1
|
Daniels M, Castro J, Lee YT, Gotur D, Knockenhauer KE, Grigoriu S, Lockbaum GJ, Cheong JE, Lu C, Brennan D, Buker SM, Liu J, Yao S, Sparling BA, Sickmier EA, Ribich S, Blakemore SJ, Silver SJ, Boriack-Sjodin PA, Duncan KW, Copeland RA. Discovery of ATX968: An Orally Available Allosteric Inhibitor of DHX9. J Med Chem 2025; 68:9537-9554. [PMID: 40298172 PMCID: PMC12067447 DOI: 10.1021/acs.jmedchem.5c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
DHX9 is an RNA/DNA helicase integral in the maintenance of genome stability that has emerged as an attractive target for oncology drug discovery. Disclosed herein is the discovery and optimization of a series of DHX9 inhibitors. Compound 1 was identified as a partial inhibitor of DHX9 ATPase activity but a full inhibitor of unwinding activity. Binding of 1 to a pocket distinct from the ATP binding site was confirmed by X-ray crystallography, enabling structure-based drug optimization. During this optimization, a sulfur-halogen bond was identified that increased on-target residence time without impacting equilibrium binding affinity. Analysis shows that cell potency more closely correlates with residence time than with equilibrium measurements of binding affinity or biochemical potency. Further optimization of potency and ADME properties led to the identification of ATX968, a potent and selective DHX9 inhibitor that is efficacious in a tumor xenograft model of microsatellite instability-high (MSI-H) colorectal cancer.
Collapse
Affiliation(s)
| | - Jennifer Castro
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Young-Tae Lee
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Deepali Gotur
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Kevin E. Knockenhauer
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Simina Grigoriu
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | | | | | | | - David Brennan
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | | | - Julie Liu
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Shihua Yao
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | - Brian A. Sparling
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | | | | | | | - Serena J. Silver
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | | | - Kenneth W. Duncan
- Accent Therapeutics, Inc., 1050 Waltham Street, Lexington, Massachusetts 02421, United States
| | | |
Collapse
|
2
|
Vrooman LA, Gieske MC, Lawson C, Cesare J, Zhang S, Bartolomei MS, Garcia BA, Hassold TJ, Hunt PA. Effect of Brief Maternal Exposure to Bisphenol A on the Fetal Female Germline in a Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47002. [PMID: 40036665 PMCID: PMC11980919 DOI: 10.1289/ehp15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Environmental contamination by endocrine-disrupting chemicals (EDCs) has created serious public health, ecological, and regulatory concerns. Prenatal exposures can affect a wide range of developing organ systems and are associated with adverse changes to behavior, metabolism, fertility, and disease risk in the adult. The most serious and puzzling observation for some EDC exposures is the transmission of effects to subsequent unexposed generations (transgenerational effects) in animal models. This requires the induction of epigenetic aberrations to the germline that are not subject to the normal processes of erasure and resetting in subsequent generations. Understanding when and how the germline is vulnerable to environmental contaminants is an essential first step in devising strategies to prevent and reverse their effects. METHODS Fetal mouse oocytes were collected after exposure of the dam to various concentrations of bisphenol A (BPA) or placebo. Meiotic effects were assessed by immunostaining to visualize the synaptonemal complex and recombination sites, as well as whole chromosome fluorescence in situ hybridization probes. Enriched oocyte pools were analyzed by mass spectrometry and RNA sequencing to determine differences in histone posttranslational modifications and gene expression, respectively. RESULTS We found germline effects across a wide range of exposure levels, the severity of which was positively associated with BPA concentration. We identified the onset of meiotic prophase as the vulnerable window of exposure and found surprising exposure-related differences in chromatin. Oocyte analysis by mass spectrometry and immunofluorescence suggested H4K20me2, a histone posttranslational modification involved in DNA damage repair, was particularly affected. Subsequent RNA-seq analysis revealed a relatively small number of differentially expressed genes, but in addition to genes involved in chromatin dynamics, several with important roles in DNA repair/recombination and centromere stability were affected. DISCUSSION Together, our data from a mouse model suggest BPA exposure induced complex molecular differences in the germline that dysregulated chromatin and affected several critical and interrelated meiotic pathways. https://doi.org/10.1289/EHP15046.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Mary C. Gieske
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Joseph Cesare
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuo Zhang
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A. Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Terry J. Hassold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Castro J, Daniels MH, Brennan D, Johnston B, Gotur D, Lee YT, Knockenhauer KE, Lu C, Wu J, Nayak S, Collins C, Bansal R, Buker SM, Case A, Liu J, Yao S, Sparling BA, Sickmier EA, Silver SJ, Blakemore SJ, Boriack-Sjodin PA, Duncan KW, Ribich S, Copeland RA. A Potent, Selective, Small-Molecule Inhibitor of DHX9 Abrogates Proliferation of Microsatellite Instable Cancers with Deficient Mismatch Repair. Cancer Res 2025; 85:758-776. [PMID: 39589774 PMCID: PMC11831107 DOI: 10.1158/0008-5472.can-24-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
DHX9 is a multifunctional DExH-box RNA helicase with important roles in the regulation of transcription, translation, and maintenance of genome stability. Elevated expression of DHX9 is evident in multiple cancer types, including colorectal cancer. Microsatellite instable-high (MSI-H) tumors with deficient mismatch repair (dMMR) display a strong dependence on DHX9, making this helicase an attractive target for oncology drug discovery. In this report, we show that DHX9 knockdown increased RNA/DNA secondary structures and replication stress, resulting in cell-cycle arrest and the onset of apoptosis in cancer cells with MSI-H/dMMR. ATX968 was identified as a potent and selective inhibitor of DHX9 helicase activity. Chemical inhibition of DHX9 enzymatic activity elicited similar selective effects on cell proliferation as seen with genetic knockdown. In addition, ATX968 induced robust and durable responses in an MSI-H/dMMR xenograft model but not in a microsatellite stable/proficient MMR model. These preclinical data validate DHX9 as a target for the treatment of patients with MSI-H/dMMR. Additionally, this potent and selective inhibitor of DHX9 provides a valuable tool with which to further explore the effects of inhibition of DHX9 enzymatic activity on the proliferation of cancer cells in vitro and in vivo. Significance: DHX9 is required in cancer cells with deficient mismatch repair and can be inhibited by ATX968, providing a promising strategy for the development of precision cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuang Lu
- Accent Therapeutics, Lexington, Massachusetts
| | - Jie Wu
- Accent Therapeutics, Lexington, Massachusetts
| | | | | | | | | | - April Case
- Accent Therapeutics, Lexington, Massachusetts
| | - Julie Liu
- Accent Therapeutics, Lexington, Massachusetts
| | - Shihua Yao
- Accent Therapeutics, Lexington, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jing F, Zhu L, Zhang J, Zhou X, Bai J, Li X, Zhang H, Li T. Multi-omics reveals lactylation-driven regulatory mechanisms promoting tumor progression in oral squamous cell carcinoma. Genome Biol 2024; 25:272. [PMID: 39407253 PMCID: PMC11476802 DOI: 10.1186/s13059-024-03383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Lactylation, a post-translational modification, is increasingly recognized for its role in cancer progression. This study investigates its prevalence and impact in oral squamous cell carcinoma (OSCC). RESULTS Immunohistochemical staining of 81 OSCC cases shows lactylation levels correlate with malignancy grading. Proteomic analyses of six OSCC tissue pairs reveal 2765 lactylation sites on 1033 proteins, highlighting its extensive presence. These modifications influence metabolic processes, molecular synthesis, and transport. CAL27 cells are subjected to cleavage under targets and tagmentation assay for accessible-chromatin with high-throughput sequencing, and transcriptomic sequencing pre- and post-lactate treatment, with 217 genes upregulated due to lactylation. Chromatin immunoprecipitation-quantitative PCR and real-time fluorescence quantitative PCR confirm the regulatory role of lactylation at the K146 site of dexh-box helicase 9 (DHX9), a key factor in OSCC progression. CCK8, colony formation, scratch healing, and Transwell assays demonstrate that lactylation mitigates the inhibitory effect of DHX9 on OSCC, thereby promoting its occurrence and development. CONCLUSIONS Lactylation actively modulates gene expression in OSCC, with significant effects on chromatin structure and cellular processes. This study provides a foundation for developing targeted therapies against OSCC, leveraging the role of lactylation in disease pathogenesis.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| |
Collapse
|
5
|
Karam JAQ, Fréreux C, Mohanty BK, Dalton AC, Dincman TA, Palanisamy V, Howley BV, Howe PH. The RNA-binding protein PCBP1 modulates transcription by recruiting the G-quadruplex-specific helicase DHX9. J Biol Chem 2024; 300:107830. [PMID: 39342995 PMCID: PMC11538862 DOI: 10.1016/j.jbc.2024.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
PCBP1, polycytosine (poly(C)) binding protein 1, an RNA and single-stranded DNA (ssDNA) binding protein, binds poly(C) DNA tracts but it remains unclear whether its ability to bind ssDNA contributes to transcriptional regulation. Here, we report that PCBP1's DNA binding sites are enriched at transcription start sites and that by binding to promoter regions, PCBP1 regulates transcription in addition to splicing and translation. At PCBP1 target genes, we show that PCBP1 interacts with several RNA/DNA hybrid (R-loop) associated G-quadruplex resolving helicases. Furthermore, we find that PCBP1 interacts with RNA Helicase A (DHX9) to modulate transcription by regulating DHX9 accumulation and activity. PCBP1 depletion leads to defects in R-loop processing and dysregulation of transcription of PCBP1 target genes. PCBP1's high sequence specificity and interaction with helicases suggest that its mechanism in transcription involves guiding helicases to specific loci during transcription, thereby modulating their activity.
