aarhus Node, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
4
|
Polycarpou G, Skourtis SS. Nickel-Dithiolene Cofactors as Electron Donors and Acceptors in Protein Hosts. J Phys Chem B 2025; 129:2992-3006. [PMID: 40049608 PMCID: PMC11931547 DOI: 10.1021/acs.jpcb.4c08264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/21/2025]
Abstract
Metal dithiolene compounds are attracting considerable attention in the field of molecular electronics, particularly as constituents of materials with high charge-carrier mobilities. Recent experiments on cable bacteria that perform centimeter-scale charge transport suggest that Ni-bis(dithiolene) cofactors are important components of the bacterial conductive network. Further, current-voltage experiments of cable-bacteria-conductive sheaths have measured high conductivity values as compared to other electron-transfer bacteria. An important question is how the Ni-bis(dithiolene) structures participating as electron donors/acceptors contribute to the high conductivity. Currently, the protein and cofactor structures of these bacterial networks are largely unknown. Given this limitation, in this work, we explore the more general question of how Ni-bis(dithiolene) molecules would perform as electron donor and acceptor centers in protein-mediated charge transfer. Our aim is to deduce order-of-magnitude higher bounds for charge-transfer rates in such systems as a function of donor-acceptor distance, protein-bridge (amino acid) sequence, cofactor size, and redox state. These bounds are useful for predicting charge-transfer mechanisms and estimating rates in the absence of detailed structural information on protein wires that may use Ni-bis(dithiolene) redox cofactors. Our analysis is also relevant to the design of artificial Ni-bis(dithiolene) protein wires.
Collapse
|
5
|
Stiefelmaier J. Cable Bacteria and Their Biotechnological Application. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025. [PMID: 40094968 DOI: 10.1007/10_2025_284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cable bacteria grow as multicellular filaments several centimetres deep into the sediment of freshwaters and oceans. Hereby, cable bacteria show unique characteristics such as electrogenic sulphur oxidation, extremely high conductivity and ability for CO2 fixation. This offers several possibilities of future applications in biotechnology with an outlook to sustainable processes. So far, research on cable bacteria is mostly concerning metabolism, electron transfer and effect on the surrounding sediment. Cultures are always performed on sediment from the natural habitat and in simple, small-scale reaction tubes, requiring further development for reproducible cultivation with scale-up capabilities. However, based on the known properties of cable bacteria, possible areas of application can already be derived. The use of cable bacteria in bioremediation is a promising approach, as the degradation of hydrocarbons has already been proven. Co-cultivation with plants could open up a further field of application, such as the described reduction of methane emissions from rice fields. Due to the extremely high conductivity of the filaments, cable bacteria are also very promising for incorporation into biodegradable microelectronics. By integrating electrodes into a suitable reactor system, bioelectrochemical processes could be implemented, either with the goal of electron uptake and product formation or for electricity generation.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
| |
Collapse
|
6
|
Bayar B, Soares R, Nalakath H, Alves A, Paquete CM, Louro RO. Electron transfer in multicentre redox proteins: from fundamentals to extracellular electron transfer. Biosci Rep 2025; 45:1-18. [PMID: 39714013 DOI: 10.1042/bsr20240576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024] Open
Abstract
Multicentre redox proteins participate in diverse metabolic processes, such as redox shuttling, multielectron catalysis, or long-distance electron conduction. The detail in which these processes can be analysed depends on the capacity of experimental methods to discriminate the multiple microstates that can be populated while the protein changes from the fully reduced to the fully oxidized state. The population of each state depends on the redox potential of the individual centres and on the magnitude of the interactions between the individual redox centres and their neighbours. It also depends on the interactions with binding sites for other ligands, such as protons, giving origin to the redox-Bohr effect. Modelling strategies that match the capacity of experimental methods to discriminate the contributions of individual centres are presented. These models provide thermodynamic and kinetic characterization of multicentre redox proteins. The current state of the art in the characterization of multicentre redox proteins is illustrated using the case of multiheme cytochromes involved in the process of extracellular electron transfer. In this new frontier of biological electron transfer, which can extend over distances that exceed the size of the individual multicentre redox proteins by orders of magnitude, current experimental data are still unable, in most cases, to provide discrimination between incoherent conduction by heme orbitals and coherent band conduction.
Collapse
Affiliation(s)
- Büşra Bayar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Haris Nalakath
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alexandra Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
7
|
Magrini C, Verga F, Bassani I, Pirri CF, Abdel Azim A. A Microbial-Centric View of Mobile Phones: Enhancing the Technological Feasibility of Biotechnological Recovery of Critical Metals. Bioengineering (Basel) 2025; 12:101. [PMID: 40001621 PMCID: PMC11852156 DOI: 10.3390/bioengineering12020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
End-of-life (EoL) mobile phones represent a valuable reservoir of critical raw materials at higher concentrations compared to primary ores. This review emphasizes the critical need to transition from single-material recovery approaches to comprehensive, holistic strategies for recycling EoL mobile phones. In response to the call for sustainable techniques with reduced energy consumption and pollutant emissions, biohydrometallurgy emerges as a promising solution. The present work intends to review the most relevant studies focusing on the exploitation of microbial consortia in bioleaching and biorecovery processes. All living organisms need macro- and micronutrients for their metabolic functionalities, including some of the elements contained in mobile phones. By exploring the interactions between microbial communities and the diverse elements found in mobile phones, this paper establishes a microbial-centric perspective by connecting each element of each layer to their role in the microbial cell system. A special focus is dedicated to the concepts of ecodesign and modularity as key requirements in electronics to potentially increase selectivity of microbial consortia in the bioleaching process. By bridging microbial science with sustainable design, this review proposes an innovative roadmap to optimize metal recovery, aligning with the principles of the circular economy and advancing scalable biotechnological solutions for electronic waste management.
Collapse
Affiliation(s)
- Chiara Magrini
- Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering (DIATI), 10129 Turin, Italy; (C.M.); (F.V.)
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
| | - Francesca Verga
- Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering (DIATI), 10129 Turin, Italy; (C.M.); (F.V.)
| | - Ilaria Bassani
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
- Politecnico di Torino, Department of Applied Science and Technology (DISAT), 10129 Turin, Italy
| | - Annalisa Abdel Azim
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
- Politecnico di Torino, Department of Applied Science and Technology (DISAT), 10129 Turin, Italy
| |
Collapse
|
8
|
Wawryk MMH, Ley P, Vasquez-Cardenas D, Tabor RF, Cook PLM. Multidisciplinary methodologies used in the study of cable bacteria. FEMS Microbiol Rev 2025; 49:fuae030. [PMID: 39673715 PMCID: PMC11774119 DOI: 10.1093/femsre/fuae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024] Open
Abstract
Cable bacteria are a unique type of filamentous microorganism that can grow up to centimetres long and are capable of long-distance electron transport over their entire lengths. Due to their unique metabolism and conductive capacities, the study of cable bacteria has required technical innovations, both in adapting existing techniques and developing entirely new ones. This review discusses the existing methods used to study eight distinct aspects of cable bacteria research, including the challenges of culturing them in laboratory conditions, performing physical and biochemical extractions, and analysing the conductive mechanism. As cable bacteria research requires an interdisciplinary approach, methods from a range of fields are discussed, such as biogeochemistry, genomics, materials science, and electrochemistry. A critical analysis of the current state of each approach is presented, highlighting the advantages and drawbacks of both commonly used and emerging methods.
Collapse
Affiliation(s)
| | - Philip Ley
- Department of Biology, University of Antwerp, Wilrijk 2020, Belgium
| | | | - Rico F Tabor
- School of Chemistry, Monash University, Clayton 3800 VIC, Australia
| | - Perran L M Cook
- School of Chemistry, Monash University, Clayton 3800 VIC, Australia
| |
Collapse
|
9
|
Buffi M, Kelliher JM, Robinson AJ, Gonzalez D, Cailleau G, Macalindong JA, Frau E, Schintke S, Chain PSG, Stanley CE, Künzler M, Bindschedler S, Junier P. Electrical signaling in fungi: past and present challenges. FEMS Microbiol Rev 2025; 49:fuaf009. [PMID: 40118505 PMCID: PMC11995700 DOI: 10.1093/femsre/fuaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025] Open
Abstract
Electrical signaling is a fundamental mechanism for integrating environmental stimuli and coordinating responses in living organisms. While extensively studied in animals and plants, the role of electrical signaling in fungi remains a largely underexplored field. Early studies suggested that filamentous fungi generate action potential-like signals and electrical currents at hyphal tips, yet their function in intracellular communication remained unclear. Renewed interest in fungal electrical activity has fueled developments such as the hypothesis that mycorrhizal networks facilitate electrical communication between plants and the emerging field of fungal-based electronic materials. Given their continuous plasma membrane, specialized septal pores, and insulating cell wall structures, filamentous fungi possess architectural features that could support electrical signaling over long distances. However, studying electrical phenomena in fungal networks presents unique challenges due to the microscopic dimensions of hyphae, the structural complexity of highly modular mycelial networks, and the limitations of traditional electrophysiological methods. This review synthesizes current evidence for electrical signaling in filamentous fungi, evaluates methodological approaches, and highlights experimental challenges. By addressing these challenges and identifying best practices, we aim to advance research in this field and provide a foundation for future studies exploring the role of electrical signaling in fungal biology.
Collapse
Affiliation(s)
- Matteo Buffi
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Julia M Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
- Microbiology, Genetics,
and Immunology Department, Michigan State University, East Lansing, MI 48824, United States
| | - Aaron J Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Diego Gonzalez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Justine A Macalindong
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Eleonora Frau
- Laboratory of Applied NanoSciences (COMATEC-LANS), University of Applied Sciences and Arts Western Switzerland (HES-SO), CH-1401, Yverdon-les-Bains, Switzerland
| | - Silvia Schintke
- Laboratory of Applied NanoSciences (COMATEC-LANS), University of Applied Sciences and Arts Western Switzerland (HES-SO), CH-1401, Yverdon-les-Bains, Switzerland
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Markus Künzler
- Institute of Microbiology, Department of Biology
, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
10
|
McCaig CD. Long-Distance Electron Transport in Unicellular Organisms and Biofilms. Rev Physiol Biochem Pharmacol 2025; 187:29-38. [PMID: 39838005 DOI: 10.1007/978-3-031-68827-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Electrical forces are widespread in single-celled organisms and underpin sophisticated communication systems. Bacterial biofilm colonies, for example, attract new members electrically. Bacteria also join together end to end and engage in long-distance electron transport along bacterial filaments over centimetres. This transport of electrons across around 10,000 cells separates life-essential redox reactions spatially and keeps "colleagues breathing" in otherwise challenging aquatic sediments.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
11
|
Wawryk MMH, Hidalgo-Martinez S, Meysman FJR, Tabor RF, Cook PLM. Carbon-based nanomaterials enhance the growth of cable bacteria in brackish sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177649. [PMID: 39571801 DOI: 10.1016/j.scitotenv.2024.177649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Cable bacteria are long, multicellular bacteria that conduct electrical currents over centimetre distances within sediment to support their metabolism. Recent studies have shown their potential for extracellular electron transport (EET), allowing the possibility to donate electrons to solid electrodes and potentially enabling electrical interactions with other microbes. However, the mechanisms and capabilities of their EET, and their potential to interact electronically with other materials in their environment has not been explored. As sediment can contain conductive minerals, this study aimed to investigate the effect of carbon-based colloidal nanomaterials such as graphene oxide (GO), sulfur-doped graphene oxide (S-GO), and carbon nanotubes on cable bacteria. When S-GO was added to sediment, cable bacteria grew with higher activity, and in higher density at depth, whilst GO had little initial effect but showed a delayed enhancement of cable activity. This is thought to be due the reduction of GO via iron oxidation within the sediment, allowing it to become more conjugated, resulting in more similar conductive properties to S-GO. We speculate that the enhancement of cable bacteria growth is due to the electron shuttling properties of S-GO and similar materials, allowing for more efficient transfer of electrons between cable bacteria and to electron acceptors.
Collapse
Affiliation(s)
| | | | | | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, Australia
| | | |
Collapse
|
12
|
van der Veen J, Hidalgo Martinez S, Wieland A, De Pellegrin M, Verweij R, Blanter YM, van der Zant HSJ, Meysman FJR. Temperature-Dependent Characterization of Long-Range Conduction in Conductive Protein Fibers of Cable Bacteria. ACS NANO 2024; 18:32878-32889. [PMID: 39532345 PMCID: PMC11603878 DOI: 10.1021/acsnano.4c12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Multicellular cable bacteria display an exceptional form of biological conduction, channeling electric currents across centimeter distances through a regular network of protein fibers embedded in the cell envelope. The fiber conductivity is among the highest recorded for biomaterials, but the underlying mechanism of electron transport remains elusive. Here, we performed detailed characterization of the conductance from room temperature down to liquid helium temperature to attain insight into the mechanism of long-range conduction. A consistent behavior is seen within and across individual filaments. The conductance near room temperature reveals thermally activated behavior, yet with a low activation energy. At cryogenic temperatures, the conductance at moderate electric fields becomes virtually independent of temperature, suggesting that quantum vibrations couple to the charge transport through nuclear tunneling. Our data support an incoherent multistep hopping model within parallel conduction channels with a low activation energy and high transfer efficiency between hopping sites. This model explains the capacity of cable bacteria to transport electrons across centimeter-scale distances, thus illustrating how electric currents can be guided through extremely long supramolecular protein structures.
