1
|
Wang X, Song B, Wu M, Qin L, Liang W. Immune cell targeting-mediated cytomimetic drug delivery system for BBB-penetrating and precise therapy of in situ glioma. Mater Today Bio 2025; 32:101694. [PMID: 40225137 PMCID: PMC11986483 DOI: 10.1016/j.mtbio.2025.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Gliomas are a group of highly malignant tumors that are prone to recurrence after surgery. Due to the limitation of the blood-brain barrier (BBB), most antitumor drugs cannot cross it. Therefore, improving the delivery efficiency of antitumor drugs in their treatment remains a significant challenge. Herein, we report a unique cellular biomimetic drug delivery system (CTP@RAW) that benefits from the exceptional immune homing and long-term tracking ability of RAW 264.7 cells to specifically penetrate BBB and target tumor sites. The drug (TMZ) is encapsulated in RAW264.7 to avoid being cleared or degraded by the blood, improve bioavailability and reduce systemic toxicity. And that, owning to polydopamine (PDA) coating on the quantum dots-drug nanoparticles, which can endogenously and controllably release TMZ in response to certain tumor microenvironment (high GSH and low pH). This delivery system can also achieve precise localization and real-time visualization of tumors via fluorescence imaging. The released drugs effectively inhibit tumor growth by regulating cytokine expression levels, including GFAP, Ki67, Caspase-3, and TNF-α. Our study demonstrates that this drug delivery system can cross BBB, improve drug delivery efficiency, and has excellent potential for visualization and precision treatment of in situ gliomas.
Collapse
Affiliation(s)
- Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
- State Laboratory of Advanced Drug Delivery and Control Release System, Shandong First Medical University, China
| | - Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Mengru Wu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
- State Laboratory of Advanced Drug Delivery and Control Release System, Shandong First Medical University, China
- Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong Academy of Medical Sciences, China
| |
Collapse
|
2
|
Kataki AD, Gupta PG, Cheema U, Nisbet A, Wang Y, Kocher HM, Pérez-Mancera PA, Velliou EG. Mapping Tumor-Stroma-ECM Interactions in Spatially Advanced 3D Models of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16708-16724. [PMID: 40052705 PMCID: PMC11931495 DOI: 10.1021/acsami.5c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/21/2025]
Abstract
Bioengineering-based in vitro tumor models are increasingly important as tools for studying disease progression and therapy response for many cancers, including the deadly pancreatic ductal adenocarcinoma (PDAC) that exhibits a tumor/tissue microenvironment of high cellular/biochemical complexity. Therefore, it is crucial for in vitro models to capture that complexity and to enable investigation of the interplay between cancer cells and factors such as extracellular matrix (ECM) proteins or stroma cells. Using polyurethane (PU) scaffolds, we performed a systematic study on how different ECM protein scaffold coatings impact the long-term cell evolution in scaffolds containing only cancer or only stroma cells (activated stellate and endothelial cells). To investigate potential further changes in those biomarkers due to cancer-stroma interactions, we mapped their expression in dual/zonal scaffolds consisting of a cancer core and a stroma periphery, spatially mimicking the fibrotic/desmoplastic reaction in PDAC. In our single scaffolds, we observed that the protein coating affected the cancer cell spatial aggregation, matrix deposition, and biomarker upregulation in a cell-line-dependent manner. In single stroma scaffolds, different levels of fibrosis/desmoplasia in terms of ECM composition/quantity were generated depending on the ECM coating. When studying the evolution of cancer and stroma cells in our dual/zonal model, biomarkers linked to cell aggressiveness/invasiveness were further upregulated by both cancer and stroma cells as compared to single scaffold models. Collectively, our study advances the understanding of how different ECM proteins impact the long-term cell evolution in PU scaffolds. Our findings show that within our bioengineered models, we can stimulate the cells of the PDAC microenvironment to develop different levels of aggressiveness/invasiveness, as well as different levels of fibrosis. Furthermore, we highlight the importance of considering spatial complexity to map cell invasion. Our work contributes to the design of in vitro models with variable, yet biomimetic, tissue-like properties for studying the tumor microenvironment's role in cancer progression.
Collapse
Affiliation(s)
- Anna-Dimitra Kataki
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Priyanka G. Gupta
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
- School
of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, U.K.
| | - Umber Cheema
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Yaohe Wang
- Centre
for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Hemant M. Kocher
- Centre
for Tumour Biology and Experimental Cancer Medicine, Barts Cancer
Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Pedro A. Pérez-Mancera
- Department
of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Eirini G. Velliou
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| |
Collapse
|
3
|
Kwon JY, Vera RE, Fernandez-Zapico ME. The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer. Cell Signal 2025; 127:111584. [PMID: 39756502 PMCID: PMC11807759 DOI: 10.1016/j.cellsig.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.
Collapse
Affiliation(s)
- John Y Kwon
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | | |
Collapse
|
4
|
Tabe S, Takeuchi K, Aoshima K, Okumura A, Yamamoto Y, Yanagisawa K, Eto R, Matsuo M, Ueno Y, Konishi T, Furukawa Y, Yamaguchi K, Morinaga S, Miyagi Y, Ohtsuka M, Tanimizu N, Taniguchi H. A pancreatic cancer organoid incorporating macrophages reveals the correlation between the diversity of tumor-associated macrophages and cancer cell survival. Biomaterials 2025; 314:122838. [PMID: 39348736 DOI: 10.1016/j.biomaterials.2024.122838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a progressive cancer with a poor prognosis. It contains a complex tumor microenvironment (TME) that includes various stromal cell types. