1
|
Bogisich A, Candia AK, Cantrell J, Collins C, Reichling SB, Poo S. Dusky Gopher Frog (Lithobates sevosus) Repatriation at a Reintroduction Site Through Zoo-Led Captive-Release Efforts. Zoo Biol 2025. [PMID: 39905652 DOI: 10.1002/zoo.21889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Captive-release programs are an increasingly popular conservation strategy to combat wild extinctions. However, it is critical to determine if translocating animals from captive colonies ("source populations") leads to the establishment of new wild populations that are both stable and self-sustaining. To fill this knowledge gap, we provide a case study from the dusky gopher frog (Lithobates sevosus) reintroduction program to serve as an example for other critically endangered amphibians. In this study, we provide quantitative information on the reintroduction and survivorship of zoo-bred individuals that are released into the wild. This unique opportunity is the culmination of close to 20 years of collective efforts across multiple agencies. By taking advantage of the key monitoring window shortly after initial releases, we can formally declare the first successfully reintroduced, breeding population of dusky gopher frogs founded solely from a captive-bred colony.
Collapse
Affiliation(s)
- Allison Bogisich
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
- Department of Animal Care, Vancouver Aquarium, Vancouver, British Columbia, Canada
| | - Ana Karen Candia
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
| | - Jessica Cantrell
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
| | - Cassandra Collins
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
| | - Steven B Reichling
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
| | - Sinlan Poo
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
- Department of Biological Sciences, College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
2
|
Beccari E, Capdevila P, Salguero-Gómez R, Carmona CP. Worldwide diversity in mammalian life histories: Environmental realms and evolutionary adaptations. Ecol Lett 2024; 27:e14445. [PMID: 38783648 DOI: 10.1111/ele.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Mammalian life history strategies can be characterised by a few axes of variation, conforming a space where species are positioned based on the life history strategies favoured in the environment they exploit. Yet, we still lack global descriptions of the diversity of realised mammalian life history and how this diversity is shaped by the environment. We used six life history traits to build a life history space covering worldwide mammalian adaptation, and we explored how environmental realms (land, air, water) influence mammalian life history strategies. We demonstrate that realms are tightly linked to distinct life history strategies. Aquatic and aerial species predominantly adhere to slower life history strategies, while terrestrial species exhibit faster life histories. Highly encephalised terrestrial species are a notable exception to these patterns. Furthermore, we show that different mode of life may play a significant role in expanding the set of strategies exploitable in the terrestrial realm. Additionally, species transitioning between terrestrial and aquatic realms, such as seals, exhibit intermediate life history strategies. Our results provide compelling evidence of the link between environmental realms and the life history diversity of mammals, highlighting the importance of differences in mode of life to expand life history diversity.
Collapse
Affiliation(s)
- E Beccari
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - P Capdevila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - R Salguero-Gómez
- Department of Biology, University of Oxford, Oxford, UK
- Evolutionary Demography Laboratory, Max Plank Institute for Demographic Research, Rostock, Germany
| | - C P Carmona
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Toussaint A, Pärtel M, Carmona CP. Contrasting impacts of non-native and threatened species on morphological, life history, and phylogenetic diversity in bird assemblages. Ecol Lett 2024; 27:e14373. [PMID: 38344890 DOI: 10.1111/ele.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024]
Abstract
Human activities have altered the species composition of assemblages through introductions and extinctions, but it remains unclear how those changes can affect the different facets of biodiversity. Here we assessed the impact of changes in species composition on taxonomic, functional, and phylogenetic diversity across 281 bird assemblages worldwide. To provide a more nuanced understanding of functional diversity, we distinguished morphological from life-history traits. We showed that shifts in species composition could trigger a global decline in avian biodiversity due to the high number of potential extinctions. Moreover, these extinctions were not random but unique in terms of function and phylogeny at the regional level. Our findings demonstrated that non-native species cannot compensate for these losses, as they are both morphologically and phylogenetically close to the native fauna. In the context of the ongoing biodiversity crisis, such alterations in the functional and phylogenetic structure of bird assemblages could heighten ecosystem vulnerability.
Collapse
Affiliation(s)
- Aurele Toussaint
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Saccò M, Mammola S, Altermatt F, Alther R, Bolpagni R, Brancelj A, Brankovits D, Fišer C, Gerovasileiou V, Griebler C, Guareschi S, Hose GC, Korbel K, Lictevout E, Malard F, Martínez A, Niemiller ML, Robertson A, Tanalgo KC, Bichuette ME, Borko Š, Brad T, Campbell MA, Cardoso P, Celico F, Cooper SJB, Culver D, Di Lorenzo T, Galassi DMP, Guzik MT, Hartland A, Humphreys WF, Ferreira RL, Lunghi E, Nizzoli D, Perina G, Raghavan R, Richards Z, Reboleira ASPS, Rohde MM, Fernández DS, Schmidt SI, van der Heyde M, Weaver L, White NE, Zagmajster M, Hogg I, Ruhi A, Gagnon MM, Allentoft ME, Reinecke R. Groundwater is a hidden global keystone ecosystem. GLOBAL CHANGE BIOLOGY 2024; 30:e17066. [PMID: 38273563 DOI: 10.1111/gcb.17066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024]
Abstract
Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.
