1
|
Ma M, Zhai Y, Jin Q, Wang D, Wang S, Liu Z, Wang Z, Wang C, Xie Y, Ren Z, Gao X, Gao J. N-terminal PEGylation enhances organophosphorus hydrolase catalysis for a promising fast and long-acting prophylactic candidate. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137336. [PMID: 39889599 DOI: 10.1016/j.jhazmat.2025.137336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Organophosphorus compounds (OPs) poisoning poses a significant health risk as an insecticide, and its potent toxicity is characterized by rapid onset and a very narrow window for intervention. Prophylactic medication is crucial for managing OPs poisoning, yet effective and safe drugs are still lacking. The enzyme Organophosphorus hydrolase (OPH) shows promise as a bioscavenger but faces challenges due to its short half-life and strong immunogenicity. Our research reveals that N-terminal PEGylation of OPH significantly extends its pharmacokinetic half-life, reduces immunogenicity, and, surprisingly, enhances its catalytic activity for ethyl paraoxon. Intravenous administration of PEGY40kDa-OPH at a dose of 1 mg/kg effectively protected the rats against 4 doses of 2 ×LD50 ethyl paraoxon challenge with neither death nor toxic symptoms observed. Molecular dynamics simulations suggest that this enhancement is due to increased flexibility and stronger hydrogen bonding between the active site of PEGylated OPH and the substrate. This leads to more stable binding and higher catalytic rate. The study offers a strategy for a rapid and enduring prophylactic against organophosphorus poisoning and introduces a new analytical approach to understand the impact of PEGylation on enzymatic function.
Collapse
Affiliation(s)
- Ming Ma
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Yanan Zhai
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Qiantong Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130012, China
| | - Dan Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Shunye Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Zhuang Liu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ziyang Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chengcai Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Yanwei Xie
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Zilin Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130012, China.
| | - Xiang Gao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| | - Jing Gao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
2
|
Ahmed WS, Geethakumari AM, Sultana A, Tiwari A, Altamash T, Arshad N, Visweswariah SS, Biswas KH. Coevolving residues distant from the ligand binding site are involved in GAF domain function. Commun Chem 2025; 8:107. [PMID: 40195517 PMCID: PMC11977230 DOI: 10.1038/s42004-025-01447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/04/2025] [Indexed: 04/09/2025] Open
Abstract
Ligand binding to GAF domains regulates the activity of associated catalytic domains in various proteins, such as the cGMP-hydrolyzing catalytic domain of phosphodiesterase 5 (PDE5) activated by cGMP binding to GAFa domain. However, the specific residues involved and the mechanism of GAF domain function remain unclear. Here, we combine computational and experimental approaches to demonstrate that two highly coevolving residues, L267 and F295, distant from the ligand binding site, play a critical role in GAF domain allostery. Statistical Coupling Analysis (SCA) of GAF domain sequences identified these residues, and molecular dynamics (MD) simulations of both apo and holo forms of wild-type and mutant (L267A, F295A) PDE5 GAFa domains revealed significant changes in structural dynamics and cGMP interaction. Mutational incorporation into a Bioluminescence Resonance Energy Transfer (BRET)-based biosensors, which detects ligand-induced conformational changes, showed altered GAF domain conformation and increased EC50 for cGMP-induced conformational changes. Similar effects were observed in full-length PDE5 and the GAF domain fluorescent protein, miRFP670nano3. Structural analysis of conformers observed in MD simulations suggested a mechanism by which these coevolving residues influence GAF domain allostery. Our findings provide insight into the role of distant residues in GAF domain function and may enhance understanding of allostery in proteins.
Collapse
Affiliation(s)
- Wesam S Ahmed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Asfia Sultana
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Anmol Tiwari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Tausif Altamash
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Najla Arshad
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, US
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL, US
| | - Sandhya S Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Kabir H Biswas
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
3
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2025; 21:245-261. [PMID: 39613954 PMCID: PMC11916920 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Barra NG, Fang H, Bhatwa A, Schmidt AM, Syed SA, Steinberg GR, Morrison KM, Surette MG, Wade MG, Holloway AC, Schertzer JD. Food supply toxicants and additives alter the gut microbiota and risk of metabolic disease. Am J Physiol Endocrinol Metab 2025; 328:E337-E353. [PMID: 39871724 DOI: 10.1152/ajpendo.00364.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025]
Abstract
Metabolic disease is rising along with both global industrialization and the use of new commercial, agricultural, and industrial chemicals and food additives. Exposure to these compounds may contribute to aspects of metabolic diseases such as obesity, diabetes, and fatty liver disease. Ingesting compounds in the food supply is a key route of human exposure, resulting in the interaction between toxicants or additives and the intestinal microbiota. Toxicants can influence the composition and function of the gut microbiota, and these microbes can metabolize and transform toxicants and food additives. Microbe-toxicant interactions in the intestine can alter host mucosal barrier function, immunity, and metabolism, which may contribute to the risk or severity of metabolic disease development. Targeting the connection between toxicants, food, and immunity in the gut using strategies such as fermentable fiber (i.e., inulin) may mitigate some of the effects of these compounds on host metabolism. Understanding causative factors in the microbe-host relationship that promote toxicant-induced dysmetabolism is an important goal. This review highlights the role of common toxicants (i.e., persistent organic pollutants, pesticides, and fungicides) and food additives (emulsifiers and artificial sweeteners) found in our food supply that alter the gut microbiota and promote metabolic disease development.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Arshpreet Bhatwa
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Angela M Schmidt
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Saad A Syed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Zhu X, Chen C, Liu Q, Zhu Z, Wu X, Zhang Y. Multiple pesticide exposure and impaired glucose regulation in U.S. non-diabetic population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125519. [PMID: 39672370 DOI: 10.1016/j.envpol.2024.125519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Prediabetes is a serious metabolic disorder that is often overlooked and 70% of individuals with prediabetes would eventually develop type 2 diabetes. The diabetogenic effects of pesticides have been reported in toxicological studies but their association with prediabetes is rarely investigated. We aimed to evaluate the association between pesticide exposure and impaired glucose regulation (IGR), including prediabetes (defined as impaired fasting glucose [IFG] and/or impaired glucose tolerance [IGT]) and insulin resistance, in a general U.S. non-diabetic population. Three classes of urinary pesticides, including organophosphorus pesticides (OPs), pyrethroid, and herbicides were measured. Generalized linear regression, restricted cubic spline, and Bayesian kernel machine regression (BKMR) models were combined to evaluate their associations. 3,5,6-trichloropyridinol (TCPY) was positively associated with prediabetes and IGT (highest vs lowest TCPY quartile: prediabetes: OR: 1.97, 95% CI: 1.18, 3.31; IGT: OR: 2.03, 95% CI: 1.14, 3.66) in a linear dose-response manner (P for nonlinear<0.05). Another two metabolites of OPs, malathion dicarboxylic acid (MDCA) diacid and para-nitrophenol (PNP), were found to increase the odds ratio of insulin resistance (PNP: OR: 1.22, 95% CI: 1.05, 1.42; MDCA: OR: 1.36, 95% CI: 1.08, 1.70) with linear dose-response curves (P for nonlinear<0.05). Considering mutual exposure to multiple pesticides, TCPY, MDCA, and PNP made the most contributions in the mixture exposure and IGR. No obvious interactions among pesticides were found in the multiple exposure settings. The odds ratio of TCPY exposure and prediabetes was increased with advancing age but not related to body mass index (BMI). The results remained robust in sensitivity analysis with restricted participants without abnormal urinary creatinine and unsteady glucose or insulin levels. Our findings suggested the close relationship between OPs and impaired glucose regulation, especially in older adults, which provides insights into the prevention of diabetes at the earlier stage.
Collapse
Affiliation(s)
- Xingdi Zhu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China; First School of Clinical Medicine, Nanjing Medical University, Nanjing, 211100, China
| | - Congxin Chen
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Qi Liu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Zhihong Zhu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xiaoli Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| |
Collapse
|
6
|
Wang C, Peng M, Gao Z, Fu F, Li G, Su D, Huang L, Guo J, Shan Y. Citrus aurantium 'Changshan-huyou' physiological premature fruit drop: A promising prebiotic to tackle obesity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156347. [PMID: 39765038 DOI: 10.1016/j.phymed.2024.156347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/22/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Presently, the mitigation and governance of obesity have surfaced as significant public health dilemmas on a global scale. A wealth of studies indicated that the host gut microbiota is instrumental in regulating the interplay between high-fat diet (HFD) intake and the pathogenesis of obesity. Physiological premature fruit drop, a major byproduct of citrus, is rich in a variety of bioactive constituents, yet its potential has remained underutilized for an extended period. PURPOSE The objective of this investigation is to examine the chemical constituents of Citrus aurantium'Changshan-huyou' premature fruit drop (HYFD) and investigate its anti-obesity effects, elucidating its potential pathways. METHODS Volatile compounds and flavonoids in HYFD were analyzed using chromatographic and mass spectrometric techniques. Furthermore, this study utilized biochemical assays and histopathological examinations to evaluate the effects of HYFD on HFD-fed mice. The impact of HYFD on the gut microbiota of the mice was examined through 16S rRNA gene sequencing, and fecal microbiota transplantation was employed to validate the role of the gut microbial community in host obesity prevention. Concurrently, transcriptome was employed to identify differentially expressed genes, providing further insights into the molecular mechanisms through which HYFD manifests its anti-obesity effects. RESULTS Our findings demonstrated that HYFD supplementation significantly alleviated adiposity and ameliorated the dysbiosis of gut microbiota in HFD-induced mice. HYFD rectified the HFD-induced gut microbiota dysregulation, enhanced the presence of beneficial microbial taxa linked to lipid metabolism, including Parabacteroides and Alistipes, and elevated concentrations of the anti-obesity short-chain fatty acids, comprising caproic acid and isocaproic acid. Additionally, transcriptomic analyses confirmed that HYFD prevented obesity in mice by enhancing fatty acid catabolism via the activation of the AMPK/PPARα/CPT1a signaling pathway. CONCLUSION Our results provided novel insights into the mechanism of citrus physiological premature fruit drop and its potential role in preventing obesity, while sparking greater interest in leveraging more biomass waste.