Collapse
Affiliation(s)
- Joseph A Q Karam
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Cécile Fréreux
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina, USA
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Division of Molecular Medicine, Department of Internal Medicine, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
6
|
Chen KL, Huang SW, Yao JJ, He SW, Gong S, Tan XR, Liang YL, Li JY, Huang SY, Li YQ, Zhao Y, Qiao H, Xu S, Zang S, Ma J, Liu N. LncRNA DYNLRB2-AS1 promotes gemcitabine resistance of nasopharyngeal carcinoma by inhibiting the ubiquitination degradation of DHX9 protein. Drug Resist Updat 2024; 76:101111. [PMID: 38908233 DOI: 10.1016/j.drup.2024.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Gemcitabine (GEM) based induction chemotherapy is a standard treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, approximately 15 % of patients are still resistant to GEM-containing chemotherapy, which leads to treatment failure. Nevertheless, the underlying mechanisms of GEM resistance remain poorly understood. Herein, based on a microarray analysis, we identified 221 dysregulated lncRNAs, of which, DYNLRB2-AS1 was one of the most upregulated lncRNAs in GEM-resistance NPC cell lines. DYNLRB2-AS1 was shown to function as contain an oncogenic lncRNA that promoted NPC GEM resistance, cell proliferation, but inhibited cell apoptosis. Mechanistically, DYNLRB2-AS1 could directly bind to the DHX9 protein and prevent its interaction with the E3 ubiquitin ligase PRPF19, and thus blocking PRPF19-mediated DHX9 degradation, which ultimately facilitated the repair of DNA damage in the presence of GEM. Clinically, higher DYNLRB2-AS1 expression indicated an unfavourable overall survival of NPC patients who received induction chemotherapy. Overall, this study identified the oncogenic lncRNA DYNLRB2-AS1 as an independent prognostic biomarker for patients with locally advanced NPC and as a potential therapeutic target for overcoming GEM chemoresistance in NPC.
Collapse
Affiliation(s)
- Kai-Lin Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Sai-Wei Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ji-Jin Yao
- Department of Head and Neck Oncology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengbing Zang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
7
|
Jadav R, Weiland F, Noordermeer SM, Carroll T, Gao Y, Wang J, Zhou H, Lamoliatte F, Toth R, Macartney T, Brown F, Hastie CJ, Alabert C, van Attikum H, Zenke F, Masson JY, Rouse J. Chemo-Phosphoproteomic Profiling with ATR Inhibitors Berzosertib and Gartisertib Uncovers New Biomarkers and DNA Damage Response Regulators. Mol Cell Proteomics 2024; 23:100802. [PMID: 38880245 PMCID: PMC11338954 DOI: 10.1016/j.mcpro.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumors as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: (i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; (ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; (iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumor suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors.
Collapse
Affiliation(s)
- Rathan Jadav
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Florian Weiland
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Sylvie M Noordermeer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Genetics, Oncode Institute, Utrecht, The Netherlands
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Yuandi Gao
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - Jianming Wang
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Fiona Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Zenke
- EMD Serono, Research Unit Oncology, Billerica, Massachusetts, USA
| | - Jean-Yves Masson
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK.
| |
Collapse
|
8
|
Luna R, Gómez-González B, Aguilera A. RNA biogenesis and RNA metabolism factors as R-loop suppressors: a hidden role in genome integrity. Genes Dev 2024; 38:504-527. [PMID: 38986581 PMCID: PMC11293400 DOI: 10.1101/gad.351853.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.
Collapse
Affiliation(s)
- Rosa Luna
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Gómez-González
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain;
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
9
|
Merigliano C, Ryu T, See CD, Caridi CP, Li X, Butova NL, Reynolds TW, Deng C, Chenoweth DM, Capelson M, Chiolo I. "Off-pore" nucleoporins relocalize heterochromatic breaks through phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570729. [PMID: 39071440 PMCID: PMC11275802 DOI: 10.1101/2023.12.07.570729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and "safe" homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear. Here, we show that Nup98 nucleoporin is recruited to heterochromatic repair sites before relocalization through Sec13 or Nup88 nucleoporins, and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing a novel "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.
Collapse
Affiliation(s)
- Chiara Merigliano
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Taehyun Ryu
- Harvard Medical School, Department of Genetics, Boston, MA, USA
| | - Colby D. See
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Christopher P. Caridi
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Xiao Li
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Nadejda L. Butova
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Trevor W. Reynolds
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Changfeng Deng
- University of Pennsylvania, Department of Chemistry, School of Arts and Sciences, Philadelphia, PA, USA
| | - David M. Chenoweth
- University of Pennsylvania, Department of Chemistry, School of Arts and Sciences, Philadelphia, PA, USA
| | - Maya Capelson
- San Diego State University, Department of Biology, San Diego, CA, USA
| | - Irene Chiolo
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| |
Collapse
|
10
|
Yang BZ, Liu MY, Chiu KL, Chien YL, Cheng CA, Chen YL, Tsui LY, Lin KR, Chu HPC, Wu CSP. DHX9 SUMOylation is required for the suppression of R-loop-associated genome instability. Nat Commun 2024; 15:6009. [PMID: 39019926 PMCID: PMC11255299 DOI: 10.1038/s41467-024-50428-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
RNA helicase DHX9 is essential for genome stability by resolving aberrant R-loops. However, its regulatory mechanisms remain unclear. Here we show that SUMOylation at lysine 120 (K120) is crucial for DHX9 function. Preventing SUMOylation at K120 leads to R-loop dysregulation, increased DNA damage, and cell death. Cells expressing DHX9 K120R mutant which cannot be SUMOylated are more sensitive to genotoxic agents and this sensitivity is mitigated by RNase H overexpression. Unlike the mutant, wild-type DHX9 interacts with R-loop-associated proteins such as PARP1 and DDX21 via SUMO-interacting motifs. Fusion of SUMO2 to the DHX9 K120R mutant enhances its association with these proteins, reduces R-loop accumulation, and alleviates survival defects of DHX9 K120R. Our findings highlight the critical role of DHX9 SUMOylation in maintaining genome stability by regulating protein interactions necessary for R-loop balance.