Collapse
Affiliation(s)
- Mattia Saccò
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stefano Mammola
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
- National Biodiversity Future Center, Palermo, Italy
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Roman Alther
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Rossano Bolpagni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Anton Brancelj
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
- Department for Environmental Science, University of Nova Gorica, Nova Gorica, Slovenia
| | - David Brankovits
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
| | - Cene Fišer
- SubBio Lab, Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Vasilis Gerovasileiou
- Faculty of Environment, Department of Environment, Ionian University, Zakynthos, Greece
- Biotechnology and Aquaculture (IMBBC), Thalassocosmos, Institute of Marine Biology, Hellenic Centre for Marine Research (HCMR), Heraklion, Greece
| | - Christian Griebler
- Department of Functional & Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Simone Guareschi
- Estación Biologica de Doñana (EBD-CSIC), Seville, Spain
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Grant C Hose
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kathryn Korbel
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Elisabeth Lictevout
- International Groundwater Resources Assessment Center (IGRAC), Delft, The Netherlands
| | - Florian Malard
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Univ Lyon, Villeurbanne, France
| | - Alejandro Martínez
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Anne Robertson
- School of Life and Health Sciences, Roehampton University, London, UK
| | - Krizler C Tanalgo
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, Cotabato, Philippines
| | - Maria Elina Bichuette
- Laboratory of Subterranean Studies (LES), Department of Ecology and Evolutionary Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Špela Borko
- SubBio Lab, Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Traian Brad
- Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Matthew A Campbell
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Fulvio Celico
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Steven J B Cooper
- South Australian Museum, North Terrace, Adelaide, South Australia, Australia
- Department of Ecology and Evolutionary Biology, School of Biological Sciences and Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - David Culver
- Department of Environmental Science, American University, Washington, DC, USA
| | - Tiziana Di Lorenzo
- National Biodiversity Future Center, Palermo, Italy
- Research Institute on Terrestrial Ecosystems of the National Research Council of Italy (IRET CNR), Florence, Italy
| | - Diana M P Galassi
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, Italy
| | - Michelle T Guzik
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adam Hartland
- Lincoln Agritech Ltd, Ruakura, Kirikiriroa, Aotearoa, New Zealand
| | - William F Humphreys
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Western Australian Museum, Welshpool, Western Australia, Australia
| | - Rodrigo Lopes Ferreira
- Centro de Estudos em Biologia Subterrânea, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Enrico Lunghi
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, Italy
| | - Daniele Nizzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Perina
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Rajeev Raghavan
- Department of Fisheries Resource Management, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Zoe Richards
- Coral Conservation and Research Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Ana Sofia P S Reboleira
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Melissa M Rohde
- Rohde Environmental Consulting, LLC, Seattle, Washington, USA
- Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA
| | | | - Susanne I Schmidt
- Department of Lake Research, Helmholtz Centre for Environmental Research, Magdeburg, Germany
| | - Mieke van der Heyde
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Louise Weaver
- Water & Environment Group, Institute of Environmental Science & Research Ltd., Christchurch, New Zealand
| | - Nicole E White
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Maja Zagmajster
- SubBio Lab, Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ian Hogg
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
| | - Albert Ruhi
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, USA
| | - Marthe M Gagnon
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert Reinecke