Collapse
Affiliation(s)
- Chao Wang
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Mingfang Peng
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Fuhua Fu
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Gaoyang Li
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Donglin Su
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Lvhong Huang
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China.
| | - Yang Shan
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China.
| |
Collapse
|
7
|
Pérez-Bermejo M, Barrezueta-Aguilar C, Pérez-Murillo J, Ventura I, Legidos-García ME, Tomás-Aguirre F, Tejeda-Adell M, Martínez-Peris M, Marí-Beltrán B, Murillo-Llorente MT. Impact of Endocrine Disrupting Pesticide Use on Obesity: A Systematic Review. Biomedicines 2024; 12:2677. [PMID: 39767584 PMCID: PMC11727303 DOI: 10.3390/biomedicines12122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Endocrine disruptors are substances capable of altering the functions of the endocrine system. There is evidence that some pesticides can be endocrine disruptors and, among some of their effects, we find alterations in pubertal development and in the function of the thyroid gland, which could be related to a greater tendency of obesity. The aim was to evaluate the evidence from clinical and preclinical studies on the association between pesticides used in agriculture and found in plant-based foods with overweight/obesity. Methods: This is a systematic review of articles on the impact of the use of endocrine disrupting pesticides on obesity, conducted according to the PRISMA-2020 guidelines. Results: There was evidence that some pesticides, such as chlorpyrifos, pyrethroids, and neonicotinoids, may promote obesity and other anthropometric changes by altering lipid and glucose metabolism, modifying genes, or altering hormone levels such as leptin. Other studies suggest that perinatal exposure to chlorpyrifos or pesticides such as vinclozolin may alter lipid metabolism and promote weight gain in adulthood, whereas other pesticides such as boscalib, captan, thiacloprid, and ziram were not associated with changes in weight. Exposure to pesticides such as vinclozolin may be associated with a higher prevalence of overweight/obesity in later generations. Conclusions: The few studies that do not show these associations have methodological limitations in data collection with confounding variables. Further studies are needed to provide more and higher quality evidence to determine the true effect of these substances on obesity.
Collapse
Affiliation(s)
- Marcelino Pérez-Bermejo
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Cristian Barrezueta-Aguilar
- Department of Nutrition. School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - Javier Pérez-Murillo
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Ignacio Ventura
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - María Ester Legidos-García
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Francisco Tomás-Aguirre
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Manuel Tejeda-Adell
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Miriam Martínez-Peris
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - Belén Marí-Beltrán
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| | - María Teresa Murillo-Llorente
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain; (J.P.-M.); (M.E.L.-G.); (F.T.-A.); (M.T.-A.); (M.M.-P.); (B.M.-B.); (M.T.M.-L.)
| |
Collapse
|
8
|
Song SL, Chen XY, Zhao J, Li YY, Xiong YM, Lv L, Chang J, Wang H, Li XH, Qin ZF. Effects of the Fungicide Prothioconazole on Lipid Metabolism in Mice: Whitening Alterations of Brown Adipose Tissue. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18155-18166. [PMID: 39361549 DOI: 10.1021/acs.est.4c05666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
With considerable concerns about the associations between metabolic disorders and agricultural biocides, there are scattered data suggesting that the triazole fungicide prothioconazole (PTC) at lower doses than the no observed adverse effect level of 5000 μg/kg/d possibly has the potential to disrupt glycolipid metabolism in mammals. Here, we investigated the effects of 50, 500, and 5000 μg/kg/d of PTC on glycolipid metabolism in mice following 8 weeks of administration via drinking water, with specific attention on brown adipose tissue (BAT) and white adipose tissue (WAT) in addition to the liver. We found that along with the increased serum triglyceride level in the 5000 μg/kg/d group, small fatty vacuoles occurred in livers in all treatment groups, indicating lipid accumulation. No change in WAT was observed, but PTC caused BAT whitening, characterized by adipocyte hypertrophy, more unilocular adipocytes with enlarged lipid droplets, reduced UCP1 levels, and down-regulated Doi2 expression, and even the dose of 50 μg/kg/d was effective. Transcriptomic analysis revealed immune inhibition and circadian rhythm disturbance in BAT from the 5000 μg/kg/d group, which are in agreement with BAT whitening and inactivation. On employing the C3H10T1/2 cells in vitro, we found that PTC treatment concentration-dependently promoted lipid accumulation in brown adipocytes, along with altered expression of thermogenesis-related and circadian genes. Taken together, our study shows that low doses of PTC caused BAT whitening, calling for much attention to the new target by pollutants.
Collapse
Affiliation(s)
- Shi-Lin Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huili Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xing Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Jiang Z, Yang L, Liu Q, Qiu M, Chen Y, Qu F, Crabbe MJC, Wang H, Andersen ME, Zheng Y, Qu W. Haloacetamides disinfection by-products, a potential risk factor for nonalcoholic fatty liver disease. WATER RESEARCH 2024; 261:122008. [PMID: 38944971 DOI: 10.1016/j.watres.2024.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by abnormal lipid deposition, with oxidative stress being a risk factor in its onset and progression. Haloacetamides (HAcAms), as unregulated disinfection by-products in drinking water, may alter the incidence and severity of NAFLD through the production of oxidative stress. We explored whether HAcAms at 1, 10, and 100-fold concentrations in Shanghai drinking water perturbed lipid metabolism in normal human liver LO-2 cells. CRISPR/Cas9 was used to construct a LO-2 line with stable NRF2 knock-down (NRF2-KD) to investigate the mechanism underlying abnormal lipid accumulation and hepatocyte damage caused by mixed exposure to HAcAms. At 100-fold real-world concentration, HAcAms caused lipid deposition and increased triglyceride accumulation in LO-2 cells, consistent with altered de novo lipogenesis. Differences in responses to HAcAms in normal and NRF2-KD LO-2 cells indicated that HAcAms caused hepatocyte lipid deposition and triglyceride accumulation by activation of the NRF2/PPARγ pathway and aggravated liver cell toxicity by inducing ferroptosis. These results indicate that HAcAms are important risk factors for NAFLD. Further observations and verifications of the effect of HAcAms on NAFLD in the population are warranted in the future.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Lili Yang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Qinxin Liu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Meiyue Qiu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Yu Chen
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Fei Qu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| | - Melvin E Andersen
- ScitoVation LLC. 6 Davis Drive, Suite 146, Research Triangle Park, NC 27713, United States
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China.
| |
Collapse
|
10
|
Colopi A, Guida E, Cacciotti S, Fuda S, Lampitto M, Onorato A, Zucchi A, Balistreri CR, Grimaldi P, Barchi M. Dietary Exposure to Pesticide and Veterinary Drug Residues and Their Effects on Human Fertility and Embryo Development: A Global Overview. Int J Mol Sci 2024; 25:9116. [PMID: 39201802 PMCID: PMC11355024 DOI: 10.3390/ijms25169116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Drug residues that contaminate food and water represent a serious concern for human health. The major concerns regard the possible irrational use of these contaminants, since this might increase the amplitude of exposure. Multiple sources contribute to the overall exposure to contaminants, including agriculture, domestic use, personal, public and veterinary healthcare, increasing the possible origin of contamination. In this review, we focus on crop pesticides and veterinary drug residues because of their extensive use in modern agriculture and farming, which ensures food production and security for the ever-growing population around the world. We discuss crop pesticides and veterinary drug residues with respect to their worldwide distribution and impacts, with special attention on their harmful effects on human reproduction and embryo development, as well as their link to epigenetic alterations, leading to intergenerational and transgenerational diseases. Among the contaminants, the most commonly implicated in causing such disorders are organophosphates, glyphosate and antibiotics, with tetracyclines being the most frequently reported. This review highlights the importance of finding new management strategies for pesticides and veterinary drugs. Moreover, due to the still limited knowledge on inter- and transgenerational effects of these contaminants, we underlie the need to strengthen research in this field, so as to better clarify the specific effects of each contaminant and their long-term impact.
Collapse
Affiliation(s)
- Ambra Colopi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Eugenia Guida
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Silvia Cacciotti
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Serena Fuda
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Matteo Lampitto
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Angelo Onorato
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Alice Zucchi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy;
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Marco Barchi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| |
Collapse
|
11
|
Prapaharan B, Lea M, Beaudry JL. Weighing in on the role of brown adipose tissue for treatment of obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13157. [PMID: 39087083 PMCID: PMC11290130 DOI: 10.3389/jpps.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Brown adipose tissue (BAT) activation is an emerging target for obesity treatments due to its thermogenic properties stemming from its ability to shuttle energy through uncoupling protein 1 (Ucp1). Recent rodent studies show how BAT and white adipose tissue (WAT) activity can be modulated to increase the expression of thermogenic proteins. Consequently, these alterations enable organisms to endure cold-temperatures and elevate energy expenditure, thereby promoting weight loss. In humans, BAT is less abundant in obese subjects and impacts of thermogenesis are less pronounced, bringing into question whether energy expending properties of BAT seen in rodents can be translated to human models. Our review will discuss pharmacological, hormonal, bioactive, sex-specific and environmental activators and inhibitors of BAT to determine the potential for BAT to act as a therapeutic strategy. We aim to address the feasibility of utilizing BAT modulators for weight reduction in obese individuals, as recent studies suggest that BAT's contributions to energy expenditure along with Ucp1-dependent and -independent pathways may or may not rectify energy imbalance characteristic of obesity.
Collapse
Affiliation(s)
| | | | - Jacqueline L. Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Wen Q, Xie X, Ren Q, Pan R, Du Y. BDE-99 stimulates generation of aberrant brown/beige adipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123761. [PMID: 38467365 DOI: 10.1016/j.envpol.2024.123761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Adipose tissue compromises one of the principal depots where brominated flame retardants (BFR) accumulate in vivo, yet whether BFR disturb thermogenic brown/beige adipocytes is still not referred to date. Herein, effects of BDE-99, a major congener of polybrominated diphenyl ethers (PBDEs) detected in humans, on brown/beige adipocytes were explored for the first time, aiming to provide new knowledge evaluating the obesogenic and metabolic disrupting effects of BFR. Our results firstly demonstrated that exposure to BDE-99 during the lineage commitment period significantly promoted C3H10T1/2 MSCs differentiating into brown/beige adipocytes, evidenced by the increase of brown/beige adipocyte marker UCP1, Cidea as well as mitochondrial membrane potential and basal respiration rate, which was similar to pharmacological PPARγ agonist rosiglitazone. Unexpectedly, the mitochondrial maximal respiration rate of BDE-99 stimulated brown/beige adipocytes was not synchronously enhanced and resulted in a significant reduction of mitochondrial spare respiration capacity (SRC) compared to control or rosiglitazone stimulated adipocytes, indicating a deficient energy-dissipating capacity of BDE-99 stimulated thermogenic adipocytes. Consistently with compromised mitochondrial SRC, lipidomic analysis further revealed that the lipids profile of mitochondria derived from BDE-99 stimulated brown/beige adipocytes were quite different from control or rosiglitazone stimulated cells. In detail, BDE-99 group contains more free fatty acid (FFA) and lyso-PE in mitochondria. In addition to energy metabolism, our results also demonstrated that BDE-99 stimulated brown/beige adipocytes were deficient in endocrine, which secreted more adverse adipokine named resistin, coinciding with comparable beneficial adipokine adiponectin compared with that of rosiglitazone. Taken together, our results showed for the first time that BDE-99 stimulated brown/beige adipocytes were aberrant in energy metabolism and endocrine, which strongly suggests that BDE-99 accumulated in human adipose tissue could interfere with brown/beige adipocytes to contribute to the occurrence of obesity and relevant metabolic disorders.