Collapse
Affiliation(s)
- Bing-Ze Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Mei-Yin Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Kuan-Lin Chiu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106319, Taiwan
| | - Yuh-Ling Chien
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Ching-An Cheng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yu-Lin Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Li-Yu Tsui
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Keng-Ru Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | | | - Ching-Shyi Peter Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan.
| |
Collapse
|
11
|
Shender VO, Anufrieva KS, Shnaider PV, Arapidi GP, Pavlyukov MS, Ivanova OM, Malyants IK, Stepanov GA, Zhuravlev E, Ziganshin RH, Butenko IO, Bukato ON, Klimina KM, Veselovsky VA, Grigorieva TV, Malanin SY, Aleshikova OI, Slonov AV, Babaeva NA, Ashrafyan LA, Khomyakova E, Evtushenko EG, Lukina MM, Wang Z, Silantiev AS, Nushtaeva AA, Kharlampieva DD, Lazarev VN, Lashkin AI, Arzumanyan LK, Petrushanko IY, Makarov AA, Lebedeva OS, Bogomazova AN, Lagarkova MA, Govorun VM. Therapy-induced secretion of spliceosomal components mediates pro-survival crosstalk between ovarian cancer cells. Nat Commun 2024; 15:5237. [PMID: 38898005 PMCID: PMC11187153 DOI: 10.1038/s41467-024-49512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.
Collapse
Affiliation(s)
- Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology; Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Georgij P Arapidi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
| | - Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Irina K Malyants
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Grigory A Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Evgenii Zhuravlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
| | - Ivan O Butenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Olga N Bukato
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Ksenia M Klimina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vladimir A Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | | | | | - Olga I Aleshikova
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | - Andrey V Slonov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Nataliya A Babaeva
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | - Lev A Ashrafyan
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | | | - Evgeniy G Evtushenko
- Faculty of Chemistry; Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Zixiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Jinan, 250012, Shandong, China
| | - Artemiy S Silantiev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anna A Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Daria D Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vassili N Lazarev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Arseniy I Lashkin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Lorine K Arzumanyan
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Olga S Lebedeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Alexandra N Bogomazova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vadim M Govorun
- Research Institute for Systems Biology and Medicine, Moscow, 117246, Russian Federation
| |
Collapse
|
12
|
Yin G, Hu J, Huang X, Cai Y, Gao Z, Guo X, Feng X. The Identification and Function of Linc01615 on Influenza Virus Infection and Antiviral Response. Int J Mol Sci 2024; 25:6584. [PMID: 38928290 PMCID: PMC11203770 DOI: 10.3390/ijms25126584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza virus infection poses a great threat to human health globally each year. Non-coding RNAs (ncRNAs) in the human genome have been reported to participate in the replication process of the influenza virus, among which there are still many unknowns about Long Intergenic Non-Coding RNAs (LincRNAs) in the cell cycle of viral infections. Here, we observed an increased expression of Linc01615 in A549 cells upon influenza virus PR8 infection, accompanied by the successful activation of the intracellular immune system. The knockdown of Linc01615 using the shRNAs promoted the proliferation of the influenza A virus, and the intracellular immune system was inhibited, in which the expressions of IFN-β, IL-28A, IL-29, ISG-15, MX1, and MX2 were decreased. Predictions from the catRAPID website suggested a potential interaction between Linc01615 and DHX9. Also, knocking down Linc01615 promoted influenza virus proliferation. The subsequent transcriptome sequencing results indicated a decrease in Linc01615 expression after influenza virus infection when DHX9 was knocked down. Further analysis through cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) in HEK293 cells stably expressing DHX9 confirmed the interaction between DHX9 and Linc01615. We speculate that DHX9 may interact with Linc01615 to partake in influenza virus replication and that Linc01615 helps to activate the intracellular immune system. These findings suggest a deeper connection between DHX9 and Linc01615, which highlights the significant role of Linc01615 in the influenza virus replication process. This research provides valuable insights into understanding influenza virus replication and offers new targets for preventing influenza virus infections.
Collapse
Affiliation(s)
- Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyu Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zichen Gao
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Guo
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (G.Y.); (J.H.); (X.H.); (Y.C.); (Z.G.); (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Ren X, Liu Q, Zhou P, Zhou T, Wang D, Mei Q, Flavell RA, Liu Z, Li M, Pan W, Zhu S. DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells. Nat Commun 2024; 15:3080. [PMID: 38594251 PMCID: PMC11004185 DOI: 10.1038/s41467-024-47235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.
Collapse
Affiliation(s)
- Xingxing Ren
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Qiuyuan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Peirong Zhou
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Tingyue Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Decai Wang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China.
| | - Wen Pan
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
14
|
Huang TT, Chiang CY, Nair JR, Wilson KM, Cheng K, Lee JM. AKT1 interacts with DHX9 to Mitigate R Loop-Induced Replication Stress in Ovarian Cancer. Cancer Res 2024; 84:887-904. [PMID: 38241710 PMCID: PMC10947874 DOI: 10.1158/0008-5472.can-23-1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
PARP inhibitor (PARPi)-resistant BRCA-mutant (BRCAm) high-grade serous ovarian cancer (HGSOC) represents a new clinical challenge with unmet therapeutic needs. Here, we performed a quantitative high-throughput drug combination screen that identified the combination of an ATR inhibitor (ATRi) and an AKT inhibitor (AKTi) as an effective treatment strategy for both PARPi-sensitive and PARPi-resistant BRCAm HGSOC. The ATRi and AKTi combination induced DNA damage and R loop-mediated replication stress (RS). Mechanistically, the kinase domain of AKT1 directly interacted with DHX9 and facilitated recruitment of DHX9 to R loops. AKTi increased ATRi-induced R loop-mediated RS by mitigating recruitment of DHX9 to R loops. Moreover, DHX9 was upregulated in tumors from patients with PARPi-resistant BRCAm HGSOC, and high coexpression of DHX9 and AKT1 correlated with worse survival. Together, this study reveals an interaction between AKT1 and DHX9 that facilitates R loop resolution and identifies combining ATRi and AKTi as a rational treatment strategy for BRCAm HGSOC irrespective of PARPi resistance status. SIGNIFICANCE Inhibition of the AKT and ATR pathways cooperatively induces R loop-associated replication stress in high-grade serous ovarian cancer, providing rationale to support the clinical development of AKT and ATR inhibitor combinations. See related commentary by Ramanarayanan and Oberdoerffer, p. 793.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chih-Yuan Chiang
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Jayakumar R. Nair
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelli M. Wilson
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ken Cheng
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Jung-Min Lee
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Ramanarayanan V, Oberdoerffer P. AKTing on R Loops Makes for an ATRactive Target in Ovarian Cancer Therapy. Cancer Res 2024; 84:793-795. [PMID: 38486481 DOI: 10.1158/0008-5472.can-23-4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the deadliest subtype of ovarian cancer. While PARP inhibitors (PARPi) have transformed the care of advanced HGSOC, PARPi resistance poses a major limitation to their clinical utility. DNA damage checkpoint signaling via ATR kinase can counteract PARPi-induced replication stress, making ATR an attractive therapeutic target in PARPi-resistant tumors. However, ATR inhibitor (ATRi) efficacy in the clinic is low, emphasizing the need for suitable combination treatments. In this issue of Cancer Research, Huang and colleagues uncovered cytotoxic synergism between inhibition of the PI3K/AKT pathway and ATR based on high-throughput screening for ATRi drug combinations in PARPi-resistant HGSOC cells. Dual inhibition of ATR and AKT resulted in aberrant replication stress and cell death, which was attributed in part to impaired resolution of replication-stalling RNA:DNA hybrids (R loops). The authors identified the DNA/RNA helicase DHX9 as a clinically relevant candidate effector of R loop resolution in HGSOC. AKT interacted with and recruited DHX9 to R loops, where it complemented ATR in facilitating their removal. Underlining the therapeutic potential relevance of these findings, combined inhibition of ATR and AKT caused near complete tumor regression in HGSOC xenograft models, and elevated AKT/DHX9 levels correlated with poor survival in patients with HGSOC. Of note, the genotoxic consequences of dual ATRi/AKTi treatment extended beyond PARPi-resistant tumors and are likely to affect genome integrity beyond R loops. The work by Huang and colleagues thus provides compelling rationale for the exploration of combined targeting of the AKT and ATR pathways as a potentially broadly applicable treatment of advanced HGSOC. See related article by Huang et al., p. 887.