- Institute of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Cox DTC, Gaston KJ. Global erosion of terrestrial environmental space by artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166701. [PMID: 37652384 DOI: 10.1016/j.scitotenv.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Artificial light at night (ALAN) disrupts natural light cycles, with biological impacts that span from behaviour of individual organisms to ecosystem functions, and across bacteria, fungi, plants and animals. Global consequences have almost invariably been inferred from the geographic distribution of ALAN. How ALAN is distributed in environmental space, and the extent to which combinations of environmental conditions with natural light cycles have been lost, is also key. Globally (between 60°N and 56°S), we ordinated four bioclimatic variables at 1.61 * 1.21 km resolution to map the position and density of terrestrial pixels within nighttime environmental space. We then used the Black Marble Nighttime Lights product to determine where direct ALAN emissions were present in environmental space in 2012 and how these had expanded in environmental space by 2022. Finally, we used the World Atlas of Artificial Sky Brightness to determine the proportion of environmental space that is unaffected by ALAN across its spatial distribution. We found that by 2012 direct ALAN emissions occurred across 71.9 % of possible nighttime terrestrial environmental conditions, with temperate nighttime environments and highly modified habitats disproportionately impacted. From 2012 to 2022 direct ALAN emissions primarily grew within 34.4 % of environmental space where it was already present, with this growth concentrated in tropical environments. Additionally considering skyglow, just 13.2 % of environmental space now only experiences natural light cycles throughout its distribution. With opportunities to maintain much of environmental space under such cycles fast disappearing, the removal, reduction and amelioration of ALAN from areas of environmental space in which it is already widespread is critical.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
6
|
Martínez-Núñez C, Martínez-Prentice R, García-Navas V. Protected area coverage of vulnerable regions to conserve functional diversity of birds. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14131. [PMID: 37259609 DOI: 10.1111/cobi.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Global-change drivers are increasing the rates of species extinction worldwide, posing a serious threat to ecosystem functioning. Preserving the functional diversity of species is currently a priority to mitigate abrupt biodiversity loss in the coming decades. Therefore, understanding what factors better predict functional diversity loss in bird assemblages at a global scale and how existing protected areas cover the most vulnerable regions is of key importance for conservation. We examined the environmental factors associated with the risk of functional diversity loss under 3 scenarios of bird species extinction based on species distribution range size, generation length, and International Union for the Conservation of Nature conservation status. Then, we identified regions that deserve special conservation focus. We also assessed how efficiently extant terrestrial protected areas preserve particularly vulnerable bird assemblages based on predicted scenarios of extinction risk. The vulnerability of bird functional diversity increased as net primary productivity, land-use diversity, mean annual temperature, and elevation decreased. Low values for these environmental factors were associated with a higher risk of functional diversity loss worldwide through two mechanisms: one independent of species richness that affects assemblages with low levels of niche packing and high functional dissimilarity among species, and the other that affects assemblages with low species richness and high rates of extinction. Existing protected areas ineffectively safeguarded regions with a high risk of losing functional diversity in the next decades. The global predictors and the underlying mechanisms of functional vulnerability in bird assemblages we identified can inform strategies aimed at preserving bird-driven ecological functions worldwide.
Collapse
Affiliation(s)
- Carlos Martínez-Núñez
- Department of Integrative Ecology, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
| | - Ricardo Martínez-Prentice
- Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Vicente García-Navas
- Department of Integrative Ecology, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Torgersen KT, Bouton BJ, Hebert AR, Kleyla NJ, Plasencia X, Rolfe GL, Tagliacollo VA, Albert JS. Phylogenetic structure of body shape in a diverse inland ichthyofauna. Sci Rep 2023; 13:20758. [PMID: 38007528 PMCID: PMC10676429 DOI: 10.1038/s41598-023-48086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
Body shape is a fundamental metric of animal diversity affecting critical behavioral and ecological dynamics and conservation status, yet previously available methods capture only a fraction of total body-shape variance. Here we use structure-from-motion (SFM) 3D photogrammetry to generate digital 3D models of adult fishes from the Lower Mississippi Basin, one of the most diverse temperate-zone freshwater faunas on Earth, and 3D geometric morphometrics to capture morphologically distinct shape variables, interpreting principal components as growth fields. The mean body shape in this fauna resembles plesiomorphic teleost fishes, and the major dimensions of body-shape disparity are similar to those of other fish faunas worldwide. Major patterns of body-shape disparity are structured by phylogeny, with nested clades occupying distinct portions of the morphospace, most of the morphospace occupied by multiple distinct clades, and one clade (Acanthomorpha) accounting for over half of the total body shape variance. In contrast to previous studies, variance in body depth (59.4%) structures overall body-shape disparity more than does length (31.1%), while width accounts for a non-trivial (9.5%) amount of the total body-shape disparity.