Collapse
Affiliation(s)
- Qing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China; Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruiying Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Xu C, Zhang X, Wang Y, Wang Y, Zhou Y, Li F, Hou X, Xia D. Dietary kaempferol exerts anti-obesity effects by inducing the browing of white adipocytes via the AMPK/SIRT1/PGC-1α signaling pathway. Curr Res Food Sci 2024; 8:100728. [PMID: 38577419 PMCID: PMC10990952 DOI: 10.1016/j.crfs.2024.100728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Browning of white adipose tissue is a novel approach for the management of obesity and obesity-related metabolic disorders. Kaempferol (KPF) is a common dietary nutrient found abundantly in many fruits and vegetables and has been shown to have the potential to regulate lipid metabolism. However, the detailed mechanism by which it affects the browning of white adipose tissue remains unclear. In the present study, we sought to determine how KPF induces adipocytes to undergo a browning transformation by establishing a primary adipocyte model and an obese mouse model. Our results showed that KPF-treated mice were rescued from diet-induced obesity, glucose tolerance and insulin resistance, associated with increased expression of adaptive thermogenesis-related proteins. KPF-promoted white adipose browning correlated with the AMPK/SIRT1/PGC-1α pathway, as the use of an AMPK inhibitor in preadipocytes partially reversed the observed browning phenotype of KPF-treated cells. Taken together, these data suggest that KPF promotes browning of white adipose tissue through activation of the AMPK/SIRT1/PGC-1α pathway. This study demonstrates that KPF is a promising natural product for the treatment of obesity by promoting white fat browning.
Collapse
Affiliation(s)
- Changyu Xu
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoxi Zhang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yihuan Wang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Wang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yixuan Zhou
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fenfen Li
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoli Hou
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Daozong Xia
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
14
|
Ma P, Gao H, Shen N, Zhang L, Zhang Y, Zheng K, Xu B, Qin J, He J, Xu T, Li Y, Wu J, Yuan Y, Xue B. Association of urinary chlorpyrifos, paraquat, and cyproconazole levels with the severity of fatty liver based on MRI. BMC Public Health 2024; 24:807. [PMID: 38486191 PMCID: PMC10941454 DOI: 10.1186/s12889-024-18129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The objective of this study was to detect the urinary levels of chlorpyrifos, paraquat, and cyproconazole in residents living in Fuyang City and to analyze the correlation between these urinary pesticides levels and the severity of fatty liver disease (FLD). METHODS All participants' fat fraction (FF) values were recorded by MRI (Magnetic resonance imaging). First-morning urine samples were collected from 53 participants from Fuyang Peoples'Hospital. The levels of three urinary pesticides were measured using β-glucuronidase hydrolysis followed by a. The results were analyzed by using Pearson correlation analysis and binary logistic regression analysis to reveal the correlation between three urinary pesticides and the severity of fatty liver. RESULTS 53 individuals were divided into 3 groups based on the results from MRI, with 20 cases in the normal control group, 16 cases in the mild fatty liver group, and 17 cases in the moderate and severe fatty liver group. Urinary chlorpyrifos level was increased along with the increase of the severity of fatty liver. Urinary paraquat level was significantly higher both in the low-grade fatty liver group and moderate & serve grade fatty liver group compared with the control group. No significant differences in urinary cyproconazole levels were observed among the three groups. Furthermore, urinary chlorpyrifos and paraquat levels were positively correlated with FF value. And chlorpyrifos was the risk factor that may be involved in the development of FLD and Receiver Operating Characteristic curve (ROC curve) analysis showed that chlorpyrifos and paraquat may serve as potential predictors of FLD. CONCLUSION The present findings indicate urinary chlorpyrifos and paraquat were positively correlated with the severity of fatty liver. Moreover, urinary chlorpyrifos and paraquat have the potential to be considered as the predictors for development of FLD. Thus, this study may provide a new perspective from the environmental factors for the diagnosis, prevention, and treatment of FLD.
Collapse
Affiliation(s)
- Peiqi Ma
- Medical imaging center, Fuyang People's Hospital, 236000, Fuyang, China
| | - Hongliang Gao
- Core Laboratory, Department of Clinical Laboratory Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China
- School of Clinical Medicine, Wannan Medical College, 241000, Wuhu, China
| | - Ning Shen
- China Exposomics Institute (CEI) Precision Medicine Co. Ltd, 200120, Shanghai, China
| | - Lei Zhang
- Medical imaging center, Fuyang People's Hospital, 236000, Fuyang, China
| | - Yang Zhang
- Medical imaging center, Fuyang People's Hospital, 236000, Fuyang, China
| | - Kai Zheng
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 210029, Nanjing, China
| | - Boqun Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, China
| | - Jian Qin
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, 211100, Nanjing, China
| | - Jian He
- Department of Nuclear Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, 210029, Nanjing, China
| | - Tao Xu
- Core Laboratory, Department of Clinical Laboratory Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Yan Li
- Core Laboratory, Department of Clinical Laboratory Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China.
| | - Jing Wu
- Core Laboratory, Department of Clinical Laboratory Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China.
| | - Yushan Yuan
- Medical imaging center, Fuyang People's Hospital, 236000, Fuyang, China.
| | - Bin Xue
- Department of General Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Nanjing Medical University, 213003, Changzhou, China.
- Core Laboratory, Department of Clinical Laboratory Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
15
|
Chen XY, Li YY, Lv L, Xiong YM, Qin ZF. The brominated flame retardant tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) as well as hexabromocyclododecane lead to lipid disorders in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122895. [PMID: 37949162 DOI: 10.1016/j.envpol.2023.122895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
The brominated flame retardant tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) is a recommended substitute for hexabromocyclododecane (HBCD), a banned persistent organic pollutant, yet its potential toxicities remains largely unexplored. Here, we investigated the effects of a long-term exposure to TBBPA-DBMPE at nominal doses of 50 and 1000 μg/kg/d on lipid homeostasis in CD-1 mice, in comparison with 50 μg/kg/d HBCD as a positive control. Male pups received chemical treatments through maternal administration via drinking water from postnatal day 0-21, followed by direct administration through drinking water after weaning. On the 23rd week after treatment, the oral lipid tolerance test revealed that low-dose TBBPA-DBMPE as well as HBCD affected lipid tolerance, although the fasting serum triglyceride (TG) levels were not altered. When chemical treatment was extended to the 32nd week, TBBPA-DBMPE-treated animals displayed adipocyte hypertrophy in both white adipose tissue (eWAT) and brown adipose tissue (BAT) and hepatic steatosis, which was largely consistent with the effects of HBCD. These findings indicate that like HBCD, TBBPA-DBMPE led to increased lipid load in mice. Interestingly, we also observed intestinal histological changes, coupled with increased expression of lipid absorption-related genes in both HBCD and TBBPA-DBMPE treatments, suggesting increased lipid absorption. This was supported by in vitro findings that both HBCD and TBBPA-DBMPE promoted lipid accumulation in IEC-6 cells under the stress of oleic acid for 6 h, implying that altered lipid absorption by the intestine may partly contributed to increased lipid load in mice. Overall, the effects of 50 μg/kg/d TBBPA-DBMPE in terms of some parameters were comparable with 50 μg/kg/d HBCD, suggesting that TBBPA-DBMPE may not be an ideal substitute of HBCD.
Collapse
Affiliation(s)
- Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Hyland C, Hernandez A, Gaudreau É, Larose J, Bienvenu JF, Meierotto L, Som Castellano RL, Curl CL. Examination of urinary pesticide concentrations, protective behaviors, and risk perceptions among Latino and Latina farmworkers in Southwestern Idaho. Int J Hyg Environ Health 2024; 255:114275. [PMID: 37866282 DOI: 10.1016/j.ijheh.2023.114275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Studies have documented high levels of pesticide exposure among men farmworkers; however, few have examined exposures or the experiences of women farmworkers. Data gaps also exist regarding farmworkers' perceived risk and control related to pesticides, information that is critical to develop protective interventions. OBJECTIVE We aimed to compare urinary pesticide biomarker concentrations between Latino and Latina farmworkers and examine associations with occupational characteristics, risk perceptions, perceived control, and protective behaviors. METHODS We enrolled a convenience sample of 62 farmworkers (30 men and 32 women) during the pesticide spray season from April-July 2022 in southwestern Idaho. Participants were asked to complete two visits within a seven-day period; at each visit, we collected a urine sample and administered a questionnaire assessing demographic and occupational information. Urine samples were composited and analyzed for 17 biomarkers of herbicides and of organophosphate (OP) and pyrethroid insecticides. RESULTS Ten pesticide biomarkers (TCPy, MDA, PNP, 3-PBA, 4-F-3-PBA, cis- and trans-DCCA, 2,4-D, Glyphosate, AMPA) were detected in >80% of samples. Men and women had similar urinary biomarker concentrations (p = 0.19-0.94); however, women worked significantly fewer hours than men (p = 0.01), wore similar or greater levels of Personal Protective Equipment (PPE), and were slightly more likely to report having experienced an Acute Pesticide Poisoning (26% of women vs. 14% of men; p = 0.25). We observed inconsistencies in risk perceptions, perceived control, and protective behaviors among men. DISCUSSION Our study is one the first to examine pesticide exposure and risk perceptions among a cohort of farmworkers balanced on gender. Taken with previous findings, our results suggest that factors such as job tasks, biological susceptibility, or access to trainings and protective equipment might uniquely impact women farmworkers' exposure and/or vulnerability to pesticides. Women represent an increasing proportion of the agricultural workforce, and larger studies are needed to disentangle these findings.
Collapse
Affiliation(s)
- Carly Hyland
- School of Public and Population Health, Boise State University, Boise, ID, USA; Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA; Division of Agriculture and Natural Resources, University of California, Berkeley, USA.
| | - Alejandra Hernandez
- School of Public and Population Health, Boise State University, Boise, ID, USA; Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Éric Gaudreau
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec, Québec, QC, Canada
| | - Jessica Larose
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec, Québec, QC, Canada
| | - Jean-François Bienvenu
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec, Québec, QC, Canada
| | - Lisa Meierotto
- School of Public Service, Boise State University, Boise, ID, USA
| | | | - Cynthia L Curl
- School of Public and Population Health, Boise State University, Boise, ID, USA
| |
Collapse
|
17
|
Zou W, Zhang L, Hu Y, Gao Y, Zhang J, Zheng J. The role of TRPV ion channels in adipocyte differentiation: What is the evidence? Cell Biochem Funct 2024; 42:e3933. [PMID: 38269518 DOI: 10.1002/cbf.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Obesity is a complex disorder, and the incidence of obesity continues to rise at an alarming rate worldwide. In particular, the growing incidence of overweight and obesity in children is a major health concern. However, the underlying mechanisms of obesity remain unclear and the efficacy of several approaches for weight loss is limited. As an important calcium-permeable temperature-sensitive cation channel, transient receptor potential vanilloid (TRPV) ion channels directly participate in thermo-, mechano-, and chemosensory responses. Modulation of TRPV ion channel activity can alter the physiological function of the ion channel, leading to neurodegenerative diseases, chronic pain, cancer, and skin disorders. In recent years, increasing studies have demonstrated that TRPV ion channels are abundantly expressed in metabolic organs, including the liver, adipose tissue, skeletal muscle, pancreas, and central nervous system, which has been implicated in various metabolic diseases, including obesity and diabetes mellitus. In addition, as an important process for the pathophysiology of adipocyte metabolism, adipocyte differentiation plays a critical role in obesity. In this review, we focus on the role of TRPV ion channels in adipocyte differentiation to broaden the ideas for prevention and control strategies for obesity.
Collapse
Affiliation(s)
- Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
18
|
Chen Z, Zhao L, Zhang Z, Wu J, Zhang L, Jing X, Wang X. Dispersive liquid‒liquid microextraction combined with enzyme-linked immunosorbent assay for the analysis of chlorpyrifos in cereal samples. Talanta 2023; 265:124802. [PMID: 37329751 DOI: 10.1016/j.talanta.2023.124802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
In this paper, an analysis method for chlorpyrifos (CPF) in cereal samples was proposed using dispersive liquid‒liquid microextraction combined with an enzyme-linked immunosorbent assay. In the dispersive liquid‒liquid microextraction, deep eutectic solvents and fatty acids were used as solvents to extract, purify, and concentrate CPF in cereals. In the enzyme-linked immunosorbent assay, gold nanoparticles were utilized to enrich and conjugate more antibodies and horseradish peroxidase, while magnetic beads were used as solid supports to amplify the signal and shorten the detection time of CPF. The linearity range was 0.002-1 μg kg-1, and the limit of detection was 0.0006 μg kg-1. The extraction recoveries were 86.7-99.9% with a relative standard deviation of less than 7.0%. The proposed method was successfully used to analyze CPF in cereal samples (rice, wheat, maize, and millet) and has prospects for the pretreatment and detection of CPF residues in other food samples.
Collapse
Affiliation(s)
- Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Luyao Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhuoting Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
19
|
Kaur S, Chowdhary S, Kumar D, Bhattacharyya R, Banerjee D. Organophosphorus and carbamate pesticides: Molecular toxicology and laboratory testing. Clin Chim Acta 2023; 551:117584. [PMID: 37805177 DOI: 10.1016/j.cca.2023.117584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Population and food requirements are increasing daily throughout the world. To fulfil these requirements application of pesticides is also increasing. Organophosphorous (OP) and Organocarbamate (OC) compounds are widely used pesticides. These pesticides are used for suicidal purposes too. Both inhibit Acetylcholinesterase (AChE) and cholinergic symptoms are mainly used for the diagnosis of pesticide poisoning. Although the symptoms of the intoxication of OP and OC are similar, recent research has described different targets for OP and OC pesticides. Researchers believe the distinction of OP/OC poisoning will be beneficial for the management of pesticide exposure. OP compounds produce adducts with several proteins. There is a new generation of OP compounds like glyphosate that do not inhibit AChE. Therefore, it's high time to develop biomarkers that can distinguish OP poisoning from OC poisoning.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Sheemona Chowdhary
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Deepak Kumar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| |
Collapse
|
20
|
Li QZ, Zuo ZW, Liu Y. Recent status of sesaminol and its glucosides: Synthesis, metabolism, and biological activities. Crit Rev Food Sci Nutr 2023; 63:12043-12056. [PMID: 35821660 DOI: 10.1080/10408398.2022.2098248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sesamum indicum is a major and important oilseed crop that is believed to promote human health in many countries, especially in China. Sesame seeds contain two types of lignans: lipid-soluble lignans and water-soluble glucosylated lignans. The major glucosylated lignans are sesaminol glucosides (SGs). So far, four sesaminol isomers and four SGs are identified. During the naturally occurring process of SGs production, sesaminol is generated first from two molecules of E-coniferyl alcohol, and then the sugar is added to the sesaminol one by one, leading to production of SGs. Sesaminol can be prepared from SGs, from sesamolin, and through artificial synthesis. SGs are metabolized in the liver and intestine and are then transported to other tissues. They exhibit several biological activities, most of which are based on their antioxidant and anti-inflammatory activities. In this paper, we present an overview of the current status of research on sesaminol and SGs. We have also discussed their synthesis, preparation, metabolism, and biological activities. It has been suggested that sesaminol and SGs are important biological substances with strong antioxidant properties in vitro and in vivo and are widely used in the food industry, medicine, and cosmetic products. The recovery and utilization of SGs from sesame seed cake after oil processing will generate massive economic benefits.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
21
|
Verma J, Rai AK, Satija NK. Autophagy perturbation upon acute pyrethroid treatment impacts adipogenic commitment of mesenchymal stem cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105566. [PMID: 37666621 DOI: 10.1016/j.pestbp.2023.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
Environmental chemical exposure can cause dysregulation in adipogenesis that can result in metabolic syndrome, which includes insulin resistance, type 2 diabetes, cardiovascular disease, as well as excessive body weight. The role of autophagy in adipocyte differentiation is debatable since both positive and negative effects have been reported. Type-I and type-II synthetic pyrethroids α-cypermethrin (CPM) and permethrin (PER), respectively, are reported to increase adipogenesis in vitro and in vivo. However, it is not known how these pyrethroids affect mesenchymal stem cells (MSCs). Thus, this study focused on evaluating the effect of pyrethroids (CPM and PER) pre-treatment (24 h) on MSC commitment and the regulatory role of autophagy in adipogenic lineage commitment. The formation of adipocytes was observed through nile red staining, perilipin expression by immunoflourescence, and adipogenic markers PPARγ, C/EBPα, and FABP4 by western blotting. It was found that the adipogenic differentiation ability of MSCs was significantly increased upon CPM or PER pre-treatment at 100 μM concentration as evident by lipid accumulation and enhanced expression of adipogenic markers. To assess the involvement of autophagy, the expression of p62 and LC3II were evaluated following pre-treatment. Immunoblotting results revealed an increased expression of p62 and LC3II in CPM or PER pretreated MSCs suggesting CPM and PER mediated inhibition of autophagy at 24 h. Further, an increase was observed in adipogenesis upon CPM or PER pre-treatment in combination with chloroquine, while use of rapamycin during pre-treatment abrogated the effect of CPM and PER. Thus, this study concludes that CPM or PER pre-treatment increases the adipogenic differentiation of MSCs. Since chloroquine also demonstrated similar adipogenic response, it further highlights that 24 h pre-treatment with autophagy modulators to inhibit basal autophagy primes MSCs towards adipogenic lineage.
Collapse
Affiliation(s)
- Julee Verma
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajit Kumar Rai
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar Satija
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Wu M, Yi J, Yin C, Sun Q, Gao L, Niu N, Chen L. An upconversion nanosensor with phenolic-like functionality for accurate identification of chlorpyrifos in grapes. Food Chem 2023; 416:135859. [PMID: 36898337 DOI: 10.1016/j.foodchem.2023.135859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The inappropriate use of the organophosphorus pesticide chlorpyrifos (CPF) in agricultural production could be harmful to the environment and non-target organisms. Here, we prepared a nano-fluorescent probe with phenolic function based on covalently coupled rhodamine derivatives (RDP) of upconverted nano-particles (UCNPs) for trace detection of chlorpyrifos. Due to the fluorescence resonance energy transfer (FRET) effect in the system, the fluorescence of UCNPs is quenched by RDP. The phenolic-functional RDP is converted to the spironolactone form when it captures chlorpyrifos. This structural shift prevents the FRET effect in the system and allows the fluorescence of UCNPs to be restored. In addition, the 980 nm excitement conditions of UCNPs will also avoid interference from non-target fluorescent backgrounds. This work has obvious advantages in terms of selectivity and sensitivity, which can be widely applied to the rapid analysis of chlorpyrifos residues in food samples.
Collapse
Affiliation(s)
- Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Jiaqi Yi
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Chenhui Yin
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Lei Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China; Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China.
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
23
|
Wang X, Sun Z, Pei Y, Liu QS, Zhou Q, Jiang G. 3- tert-Butyl-4-hydroxyanisole Perturbs Differentiation of C3H10T1/2 Mesenchymal Stem Cells into Brown Adipocytes through Regulating Smad Signaling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37481753 DOI: 10.1021/acs.est.3c02346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
3-tert-Butyl-4-hydroxyanisole (3-BHA), one of the most commonly used antioxidants in foodstuffs, has been identified as an environmental endocrine disruptor (EED) with obesogenic activity. Given the increasing concern on EED-caused dysfunction in lipid metabolism, whether 3-BHA could influence the development of brown adipocytes is worthy of being explored. In this study, the effect of 3-BHA on the differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) into brown adipocytes was investigated. Exposure to 3-BHA promoted lipogenesis of the differentiated cells, as evidenced by the increased intracellular lipid accumulation and elevated expressions of adipogenic biomarkers, including peroxisome proliferator-activated receptor γ (PPARγ), Perilipin, Adiponectin, and fatty acid binding protein 4 (FABP4). Surprisingly, the thermogenic capacity of the differentiated cells was compromised as a result of 3-BHA exposure, because neither intracellular mitochondrial contents nor expressions of thermogenic biomarkers, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), cell-death-inducing DNA fragmentation factor α subunit-like effector A (CIDEA), and PR domain containing 16 (PRDM16), were increased by this chemical. The underlying molecular mechanism exploration revealed that, in contrast to p38 MAPK, 3-BHA stimulation induced phosphorylation of Smad1/5/8 in an exposure time-dependent manner, suggesting that this chemical-triggered Smad signaling was responsible for the shift of C3H10T1/2 MSC differentiation from a brown to white-like phenotype. The finding herein, for the first time, revealed the perturbation of 3-BHA in the development of brown adipocytes, uncovering new knowledge about the obesogenic potential of this emerging chemical of concern.