Collapse
Affiliation(s)
- Vijayalalitha Ramanarayanan
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Philipp Oberdoerffer
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Liu MY, Lin KR, Chien YL, Yang BZ, Tsui LY, Chu HP, Wu CSP. ATR phosphorylates DHX9 at serine 321 to suppress R-loop accumulation upon genotoxic stress. Nucleic Acids Res 2024; 52:204-222. [PMID: 37930853 PMCID: PMC10783509 DOI: 10.1093/nar/gkad973] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Aberrant DNA/RNA hybrids (R-loops) formed during transcription and replication disturbances pose threats to genome stability. DHX9 is an RNA helicase involved in R-loop resolution, but how DHX9 is regulated in response to genotoxic stress remains unclear. Here we report that DHX9 is phosphorylated at S321 and S688, with S321 phosphorylation primarily induced by ATR after DNA damage. Phosphorylation of DHX9 at S321 promotes its interaction with γH2AX, BRCA1 and RPA, and is required for its association with R-loops under genotoxic stress. Inhibition of ATR or expression of the non-phosphorylatable DHX9S321A prevents DHX9 from interacting with RPA and R-loops, leading to the accumulation of stress-induced R-loops. Furthermore, depletion of RPA reduces the association between DHX9 and γH2AX, and in vitro binding analysis confirms a direct interaction between DHX9 and RPA. Notably, cells with the non-phosphorylatable DHX9S321A variant exhibit hypersensitivity to genotoxic stress, while those expressing the phosphomimetic DHX9S321D variant prevent R-loop accumulation and display resistance to DNA damage agents. In summary, we uncover a new mechanism by which ATR directly regulates DHX9 through phosphorylation to eliminate stress-induced R-loops.
Collapse
Affiliation(s)
- Mei-Yin Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Keng-Ru Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Yuh-Ling Chien
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Bing-Ze Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Li-Yu Tsui
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | | | - Ching-Shyi Peter Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
17
|
Chellini L, Scarfò M, Bonvissuto D, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 orchestrates the KDM2B-mediated transcriptional regulation of YAP1 in Ewing sarcoma. Oncogene 2024; 43:225-234. [PMID: 38017132 DOI: 10.1038/s41388-023-02894-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Ewing sarcomas (ES) are aggressive paediatric tumours of bone and soft tissues. Resistance to chemotherapy and high propensity to metastasize remain the main causes of treatment failure. Thus, identifying novel targets for alternative therapeutic approaches is urgently needed. DNA/RNA helicases are emerging as crucial regulators of many cellular processes often deregulated in cancer. Among them, DHX9 is up-regulated in ES and collaborates with EWS-FLI1 in ES transformation. We report that DHX9 silencing profoundly impacts on the oncogenic properties of ES cells. Transcriptome profiling combined to bioinformatic analyses disclosed a gene signature commonly regulated by DHX9 and the Lysine Demethylase KDM2B, with the Hippo pathway regulator YAP1 as a prominent target. Mechanistically, we found that DHX9 enhances H3K9 chromatin demethylation by KDM2B and favours RNA Polymerase II recruitment, thus promoting YAP1 expression. Conversely, EWS-FLI1 binding to the promoter represses YAP1 expression. These findings identify the DHX9/KDM2B complex as a new druggable target to counteract ES malignancy.
Collapse
Affiliation(s)
- Lidia Chellini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Marzia Scarfò
- Plaisant Polo Tecnologico s.r.l, Castel Romano, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- GSTeP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
18
|
Haji-Seyed-Javadi R, Koyen AE, Rath SK, Madden MZ, Hou Y, Song BS, Kenney AM, Lan L, Yao B, Yu DS. HELZ promotes R loop resolution to facilitate DNA double-strand break repair by homologous recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571747. [PMID: 38168208 PMCID: PMC10760136 DOI: 10.1101/2023.12.14.571747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
R loops are RNA-DNA hybrid containing structures involved in diverse cellular processes, including DNA double-strand break (DSB) repair. R loop homeostasis involving the formation and resolution of R loops is critical for DSB repair, and its dysregulation leads to genome instability. Here we show that the HELZ helicase promotes R loop resolution to facilitate DSB repair by homologous recombination (HR). HELZ depletion causes hypersensitivity to DSB-inducing agents, and HELZ localizes and binds to DSBs. HELZ depletion further leads to genomic instability in a R loop dependent manner and the accumulation of R loops globally and at DSBs. HELZ binds to R loops in response to DSBs and promotes their resolution, thereby facilitating HR to promote genome integrity. Our findings thus define a role for HELZ in promoting the resolution of R loops critical for DSB repair by HR.
Collapse
|
19
|
Gómez-González B, Aguilera A. Break-induced RNA-DNA hybrids (BIRDHs) in homologous recombination: friend or foe? EMBO Rep 2023; 24:e57801. [PMID: 37818834 DOI: 10.15252/embr.202357801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Double-strand breaks (DSBs) are the most harmful DNA lesions, with a strong impact on cell proliferation and genome integrity. Depending on cell cycle stage, DSBs are preferentially repaired by non-homologous end joining or homologous recombination (HR). In recent years, numerous reports have revealed that DSBs enhance DNA-RNA hybrid formation around the break site. We call these hybrids "break-induced RNA-DNA hybrids" (BIRDHs) to differentiate them from sporadic R-loops consisting of DNA-RNA hybrids and a displaced single-strand DNA occurring co-transcriptionally in intact DNA. Here, we review and discuss the most relevant data about BIRDHs, with a focus on two main questions raised: (i) whether BIRDHs form by de novo transcription after a DSB or by a pre-existing nascent RNA in DNA regions undergoing transcription and (ii) whether they have a positive role in HR or are just obstacles to HR accidentally generated as an intrinsic risk of transcription. We aim to provide a comprehensive view of the exciting and yet unresolved questions about the source and impact of BIRDHs in the cell.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|
20
|
Lee YT, Sickmier EA, Grigoriu S, Castro J, Boriack-Sjodin PA. Crystal structures of the DExH-box RNA helicase DHX9. Acta Crystallogr D Struct Biol 2023; 79:980-991. [PMID: 37860960 PMCID: PMC10619421 DOI: 10.1107/s2059798323007611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023] Open
Abstract
DHX9 is a DExH-box RNA helicase with versatile functions in transcription, translation, RNA processing and regulation of DNA replication. DHX9 has recently emerged as a promising target for oncology, but to date no mammalian structures have been published. Here, crystal structures of human, dog and cat DHX9 bound to ADP are reported. The three mammalian DHX9 structures share identical structural folds. Additionally, the overall architecture and the individual domain structures of DHX9 are highly conserved with those of MLE, the Drosophila orthologue of DHX9 previously solved in complex with RNA and a transition-state analogue of ATP. Due to differences in the bound substrates and global domain orientations, the localized loop conformations and occupancy of dsRNA-binding domain 2 (dsRBD2) differ between the mammalian DHX9 and MLE structures. The combined effects of the structural changes considerably alter the RNA-binding channel, providing an opportunity to compare active and inactive states of the helicase. Finally, the mammalian DHX9 structures provide a potential tool for structure-based drug-design efforts.
Collapse
Affiliation(s)
- Young-Tae Lee
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | | | - Simina Grigoriu
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - Jennifer Castro
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | | |
Collapse
|
21
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
22
|
Zucko D, Boris-Lawrie K. Blocking tri-methylguanosine synthase 1 (TGS1) stops anchorage-independent growth of canine sarcomas. Cancer Gene Ther 2023; 30:1274-1284. [PMID: 37386121 PMCID: PMC10501901 DOI: 10.1038/s41417-023-00636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Tri methylguanosine synthase 1 (TGS1) is the enzyme that hyper methylates the hallmark 7-methyl-guanosine cap (m7G-cap) appended to the transcription start site of RNAs. The m7G-cap and the eIF4E-cap binding protein guide canonical cap-dependent translation of mRNAs, whereas hyper methylated cap, m2,2,7G-cap (TMG) lacks adequate eIF4E affinity and licenses entry into a different translation initiation pathway. The potential role for TGS1 and TMG-capped mRNA in neoplastic growth is unknown. Canine sarcoma has high translational value to the human disease. Cumulative downregulation of protein synthesis in osteosarcoma OSCA-40 was achieved cooperatively by siTGS1 and Torin-1. Torin-1 inhibited the proliferation of three canine sarcoma explants in a reversible manner that was eliminated by siRNA-downregulation of TGS1. TGS1 failure prevented the anchorage-independent growth of osteo- and hemangio-sarcomas and curtailed sarcoma recovery from mTOR inhibition. RNA immunoprecipitation studies identified TMG-capped mRNAs encoding TGS1, DHX9 and JUND. TMG-tgs1 transcripts were downregulated by leptomycin B and TGS1 failure was compensated by eIF4E mRNP-dependent tgs1 mRNA translation affected by mTOR. The evidence documents TMG-capped mRNAs are hallmarks of the investigated neoplasms and synergy between TGS1 specialized translation and canonical translation is involved in sarcoma recovery from mTOR inhibition. Therapeutic targeting of TGS1 activity in cancer is ripe for future exploration.
Collapse
Affiliation(s)
- Dora Zucko
- University of Minnesota - Twin Cities, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, 55108, USA
| | - Kathleen Boris-Lawrie
- University of Minnesota - Twin Cities, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, 55108, USA.
| |
Collapse
|
23
|
Einig E, Jin C, Andrioletti V, Macek B, Popov N. RNAPII-dependent ATM signaling at collisions with replication forks. Nat Commun 2023; 14:5147. [PMID: 37620345 PMCID: PMC10449895 DOI: 10.1038/s41467-023-40924-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Deregulation of RNA Polymerase II (RNAPII) by oncogenic signaling leads to collisions of RNAPII with DNA synthesis machinery (transcription-replication conflicts, TRCs). TRCs can result in DNA damage and are thought to underlie genomic instability in tumor cells. Here we provide evidence that elongating RNAPII nucleates activation of the ATM kinase at TRCs to stimulate DNA repair. We show the ATPase WRNIP1 associates with RNAPII and limits ATM activation during unperturbed cell cycle. WRNIP1 binding to elongating RNAPII requires catalytic activity of the ubiquitin ligase HUWE1. Mutation of HUWE1 induces TRCs, promotes WRNIP1 dissociation from RNAPII and binding to the replisome, stimulating ATM recruitment and activation at RNAPII. TRCs and translocation of WRNIP1 are rapidly induced in response to hydroxyurea treatment to activate ATM and facilitate subsequent DNA repair. We propose that TRCs can provide a controlled mechanism for stalling of replication forks and ATM activation, instrumental in cellular response to replicative stress.
Collapse
Affiliation(s)
- Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany
| | - Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany
| | - Valentina Andrioletti
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany
- enGenome S.R.L., Via Fratelli Cuzio 42, 27100, Pavia, Italy
| | - Boris Macek
- Interfaculty Institute of Cell Biology, Eberhard Karls University of Tübingen, Auf d. Morgenstelle 15, 72076, Tübingen, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Mueller-Str 14, 72076, Tübingen, Germany.
| |
Collapse
|
24
|
Sharma AB, Ramlee MK, Kosmin J, Higgs MR, Wolstenholme A, Ronson GE, Jones D, Ebner D, Shamkhi N, Sims D, Wijnhoven PWG, Forment JV, Gibbs-Seymour I, Lakin ND. C16orf72/HAPSTR1/TAPR1 functions with BRCA1/Senataxin to modulate replication-associated R-loops and confer resistance to PARP disruption. Nat Commun 2023; 14:5003. [PMID: 37591890 PMCID: PMC10435583 DOI: 10.1038/s41467-023-40779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
While the toxicity of PARP inhibitors to cells with defects in homologous recombination (HR) is well established, other synthetic lethal interactions with PARP1/PARP2 disruption are poorly defined. To inform on these mechanisms we conducted a genome-wide screen for genes that are synthetic lethal with PARP1/2 gene disruption and identified C16orf72/HAPSTR1/TAPR1 as a novel modulator of replication-associated R-loops. C16orf72 is critical to facilitate replication fork restart, suppress DNA damage and maintain genome stability in response to replication stress. Importantly, C16orf72 and PARP1/2 function in parallel pathways to suppress DNA:RNA hybrids that accumulate at stalled replication forks. Mechanistically, this is achieved through an interaction of C16orf72 with BRCA1 and the RNA/DNA helicase Senataxin to facilitate their recruitment to RNA:DNA hybrids and confer resistance to PARP inhibitors. Together, this identifies a C16orf72/Senataxin/BRCA1-dependent pathway to suppress replication-associated R-loop accumulation, maintain genome stability and confer resistance to PARP inhibitors.
Collapse
Affiliation(s)
| | | | - Joel Kosmin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Amy Wolstenholme
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - George E Ronson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Dylan Jones
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Noor Shamkhi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - David Sims
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paul W G Wijnhoven
- Early Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK
| | - Josep V Forment
- Early Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK
| | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
25
|
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, Kurolap A, Henig NZ, Fatih JM, Herman I, Du H, Mitani T, Becker L, Rathkolb B, Gerlini R, Seisenberger C, Marschall S, Hunter JV, Gerard A, Heidlebaugh A, Challman T, Spillmann RC, Jhangiani SN, Coban-Akdemir Z, Lalani S, Liu L, Revah-Politi A, Iglesias A, Guzman E, Baugh E, Boddaert N, Rondeau S, Ormieres C, Barcia G, Tan QKG, Thiffault I, Pastinen T, Sheikh K, Biliciler S, Mei D, Melani F, Shashi V, Yaron Y, Steele M, Wakeling E, Østergaard E, Nazaryan-Petersen L, Millan F, Santiago-Sim T, Thevenon J, Bruel AL, Thauvin-Robinet C, Popp D, Platzer K, Gawlinski P, Wiszniewski W, Marafi D, Pehlivan D, Posey JE, Gibbs RA, Gailus-Durner V, Guerrini R, Fuchs H, Hrabě de Angelis M, Hölter SM, Cheung HH, Gu S, Lupski JR. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet 2023; 110:1394-1413. [PMID: 37467750 PMCID: PMC10432148 DOI: 10.1016/j.ajhg.2023.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.