Collapse
Affiliation(s)
| | | | - Alyx R Hebert
- Department of Biology, University of Louisiana, Lafayette, USA
| | - Noah J Kleyla
- Department of Biology, University of Louisiana, Lafayette, USA
| | | | - Garrett L Rolfe
- Department of Biology, University of Louisiana, Lafayette, USA
| | | | - James S Albert
- Department of Biology, University of Louisiana, Lafayette, USA
| |
Collapse
|
8
|
Pimiento C, Albouy C, Silvestro D, Mouton TL, Velez L, Mouillot D, Judah AB, Griffin JN, Leprieur F. Functional diversity of sharks and rays is highly vulnerable and supported by unique species and locations worldwide. Nat Commun 2023; 14:7691. [PMID: 38001077 PMCID: PMC10673927 DOI: 10.1038/s41467-023-43212-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Elasmobranchs (sharks, rays and skates) are among the most threatened marine vertebrates, yet their global functional diversity remains largely unknown. Here, we use a trait dataset of >1000 species to assess elasmobranch functional diversity and compare it against other previously studied biodiversity facets (taxonomic and phylogenetic), to identify species- and spatial- conservation priorities. We show that threatened species encompass the full extent of functional space and disproportionately include functionally distinct species. Applying the conservation metric FUSE (Functionally Unique, Specialised, and Endangered) reveals that most top-ranking species differ from the top Evolutionarily Distinct and Globally Endangered (EDGE) list. Spatial analyses further show that elasmobranch functional richness is concentrated along continental shelves and around oceanic islands, with 18 distinguishable hotspots. These hotspots only marginally overlap with those of other biodiversity facets, reflecting a distinct spatial fingerprint of functional diversity. Elasmobranch biodiversity facets converge with fishing pressure along the coast of China, which emerges as a critical frontier in conservation. Meanwhile, several components of elasmobranch functional diversity fall in high seas and/or outside the global network of marine protected areas. Overall, our results highlight acute vulnerability of the world's elasmobranchs' functional diversity and reveal global priorities for elasmobranch functional biodiversity previously overlooked.
Collapse
Affiliation(s)
- Catalina Pimiento
- Department of Paleontology, University of Zurich, Zurich, Switzerland.
- Department of Biosciences, Swansea University, Swansea, UK.
- Smithsonian Tropical Research Institute, Balboa, Panama.
| | - Camille Albouy
- Ecosystem and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Théophile L Mouton
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- International Union for Conservation of Nature Species Survival Commission Shark Specialist Group, P.O. Box 29588, Dubai, United Arab Emirates
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Aaron B Judah
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - John N Griffin
- Department of Biosciences, Swansea University, Swansea, UK
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
9
|
Wei XY, Liu L, Hu H, Jia HJ, Bu LK, Pei DS. Ultra-sensitive detection of ecologically rare fish from eDNA samples based on the RPA-CRISPR/Cas12a technology. iScience 2023; 26:107519. [PMID: 37636063 PMCID: PMC10448165 DOI: 10.1016/j.isci.2023.107519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Environmental DNA (eDNA) research holds great promise for improving biodiversity science and conservation efforts by enabling worldwide species censuses in near real-time. Current eDNA methods face challenges in detecting low-abundance ecologically important species. In this study, we used isothermal recombinase polymerase amplification (RPA)-CRISPR/Cas detection to test Ctenopharyngodon idella. RPA-CRISPR-Cas12a detected 6.0 eDNA copies/μL within 35 min. Ecologically rare species were identified in the Three Gorges Reservoir Area (TGRA) using functional distinctiveness and geographical restrictiveness, with seven fish species (9%) classified as potentially ecologically rare including three species in this investigation. RPA-CRISPR/Cas12a-FQ outperformed high-throughput sequencing (HTS) and qPCR in detecting low-abundance eDNA (AUC = 0.883∗∗). A significant linear correlation (R2 = 0.682∗∗) between RPA-CRISPR/Cas12a-FQ and HTS quantification suggests its potential for predicting species abundance and enhancing eDNA-based fish biodiversity monitoring. This study highlights the value of RPA-CRISPR/Cas12a-FQ as a tool for advancing eDNA research and conservation efforts.
Collapse
Affiliation(s)
- Xing-Yi Wei
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huan Hu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huang-Jie Jia
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ling-Kang Bu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Tripathi R, Reza A, Mertel A, Su G, Calabrese JM. A network-based approach to identifying correlations between phylogeny, morphological traits and occurrence of fish species in US river basins. PLoS One 2023; 18:e0287482. [PMID: 37352314 PMCID: PMC10289417 DOI: 10.1371/journal.pone.0287482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
The complex network framework has been successfully used to model interactions between entities in Complex Systems in the Biological Sciences such as Proteomics, Genomics, Neuroscience, and Ecology. Networks of organisms at different spatial scales and in different ecosystems have provided insights into community assembly patterns and emergent properties of ecological systems. In the present work, we investigate two questions pertaining to fish species assembly rules in US river basins, a) if morphologically similar fish species also tend to be phylogenetically closer, and b) to what extent are co-occurring species that are phylogenetically close also morphologically similar? For the first question, we construct a network of Hydrologic Unit Code 8 (HUC8) regions as nodes with interaction strengths (edges) governed by the number of common species. For each of the modules of this network, which are found to be geographically separated, there is differential yet significant evidence that phylogenetic distance predicts morphological distance. For the second question, we construct and analyze nearest neighbor directed networks of species based on their morphological distances and phylogenetic distances. Through module detection on these networks and comparing the module-level mean phylogenetic distance and mean morphological distance with the number of basins of common occurrence of species in modules, we find that both phylogeny and morphology of species have significant roles in governing species co-occurrence, i.e. phylogenetically and morphologically distant species tend to co-exist more. In addition, between the two quantities (morphological distance and phylogentic distance), we find that morphological distance is a stronger determinant of species co-occurrences.