Collapse
Affiliation(s)
- Xiaoyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhendong Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, People's Republic of China
| |
Collapse
|
24
|
Wang B, Du M. Increasing adipocyte number and reducing adipocyte size: the role of retinoids in adipose tissue development and metabolism. Crit Rev Food Sci Nutr 2023; 64:10608-10625. [PMID: 37427553 PMCID: PMC10776826 DOI: 10.1080/10408398.2023.2227258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The rising prevalence of obesity is a grave public health threat. In response to excessive energy intake, adipocyte hypertrophy impairs cellular function and leads to metabolic dysfunctions while de novo adipogenesis leads to healthy adipose tissue expansion. Through burning fatty acids and glucose, the thermogenic activity of brown/beige adipocytes can effectively reduce the size of adipocytes. Recent studies show that retinoids, especially retinoic acid (RA), promote adipose vascular development which in turn increases the number of adipose progenitors surrounding the vascular vessels. RA also promotes preadipocyte commitment. In addition, RA promotes white adipocyte browning and stimulates the thermogenic activity of brown/beige adipocytes. Thus, vitamin A is a promising anti-obesity micronutrient.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
25
|
Li F, Zhang F, Yi X, Quan LL, Yang X, Yin C, Ma Z, Wu R, Zhao W, Ling M, Lang L, Hussein A, Feng S, Fu Y, Wang J, Liang S, Zhu C, Wang L, Zhu X, Gao P, Xi Q, Zhang Y, Zhang L, Shu G, Jiang Q, Wang S. Proline hydroxylase 2 (PHD2) promotes brown adipose thermogenesis by enhancing the hydroxylation of UCP1. Mol Metab 2023; 73:101747. [PMID: 37279828 PMCID: PMC10293773 DOI: 10.1016/j.molmet.2023.101747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) plays a crucial role in regulating non-shivering thermogenesis under cold exposure. Proline hydroxylases (PHDs) were found to be involved in adipocyte differentiation and lipid deposition. However, the effects of PHDs on regulatory mechanisms of BAT thermogenesis are not fully understood. METHODS We detected the expression of PHDs in different adipose tissues by using immunoblotting and real-time PCR. Further, immunoblotting, real-time PCR, and immunostaining were performed to determine the correlation between proline hydroxylase 2 (PHD2) and UCP1 expression. Inhibitor of PHDs and PHD2-sgRNA viruses were used to construct the PHD2-deficiency model in vivo and in vitro to investigate the impacts of PHD2 on BAT thermogenesis. Afterward, the interaction between UCP1 and PHD2 and the hydroxylation modification level of UCP1 were verified by Co-IP assays and immunoblotting. Finally, the effect of specific proline hydroxylation on the expression/activity of UCP1 was further confirmed by site-directed mutation of UCP1 and mass spectrometry analysis. RESULTS PHD2, but not PHD1 and PHD3, was highly enriched in BAT, colocalized, and positively correlated with UCP1. Inhibition or knockdown of PHD2 significantly suppressed BAT thermogenesis under cold exposure and aggravated obesity of mice fed HFD. Mechanistically, mitochondrial PHD2 bound to UCP1 and regulated the hydroxylation level of UCP1, which was enhanced by thermogenic activation and attenuated by PHD2 knockdown. Furthermore, PHD2-dependent hydroxylation of UCP1 promoted the expression and stability of UCP1 protein. Mutation of the specific prolines (Pro-33, 133, and 232) in UCP1 significantly mitigated the PHD2-elevated UCP1 hydroxylation level and reversed the PHD2-increased UCP1 stability. CONCLUSIONS This study suggested an important role for PHD2 in BAT thermogenesis regulation by enhancing the hydroxylation of UCP1.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lu Lu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Cong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zewei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ruifan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Abdelaziz Hussein
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Junfeng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shuyi Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Wen's Foodstuffs Group Co., Ltd, Yunfu 527400, PR China.
| |
Collapse
|
26
|
Meng Z, Yan S, Sun W, Yan J, Teng M, Jia M, Tian S, Zhou Z, Zhu W. Chlorothalonil induces obesity in mice by regulating host gut microbiota and bile acids metabolism via FXR pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131310. [PMID: 37003002 DOI: 10.1016/j.jhazmat.2023.131310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
As the most commonly used organochlorine pesticide nowadays, chlorothalonil (CHI), is ubiquitous in a natural environment and poses many adverse effects to organisms. Unfortunately, the toxicity mechanisms of CHI have not been clarified yet. This study found that the CHI based on ADI level could induce obesity in mice. In addition, CHI could induce an imbalance in the gut microbiota of mice. Furthermore, the results of the antibiotic treatment and gut microbiota transplantation experiments showed that the CHI could induce obesity in mice in a gut microbiota-dependent manner. Based on the results of targeted metabolomics and gene expression analysis, CHI could disturb the bile acids (BAs) metabolism of mice, causing the inhibition of the signal response of BAs receptor FXR and leading to glycolipid metabolism disorders in liver and epiWAT of mice. The administration of FXR agonist GW4064 and CDCA could significantly improve the CHI-induced obesity in mice. In conclusion, CHI was found to induce obesity in mice by regulating the gut microbiota and BAs metabolism via the FXR signaling pathway. This study provides evidence linking the gut microbiota and pesticides exposure with the progression of obesity, demonstrating the key role of gut microbiota in the toxic effects of pesticides.
Collapse
Affiliation(s)
- Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
27
|
Sarlon J, Partonen T, Lang UE. Potential links between brown adipose tissue, circadian dysregulation, and suicide risk. Front Neurosci 2023; 17:1196029. [PMID: 37360180 PMCID: PMC10288144 DOI: 10.3389/fnins.2023.1196029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Circadian desynchronizations are associated with psychiatric disorders as well as with higher suicidal risk. Brown adipose tissue (BAT) is important in the regulation of body temperature and contributes to the homeostasis of the metabolic, cardiovascular, skeletal muscle or central nervous system. BAT is under neuronal, hormonal and immune control and secrets batokines: i.e., autocrine, paracrine and endocrine active substances. Moreover, BAT is involved in circadian system. Light, ambient temperature as well as exogen substances interact with BAT. Thus, a dysregulation of BAT can indirectly worsen psychiatric conditions and the risk of suicide, as one of previously suggested explanations for the seasonality of suicide rate. Furthermore, overactivation of BAT is associated with lower body weight and lower level of blood lipids. Reduced body mass index (BMI) or decrease in BMI respectively, as well as lower triglyceride concentrations were found to correlate with higher risk of suicide, however the findings are inconclusive. Hyperactivation or dysregulation of BAT in relation to the circadian system as a possible common factor is discussed. Interestingly, substances with proven efficacy in reducing suicidal risk, like clozapine or lithium, interact with BAT. The effects of clozapine on fat tissue are stronger and might differ qualitatively from other antipsychotics; however, the significance remains unclear. We suggest that BAT is involved in the brain/environment homeostasis and deserves attention from a psychiatric point of view. Better understanding of circadian disruptions and its mechanisms can contribute to personalized diagnostic and therapy as well as better assessment of suicide risk.
Collapse
Affiliation(s)
- Jan Sarlon
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| | - Timo Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Undine E. Lang
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Wang WG, Li MY, Diao L, Zhang C, Tao LM, Zhou WX, Xu WP, Zhang Y. The health risk of acetochlor metabolite CMEPA is associated with lipid accumulation induced liver injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121857. [PMID: 37245791 DOI: 10.1016/j.envpol.2023.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Liver injury may cause many diseases, such as non-alcoholic fatty liver disease (NAFLD). Acetochlor is one of the representative chloroacetamide herbicides, and its metabolite 2-chloro-N-(2-ethyl-6-methyl phenyl) acetamide (CMEPA) is the main form of exposure in the environment. It has been shown that acetochlor can cause mitochondrial damage of HepG2 cells and induce apoptosis by activating Bcl/Bax pathway (Wang et al., 2021). But there has been less research on CMEPA. we explored the possibility of CMEPA and liver injury through biological experiments. In vivo, CMEPA (0-16 mg/L) induced liver damage in zebrafish larvae, including increased lipid droplets, changes in liver morphology (>1.3-fold) and increased TC/TG content (>2.5-fold). In vitro, we selected L02 (human normal liver cells) as the model, and explored its molecular mechanism. We found that CMEPA (0-160 mg/L) induced apoptosis (similar to 40%), mitochondrial damage and oxidative stress in L02 cells. CMEPA induced intracellular lipid accumulation by inhibiting AMPK/ACC/CPT-1A signaling pathway and activating SREBP-1c/FAS signaling pathway. Our study provides evidence of a link between CMEPA and liver injury. This raises concerns regarding the health risks of pesticide metabolites to liver health.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Mu-Yao Li
- Research Center for Econophysics, School of Business, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Diao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Xing Zhou
- Research Center for Econophysics, School of Business, East China University of Science and Technology, Shanghai, 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
30
|
Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023; 15:nu15102335. [PMID: 37242221 DOI: 10.3390/nu15102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.
Collapse
Affiliation(s)
- Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
31
|
Liu J, Zhang W, Li X, Xu S. New Insights into Baicalein's Effect on Chlorpyrifos-Induced Liver Injury in Carp: Involving Macrophage Polarization and Pyropto sis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4132-4143. [PMID: 36848483 DOI: 10.1021/acs.jafc.2c08580] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorpyrifos (CPF) is widely used in agriculture, plants, and buildings to kill pests and worms. Excessive environmental residues of CPF will result in soil and ecological contamination and toxicity to animals and humans. Baicalein (Bai), derived from the root of natural Scutellaria baicalensis, is a potent anti-inflammatory, antioxidant, and antitumor agent. The objective of this paper is to investigate the molecular mechanism by which Bai prevents CPF-induced hepatotoxic injury. Carp were kept in water containing CPF (23.2 μg/L) and/or fed diets containing Bai (0.15 g/kg). We found that Bai attenuated liver tissue damage and vacuolization caused by CPF. We confirmed that CPF causes M1/M2 polarization imbalance in macrophages and hepatocyte pyroptosis, which ultimately leads to liver injury. Further exploration of the internal mechanism shows that CPF participates in liver toxicity damage by destroying the AMPK/SIRT1/pGC-1α pathway and causing mitochondrial biogenesis and mitochondrial dynamics imbalance. Notably, Bai significantly attenuated CPF-induced inhibition of the AMPK/SIRT1/pGC-1α pathway. In summary, our results suggest that Bai alleviates CPF exposure-induced inhibition of the AMPK/SIRT1/pGC-1α pathway, thereby attenuating macrophage M1 hyperpolarization and pyroptosis by inhibiting the NF-κB pathway. These results may provide new insights into the detoxification mechanism of Bai on the same type of organophosphorus pesticides.
Collapse
Affiliation(s)
- Jing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
32
|
Sammi SR, Syeda T, Conrow KD, Leung MCK, Cannon JR. Complementary biological and computational approaches identify distinct mechanisms of chlorpyrifos versus chlorpyrifos-oxon-induced dopaminergic neurotoxicity. Toxicol Sci 2023; 191:163-178. [PMID: 36269219 PMCID: PMC9887671 DOI: 10.1093/toxsci/kfac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Organophosphate (OP) pesticides are widely used in agriculture. While acute cholinergic toxicity has been extensively studied, chronic effects on other neurons are less understood. Here, we demonstrated that the OP pesticide chlorpyrifos (CPF) and its oxon metabolite are dopaminergic neurotoxicants in Caenorhabditis elegans. CPF treatment led to inhibition of mitochondrial complex II, II + III, and V in rat liver mitochondria, while CPF-oxon did not (complex II + III and IV inhibition observed only at high doses). While the effect on C. elegans cholinergic behavior was mostly reversible with toxicant washout, dopamine-associated deficits persisted, suggesting dopaminergic neurotoxicity was irreversible. CPF reduced the mitochondrial content in a dose-dependent manner and the fat modulatory genes cyp-35A2 and cyp-35A3 were found to have a key role in CPF neurotoxicity. These findings were consistent with in vitro effects of CPF and CPF-oxon on nuclear receptor signaling and fatty acid/steroid metabolism observed in ToxCast assays. Two-way hierarchical analysis revealed in vitro effects on estrogen receptor, pregnane X receptor, and peroxisome proliferator-activated receptor gamma pathways as well as neurotoxicity of CPF, malathion, and diazinon, whereas these effects were not detected in malaoxon and diazoxon. Taken together, our study suggests that mitochondrial toxicity and metabolic effects of CPF, but not CPF-oxon, have a key role of CPF neurotoxicity in the low-dose, chronic exposure. Further mechanistic studies are needed to examine mitochondria as a common target for all OP pesticide parent compounds, because this has important implications on cumulative pesticide risk assessment.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Kendra D Conrow
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
33
|
Long F, Bhatti MR, Kellenberger A, Sun W, Modica S, Höring M, Liebisch G, Krieger JP, Wolfrum C, Challa TD. A low-carbohydrate diet induces hepatic insulin resistance and metabolic associated fatty liver disease in mice. Mol Metab 2023; 69:101675. [PMID: 36682412 PMCID: PMC9900440 DOI: 10.1016/j.molmet.2023.101675] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease that can range from hepatic steatosis to non-alcoholic steatohepatitis (NASH), which can lead to fibrosis and cirrhosis. Recently, ketogenic diet (KD), a low carbohydrate diet, gained popularity as a weight-loss approach, although it has been reported to induce hepatic insulin resistance and steatosis in animal model systems via an undefined mechanism. Herein, we investigated the KD metabolic benefits and its contribution to the pathogenesis of NASH. METHODS Using metabolic, biochemical and omics approaches, we identified the effects of a KD on NASH and investigated the mechanisms by which KD induces hepatic insulin resistance and steatosis. RESULTS We demonstrate that KD can induce fibrosis and NASH regardless of body weight loss compared to high-fat diet (HFD) fed mice at thermoneutrality. At ambient temperature (23 °C), KD-fed mice develop a severe hepatic injury, inflammation, and steatosis. In addition, KD increases liver cholesterol, IL-6, and p-JNK and aggravates diet induced-glucose intolerance and hepatic insulin resistance compared to HFD. Pharmacological inhibition of IL-6 and JNK reverses KD-induced glucose intolerance, and hepatic steatosis and restores insulin sensitivity. CONCLUSIONS Our studies uncover a new mechanism for KD-induced hepatic insulin resistance and NASH potentially via IL-6-JNK signaling and provide a new NASH mouse model.
Collapse
Affiliation(s)
- Fen Long
- Institute of Food Nutrition and Health and Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), CH-8603 Schwerzenbach, Switzerland
| | - Memoona R. Bhatti
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75/B1-7503, Brussels 1200, Belgium
| | - Alexandra Kellenberger
- Institute of Food Nutrition and Health and Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), CH-8603 Schwerzenbach, Switzerland
| | - Wenfei Sun
- Institute of Food Nutrition and Health and Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), CH-8603 Schwerzenbach, Switzerland
| | - Salvatore Modica
- Institute of Food Nutrition and Health and Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), CH-8603 Schwerzenbach, Switzerland
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Jean-Philippe Krieger
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian Wolfrum
- Institute of Food Nutrition and Health and Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), CH-8603 Schwerzenbach, Switzerland.
| | - Tenagne D. Challa
- Institute of Food Nutrition and Health and Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), CH-8603 Schwerzenbach, Switzerland,Corresponding author. Eidgenössische Technische Hochschule Zürich (ETH, Zürich), Department of Health Sciences and Technology, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland.
| |
Collapse
|
34
|
Han B, Li J, Li S, Liu Y, Zhang Z. Effects of thiacloprid exposure on microbiota-gut-liver axis: Multiomics mechanistic analysis in Japanese quails. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130082. [PMID: 36209609 DOI: 10.1016/j.jhazmat.2022.130082] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoid insecticides (NNIs) are the most widely used class of pesticides globally. However, NNIs may cause adverse health effects, including chronic liver disease, and perturbation of the gut microbiota. Thiacloprid (THI) is one of the NNIs widely used in agriculture. Therefore, it is essential to elucidate effects of THI on the microbiota-gut-liver axis to assess the risk of chronic liver disease following exposure to NNIs. This study aimed at investigating whether THI exposure promoted liver injury by altering the gut microbiota and related metabolites. In this study, healthy male quails were exposed to 2 or 4 mg/kg THI or 0.75 % (w/v) saline once daily for 6 weeks, respectively. Metabolomics, 16S rRNA sequencing, and transcriptomic methods were performed to analyze the toxic mechanisms of THI in Japanese quails. We found that THI evoked damage and disruption to intestinal barrier function, leading to increased harmful substances such as lipopolysaccharide (LPS) and phenylacetic acid entering the liver. Besides, our results showed significantly altered hepatic bile acid and cholesterol metabolism in THI-exposed quails, with abnormal liver lipid metabolism, showing severe liver injury, fibrosis, and steatosis compared with the control quails. In conclusion, THI exposure aggravates liver injury via microbiota-gut-liver axis.
Collapse
Affiliation(s)
- Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yan Liu
- Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
35
|
Takeda Y, Harada Y, Yoshikawa T, Dai P. Mitochondrial Energy Metabolism in the Regulation of Thermogenic Brown Fats and Human Metabolic Diseases. Int J Mol Sci 2023; 24:ijms24021352. [PMID: 36674862 PMCID: PMC9861294 DOI: 10.3390/ijms24021352] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Brown fats specialize in thermogenesis by increasing the utilization of circulating blood glucose and fatty acids. Emerging evidence suggests that brown adipose tissue (BAT) prevents the incidence of obesity-associated metabolic diseases and several types of cancers in humans. Mitochondrial energy metabolism in brown/beige adipocytes regulates both uncoupling protein 1 (UCP1)-dependent and -independent thermogenesis for cold adaptation and the utilization of excess nutrients and energy. Many studies on the quantification of human BAT indicate that mass and activity are inversely correlated with the body mass index (BMI) and visceral adiposity. Repression is caused by obesity-associated positive and negative factors that control adipocyte browning, de novo adipogenesis, mitochondrial energy metabolism, UCP1 expression and activity, and noradrenergic response. Systemic and local factors whose levels vary between lean and obese conditions include growth factors, inflammatory cytokines, neurotransmitters, and metal ions such as selenium and iron. Modulation of obesity-associated repression in human brown fats is a promising strategy to counteract obesity and related metabolic diseases through the activation of thermogenic capacity. In this review, we highlight recent advances in mitochondrial metabolism, thermogenic regulation of brown fats, and human metabolic diseases.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Correspondence: (Y.T.); (P.D.); Tel.: +81-75-251-5444 (Y.T.); +81-75-251-5135 (P.D.)
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshikazu Yoshikawa
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Louis Pasteur Center for Medical Research, 103-5 Tanaka-Monzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Correspondence: (Y.T.); (P.D.); Tel.: +81-75-251-5444 (Y.T.); +81-75-251-5135 (P.D.)
| |
Collapse
|
36
|
Co-Benefits of Largescale Organic farming On huMan health (BLOOM): Protocol for a cluster-randomised controlled evaluation of the Andhra Pradesh Community-managed Natural Farming programme in India. PLoS One 2023; 18:e0281677. [PMID: 36862623 PMCID: PMC9980745 DOI: 10.1371/journal.pone.0281677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/29/2023] [Indexed: 03/03/2023] Open
Abstract
The BLOOM study (co-Benefits of Largescale Organic farming On huMan health) aims to determine if a government-implemented agroecology programme reduces pesticide exposure and improves dietary diversity in agricultural households. To achieve this aim, a community-based, cluster-randomised controlled evaluation of the Andhra Pradesh Community-managed Natural Farming (APCNF) programme will be conducted in 80 clusters (40 intervention and 40 control) across four districts of Andhra Pradesh state in south India. Approximately 34 households per cluster will be randomly selected for screening and enrolment into the evaluation at baseline. The two primary outcomes, measured 12 months post-baseline assessment, are urinary pesticide metabolites in a 15% random subsample of participants and dietary diversity in all participants. Both primary outcomes will be measured in (1) adult men ≥18 years old, (2) adult women ≥18 years old, and (3) children <38 months old at enrolment. Secondary outcomes measured in the same households include crop yields, household income, adult anthropometry, anaemia, glycaemia, kidney function, musculoskeletal pain, clinical symptoms, depressive symptoms, women's empowerment, and child growth and development. Analysis will be on an intention-to-treat basis with an a priori secondary analysis to estimate the per-protocol effect of APCNF on the outcomes. The BLOOM study will provide robust evidence of the impact of a large-scale, transformational government-implemented agroecology programme on pesticide exposure and dietary diversity in agricultural households. It will also provide the first evidence of the nutritional, developmental, and health co-benefits of adopting agroecology, inclusive of malnourishment as well as common chronic diseases. Trial registration: Study registration: ISRCTN 11819073 (https://doi.org/10.1186/ISRCTN11819073). Clinical Trial Registry of India CTRI/2021/08/035434.