Collapse
Affiliation(s)
- Daniel G Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tianyu Guo
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chen Wang
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lillian Garrett
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Alina Kurolap
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noa Zunz Henig
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Boys Town National Research Hospital, Boys Town, NE, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lore Becker
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA; E.B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
| | - Amanda Gerard
- Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Thomas Challman
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Seema Lalani
- Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lingxiao Liu
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandro Iglesias
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Edwin Guzman
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Evan Baugh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université Paris Cité, Institut Imagine INSERM U1163, 75015 Paris, France
| | - Sophie Rondeau
- Service de Médecine Génomique des Maladies Rares - APHP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Clothide Ormieres
- Service de Médecine Génomique des Maladies Rares - APHP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Giulia Barcia
- Service de Médecine Génomique des Maladies Rares - APHP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Queenie K G Tan
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA; University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Kazim Sheikh
- Department of Neurology, UT Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Suur Biliciler
- Department of Neurology, UT Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Federico Melani
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Vandana Shashi
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Yuval Yaron
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary Steele
- Lifetime Neurodevelopmental Care, San Francisco, CA, USA
| | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elsebet Østergaard
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Julien Thevenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon, Equipe Genetics of Developmental Anomalies-INSERM UMR 1231, Dijon, France
| | - Ange-Line Bruel
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Christel Thauvin-Robinet
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, Dijon Bourgogne University Hospital, Dijon, France
| | - Denny Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Pawel Gawlinski
- Institute of Mother and Child, Kasprzaka 17a, 02-211 Warsaw, Poland
| | - Wojciech Wiszniewski
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road L103, Portland, OR, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Technische Universität München, Freising-Weihenstephan, Germany
| | - Hoi-Hung Cheung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shen Gu
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China; Kunming Institute of Zoology Chinese Academy of Sciences, the Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China.
| | - James R Lupski
- Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Wang X, Zhang S, Zhang Z, Mazloum NA, Lee EYC, Lee MYW. The DHX9 helicase interacts with human DNA polymerase δ4 and stimulates its activity in D-loop extension synthesis. DNA Repair (Amst) 2023; 128:103513. [PMID: 37285751 PMCID: PMC10330758 DOI: 10.1016/j.dnarep.2023.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
The extension of the invading strand within a displacement loop (D-loop) is a key step in homology directed repair (HDR) of doubled stranded DNA breaks. The primary goal of these studies was to test the hypotheses that 1) D-loop extension by human DNA polymerase δ4 (Pol δ4) is facilitated by DHX9, a 3' to 5' motor helicase, which acts to unwind the leading edge of the D-loop, and 2) the recruitment of DHX9 is mediated by direct protein-protein interactions between DHX9 and Pol δ4 and/or PCNA. DNA synthesis by Pol δ4 was analyzed in a reconstitution assay by the extension of a 93mer oligonucleotide inserted into a plasmid to form a D-loop. Product formation by Pol δ4 was monitored by incorporation of [α-32P]dNTPs into the 93mer primer followed by denaturing gel electrophoresis. The results showed that DHX9 strongly stimulated Pol δ4 mediated D-loop extension. Direct interactions of DHX9 with PCNA, the p125 and the p12 subunits of Pol δ4 were demonstrated by pull-down assays with purified proteins. These data support the hypothesis that DHX9 helicase is recruited by Pol δ4/PCNA to facilitate D-loop synthesis in HDR, and is a participant in cellular HDR. The involvement of DHX9 in HDR represents an important addition to its multiple cellular roles. Such helicase-polymerase interactions may represent an important aspect of the mechanisms involved in D-loop primer extension synthesis in HDR.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Nayef A Mazloum
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Marietta Y W Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA.
| |
Collapse
|
27
|
Kumar S, Zhao J, Talluri S, Buon L, Mu S, Potluri LB, Liao C, Shi J, Chakraborty C, Gonzalez GB, Tai YT, Patel J, Pal J, Mashimo H, Samur MK, Munshi NC, Shammas MA. Elevated APE1 Dysregulates Homologous Recombination and Cell Cycle Driving Genomic Evolution, Tumorigenesis, and Chemoresistance in Esophageal Adenocarcinoma. Gastroenterology 2023; 165:357-373. [PMID: 37178737 PMCID: PMC10524563 DOI: 10.1053/j.gastro.2023.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND & AIMS The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jiangning Zhao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Srikanth Talluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Leutz Buon
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Shidai Mu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Lakshmi B Potluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Chengcheng Liao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jialan Shi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Gabriel B Gonzalez
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jaymin Patel
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jagannath Pal
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| | - Hiroshi Mashimo
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K Samur
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Masood A Shammas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts.
| |
Collapse
|
28
|
Huang N, Song Y, Shi W, Guo J, Zhang Z, He Q, Wu L, Li X, Xu F. DHX9-mediated pathway contributes to the malignant phenotype of myelodysplastic syndromes. iScience 2023; 26:106962. [PMID: 37305700 PMCID: PMC10250162 DOI: 10.1016/j.isci.2023.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
DHX9 is a member of the DEAH (Asp-Glu-Ala-His) helicase family and regulates DNA replication and RNA processing. DHX9 dysfunction promotes tumorigenesis in several solid cancers. However, the role of DHX9 in MDS is still unknown. Here, we analyzed the expression of DHX9 and its clinical significance in 120 MDS patients and 42 non-MDS controls. Lentivirus-mediated DHX9-knockdown experiments were performed to investigate its biological function. We also performed cell functional assays, gene microarray, and pharmacological intervention to investigate the mechanistic involvement of DHX9. We found that overexpression of DHX9 is frequent in MDS and associated with poor survival and high risk of acute myeloid leukemia (AML) transformation. DHX9 is essential for the maintenance of malignant proliferation of leukemia cells, and DHX9 suppression increases cell apoptosis and causes hypersensitivity to chemotherapeutic agents. Besides, knockdown of DHX9 inactivates the PI3K-AKT and ATR-Chk1 signaling, promotes R-loop accumulation, and R-loop-mediated DNA damage.
Collapse
Affiliation(s)
- Nanfang Huang
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yang Song
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wenhui Shi
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qi He
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lingyun Wu
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiao Li
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Feng Xu
- Department of Hematology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
29
|
Liu L, Zhou X, Cheng S, Ge Y, Chen B, Shi J, Li H, Li S, Li Y, Yuan J, Wu A, Liu X, Huang S, Xu Z, Dong J. RNA-binding protein DHX9 promotes glioma growth and tumor-associated macrophages infiltration via TCF12. CNS Neurosci Ther 2023; 29:988-999. [PMID: 36377508 PMCID: PMC10018109 DOI: 10.1111/cns.14031] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glioma is the most common malignant tumor of the central nervous system, with high heterogeneity, strong invasiveness, high therapeutic resistance, and poor prognosis, comprehending a serious challenge in neuro-oncology. Until now, the mechanisms underlying glioma progression have not been fully elucidated. METHODS The expression of DExH-box helicase 9 (DHX9) in tissues and cells was detected by qRT-PCR and western blot. EdU and transwell assays were conducted to assess the effect of DHX9 on proliferation, migration and invasion of glioma cells. Cocultured model was used to evaluate the role of DHX9 on macrophages recruitment and polarization. Animal study was performed to explore the role of DHX9 on macrophages recruitment and polarization in vivo. Bioinformatics analysis, dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP)-qPCR assay was used to explore the relation between DHX9 and TCF12/CSF1. RESULTS DHX9 was elevated in gliomas, especially in glioblastoma multiforme (GBM). Besides promoting the proliferation, migration, and invasion of glioma cells, DHX9 facilitated the infiltration of macrophages into glioma tissues and polarization to M2-like macrophages, known as tumor-associated macrophages (TAMs). DHX9 silencing decreased the expression of colony-stimulating factor 1 (CSF1), which partially restored the inhibitory effect on malignant progress of glioma and infiltration of TAMs caused by DHX9 knockdown by targeting the transcription factor 12 (TCF12). Moreover, TCF12 could directly bind to the promoter region of CSF1. CONCLUSION DHX9/TCF12/CSF1 axis regulated the increases in the infiltration of TAMs to promote glioma progression and might be a novel potential target for future immune therapies against gliomas.