Collapse
Affiliation(s)
- Jasper
R. van der Veen
- Department
of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628 CJ, The Netherlands
- Department
of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Silvia Hidalgo Martinez
- Department
of Biology, Excellence Center for Microbial Systems Technology, University of Antwerp, Wilrijk 2610, Belgium
| | - Albert Wieland
- Department
of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628 CJ, The Netherlands
| | - Matteo De Pellegrin
- Department
of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628 CJ, The Netherlands
| | - Rick Verweij
- Department
of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628 CJ, The Netherlands
| | - Yaroslav M. Blanter
- Department
of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628 CJ, The Netherlands
| | - Herre S. J. van der Zant
- Department
of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628 CJ, The Netherlands
| | - Filip J. R. Meysman
- Department
of Biotechnology, Delft University of Technology, Delft 2629 HZ, The Netherlands
- Department
of Biology, Excellence Center for Microbial Systems Technology, University of Antwerp, Wilrijk 2610, Belgium
| |
Collapse
|
13
|
Ley P, Geelhoed JS, Vasquez-Cardenas D, Meysman FJR. On the diversity, phylogeny and biogeography of cable bacteria. Front Microbiol 2024; 15:1485281. [PMID: 39629215 PMCID: PMC11611824 DOI: 10.3389/fmicb.2024.1485281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Cable bacteria have acquired a unique metabolism, which induces long-distance electron transport along their centimeter-long multicellular filaments. At present, cable bacteria are thought to form a monophyletic clade with two described genera. However, their diversity has not been systematically investigated. To investigate the phylogenetic relationships within the cable bacteria clade, 16S rRNA gene sequences were compiled from literature and public databases (SILVA 138 SSU and NCBI GenBank). These were complemented with novel sequences obtained from natural sediment enrichments across a wide range of salinities (2-34). To enable taxonomic resolution at the species level, we designed a procedure to attain full-length 16S rRNA gene sequences from individual cable bacterium filaments using an optimized nested PCR protocol and Sanger sequencing. The final database contained 1,876 long 16S rRNA gene sequences (≥800 bp) originating from 92 aquatic locations, ranging from polar to tropical regions and from intertidal to deep sea sediments. The resulting phylogenetic tree reveals 90 potential species-level clades (based on a delineation value of 98.7% 16S rRNA gene sequence identity) that reside within six genus-level clusters. Hence, the diversity of cable bacteria appears to be substantially larger than the two genera and 13 species that have been officially named up to now. Particularly brackish environments with strong salinity fluctuations, as well as sediments with low free sulfide concentrations and deep sea sediments harbor a large pool of novel and undescribed cable bacteria taxa.
Collapse
Affiliation(s)
- Philip Ley
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jeanine S. Geelhoed
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Diana Vasquez-Cardenas
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Filip J. R. Meysman
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
14
|
Wu B, Liu F, Liang Z, Wang C, Wang S. Spatial distribution of cable bacteria in nationwide organic-matter-polluted urban rivers in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174118. [PMID: 38925373 DOI: 10.1016/j.scitotenv.2024.174118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
An overload of labile organic matter triggers the water blackening and odorization in urban rivers, leading to a unique microbiome driving biogeochemical cycles in these anoxic habitats. Among the key players in these environments, cable bacteria interfere directly with C/N/S/O cycling, and are closely associated with phylogenetically diverse microorganisms in anoxic sediment as an electron conduit to mediate long-distance electron transport from deep-anoxic-layer sulfide to oxic-layer oxygen. Despite their hypothesized importance in black-odorous urban rivers, the spatial distribution patterns and roles of cable bacteria in large-scale polluted urban rivers remain inadequately understood. This study examined the diversity and spatial distribution pattern of cable bacteria in sediment samples from 186 black-odorous urban rivers across China. Results revealed the co-existence of two well-characterized cable bacteria (i.e., Candidatus Electrothrix and Candidatus Electronema), with Candidatus Electrothrix exhibiting a comparatively wider distribution in the polluted urban rivers. Concentrations of DOC, SS, sulfate, nitrate, and heavy metals (e.g., Ni and Cr) were correlated with the cable bacteria diversity, indicating their essential role in biogeochemical cycles. The activation energy of cable bacteria was 0.624 eV, close to the canonical 0.65 eV. Furthermore, cable bacteria were identified as key connectors and module hubs, closely associated with denitrifiers, sulfate-reducing bacteria, methanogens and alkane degraders, highlighting their role as keystone functional lineages in the contaminated urban rivers. Our study provided the first large-scale and comprehensive insight into the cable bacteria diversity, spatial distribution, and their essential function as keystone species in organic-matter-polluted urban rivers.
Collapse
Affiliation(s)
- Bo Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Feifei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Magigene Biotechnology Co. Ltd., 510000 Guangzhou, China
| | - Zhiwei Liang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Chen Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Shanquan Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Yang T, Chavez MS, Niman CM, Xu S, El-Naggar MY. Long-distance electron transport in multicellular freshwater cable bacteria. eLife 2024; 12:RP91097. [PMID: 39207443 PMCID: PMC11361709 DOI: 10.7554/elife.91097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current-voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope's nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 μm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Shuai Xu
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern CaliforniaLos AngelesUnited States
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern CaliforniaLos AngelesUnited States
- Department of Chemistry, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
16
|
Hiralal A, Geelhoed JS, Neukirchen S, Meysman FJR. Comparative genomic analysis of nickel homeostasis in cable bacteria. BMC Genomics 2024; 25:692. [PMID: 39009997 PMCID: PMC11247825 DOI: 10.1186/s12864-024-10594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Cable bacteria are filamentous members of the Desulfobulbaceae family that are capable of performing centimetre‑scale electron transport in marine and freshwater sediments. This long‑distance electron transport is mediated by a network of parallel conductive fibres embedded in the cell envelope. This fibre network efficiently transports electrical currents along the entire length of the centimetre‑long filament. Recent analyses show that these fibres consist of metalloproteins that harbour a novel nickel‑containing cofactor, which indicates that cable bacteria have evolved a unique form of biological electron transport. This nickel‑dependent conduction mechanism suggests that cable bacteria are strongly dependent on nickel as a biosynthetic resource. Here, we performed a comprehensive comparative genomic analysis of the genes linked to nickel homeostasis. We compared the genome‑encoded adaptation to nickel of cable bacteria to related members of the Desulfobulbaceae family and other members of the Desulfobulbales order. RESULTS Presently, four closed genomes are available for the monophyletic cable bacteria clade that consists of the genera Candidatus Electrothrix and Candidatus Electronema. To increase the phylogenomic coverage, we additionally generated two closed genomes of cable bacteria: Candidatus Electrothrix gigas strain HY10‑6 and Candidatus Electrothrix antwerpensis strain GW3‑4, which are the first closed genomes of their respective species. Nickel homeostasis genes were identified in a database of 38 cable bacteria genomes (including 6 closed genomes). Gene prevalence was compared to 19 genomes of related strains, residing within the Desulfobulbales order but outside of the cable bacteria clade, revealing several genome‑encoded adaptations to nickel homeostasis in cable bacteria. Phylogenetic analysis indicates that nickel importers, nickel‑binding enzymes and nickel chaperones of cable bacteria are affiliated to organisms outside the Desulfobulbaceae family, with several proteins showing affiliation to organisms outside of the Desulfobacterota phylum. Conspicuously, cable bacteria encode a unique periplasmic nickel export protein RcnA, which possesses a putative cytoplasmic histidine‑rich loop that has been largely expanded compared to RcnA homologs in other organisms. CONCLUSION Cable bacteria genomes show a clear genetic adaptation for nickel utilization when compared to closely related genera. This fully aligns with the nickel‑dependent conduction mechanism that is uniquely found in cable bacteria.
Collapse
Affiliation(s)
- Anwar Hiralal
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | | | - Sinje Neukirchen
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | - Filip J R Meysman
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
17
|
Dong M, Nielsen LP, Yang S, Klausen LH, Xu M. Cable bacteria: widespread filamentous electroactive microorganisms protecting environments. Trends Microbiol 2024; 32:697-706. [PMID: 38151387 DOI: 10.1016/j.tim.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Cable bacteria have been identified and detected worldwide since their discovery in marine sediments in Aarhus Bay, Denmark. Their activity can account for the majority of oxygen consumption and sulfide depletion in sediments, and they induce sulfate accumulation, pH excursions, and the generation of electric fields. In addition, they can affect the fluxes of other elements such as calcium, iron, manganese, nitrogen, and phosphorous. Recent developments in our understanding of the impact of cable bacteria on element cycling have revealed their positive contributions to mitigating environmental problems, such as recovering self-purification capacity, enhancing petroleum hydrocarbon degradation, alleviating phosphorus eutrophication, delaying euxinia, and reducing methane emission. We highlight recent research outcomes on their distribution, state-of-the-art findings on their physiological characteristics, and ecological contributions.
Collapse
Affiliation(s)
- Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, Guangdong, China
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, Guangdong, China
| | - Lasse Hyldgaard Klausen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, Guangdong, China.
| |
Collapse
|
18
|
Wang Z, Digel L, Yuan Y, Lu H, Yang Y, Vogt C, Richnow HH, Nielsen LP. Electrogenic sulfur oxidation mediated by cable bacteria and its ecological effects. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100371. [PMID: 38283867 PMCID: PMC10821171 DOI: 10.1016/j.ese.2023.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
At the sediment-water interfaces, filamentous cable bacteria transport electrons from sulfide oxidation along their filaments towards oxygen or nitrate as electron acceptors. These multicellular bacteria belonging to the family Desulfobulbaceae thus form a biogeobattery that mediates redox processes between multiple elements. Cable bacteria were first reported in 2012. In the past years, cable bacteria have been found to be widely distributed across the globe. Their potential in shaping the surface water environments has been extensively studied but is not fully elucidated. In this review, the biogeochemical characteristics, conduction mechanisms, and geographical distribution of cable bacteria, as well as their ecological effects, are systematically reviewed and discussed. Novel insights for understanding and applying the role of cable bacteria in aquatic ecology are summarized.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Leonid Digel
- Center for Electromicrobiology, Department of Biology, Aarhus University, DK-8000, Aarhus, Denmark
| | - Yongqiang Yuan
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yonggang Yang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510007, China
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, DK-8000, Aarhus, Denmark
| |
Collapse
|
19
|
Stiefelmaier J, Keller J, Neupert W, Ulber R. Towards bioprocess engineering of cable bacteria: Establishment of a synthetic sediment. Microbiologyopen 2024; 13:e1412. [PMID: 38711353 DOI: 10.1002/mbo3.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
Cable bacteria, characterized by their multicellular filamentous growth, are prevalent in both freshwater and marine sediments. They possess the unique ability to transport electrons over distances of centimeters. Coupled with their capacity to fix CO2 and their record-breaking conductivity for biological materials, these bacteria present promising prospects for bioprocess engineering, including potential electrochemical applications. However, the cultivation of cable bacteria has been limited to their natural sediment, constraining their utility in production processes. To address this, our study designs synthetic sediment, drawing on ion exchange chromatography data from natural sediments and existing literature on the requirements of cable bacteria. We examined the effects of varying bentonite concentrations on water retention and the impacts of different sands. For the first time, we cultivated cable bacteria on synthetic sediment, specifically the freshwater strain Electronema aureum GS. This cultivation was conducted over 10 weeks in a specially developed sediment bioreactor, resulting in an increased density of cable bacteria in the sediment and growth up to a depth of 5 cm. The creation of this synthetic sediment paves the way for the reproducible cultivation of cable bacteria. It also opens up possibilities for future process scale-up using readily available components. This advancement holds significant implications for the broader field of bioprocess engineering.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- Chair of Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Joshua Keller
- Chair of Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Wiebke Neupert
- Chair of Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Roland Ulber
- Chair of Bioprocess Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
20
|
Zhuang X, Wang S, Wu S. Electron Transfer in the Biogeochemical Sulfur Cycle. Life (Basel) 2024; 14:591. [PMID: 38792612 PMCID: PMC11123123 DOI: 10.3390/life14050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing their crucial roles in ecological processes. In this review, we delve into the electron transfer process between sulfate-reducing bacteria and anaerobic alkane-oxidizing archaea, which facilitates growth within syntrophic communities. Furthermore, we review the phenomenon of long-distance electron transfer and potential extracellular electron transfer in multicellular filamentous sulfur-oxidizing bacteria. These bacteria, with their vast application prospects and ecological significance, play a pivotal role in various ecological processes. Subsequently, we discuss the important role of the pili/cytochrome for electron transfer and presented cutting-edge approaches for exploring and studying electroactive microorganisms. This review provides a comprehensive overview of electroactive microorganisms participating in the biogeochemical sulfur cycle. By examining their electron transfer mechanisms, and the potential ecological and applied implications, we offer novel insights into microbial sulfur metabolism, thereby advancing applications in the development of sustainable bioelectronics materials and bioremediation technologies.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Xiong X, Li Y, Zhang C. Cable bacteria: Living electrical conduits for biogeochemical cycling and water environment restoration. WATER RESEARCH 2024; 253:121345. [PMID: 38394932 DOI: 10.1016/j.watres.2024.121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Since the discovery of multicellular cable bacteria in marine sediments in 2012, they have attracted widespread attention and interest due to their unprecedented ability to generate and transport electrical currents over centimeter-scale long-range distances. The cosmopolitan distribution of cable bacteria in both marine and freshwater systems, along with their substantial impact on local biogeochemistry, has uncovered their important role in element cycling and ecosystem functioning of aquatic environments. Considerable research efforts have been devoted to the potential utilization of cable bacteria for various water management purposes during the past few years. However, there lacks a critical summary on the advances and contributions of cable bacteria to biogeochemical cycles and water environment restoration. This review aims to provide an up-to-date and comprehensive overview of the current research on cable bacteria, with a particular view on their participation in aquatic biogeochemical cycles and promising applications in water environment restoration. It systematically analyzes (i) the global distribution of cable bacteria in aquatic ecosystems and the major environmental factors affecting their survival, diversity, and composition, (ii) the interactive associations between cable bacteria and other microorganisms as well as aquatic plants and infauna, (iii) the underlying role of cable bacteria in sedimentary biogeochemical cycling of essential elements including but not limited to sulfur, iron, phosphorus, and nitrogen, (iv) the practical explorations of cable bacteria for water pollution control, greenhouse gas emission reduction, aquatic ecological environment restoration, as well as possible combinations with other water remediation technologies. It is believed to give a step-by-step introduction to progress on cable bacteria, highlight key findings, opportunities and challenges of using cable bacteria for water environment restoration, and propose directions for further exploration.
Collapse
Affiliation(s)
- Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China.
| | - Chi Zhang
- College of Materials Science and Engineering, Hohai University, Changzhou 213200, PR China.
| |
Collapse
|
22
|
Smets B, Boschker HTS, Wetherington MT, Lelong G, Hidalgo-Martinez S, Polerecky L, Nuyts G, De Wael K, Meysman FJR. Multi-wavelength Raman microscopy of nickel-based electron transport in cable bacteria. Front Microbiol 2024; 15:1208033. [PMID: 38525072 PMCID: PMC10959288 DOI: 10.3389/fmicb.2024.1208033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Cable bacteria embed a network of conductive protein fibers in their cell envelope that efficiently guides electron transport over distances spanning up to several centimeters. This form of long-distance electron transport is unique in biology and is mediated by a metalloprotein with a sulfur-coordinated nickel (Ni) cofactor. However, the molecular structure of this cofactor remains presently unknown. Here, we applied multi-wavelength Raman microscopy to identify cell compounds linked to the unique cable bacterium physiology, combined with stable isotope labeling, and orientation-dependent and ultralow-frequency Raman microscopy to gain insight into the structure and organization of this novel Ni-cofactor. Raman spectra of native cable bacterium filaments reveal vibrational modes originating from cytochromes, polyphosphate granules, proteins, as well as the Ni-cofactor. After selective extraction of the conductive fiber network from the cell envelope, the Raman spectrum becomes simpler, and primarily retains vibrational modes associated with the Ni-cofactor. These Ni-cofactor modes exhibit intense Raman scattering as well as a strong orientation-dependent response. The signal intensity is particularly elevated when the polarization of incident laser light is parallel to the direction of the conductive fibers. This orientation dependence allows to selectively identify the modes that are associated with the Ni-cofactor. We identified 13 such modes, some of which display strong Raman signals across the entire range of applied wavelengths (405-1,064 nm). Assignment of vibrational modes, supported by stable isotope labeling, suggest that the structure of the Ni-cofactor shares a resemblance with that of nickel bis(1,2-dithiolene) complexes. Overall, our results indicate that cable bacteria have evolved a unique cofactor structure that does not resemble any of the known Ni-cofactors in biology.
Collapse
Affiliation(s)
- Bent Smets
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Henricus T. S. Boschker
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Maxwell T. Wetherington
- Materials Characterization Laboratory, Pennsylvania State University, State College, PA, United States
| | - Gérald Lelong
- Institut de Minéralogie, de Physique des Matériaux et Cosmochimie (IMPMC), Sorbonne Universités, France—Muséum National d’Histoire Naturelle, Paris, France
| | | | - Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Nuyts
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Karolien De Wael
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip J. R. Meysman
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
23
|
Digel L, Mierzwa M, Bonné R, Zieger SE, Pavel IA, Ferapontova E, Koren K, Boesen T, Harnisch F, Marshall IPG, Nielsen LP, Kuhn A. Cable Bacteria Skeletons as Catalytically Active Electrodes. Angew Chem Int Ed Engl 2024; 63:e202312647. [PMID: 38018379 DOI: 10.1002/anie.202312647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Cable bacteria are multicellular, filamentous bacteria that use internal conductive fibers to transfer electrons over centimeter distances from donors within anoxic sediment layers to oxygen at the surface. We extracted the fibers and used them as free-standing bio-based electrodes to investigate their electrocatalytic behavior. The fibers catalyzed the reversible interconversion of oxygen and water, and an electric current was running through the fibers even when the potential difference was generated solely by a gradient of oxygen concentration. Oxygen reduction as well as oxygen evolution were confirmed by optical measurements. Within living cable bacteria, oxygen reduction by direct electrocatalysis on the fibers and not by membrane-bound proteins readily explains exceptionally high cell-specific oxygen consumption rates observed in the oxic zone, while electrocatalytic water oxidation may provide oxygen to cells in the anoxic zone.
Collapse
Affiliation(s)
- Leonid Digel
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Maciej Mierzwa
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Robin Bonné
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Silvia E Zieger
- Aarhus University Center for Water Technology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | | | - Elena Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
| | - Klaus Koren
- Aarhus University Center for Water Technology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Thomas Boesen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Falk Harnisch
- Department of Microbial Biotechnology, Helmholtz-Centre for Environmental Research GmbH-UFZ, 04318, Leipzig, Germany
| | - Ian P G Marshall
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| |
Collapse
|
24
|
Hiralal A, Geelhoed JS, Hidalgo-Martinez S, Smets B, van Dijk JR, Meysman FJR. Closing the genome of unculturable cable bacteria using a combined metagenomic assembly of long and short sequencing reads. Microb Genom 2024; 10:001197. [PMID: 38376381 PMCID: PMC10926707 DOI: 10.1099/mgen.0.001197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Many environmentally relevant micro-organisms cannot be cultured, and even with the latest metagenomic approaches, achieving complete genomes for specific target organisms of interest remains a challenge. Cable bacteria provide a prominent example of a microbial ecosystem engineer that is currently unculturable. They occur in low abundance in natural sediments, but due to their capability for long-distance electron transport, they exert a disproportionately large impact on the biogeochemistry of their environment. Current available genomes of marine cable bacteria are highly fragmented and incomplete, hampering the elucidation of their unique electrogenic physiology. Here, we present a metagenomic pipeline that combines Nanopore long-read and Illumina short-read shotgun sequencing. Starting from a clonal enrichment of a cable bacterium, we recovered a circular metagenome-assembled genome (5.09 Mbp in size), which represents a novel cable bacterium species with the proposed name Candidatus Electrothrix scaldis. The closed genome contains 1109 novel identified genes, including key metabolic enzymes not previously described in incomplete genomes of cable bacteria. We examined in detail the factors leading to genome closure. Foremost, native, non-amplified long reads are crucial to resolve the many repetitive regions within the genome of cable bacteria, and by analysing the whole metagenomic assembly, we found that low strain diversity is key for achieving genome closure. The insights and approaches presented here could help achieve genome closure for other keystone micro-organisms present in complex environmental samples at low abundance.
Collapse
Affiliation(s)
- Anwar Hiralal
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | | | | | - Bent Smets
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | | | - Filip J. R. Meysman
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
25
|
van der Veen JR, Valianti S, van der Zant HSJ, Blanter YM, Meysman FJR. A model analysis of centimeter-long electron transport in cable bacteria. Phys Chem Chem Phys 2024; 26:3139-3151. [PMID: 38189548 DOI: 10.1039/d3cp04466a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The recent discovery of cable bacteria has greatly expanded the known length scale of biological electron transport, as these multi-cellular bacteria are capable of mediating electrical currents across centimeter-scale distances. To enable such long-range conduction, cable bacteria embed a network of regularly spaced, parallel protein fibers in their cell envelope. These fibers exhibit extraordinary electrical properties for a biological material, including an electrical conductivity that can exceed 100 S cm-1. Traditionally, long-range electron transport through proteins is described as a multi-step hopping process, in which the individual hopping steps are described by Marcus electron transport theory. Here, we investigate to what extent such a classical hopping model can explain the conductance data recorded for individual cable bacterium filaments. To this end, the conductive fiber network in cable bacteria is modelled as a set of parallel one-dimensional hopping chains. Comparison of model simulated and experimental current(I)/voltage(V) curves, reveals that the charge transport is field-driven rather than concentration-driven, and there is no significant injection barrier between electrodes and filaments. However, the observed high conductivity levels (>100 S cm-1) can only be reproduced, if we include much longer hopping distances (a > 10 nm) and lower reorganisation energies (λ < 0.2 eV) than conventionally used in electron relay models of protein structures. Overall, our model analysis suggests that the conduction mechanism in cable bacteria is markedly distinct from other known forms of long-range biological electron transport, such as in multi-heme cytochromes.
Collapse
Affiliation(s)
- Jasper R van der Veen
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, 2628CJ, The Netherlands.
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Stephanie Valianti
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, 2628CJ, The Netherlands.