Collapse
Affiliation(s)
- Richa Tripathi
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
| | - Amit Reza
- Nikhef, Amsterdam, The Netherlands
- Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, CC Utrecht, The Netherlands
| | - Adam Mertel
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
| | - Guohuan Su
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
| | - Justin M. Calabrese
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
- Dept. of Ecological Modelling, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
- Dept. of Biology, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
11
|
Tao J, Ding C, Chen J, Ding L, Brosse S, Heino J, Hermoso V, Wu R, Wang Z, Hu J, Che R, Jin X, Ji S, He D. Boosting freshwater fish conservation with high-resolution distribution mapping across a large territory. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14036. [PMID: 36424856 DOI: 10.1111/cobi.14036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 05/30/2023]
Abstract
The lack of high-resolution distribution maps for freshwater species across large extents fundamentally challenges biodiversity conservation worldwide. We devised a simple framework to delineate the distributions of freshwater fishes in a high-resolution drainage map based on stacked species distribution models and expert information. We applied this framework to the entire Chinese freshwater fish fauna (>1600 species) to examine high-resolution biodiversity patterns and reveal potential conflicts between freshwater biodiversity and anthropogenic disturbances. The correlations between spatial patterns of biodiversity facets (species richness, endemicity, and phylogenetic diversity) were all significant (r = 0.43-0.98, p < 0.001). Areas with high values of different biodiversity facets overlapped with anthropogenic disturbances. Existing protected areas (PAs), covering 22% of China's territory, protected 25-29% of fish habitats, 16-23% of species, and 30-31% of priority conservation areas. Moreover, 6-21% of the species were completely unprotected. These results suggest the need for extending the network of PAs to ensure the conservation of China's freshwater fishes and the goods and services they provide. Specifically, middle to low reaches of large rivers and their associated lakes from northeast to southwest China hosted the most diverse species assemblages and thus should be the target of future expansions of the network of PAs. More generally, our framework, which can be used to draw high-resolution freshwater biodiversity maps combining species occurrence data and expert knowledge on species distribution, provides an efficient way to design PAs regardless of the ecosystem, taxonomic group, or region considered.
Collapse
Affiliation(s)
- Juan Tao
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, China
| | - Chengzhi Ding
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, China
| | - Jinnan Chen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Liuyong Ding
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Sébastien Brosse
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Université Toulouse 3 Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Jani Heino
- Geography Research Unit, University of Oulu, Oulu, Finland
| | - Virgilio Hermoso
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia
| | - Ruidong Wu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, China
| | - Ziwang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiaxin Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, China
| | - Xiaowei Jin
- China National Environment Monitoring Centre, Beijing, China
| | - Songhao Ji
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Dekui He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Kaiho K. An animal crisis caused by pollution, deforestation, and warming in the late 21st century and exacerbation by nuclear war. Heliyon 2023; 9:e15221. [PMID: 37095985 PMCID: PMC10122020 DOI: 10.1016/j.heliyon.2023.e15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
An environmental-animal crisis is currently ongoing and is becoming increasingly severe due to human activity. However, the magnitude, timing, and processes related to this crisis are unclear. This paper clarifies the likely magnitude and timing of animal extinctions and changes in the contribution rates of select causes (global warming, pollution, deforestation, and two hypothetical nuclear conflicts) of animal extinctions during 2000-2300 CE. This paper demonstrates that an animal crisis marked by a 5-13% terrestrial tetrapod species loss and 2-6% marine animal species loss will occur in the next generation during 2060-2080 CE if humans do not engage in nuclear wars. These variations are due to magnitudes of pollution, deforestation, and global warming. The main causes of this crisis will change from pollution and deforestation to deforestation in 2030 under the low CO2 emission scenarios but will change from pollution and deforestation to deforestation in 2070 and then to deforestation and global warming after 2090 under the medium CO2 emissions. A nuclear conflict will increase animal species loss up to approximately 40-70% for terrestrial tetrapod species and 25-50% for marine animal species, including errors. Therefore, this study shows that the animal species conservation priority is to prevent nuclear war, reduce deforestation rates, decrease pollution, and limit global warming, in this order.
Collapse
|
13
|
Rodríguez-Caro RC, Graciá E, Blomberg SP, Cayuela H, Grace M, Carmona CP, Pérez-Mendoza HA, Giménez A, Salguero-Gómez R. Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians. Nat Commun 2023; 14:1542. [PMID: 36977697 PMCID: PMC10050202 DOI: 10.1038/s41467-023-37089-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The Anthropocene is tightly associated with a drastic loss of species worldwide and the disappearance of their key ecosystem functions. The orders Testudines (turtles and tortoises) and Crocodilia (crocodiles, alligators, and gharials) contain numerous threatened, long-lived species for which the functional diversity and potential erosion by anthropogenic impacts remains unknown. Here, we examine 259 (69%) of the existing 375 species of Testudines and Crocodilia, quantifying their life history strategies (i.e., trade-offs in survival, development, and reproduction) from open-access data on demography, ancestry, and threats. We find that the loss of functional diversity in simulated extinction scenarios of threatened species is greater than expected by chance. Moreover, the effects of unsustainable local consumption, diseases, and pollution are associated with life history strategies. In contrast, climate change, habitat disturbance, and global trade affect species independent of their life history strategy. Importantly, the loss of functional diversity for threatened species by habitat degradation is twice that for all other threats. Our findings highlight the importance of conservation programmes focused on preserving the functional diversity of life history strategies jointly with the phylogenetic representativity of these highly threatened groups.
Collapse
Affiliation(s)
- R C Rodríguez-Caro
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain.
- Departamento de Ecología, Universidad de Alicante, San Vicent del Raspeig, 03690, Alicante, Spain.
| | - E Graciá
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312, Orihuela, Spain
| | - S P Blomberg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - H Cayuela
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, F-769622, Villeurbanne, France
| | - M Grace
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - C P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, 50409, Tartu, Estonia
| | - H A Pérez-Mendoza
- Facultad de Estudios Superiores Iztacala, Universidad Autónoma de México, 54090, Tlalnepantla, México
| | - A Giménez
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312, Orihuela, Spain
| | - R Salguero-Gómez
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Max Plank Institute for Demographic Research, Konrad-Zuße Straße 1, 18057, Rostock, Germany.
| |
Collapse
|
14
|
Gajewicz-Skretna A, Wyrzykowska E, Gromelski M. Quantitative multi-species toxicity modeling: Does a multi-species, machine learning model provide better performance than a single-species model for the evaluation of acute aquatic toxicity by organic pollutants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160590. [PMID: 36473653 DOI: 10.1016/j.scitotenv.2022.160590] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The toxicological profile of any chemical is defined by multiple endpoints and testing procedures, including representative test species from different trophic levels. While computer-aided methods play an increasingly important role in supporting ecotoxicology research and chemical hazard assessment, most of the recently developed machine learning models are directed towards a single, specific endpoint. To overcome this limitation and accelerate the process of identifying potentially hazardous environmental pollutants, we are introducing an effective approach for quantitative, multi-species modeling. The proposed approach is based on canonical correlation analysis that finds a pair(s) of uncorrelated, linear combinations of the original variables that best defines the overall variability within and between multiple biological responses and predictor variables. Its effectiveness was confirmed by the machine learning model for estimating acute toxicity of diverse organic pollutants in aquatic species from three trophic levels: algae (Pseudokirchneriella subcapitata), daphnia (Daphnia magna), and fish (Oryzias latipes). The multi-species model achieved a favorable predictive performance that were in line with predictive models derived for the aquatic organisms individually. The chemical bioavailability and reactivity parameters (n-octanol/water partition coefficient, chemical potential, and molecular size and volume) were important to accurately predict acute ecotoxicity to the three aquatic organisms. To facilitate the use of this approach, an open-source, Python-based script, named qMTM (quantitative Multi-species Toxicity Modeling) has been provided.
Collapse
Affiliation(s)
- Agnieszka Gajewicz-Skretna
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Ewelina Wyrzykowska
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maciej Gromelski
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
15
|
Germain RR, Feng S, Buffan L, Carmona CP, Chen G, Graves GR, Tobias JA, Rahbek C, Lei F, Fjeldså J, Hosner PA, Gilbert MTP, Zhang G, Nogués-Bravo D. Changes in the functional diversity of modern bird species over the last million years. Proc Natl Acad Sci U S A 2023; 120:e2201945119. [PMID: 36745783 PMCID: PMC9963860 DOI: 10.1073/pnas.2201945119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/28/2022] [Indexed: 02/08/2023] Open
Abstract
Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.
Collapse
Affiliation(s)
- Ryan R. Germain
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
| | - Shaohong Feng
- BGI-Shenzhen, Shenzhen518083, China
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China
| | - Lucas Buffan
- Département de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon69342 Cedex 07, France
| | - Carlos P. Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 51005, Estonia
| | - Guangii Chen
- BGI-Shenzhen, Shenzhen518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Gary R. Graves
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington20560, DC
| | - Joseph A. Tobias
- Department of Life Sciences, Imperial College London, AscotSL5 7PY, UK
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Institute of Ecology, Peking University, Beijing100871, China
- Danish Institute for Advanced Study, University of Southern Denmark, Odense5230, Denmark
| | - Fumin Lei
- Institute of Zoology, Key Laboratory of Zoological Systematics and Evolution, Chinese Academy of Sciences, Beijing100101, China
| | - Jon Fjeldså
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen2100, Denmark
| | - Peter A. Hosner
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen2100, Denmark
| | - M. Thomas P. Gilbert
- Center for Evolutionary Hologenomics, Globe Institute University of Copenhagen, Copenhagen1353, Denmark
- Department of Natural History, University Museum, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen2100, Denmark
- BGI-Shenzhen, Shenzhen518083, China
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China
| | - David Nogués-Bravo
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
| |
Collapse
|
16
|
Catching the Drift of Marine Invertebrate Diversity through Digital Repositories—A Case Study of the Mangroves and Seagrasses of Maputo Bay, Mozambique. DIVERSITY 2023. [DOI: 10.3390/d15020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Mangroves and seagrasses present with high marine macroinvertebrate biodiversity that contributes to their structure and functioning. Macroinvertebrates possess a broad range of functional traits, making them excellent models for biodiversity and available-trait-based studies. This study aimed to characterize the biodiversity of marine macroinvertebrates as two different ecosystems situated along the coastline of Maputo Bay by compiling dispersed data from online databases. Specifically, this study addressed species richness, taxonomic and functional diversity based on two traits (habitat occupation and trophic guild), and the community structure of these traits. Mangroves presented with a higher species richness and taxonomic diversity than seagrasses. The functional diversity of mangroves was mostly explained by the trophic guild trait. In the case of seagrasses, functional diversity was mostly due to differences in habitat occupation in the 20th century, but the trophic guild accounted for this functional diversity from 2000 onwards. The comparison of community compositions between the two ecosystems showed low or no similarity. The use of digital databases revealed some limitations, mostly regarding the sampling methods and individual counts. The trends and data gaps presented in this study can be further used to inform subsequent systematic data acquisition and support the development of future research. A further step that may be taken to improve the use of digital data in future biodiversity studies is to fully incorporate functional traits, abundance and sampling methods into online databases.
Collapse
|
17
|
Ali JR, Blonder BW, Pigot AL, Tobias JA. Bird extinctions threaten to cause disproportionate reductions of functional diversity and uniqueness. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jarome R. Ali
- Department of Life Sciences Imperial College London Ascot UK
- Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey USA
| | - Benjamin W. Blonder
- Department of Environmental Science, Policy, and Management University of California Berkeley California USA
- Environmental Change Institute, School of Geography and the Environment University of Oxford Oxford UK
| | - Alex L. Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment University College London London UK
| | | |
Collapse
|
18
|
Colares LF, de Assis Montag LF, Dunck B. Habitat loss predicts the functional extinction of fish from Amazonian streams during the Anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156210. [PMID: 35618116 DOI: 10.1016/j.scitotenv.2022.156210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The evaluation of extinction risk has typically focused on individual species, although a shift to a focus on ecosystem functioning would appear to be an urgent priority for conservation planning, especially considering that a sixth mass extinction event has already begun. In the present study, we investigated how fish extinction driven by habitat loss may modify the functioning of freshwater Amazonian ecosystems. We sampled the fish and environmental conditions of 63 streams in the eastern Amazon and simulated extinction based on the vulnerability of the species to habitat loss, which is the principal threat to tropical biodiversity. The simulated extinction of vulnerable species led to a decrease in both the mean body size of the community and functional rarity and culminated in abrupt losses of ecosystem functions after 5% and 10% of extinction at local and regional scales. Our functional approach demonstrated the progressive loss of ecological functions in Amazon streams, which may collapse altogether following the extinction of functions related to protection against biological invasions, and associated alterations in nutrient cycling and water quality. We provide robust predictions on the modification of the ecosystem following the extinction of fish species, which is a major step toward the development of effective conservation measures that ensure the avoidance of the predicted processes, and help to prevent the loss of biodiversity and the potentially irreversible modifications to ecosystem functioning.
Collapse
Affiliation(s)
- Lucas Ferreira Colares
- Programa de Pós-Graduação em Biodiversidade Animal, Laboratório de Ecologia Teórica e Aplicada, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 1000 - Camobi, Santa Maria, RS 97105-900, Brazil; Programa de Pós-Graduação em Ecologia, Laboratório de Ecologia de Produtores, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA, 66077-530, Brazil; Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA 66077-530, Brazil.
| | - Luciano Fogaça de Assis Montag
- Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA 66077-530, Brazil
| | - Bárbara Dunck
- Programa de Pós-Graduação em Ecologia, Laboratório de Ecologia de Produtores, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA, 66077-530, Brazil; Universidade Federal Rural da Amazônia, Instituto Socioambiental e dos Recursos Hídricos, Avenida Perimetral, 660778-30 Belém, PA, Brazil
| |
Collapse
|
19
|
Cox DTC, Gardner AS, Gaston KJ. Global and regional erosion of mammalian functional diversity across the diel cycle. SCIENCE ADVANCES 2022; 8:eabn6008. [PMID: 35960803 PMCID: PMC9374345 DOI: 10.1126/sciadv.abn6008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 06/08/2023]
Abstract
Biodiversity is declining worldwide. When species are physically active (i.e., their diel niche) may influence their risk of becoming functionally extinct. It may also affect how species losses affect ecosystems. For 5033 terrestrial mammals, we predict future changes to diel global and local functional diversity through a gradient of progressive functional extinction scenarios of threatened species. Across scenarios, diurnal species were at greater risk of becoming functionally extinct than nocturnal, crepuscular, and cathemeral species, resulting in deep functional losses in global diurnal trait space. Redundancy (species with similar roles) will buffer global nocturnal functional diversity; however, across the land surface, losses will mostly occur among functionally dispersed species (species with distinct roles). Functional extinctions will constrict boundaries of cathemeral trait space as megaherbivores, and arboreal foragers are lost. Variation in the erosion of functional diversity across the daily cycle will likely profoundly affect the partitioning of ecosystem functioning between night and day.
Collapse
|
20
|
Vasseur F, Westgeest AJ, Vile D, Violle C. Solving the grand challenge of phenotypic integration: allometry across scales. Genetica 2022; 150:161-169. [PMID: 35857239 PMCID: PMC9355930 DOI: 10.1007/s10709-022-00158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Phenotypic integration is a concept related to the cascade of trait relationships from the lowest organizational levels, i.e. genes, to the highest, i.e. whole-organism traits. However, the cause-and-effect linkages between traits are notoriously difficult to determine. In particular, we still lack a mathematical framework to model the relationships involved in the integration of phenotypic traits. Here, we argue that allometric models developed in ecology offer testable mathematical equations of trait relationships across scales. We first show that allometric relationships are pervasive in biology at different organizational scales and in different taxa. We then present mechanistic models that explain the origin of allometric relationships. In addition, we emphasized that recent studies showed that natural variation does exist for allometric parameters, suggesting a role for genetic variability, selection and evolution. Consequently, we advocate that it is time to examine the genetic determinism of allometries, as well as to question in more detail the role of genome size in subsequent scaling relationships. More broadly, a possible-but so far neglected-solution to understand phenotypic integration is to examine allometric relationships at different organizational levels (cell, tissue, organ, organism) and in contrasted species.
Collapse
Affiliation(s)
- François Vasseur
- CEFE, University Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | | | - Denis Vile
- LEPSE, University Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Cyrille Violle
- CEFE, University Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
21
|
Nath A, Roy K. Chemometric modeling of acute toxicity of diverse aromatic compounds against Rana japonica. Toxicol In Vitro 2022; 83:105427. [PMID: 35777580 DOI: 10.1016/j.tiv.2022.105427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Chemicals used in our daily life show different toxic effects to the aquatic and terrestrial species and thus hamper the ecological balance. In the present time, amphibians are one of them, which are threatened to be extinct. Quantitative structure-activity relationship (QSAR) is an useful tool for prediction involving less time, money and manpower without requiring any animal experiments to assess the unavailable acute toxicity data for the untested molecules. In this study, we have developed QSAR models for ecotoxicity of some waterborne diverse aromatic compounds on an amphibian species Rana japonica (Japanese brown frog) employing Genetic Algorithm (GA) for variable selection followed by Partial Least Squares (PLS) regression method following recommendations of the Organization for Economic Co-operation and Development (OECD) for QSAR model development. Double cross-validation (DCV) followed by Best Subset Selection (BSS) were employed to select suitable models. The models displayed promising statistical quality in terms of R2 (= 0.837-0.841), Q2LOO (= 0.782-0.787), R2pred or Q2F1 (= 0.802-0.82) and some other internal and external validation metrics for tadpoles of Rana japonica (NTraining = 44, NTest = 14). These models can be applied for data gap filling for a new untested compound falling within the applicability domain (AD) of the models.
Collapse
Affiliation(s)
- Aniket Nath
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|