Collapse
Affiliation(s)
- Liang Liu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuelan Zhou
- Department of AnesthesiologySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shan Cheng
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuyuan Ge
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Baomin Chen
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jia Shi
- Department of NeurosurgeryThird Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Haoran Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Suwen Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yongdong Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jiaqi Yuan
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Anyi Wu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinglei Liu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shilu Huang
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhipeng Xu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Dong
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
30
|
Movilla S, Roca M, Moliner V, Magistrato A. Molecular Basis of RNA-Driven ATP Hydrolysis in DExH-Box Helicases. J Am Chem Soc 2023; 145:6691-6701. [PMID: 36926902 DOI: 10.1021/jacs.2c11980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The spliceosome machinery catalyzes precursor messenger (pre-m)RNA splicing. In each cycle, the spliceosome experiences massive compositional and conformational remodeling fueled by the concerted action of specific RNA-dependent ATPases/helicases. Intriguingly, these enzymes are allosterically activated to perform ATP hydrolysis and trigger helicase activity only upon pre-mRNA binding. Yet, the molecular mechanism underlying the RNA-driven regulation of their ATPase function remains elusive. Here, we focus on the Prp2 ATPase/helicase which contributes to reshaping the spliceosome into its catalytic competent state. By performing classical and quantum-classical molecular dynamics simulations, we unprecedentedly unlock the molecular terms governing the Prp2 ATPase/helicase function. Namely, we dissect the molecular mechanism of ATP hydrolysis, and we disclose that RNA binding allosterically triggers the formation of a set of interactions linking the RNA binding tunnel to the catalytic site. This activates the Prp2's ATPase function by optimally placing the nucleophilic water and the general base of the enzymatic process to perform ATP hydrolysis. The key structural motifs, mechanically coupling RNA gripping and the ATPase/helicase functions, are conserved across all DExH-box helicases. This mechanism could thus be broadly applicable to all DExH-box helicase family.
Collapse
Affiliation(s)
- Santiago Movilla
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Maite Roca
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Alessandra Magistrato
- Department National Research Council of Italy (CNR), Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| |
Collapse
|
31
|
Chellini L, Pieraccioli M, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 contributes to the transcriptional program of the androgen receptor in prostate cancer. J Exp Clin Cancer Res 2022; 41:178. [PMID: 35590370 PMCID: PMC9118622 DOI: 10.1186/s13046-022-02384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Prostate cancer (PC) is the most commonly diagnosed male malignancy and an important cause of mortality. Androgen deprivation therapy is the first line treatment but, unfortunately, a large part of patients evolves to a castration-resistant stage, for which no effective cure is currently available. The DNA/RNA helicase DHX9 is emerging as an important regulator of cellular processes that are often deregulated in cancer.
Methods
To investigate whether DHX9 modulates PC cell transcriptome we performed RNA-sequencing analyses upon DHX9 silencing in the androgen-responsive cell line LNCaP. Bioinformatics and functional analyses were carried out to elucidate the mechanism of gene expression regulation by DHX9. Data from The Cancer Genome Atlas were mined to evaluate the potential role of DHX9 in PC.
Results
We found that up-regulation of DHX9 correlates with advanced stage and is associated with poor prognosis of PC patients. High-throughput RNA-sequencing analysis revealed that depletion of DHX9 in androgen-sensitive LNCaP cells affects expression of hundreds of genes, which significantly overlap with known targets of the Androgen Receptor (AR). Notably, AR binds to the DHX9 promoter and induces its expression, while Enzalutamide-mediated inhibition of AR activity represses DHX9 expression. Moreover, DHX9 interacts with AR in LNCaP cells and its depletion significantly reduced the recruitment of AR to the promoter region of target genes and the ability of AR to promote their expression in response to 5α-dihydrotestosterone. Consistently, silencing of DXH9 negatively affected androgen-induced PC cell proliferation and migration.
Conclusions
Collectively, our data uncover a new role of DHX9 in the control of the AR transcriptional program and establish the existence of an oncogenic DHX9/AR axis, which may represent a new druggable target to counteract PC progression.
Collapse
|
32
|
Proteomic profiling reveals neuronal ion channel dysregulation and cellular responses to DNA damage-induced cell cycle arrest and senescence in human neuroblastoma SH-SY5Y cells exposed to cypermethrin. Neurotoxicology 2022; 93:71-83. [PMID: 36063984 DOI: 10.1016/j.neuro.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022]
Abstract
Cypermethrin (CYP), a synthetic pyrethroid of class II, is widely used as a pesticide worldwide. The primary target of cypermethrin is a voltage-gated sodium channel. The neurotoxicity of CYP has been extensively studied in terms of affecting neuronal development, increasing cellular oxidative stress, and apoptosis. However, little is known about how it affects the expression of channel proteins involved in synaptic transmission, as well as the effects of cypermethrin on DNA damage and cell cycle processes. We found that the ligand and voltage-gated calcium channels and proteins involved in synaptic transmission including NMDA 1 receptor subunit, alpha 1A-voltage-dependent calcium channel, synaptotagmin-17, and synaptojanin-2 were downregulated in CYP-treated cells. After 48h of CYP exposure, cell viability was reduced with flattened and enlarged morphology. The levels of 23 proteins regulating cell cycle processes were altered in CYP-treated cells, according to a proteomic study. The cell cycle analysis showed elevated G0/G1 cell cycle arrest and DNA fragmentation at the sub-G0 stage after CYP exposure. CYP treatment also increased senescence-associated β-galactosidase positive cells, DNA damage, and apoptotic markers. Taken together, the current study showed that cypermethrin exposure caused DNA damage and hastened cellular senescence and apoptosis via disrupting cell cycle regulation. In addition, despite its primary target sodium channel, CYP might cause synaptic dysfunction via the downregulation of synaptic proteins and dysregulation of synapse-associated ion channels.