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, 2628CJ, The Netherlands.
| | - Yaroslav M Blanter
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, 2628CJ, The Netherlands.
| | - Filip J R Meysman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
- Excellence center for Microbial Systems Technology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium.
| |
Collapse
|
26
|
Geelhoed JS, Thorup CA, Bjerg JJ, Schreiber L, Nielsen LP, Schramm A, Meysman FJR, Marshall IPG. Indications for a genetic basis for big bacteria and description of the giant cable bacterium Candidatus Electrothrix gigas sp. nov. Microbiol Spectr 2023; 11:e0053823. [PMID: 37732806 PMCID: PMC10580974 DOI: 10.1128/spectrum.00538-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Bacterial cells can vary greatly in size, from a few hundred nanometers to hundreds of micrometers in diameter. Filamentous cable bacteria also display substantial size differences, with filament diameters ranging from 0.4 to 8 µm. We analyzed the genomes of cable bacterium filaments from 11 coastal environments of which the resulting 23 new genomes represent 10 novel species-level clades of Candidatus Electrothrix and two clades that putatively represent novel genus-level diversity. Fluorescence in situ hybridization with a species-level probe showed that large-sized cable bacteria belong to a novel species with the proposed name Ca. Electrothrix gigas. Comparative genome analysis suggests genes that play a role in the construction or functioning of large cable bacteria cells: the genomes of Ca. Electrothrix gigas encode a novel actin-like protein as well as a species-specific gene cluster encoding four putative pilin proteins and a putative type II secretion platform protein, which are not present in other cable bacteria. The novel actin-like protein was also found in a number of other giant bacteria, suggesting there could be a genetic basis for large cell size. This actin-like protein (denoted big bacteria protein, Bbp) may have a function analogous to other actin proteins in cell structure or intracellular transport. We contend that Bbp may help overcome the challenges of diffusion limitation and/or morphological complexity presented by the large cells of Ca. Electrothrix gigas and other giant bacteria. IMPORTANCE In this study, we substantially expand the known diversity of marine cable bacteria and describe cable bacteria with a large diameter as a novel species with the proposed name Candidatus Electrothrix gigas. In the genomes of this species, we identified a gene that encodes a novel actin-like protein [denoted big bacteria protein (Bbp)]. The bbp gene was also found in a number of other giant bacteria, predominantly affiliated to Desulfobacterota and Gammaproteobacteria, indicating that there may be a genetic basis for large cell size. Thus far, mostly structural adaptations of giant bacteria, vacuoles, and other inclusions or organelles have been observed, which are employed to overcome nutrient diffusion limitation in their environment. In analogy to other actin proteins, Bbp could fulfill a structural role in the cell or potentially facilitate intracellular transport.
Collapse
Affiliation(s)
- Jeanine S. Geelhoed
- Department of Biology, Research Group Geobiology, University of Antwerp, Wilrijk, Belgium
| | - Casper A. Thorup
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Jesper J. Bjerg
- Department of Biology, Research Group Geobiology, University of Antwerp, Wilrijk, Belgium
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Lars Schreiber
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Lars Peter Nielsen
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Filip J. R. Meysman
- Department of Biology, Research Group Geobiology, University of Antwerp, Wilrijk, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ian P. G. Marshall
- Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Sereika M, Petriglieri F, Jensen TBN, Sannikov A, Hoppe M, Nielsen PH, Marshall IPG, Schramm A, Albertsen M. Closed genomes uncover a saltwater species of Candidatus Electronema and shed new light on the boundary between marine and freshwater cable bacteria. THE ISME JOURNAL 2023; 17:561-569. [PMID: 36697964 PMCID: PMC10030654 DOI: 10.1038/s41396-023-01372-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Cable bacteria of the Desulfobulbaceae family are centimeter-long filamentous bacteria, which are capable of conducting long-distance electron transfer. Currently, all cable bacteria are classified into two candidate genera: Candidatus Electronema, typically found in freshwater environments, and Candidatus Electrothrix, typically found in saltwater environments. This taxonomic framework is based on both 16S rRNA gene sequences and metagenome-assembled genome (MAG) phylogenies. However, most of the currently available MAGs are highly fragmented, incomplete, and thus likely miss key genes essential for deciphering the physiology of cable bacteria. Also, a closed, circular genome of cable bacteria has not been published yet. To address this, we performed Nanopore long-read and Illumina short-read shotgun sequencing of selected environmental samples and a single-strain enrichment of Ca. Electronema aureum. We recovered multiple cable bacteria MAGs, including two circular and one single-contig. Phylogenomic analysis, also confirmed by 16S rRNA gene-based phylogeny, classified one circular MAG and the single-contig MAG as novel species of cable bacteria, which we propose to name Ca. Electronema halotolerans and Ca. Electrothrix laxa, respectively. The Ca. Electronema halotolerans, despite belonging to the previously recognized freshwater genus of cable bacteria, was retrieved from brackish-water sediment. Metabolic predictions showed several adaptations to a high salinity environment, similar to the "saltwater" Ca. Electrothrix species, indicating how Ca. Electronema halotolerans may be the evolutionary link between marine and freshwater cable bacteria lineages.
Collapse
Affiliation(s)
- Mantas Sereika
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | | | | | - Artur Sannikov
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Morten Hoppe
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | | | - Ian P G Marshall
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
28
|
Liu M, Graham NJD, Xu L, Zhang K, Yu W. Bubbleless Air Shapes Biofilms and Facilitates Natural Organic Matter Transformation in Biological Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4543-4555. [PMID: 36877961 DOI: 10.1021/acs.est.2c08889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The biodegradation in the middle and downstream of slow-rate biological activated carbon (BAC) is limited by insufficient dissolved oxygen (DO) concentrations. In this study, a bubbleless aerated BAC (termed ABAC) process was developed by installing a hollow fiber membrane (HFM) module within a BAC filter to continuously provide aeration throughout the BAC system. The BAC filter without an HFM was termed NBAC. The laboratory-scale ABAC and NBAC systems operated continuously for 426 days using secondary sewage effluent as an influent. The DO concentrations for NBAC and ABAC were 0.78 ± 0.27 and 4.31 ± 0.44 mg/L, respectively, with the latter providing the ABAC with greater electron acceptors for biodegradation and a microbial community with better biodegradation and metabolism capacity. The biofilms in ABAC secreted 47.3% less EPS and exhibited greater electron transfer capacity than those in NBAC, resulting in enhanced contaminant degradation efficiency and long-term stability. The extra organic matter removed by ABAC included refractory substances with a low elemental ratio of oxygen to carbon (O/C) and a high elemental ratio of hydrogen to carbon (H/C). The proposed ABAC filter provides a valuable, practical example of how to modify the BAC technology to shape the microbial community, and its activity, by optimizing the ambient atmosphere.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| |
Collapse
|
29
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
30
|
Bonanni V, Gianoncelli A. Soft X-ray Fluorescence and Near-Edge Absorption Microscopy for Investigating Metabolic Features in Biological Systems: A Review. Int J Mol Sci 2023; 24:ijms24043220. [PMID: 36834632 PMCID: PMC9960606 DOI: 10.3390/ijms24043220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Scanning transmission X-ray microscopy (STXM) provides the imaging of biological specimens allowing the parallel collection of localized spectroscopic information by X-ray fluorescence (XRF) and/or X-ray Absorption Near Edge Spectroscopy (XANES). The complex metabolic mechanisms which can take place in biological systems can be explored by these techniques by tracing even small quantities of the chemical elements involved in the metabolic pathways. Here, we present a review of the most recent publications in the synchrotrons' scenario where soft X-ray spectro-microscopy has been employed in life science as well as in environmental research.