Collapse
|
37
|
Effect of Pesticides on Peroxisome Proliferator-Activated Receptors (PPARs) and Their Association with Obesity and Diabetes. PPAR Res 2023; 2023:1743289. [PMID: 36875280 PMCID: PMC9984265 DOI: 10.1155/2023/1743289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
Obesity and diabetes mellitus are considered the most important diseases of the XXI century. Recently, many epidemiological studies have linked exposure to pesticides to the development of obesity and type 2 diabetes mellitus. The role of pesticides and their possible influence on the development of these diseases was investigated by examining the relationship between these compounds and one of the major nuclear receptor families controlling lipid and carbohydrate metabolism: the peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ; this was possible through in silico, in vitro, and in vivo assays. The present review aims to show the effect of pesticides on PPARs and their contribution to the changes in energy metabolism that enable the development of obesity and type 2 diabetes mellitus.
Collapse
|
38
|
Ueyama J, Hayashi M, Hirayama M, Nishiwaki H, Ito M, Saito I, Tsuboi Y, Isobe T, Ohno K. Effects of Pesticide Intake on Gut Microbiota and Metabolites in Healthy Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010213. [PMID: 36612532 PMCID: PMC9819155 DOI: 10.3390/ijerph20010213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/03/2023]
Abstract
Animal experiments have indicated that pesticides may affect gut microbiota, which is responsible for the production of short-chain fatty acids (SCFAs) and polyamines. Here, we present a preliminary observation of the relationship between pesticide exposure and fecal SCFAs and polyamines in Japanese adults. In total, 38 healthy adults aged 69 ± 10 years (mean ± SD) were recruited and subjected to stool and spot urine tests. Urinary dialkylphosphates (DAP), 3-phenoxybenzoic acid, and glyphosate were assayed as pesticide exposure markers of organophosphorus insecticide (OP), a pyrethroid insecticide, and glyphosate, respectively. Significant negative correlations (p < 0.05, Spearman’s rank correlation coefficient) were found between urinary DAP, fecal acetate (r = −0.345), and lactate (r = −0.391). Multiple regression analyses revealed that urinary DAP was a significant explanatory variable of fecal acetate concentration (p < 0.001, β = −24.0, SE = 4.9, t = −4.9) with some vegetable intake (adjusted R-square = 0.751). These findings suggest that OP exposure is independently associated with lower fecal acetate levels, which may contribute to human health in middle-aged and older adult groups. Given that the human gut environment has long-term effects on the host, studies on wide-range age groups, including children, are necessary.
Collapse
Affiliation(s)
- Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya 461-8673, Japan
| | - Mai Hayashi
- Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya 461-8673, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya 461-8673, Japan
| | - Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Isao Saito
- Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya 461-8673, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tomohiko Isobe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
39
|
Kwon YH, Banskota S, Wang H, Rossi L, Grondin JA, Syed SA, Yousefi Y, Schertzer JD, Morrison KM, Wade MG, Holloway AC, Surette MG, Steinberg GR, Khan WI. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat Commun 2022; 13:7617. [PMID: 36539404 PMCID: PMC9768151 DOI: 10.1038/s41467-022-35309-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Chemicals in food are widely used leading to significant human exposure. Allura Red AC (AR) is a highly common synthetic colorant; however, little is known about its impact on colitis. Here, we show chronic exposure of AR at a dose found in commonly consumed dietary products exacerbates experimental models of colitis in mice. While intermittent exposure is more akin to a typical human exposure, intermittent exposure to AR in mice for 12 weeks, does not influence susceptibility to colitis. However, exposure to AR during early life primes mice to heightened susceptibility to colitis. In addition, chronic exposure to AR induces mild colitis, which is associated with elevated colonic serotonin (5-hydroxytryptamine; 5-HT) levels and impairment of the epithelial barrier function via myosin light chain kinase (MLCK). Importantly, chronic exposure to AR does not influence colitis susceptibility in mice lacking tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for 5-HT biosynthesis. Cecal transfer of the perturbed gut microbiota by AR exposure worsens colitis severity in the recipient germ-free (GF) mice. Furthermore, chronic AR exposure elevates colonic 5-HT levels in naïve GF mice. Though it remains unknown whether AR has similar effects in humans, our study reveals that chronic long-term exposure to a common synthetic colorant promotes experimental colitis via colonic 5-HT in gut microbiota-dependent and -independent pathway in mice.
Collapse
Affiliation(s)
- Yun Han Kwon
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Suhrid Banskota
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Huaqing Wang
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Laura Rossi
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Jensine A. Grondin
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Saad A. Syed
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Yeganeh Yousefi
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Jonathan D. Schertzer
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Katherine M. Morrison
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Pediatrics, McMaster University, Hamilton, ON Canada
| | - Michael G. Wade
- grid.57544.370000 0001 2110 2143Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Alison C. Holloway
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON Canada
| | - Michael G. Surette
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Gregory R. Steinberg
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Waliul I. Khan
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| |
Collapse
|
40
|
Bernal K, Touma C, Erradhouani C, Boronat-Belda T, Gaillard L, Al Kassir S, Le Mentec H, Martin-Chouly C, Podechard N, Lagadic-Gossmann D, Langouet S, Brion F, Knoll-Gellida A, Babin PJ, Sovadinova I, Babica P, Andreau K, Barouki R, Vondracek J, Alonso-Magdalena P, Blanc E, Kim MJ, Coumoul X. Combinatorial pathway disruption is a powerful approach to delineate metabolic impacts of endocrine disruptors. FEBS Lett 2022; 596:3107-3123. [PMID: 35957500 DOI: 10.1002/1873-3468.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023]
Abstract
The prevalence of metabolic diseases, such as obesity, diabetes, metabolic syndrome and chronic liver diseases among others, has been rising for several years. Epidemiology and mechanistic (in vivo, in vitro and in silico) toxicology have recently provided compelling evidence implicating the chemical environment in the pathogenesis of these diseases. In this review, we will describe the biological processes that contribute to the development of metabolic diseases targeted by metabolic disruptors, and will propose an integrated pathophysiological vision of their effects on several organs. With regard to these pathomechanisms, we will discuss the needs, and the stakes of evolving the testing and assessment of endocrine disruptors to improve the prevention and management of metabolic diseases that have become a global epidemic since the end of last century.
Collapse
Affiliation(s)
- Kévin Bernal
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Charbel Touma
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Chedi Erradhouani
- Université Paris Cité, France.,Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - Talía Boronat-Belda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lucas Gaillard
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Sara Al Kassir
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Hélène Le Mentec
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Corinne Martin-Chouly
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Sophie Langouet
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - François Brion
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - Anja Knoll-Gellida
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Patrick J Babin
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karine Andreau
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Robert Barouki
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Jan Vondracek
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Etienne Blanc
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Min Ji Kim
- INSERM UMR-S 1124, Paris, France.,Université Sorbonne Paris Nord, Bobigny, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| |
Collapse
|
41
|
Wang B, Steinberg GR. Environmental toxicants, brown adipose tissue, and potential links to obesity and metabolic disease. Curr Opin Pharmacol 2022; 67:102314. [PMID: 36334331 DOI: 10.1016/j.coph.2022.102314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
Rates of human obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) have risen faster than anticipated and cannot solely be explained by excessive caloric intake or physical inactivity. Importantly, this effect is also observed in many other domesticated and non-domesticated mammals, which has led to the hypothesis that synthetic environmental pollutants may be contributing to disease development. While the impact of these chemicals on appetite and adipogenesis has been extensively studied, their potential role in reducing energy expenditure is less studied. An important component of whole-body energy expenditure is adaptive and diet-induced thermogenesis in human brown adipose tissue (BAT). This review summarizes recent evidence that environmental pollutants such as the pesticide chlorpyrifos inhibit BAT function, diet-induced thermogenesis and the potential signaling pathways mediating these effects. Lastly, we discuss the importance of housing experimental mice at thermoneutrality, rather than room temperature, to maximize the translation of findings to humans.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Canada; Division of Endocrinology and Metabolism, Department of Medicine, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| |
Collapse
|
42
|
Cao T, Guo Y, Wang D, Liu Z, Huang S, Peng C, Wang S, Wang Y, Lu Q, Xiao F, Liang Z, Zheng S, Shen J, Wu Y, Lv Z, Ke Y. Effect of Phorate on the Development of Hyperglycaemia in Mouse and Resistance Genes in Intestinal Microbiota. Antibiotics (Basel) 2022; 11:1584. [PMID: 36358236 PMCID: PMC9686891 DOI: 10.3390/antibiotics11111584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2023] Open
Abstract
Phorate is a systemic, broad-spectrum organophosphorus insecticide. Although it is commonly used worldwide, phorate, like other pesticides, not only causes environmental pollution but also poses serious threats to human and animal health. Herein, we measured the blood glucose concentrations of high-fat-diet-fed mice exposed to various concentrations of phorate (0, 0.005, 0.05, or 0.5 mg/kg); we also assessed the blood glucose concentrations of high-fat-diet-fed mice exposed to phorate; we also assessed the distribution characteristics of the resistance genes in the intestinal microbiota of these mice. We found that 0.005 and 0.5 mg/kg of phorate induced obvious hyperglycaemia in the high-fat-diet-fed mice. Exposure to phorate markedly reduced the abundance of Akkermansia muciniphila in the mouse intestine. The resistance genes vanRG, tetW/N/W, acrD, and evgS were significantly upregulated in the test group compared with the control group. Efflux pumping was the primary mechanism of drug resistance in the Firmicutes, Proteobacteria, Bacteroidetes, Verrucomicrobia, Synergistetes, Spirochaetes, and Actinobacteria found in the mouse intestine. Our findings indicate that changes in the abundance of the intestinal microbiota are closely related to the presence of antibiotic-resistant bacteria in the intestinal tract and the metabolic health of the host.
Collapse
Affiliation(s)
- Tingting Cao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Dan Wang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiyang Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Qi Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Fan Xiao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zhaoyi Liang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Sijia Zheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100091, China
| | - Yongning Wu
- Food Safety Research Unit (2019RU014), Chinese Academy of Medical Science, NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
43
|
Yang F, Li Y, Xie Y, Yao W, Ren F. Diethyl phosphate disrupts hypothalamus-pituitary-adrenal axis endocrine hormones via nuclear receptors GR and Nur77: Integration of evidences from in vivo, in vitro and in silico approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157015. [PMID: 35777568 DOI: 10.1016/j.scitotenv.2022.157015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plenty of population epidemiology and cohort studies have found dialkyl phosphates (DAPs) in the urine were related to endocrine hormone disorders. However, we did not know whether these effects were caused by parent organophosphorus pesticides (OPs) or metabolite DAPs, especially the non-specific metabolite diethyl phosphate (DEP), which was the metabolic end product of most widely used diethyl OPs. In this study, animal experiments (in vivo), cell experiments (in vitro), small molecule-protein binding interaction experiments and computer molecular simulations (in silico) were used to explore the disturbing effects and molecular mechanisms of DEP on the hypothalamic-pituitary-adrenal (HPA) axis endocrine hormones. The animal experiments showed that chronic DEP exposure significantly disturbed the serum contents of HPA axis hormones in adult male rats. The target genes of glucocorticoid receptor (GR) in rat liver, including 11β-hsd1 and Pepck1 and PEPCK protein expressions, were down-regulated. Moreover, the gluconeogenic abilities of rats were impaired. However, it did not affect the expression of GR in the rat hypothalamus. These results indicated that the physiological functions of glucocorticoids and GR were damaged. Furthermore, spectroscopy experiments, cell experiments, molecular docking and molecular dynamics simulations also suggested that DEP can bind to nuclear receptors GR and Nur77, affecting their transcription factor functions, and the transcriptional expression levels of their downstream target genes were reduced. The biosynthesis and secretion of adrenocorticotropic hormone and glucocorticoids were blocked. Therefore, DEP can inhibit the production and physiological functions of HPA axis endocrine hormones by disrupting these related proteins and antagonizing nuclear receptors. These results were considered to provide a theoretical basis for strictly controlling the residue limits of OPs and their metabolites in foods, agricultural products and the environment. They also revealed new targets for evaluating the toxicities and risks of pesticide metabolites.
Collapse
Affiliation(s)
- Fangwei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu Province 214122, China
| | - Yixuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu Province 214122, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
44
|
Pesticides and Their Impairing Effects on Epithelial Barrier Integrity, Dysbiosis, Disruption of the AhR Signaling Pathway and Development of Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms232012402. [PMID: 36293259 PMCID: PMC9604036 DOI: 10.3390/ijms232012402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.
Collapse
|
45
|
Liu N, Song Z, Jin W, Yang Y, Sun S, Zhang Y, Zhang S, Liu S, Ren F, Wang P. Pea albumin extracted from pea (Pisum sativum L.) seed protects mice from high fat diet-induced obesity by modulating lipid metabolism and gut microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
46
|
Weber A, Medak KD, Townsend LK, Wright DC. Ketogenic diet induced weight loss occurs independent of housing temperature and is followed by hyperphagia and weight regain after cessation in mice. J Physiol 2022; 600:4677-4693. [PMID: 36083198 DOI: 10.1113/jp283469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ketogenic diets reduce food intake, increase energy expenditure and cause weight loss in rodents Prior preclinical studies have been completed at room temperature, a condition which induces thermal stress and limits clinical translatability We demonstrate that ketogenic diet-induced reductions in food intake, increases in energy expenditure, weight loss and improvements in glucose homeostasis are similar in mice housed at room temperature or thermal neutrality Ketogenic diet induced reductions in food intake appear to explain a large degree of weight loss. Similarly, switching mice from a ketogenic to an obesogenic diet leads to hyperphagia mediated weight gain ABSTRACT: Ketogenic diets (KDs) are a popular tool used for weight management. Studies in mice have demonstrated that KDs reduce food intake, increase energy expenditure and cause weight loss. These studies were completed at room temperature (RT), a condition below the animal's thermal neutral (TN) zone which induces thermal stress. As energy intake and expenditure are sensitive to environmental temperature it's not clear if a KD would exert the same beneficial effects under TN conditions. Adherence to restrictive diets is poor and consequently it is important to examine the effects, and underlying mechanisms, of cycling from a ketogenic to an obesogenic diet. The purpose of the current study was to determine if housing temperature impacted the effects of a KD in obese mice and to determine if the mechanisms driving KD-induced weight loss reverse when mice are switched to an obesogenic high fat diet. We demonstrate that KD-induced reductions in food intake, increases in energy expenditure, weight loss and improvements in glucose homeostasis are not dependent upon housing temperature. KD-induced weight loss, seems to be largely explained by reductions in caloric intake while cycling mice back to an obesogenic diet following a period of KD feeding leads to hyperphagia-induced weight gain. Collectively, our results suggest that prior findings with mice fed a KD at RT are likely not an artifact of how mice were housed and that initial changes in weight when transitioning from an obesogenic to a ketogenic diet or back, are largely dependent on food intake. Abstract figure legend The impact of housing temperature on ketogenic diet mediated changes in energy expenditure, food intake and weight gain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alyssa Weber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Logan K Townsend
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David C Wright
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
The Role and Regulatory Mechanism of Brown Adipose Tissue Activation in Diet-Induced Thermogenesis in Health and Diseases. Int J Mol Sci 2022; 23:ijms23169448. [PMID: 36012714 PMCID: PMC9408971 DOI: 10.3390/ijms23169448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Brown adipose tissue (BAT) has been considered a vital organ in response to non-shivering adaptive thermogenesis, which could be activated during cold exposure through the sympathetic nervous system (SNS) or under postprandial conditions contributing to diet-induced thermogenesis (DIT). Humans prefer to live within their thermal comfort or neutral zone with minimal energy expenditure created by wearing clothing, making shelters, or using an air conditioner to regulate their ambient temperature; thereby, DIT would become an important mechanism to counter-regulate energy intake and lipid accumulation. In addition, there has been a long interest in the intriguing possibility that a defect in DIT predisposes one to obesity and other metabolic diseases. Due to the recent advances in methodology to evaluate the functional activity of BAT and DIT, this updated review will focus on the role and regulatory mechanism of BAT biology in DIT in health and diseases and whether these mechanisms are applicable to humans.
Collapse
|
48
|
Barra NG, Kwon YH, Morrison KM, Steinberg GR, Wade MG, Khan WI, Vijayan MM, Schertzer JD, Holloway AC. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am J Physiol Endocrinol Metab 2022; 323:E80-E091. [PMID: 35575233 DOI: 10.1152/ajpendo.00049.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
49
|
Takeda Y, Dai P. Chronic Fatty Acid Depletion Induces Uncoupling Protein 1 (UCP1) Expression to Coordinate Mitochondrial Inducible Proton Leak in a Human-Brown-Adipocyte Model. Cells 2022; 11:cells11132038. [PMID: 35805122 PMCID: PMC9265531 DOI: 10.3390/cells11132038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
Thermogenic brown fat contributes to metabolic health in adult humans. Obese conditions are known to repress adipose-tissue browning and its activity. Herein, we found that chronic fatty acid (FA) depletion induced uncoupling protein 1 (UCP1) expression in the chemical-compound-induced brown adipocytes (ciBAs). The ciBAs, converted from human dermal fibroblasts under FA-free conditions, had low intracellular triglyceride levels and strongly activated UCP1 expression. Prolonged treatment with carnitine also reduced triglyceride accumulation and induced UCP1 expression. Transcriptome analysis revealed that the UCP1 induction was accompanied by the activation of lipid metabolic genes. The FA-depleted conditions repressed mitochondrial proton-leak activity and mitochondrial membrane potential (MMP), despite maintaining a high UCP1 expression. The evidence suggested that UCP1 expression was induced to compensate for the proton-leak activity under low MMP. Our study reports a regulatory mechanism underlying UCP1 expression and mitochondrial-energy status in human brown adipocytes under different nutritional conditions.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Correspondence: (Y.T.); (P.D.); Tel.: +81-75-251-5444 (Y.T.); +81-75-251-5135 (P.D.)
| | - Ping Dai
- Correspondence: (Y.T.); (P.D.); Tel.: +81-75-251-5444 (Y.T.); +81-75-251-5135 (P.D.)
| |
Collapse
|
50
|
Xu S, Wang Y, Li Z, Hua Q, Jiang M, Fan X. LncRNA GAS5 Knockdown Mitigates Hepatic Lipid Accumulation via Regulating MiR-26a-5p/PDE4B to Activate cAMP/CREB Pathway. Front Endocrinol (Lausanne) 2022; 13:889858. [PMID: 35957809 PMCID: PMC9361042 DOI: 10.3389/fendo.2022.889858] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) can be attributed to the dysregulation of hepatic lipid metabolism; however, its cellular and molecular mechanisms remain unclear. This study aims to explore the effect of long non-coding RNA growth arrest specific 5 (GAS5) on hepatic lipid metabolism in fatty liver models. METHODS Obese mice, high fat diet-fed mice and free fatty acid-stimulated cells were used for GAS5 expression detection. GAS5 overexpression or knockdown models were established to elucidate the regulatory function of GAS5 in de novo lipogenesis (DNL) and mitochondrial function. Bioinformatic analyses and dual luciferase assays were used to investigate the interaction between GAS5, miR-26a-5p and phosphodiesterase (PDE) 4B. The involvement of the cyclic adenosine monophosphate (cAMP)/cAMP-response element-binding protein (CREB) pathway was evaluated using H89 and forskolin treatment. RESULTS GAS5 was activated in vitro and in vivo fatty liver models. Knockdown of GAS5 reduced lipid droplet accumulation, DNL associated enzymes and preserved mitochondrial function, while GAS5 overexpression exacerbated hepatic lipid accumulation. Mechanistically, GAS5 sponged miR-26a-5p to increase PDE4B expression and subsequently modulated DNL and mitochondrial function via the cAMP/CREB pathway. CONCLUSION Downregulation of GAS5 can activate the cAMP/CREB pathway through miR-26a-5p/PDE4B axis to mitigate hepatic lipid accumulation. This study provides evidence that downregulation of GAS5 may be a potential therapeutic option for the treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Miao Jiang
- *Correspondence: Xiaoming Fan, ; Miao Jiang,
| | | |
Collapse
|