Collapse
|
33
|
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022; 23:521-540. [PMID: 35459910 DOI: 10.1038/s41580-022-00474-x] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Chen X, Lin L, Chen G, Yan H, Li Z, Xiao M, He X, Zhang F, Zhang Y. High Levels of DEAH-Box Helicases Relate to Poor Prognosis and Reduction of DHX9 Improves Radiosensitivity of Hepatocellular Carcinoma. Front Oncol 2022; 12:900671. [PMID: 35814441 PMCID: PMC9256992 DOI: 10.3389/fonc.2022.900671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLiver hepatocellular carcinoma (LIHC), one of the most common primary malignancies, exhibits high levels of molecular and clinical heterogeneity. Increasing evidence has confirmed the important roles of some RNA helicase families in tumor development, but the function of the DEAH-box RNA helicase family in LIHC therapeutic strategies has not yet been clarified.MethodsThe LIHC dataset was downloaded from The Cancer Genome Atlas (TCGA). Consensus clustering was applied to group the patients. Least absolute shrinkage and selection operator Cox regression and univariate and multivariate Cox regression were used to develop and validate a prognostic risk model. The Tumor Immune Estimation Resource and Tumor Immune Single Cell Hub databases were used to explore the role of DEAH-box RNA helicases in LIHC immunotherapy. In vitro experiments were performed to investigate the role of DHX9 in LIHC radiosensitivity.ResultsTwelve survival-related DEAH-box RNA helicases were identified. High helicase expression levels were associated with a poor prognosis and clinical features. A prognostic model comprising six DEAH-box RNA helicases (DHX8, DHX9, DHX34, DHX35, DHX38, and DHX57) was constructed. The risk score of this model was found to be an independent prognostic indicator, and LIHC patients with different prognosis were distinguished by the model in the training and test cohorts. DNA damage repair pathways were also enriched in patients with high-risk scores. The six DEAH-box RNA helicases in the risk model were substantially related to innate immune cell infiltration and immune inhibitors. In vitro experiments showed that DHX9 knockdown improved radiosensitivity by increasing DNA damage.ConclusionThe DEAH-box RNA helicase signature can be used as a reliable prognostic biomarker for LIHC. In addition, DHX9 may be a definitive indicator and therapeutic target in radiotherapy and immunotherapy for LIHC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Letao Lin
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guanyu Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huzheng Yan
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenyu Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Meigui Xiao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xu He
- Interventional Medical Center, Zhuhai People’s Hospital, Zhuhai, China
| | - Fujun Zhang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- *Correspondence: Fujun Zhang, ; Yanling Zhang,
| | - Yanling Zhang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- *Correspondence: Fujun Zhang, ; Yanling Zhang,
| |
Collapse
|
35
|
Dong X, Zhang J, Zhang Q, Liang Z, Xu Y, Zhao Y, Zhang B. Cytosolic Nuclear Sensor Dhx9 Controls Medullary Thymic Epithelial Cell Differentiation by p53-Mediated Pathways. Front Immunol 2022; 13:896472. [PMID: 35720303 PMCID: PMC9203851 DOI: 10.3389/fimmu.2022.896472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Thymic epithelial cells (TECs) critically participate in T cell maturation and selection for the establishment of immunity to foreign antigens and immune tolerance to self-antigens of T cells. It is well known that many intracellular and extracellular molecules elegantly have mastered the development of medullary TECs (mTECs) and cortical TECs (cTECs). However, the role played by NTP-dependent helicase proteins in TEC development is currently unclear. Herein, we created mice with a TEC-specific DExD/H-box helicase 9 (Dhx9) deletion (Dhx9 cKO) to study the involvement of Dhx9 in TEC differentiation and function. We found that a Dhx9 deficiency in TECs caused a significant decreased cell number of TECs, including mTECs and thymic tuft cells, accompanied by accelerated mTEC maturation but no detectable effect on cTECs. Dhx9-deleted mTECs transcriptionally expressed poor tissue-restricted antigen profiles compared with WT mTECs. Importantly, Dhx9 cKO mice displayed an impaired thymopoiesis, poor thymic T cell output, and they suffered from spontaneous autoimmune disorders. RNA-seq analysis showed that the Dhx9 deficiency caused an upregulated DNA damage response pathway and Gadd45, Cdkn1a, Cdc25, Wee1, and Myt1 expression to induce cell cycle arrest in mTECs. In contrast, the p53-dependent upregulated RANK-NF-κB pathway axis accelerated the maturation of mTECs. Our results collectively indicated that Dhx9, a cytosolic nuclear sensor recognizing viral DNA or RNA, played an important role in mTEC development and function in mice.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
- *Correspondence: Baojun Zhang, ; Yong Zhao,
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Baojun Zhang, ; Yong Zhao,
| |
Collapse
|
36
|
Gulliver C, Hoffmann R, Baillie GS. Ataxia-telangiectasia mutated and ataxia telangiectasia and Rad3-related kinases as therapeutic targets and stratification indicators for prostate cancer. Int J Biochem Cell Biol 2022; 147:106230. [PMID: 35609768 DOI: 10.1016/j.biocel.2022.106230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022]
Abstract
The DNA damage response is an integral part of a cells' ability to maintain genomic integrity by responding to and ameliorating DNA damage, or initiating cell death for irrepairably damaged cells. This response is often hijacked by cancer cells to evade cell death allowing mutant cells to persist, as well as in the development of treatment resistance to DNA damaging agents such as chemotherapy and radiation. Prostate cancer (PCa) cells often exhibit alterations in DNA damage response genes including ataxia telangiectasia mutated (ATM), correlating with aggressive disease phenotype. The recent success of Poly (ADP-ribose) polymerase (PARP) inhibition has led to several clinically approved PARP inhibitors for the treatment of men with metastatic PCa, however a key limitation is the development of drug resistance and relapse. An alternative approach is selectively targeting ATM and ataxia telangiectasia and Rad3-related (ATR) which, due to their position at the forefront of the DDR, represent attractive pharmacological targets. ATR inhibition has been shown to act synergistically with PARP inhibition and other cancer treatments to enhance anti-tumour activity. ATM-deficiency is a common characteristic of PCa and a synthetic lethal relationship exists between ATM and ATR, with ATR inhibition inducing selective cell death in ATM-deficient PCa cells. The current research highlights the feasibility of therapeutically targeting ATR in ATM-deficient prostate tumours and in combination with other treatments to enhance overall efficacy and reduce therapeutic resistance. ATM also represents an important molecular biomarker to stratify patients into targeted treatment groups and aid prognosis for personalised medicine.
Collapse
Affiliation(s)
- Chloe Gulliver
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK.
| | - Ralf Hoffmann
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK; Philips Research Europe, High Tech Campus, Eindhoven, the Netherlands.
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK.
| |
Collapse
|
37
|
Kim S, Hwang S. G-Quadruplex Matters in Tissue-Specific Tumorigenesis by BRCA1 Deficiency. Genes (Basel) 2022; 13:genes13030391. [PMID: 35327946 PMCID: PMC8948836 DOI: 10.3390/genes13030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
How and why distinct genetic alterations, such as BRCA1 mutation, promote tumorigenesis in certain tissues, but not others, remain an important issue in cancer research. The underlying mechanisms may reveal tissue-specific therapeutic vulnerabilities. Although the roles of BRCA1, such as DNA damage repair and stalled fork stabilization, obviously contribute to tumor suppression, these ubiquitously important functions cannot explain tissue-specific tumorigenesis by BRCA1 mutations. Recent advances in our understanding of the cancer genome and fundamental cellular processes on DNA, such as transcription and DNA replication, have provided new insights regarding BRCA1-associated tumorigenesis, suggesting that G-quadruplex (G4) plays a critical role. In this review, we summarize the importance of G4 structures in mutagenesis of the cancer genome and cell type-specific gene regulation, and discuss a recently revealed molecular mechanism of G4/base excision repair (BER)-mediated transcriptional activation. The latter adequately explains the correlation between the accumulation of unresolved transcriptional regulatory G4s and multi-level genomic alterations observed in BRCA1-associated tumors. In summary, tissue-specific tumorigenesis by BRCA1 deficiency can be explained by cell type-specific levels of transcriptional regulatory G4s and the role of BRCA1 in resolving it. This mechanism would provide an integrated understanding of the initiation and development of BRCA1-associated tumors.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
| | - Sohyun Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Sungnam 13496, Korea
- Correspondence:
| |
Collapse
|
38
|
Cargill M, Venkataraman R, Lee S. DEAD-Box RNA Helicases and Genome Stability. Genes (Basel) 2021; 12:1471. [PMID: 34680866 PMCID: PMC8535883 DOI: 10.3390/genes12101471] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
DEAD-box RNA helicases are important regulators of RNA metabolism and have been implicated in the development of cancer. Interestingly, these helicases constitute a major recurring family of RNA-binding proteins important for protecting the genome. Current studies have provided insight into the connection between genomic stability and several DEAD-box RNA helicase family proteins including DDX1, DDX3X, DDX5, DDX19, DDX21, DDX39B, and DDX41. For each helicase, we have reviewed evidence supporting their role in protecting the genome and their suggested mechanisms. Such helicases regulate the expression of factors promoting genomic stability, prevent DNA damage, and can participate directly in the response and repair of DNA damage. Finally, we summarized the pathological and therapeutic relationship between DEAD-box RNA helicases and cancer with respect to their novel role in genome stability.
Collapse
Affiliation(s)
- Michael Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Rasika Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stanley Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
39
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|