Collapse
|
31
|
Liau P, Kim C, Saxton MA, Malkin SY. Microbial succession in a marine sediment: Inferring interspecific microbial interactions with marine cable bacteria. Environ Microbiol 2022; 24:6348-6364. [PMID: 36178156 PMCID: PMC10092204 DOI: 10.1111/1462-2920.16230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 01/12/2023]
Abstract
Cable bacteria are long, filamentous, multicellular bacteria that grow in marine sediments and couple sulfide oxidation to oxygen reduction over centimetre-scale distances via long-distance electron transport. Cable bacteria can strongly modify biogeochemical cycling and may affect microbial community networks. Here we examine interspecific interactions with marine cable bacteria (Ca. Electrothrix) by monitoring the succession of 16S rRNA amplicons (DNA and RNA) and cell abundance across depth and time, contrasting sediments with and without cable bacteria growth. In the oxic zone, cable bacteria activity was positively associated with abundant predatory bacteria (Bdellovibrionota, Myxococcota, Bradymonadales), indicating putative predation on cathodic cells. At suboxic depths, cable bacteria activity was positively associated with sulfate-reducing and magnetotactic bacteria, consistent with cable bacteria functioning as ecosystem engineers that modify their local biogeochemical environment, benefitting certain microbes. Cable bacteria activity was negatively associated with chemoautotrophic sulfur-oxidizing Gammaproteobacteria (Thiogranum, Sedimenticola) at oxic depths, suggesting competition, and positively correlated with these taxa at suboxic depths, suggesting syntrophy and/or facilitation. These observations are consistent with chemoautotrophic sulfur oxidizers benefitting from an oxidizing potential imparted by cable bacteria at suboxic depths, possibly by using cable bacteria as acceptors for electrons or electron equivalents, but by an as yet enigmatic mechanism.
Collapse
Affiliation(s)
- Pinky Liau
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| | - Carol Kim
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| | - Matthew A Saxton
- Department of Biological Sciences, Miami University, Middletown, Ohio, USA
| | - Sairah Y Malkin
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| |
Collapse
|
32
|
Hassanzadeh R, Sabzi RE, Faraji M. Detailed investigation the impact of biofilm formation and cathode limitations on electrochemical performance of biofuel cell. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Dong M, Yang S, Yang X, Xu M, Hu W, Wang B, Huang Y, Xu J, Lu H, Yang Y, Chen X, Huang H, Sun G. Water quality drives the distribution of freshwater cable bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156468. [PMID: 35660596 DOI: 10.1016/j.scitotenv.2022.156468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Cable bacteria are a group of recently found filamentous sulfide-oxidizing Desulfobulbaceae that significantly impact biogeochemical cycling. However, the limited understanding of cable bacteria distribution patterns and the driving force hindered our abilities to evaluate and maximize their contribution to environmental health. We evaluated cable bacteria assemblages from ten river sediments in the Pearl River Delta, China. The results revealed a clear biogeographic distribution pattern of cable bacteria, and their communities were deterministically assembled through water quality-driven selection. Cable bacteria are diverse in the river sediments with a few generalists and many specialists, and the water quality IV and V environments are the "hot spot." We then provided evidence on their morphology, function, and genome to demonstrate how water quality might shape the cable bacteria assemblages. Reduced cell width, inhibited function, and water quality-related adaptive genomic traits were detected in sulfide-limited water quality III and contaminant-stressed water quality VI environments. Specifically, those genomic traits were contributed to carbon and sulfur metabolism in the water quality III environment and stress resistance in the water quality VI environment. Overall, these findings provided a helpful baseline in evaluating the contribution of cable bacteria in the freshwater ecosystem and suggested that their high diversity and flexibility in phylogeny, morphology, and genome allowed them to adapt and contribute to various environmental conditions.
Collapse
Affiliation(s)
- Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Wenzhe Hu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Youda Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Jiarou Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Huibin Lu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Yonggang Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xingjuan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Haobin Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
34
|
Checa M, Jin X, Millan-Solsona R, Neumayer SM, Susner MA, McGuire MA, O'Hara A, Gomila G, Maksymovych P, Pantelides ST, Collins L. Revealing Fast Cu-Ion Transport and Enhanced Conductivity at the CuInP 2S 6-In 4/3P 2S 6 Heterointerface. ACS NANO 2022; 16:15347-15357. [PMID: 35998341 DOI: 10.1021/acsnano.2c06992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Van der Waals layered ferroelectrics, such as CuInP2S6 (CIPS), offer a versatile platform for miniaturization of ferroelectric device technologies. Control of the targeted composition and kinetics of CIPS synthesis enables the formation of stable self-assembled heterostructures of ferroelectric CIPS and nonferroelectric In4/3P2S6 (IPS). Here, we use quantitative scanning probe microscopy methods combined with density functional theory (DFT) to explore in detail the nanoscale variability in dynamic functional properties of the CIPS-IPS heterostructure. We report evidence of fast ionic transport which mediates an appreciable out-of-plane electromechanical response of the CIPS surface in the paraelectric phase. Further, we map the nanoscale dielectric and ionic conductivity properties as we thermally stimulate the ferroelectric-paraelectric phase transition, recovering the local dielectric behavior during this phase transition. Finally, aided by DFT, we reveal a substantial and tunable conductivity enhancement at the CIPS/IPS interface, indicating the possibility of engineering its interfacial properties for next generation device applications.
Collapse
Affiliation(s)
- Marti Checa
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xin Jin
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruben Millan-Solsona
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| | - Sabine M Neumayer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael A Susner
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Michael A McGuire
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Andrew O'Hara
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Gabriel Gomila
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| | - Petro Maksymovych
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sokrates T Pantelides
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
35
|
Li C, Reimers CE, Chace PJ. Protocol for using autoclaved intertidal sediment as a medium to enrich marine cable bacteria. STAR Protoc 2022; 3:101604. [PMID: 35990745 PMCID: PMC9389416 DOI: 10.1016/j.xpro.2022.101604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cable bacteria (CB) are non-isolated filamentous bacteria in the family of Desulfobulbaceae, known for fostering centimeter-long electron transfer in sediments with pronounced redox zonation. This protocol details steps to extract CB filaments from cultured natural sediment, inoculate autoclaved sediment with extracted filaments, and subsequently evaluate the growth and enrichment of CB. We also describe the approaches for collecting suitable sediment, preparing autoclaved sediment, and manufacturing glass needles and hooks for the extraction of CB. Prepare autoclaved sediment as an enrichment medium for cable bacteria Manufacture glass needles and hooks as tools to extract cable bacteria Video demonstration of cable bacteria extraction and autoclaved sediment inoculation Recover prolific cable bacteria biomass grown in autoclaved sediment
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
36
|
Bonné R, Wouters K, Lustermans JJM, Manca JV. Biomaterials and Electroactive Bacteria for Biodegradable Electronics. Front Microbiol 2022; 13:906363. [PMID: 35794922 PMCID: PMC9252516 DOI: 10.3389/fmicb.2022.906363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
The global production of unrecycled electronic waste is extensively growing each year, urging the search for alternatives in biodegradable electronic materials. Electroactive bacteria and their nanowires have emerged as a new route toward electronic biological materials (e-biologics). Recent studies on electron transport in cable bacteria—filamentous, multicellular electroactive bacteria—showed centimeter long electron transport in an organized conductive fiber structure with high conductivities and remarkable intrinsic electrical properties. In this work we give a brief overview of the recent advances in biodegradable electronics with a focus on the use of biomaterials and electroactive bacteria, and with special attention for cable bacteria. We investigate the potential of cable bacteria in this field, as we compare the intrinsic electrical properties of cable bacteria to organic and inorganic electronic materials. Based on their intrinsic electrical properties, we show cable bacteria filaments to have great potential as for instance interconnects and transistor channels in a new generation of bioelectronics. Together with other biomaterials and electroactive bacteria they open electrifying routes toward a new generation of biodegradable electronics.
Collapse
Affiliation(s)
- Robin Bonné
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
- *Correspondence: Robin Bonné,
| | | | - Jamie J. M. Lustermans
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
37
|
Lewis DK, Oh Y, Mohanam LN, Wierzbicki M, Ing NL, Gu L, Hochbaum A, Wu R, Cui Q, Sharifzadeh S. Electronic Structure of de Novo Peptide ACC-Hex from First Principles. J Phys Chem B 2022; 126:4289-4298. [PMID: 35671500 DOI: 10.1021/acs.jpcb.2c02346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proteins are promising components for bioelectronic devices due in part to their biocompatibility, flexibility, and chemical diversity, which enable tuning of material properties. Indeed, an increasingly broad range of conductive protein supramolecular materials have been reported. However, due to their structural and environmental complexity, the electronic structure, and hence conductivity, of protein assemblies is not well-understood. Here we perform an all-atom simulation of the physical and electronic structure of a recently synthesized self-assembled peptide antiparallel coiled-coil hexamer, ACC-Hex. Using classical molecular dynamics and first-principles density functional theory, we examine the interactions of each peptide, containing phenylalanine residues along a hydrophobic core, to form a hexamer structure. We find that while frontier electronic orbitals are composed of phenylalanine, the peptide backbone and remaining residues, including those influenced by solvent, also contribute to the electronic density. Additionally, by studying dimers extracted from the hexamer, we show that structural distortions due to atomic fluctuations significantly impact the electronic structure of the peptide bundle. These results indicate that it is necessary to consider the full atomistic picture when using the electronic structure of supramolecular protein complexes to predict electronic properties.
Collapse
Affiliation(s)
- D Kirk Lewis
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Younghoon Oh
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Luke Nambi Mohanam
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Michał Wierzbicki
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Nicole L Ing
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Lei Gu
- Department of Physics, University of California Irvine, Irvine, California 92697, United States
| | - Allon Hochbaum
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Ruqian Wu
- Department of Physics, University of California Irvine, Irvine, California 92697, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Sahar Sharifzadeh
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
38
|
Abstract
In this Quick guide, Derek Lovley introduces microbial nanowires-conductive extracellular appendages made by some bacteria and archaea.
Collapse
Affiliation(s)
- Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China; Department of Microbiology and Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
39
|
Cahen D, Pecht I, Sheves M. What Can We Learn from Protein-Based Electron Transport Junctions? J Phys Chem Lett 2021; 12:11598-11603. [PMID: 34852460 PMCID: PMC8647078 DOI: 10.1021/acs.jpclett.1c02446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- David Cahen
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Israel Pecht
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | | |
Collapse
|
40
|
Malkin S, Cardini U. Facilitative interactions on the rise: cable bacteria associate with diverse aquatic plants. THE NEW PHYTOLOGIST 2021; 232:1897-1900. [PMID: 34453754 DOI: 10.1111/nph.17664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Sairah Malkin
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, MD, 21613, USA
| | - Ulisse Cardini
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Napoli, 80121, Italy
| |
Collapse
|
41
|
Lozano H, Millan-Solsona R, Blanco-Cabra N, Fabregas R, Torrents E, Gomila G. Electrical properties of outer membrane extensions from Shewanella oneidensis MR-1. NANOSCALE 2021; 13:18754-18762. [PMID: 34747424 DOI: 10.1039/d1nr04689f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shewanella oneidensis MR-1 is a metal-reducing bacterium that is able to exchange electrons with solid-phase minerals outside the cell. These bacterial cells can produce outer membrane extensions (OMEs) that are tens of nanometers wide and several microns long. The capability of these OMEs to transport electrons is currently under investigation. Tubular chemically fixed OMEs from S. oneidensis have shown good dc conducting properties when measured in an air environment. However, no direct demonstration of the conductivity of the more common bubble-like OMEs has been provided yet, due to the inherent difficulties in measuring it. In the present work, we measured the electrical properties of bubble-like OMEs in a dry air environment by Scanning Dielectric Microscopy (SDM) in force detection mode. We found that at the frequency of the measurements (∼2 kHz), OMEs show an insulating behavior, with an equivalent homogeneous dielectric constant εOME = 3.7 ± 0.7 and no dephasing between the applied ac voltage and the measured ac electric force. The dielectric constant measured for the OMEs is comparable to that obtained for insulating supramolecular protein structures (εprotein = 3-4), pointing towards a rich protein composition of the OMEs, probably coming from the periplasm. Based on the detection sensitivity of the measuring instrument, the upper limit for the ac longitudinal conductivity of bubble-like OMEs in a dry air environment has been set to σOME,ac < 10-5 S m-1, a value several orders of magnitude smaller than the dc conductivity measured in tubular chemically fixed OMEs. The lack of conductivity of bubble-like OMEs can be attributed to the relatively large separation between cytochromes in these larger OMEs and to the suppression of cytochrome mobility due to the dry environmental conditions.
Collapse
Affiliation(s)
- Helena Lozano
- Nanoscale bioelectric characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
| | - Ruben Millan-Solsona
- Nanoscale bioelectric characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franqués 1, 08028, Barcelona, Spain
| | - Nuria Blanco-Cabra
- Bacterial infections and antimicrobial therapies, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain
| | - Rene Fabregas
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Eduard Torrents
- Bacterial infections and antimicrobial therapies, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Gabriel Gomila
- Nanoscale bioelectric characterization, Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, c/Martí i Franqués 1, 08028, Barcelona, Spain
| |
Collapse
|
42
|
Boedicker JQ, Gangan M, Naughton K, Zhao F, Gralnick JA, El-Naggar MY. Engineering Biological Electron Transfer and Redox Pathways for Nanoparticle Synthesis. Bioelectricity 2021; 3:126-135. [PMID: 34476388 DOI: 10.1089/bioe.2021.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many species of bacteria are naturally capable of types of electron transport not observed in eukaryotic cells. Some species live in environments containing heavy metals not typically encountered by cells of multicellular organisms, such as arsenic, cadmium, and mercury, leading to the evolution of enzymes to deal with these environmental toxins. Bacteria also inhabit a variety of extreme environments, and are capable of respiration even in the absence of oxygen as a terminal electron acceptor. Over the years, several of these exotic redox and electron transport pathways have been discovered and characterized in molecular-level detail, and more recently synthetic biology has begun to utilize these pathways to engineer cells capable of detecting and processing a variety of metals and semimetals. One such application is the biologically controlled synthesis of nanoparticles. This review will introduce the basic concepts of bacterial metal reduction, summarize recent work in engineering bacteria for nanoparticle production, and highlight the most cutting-edge work in the characterization and application of bacterial electron transport pathways.
Collapse
Affiliation(s)
- James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Manasi Gangan
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Kyle Naughton
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Fengjie Zhao
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA.,Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|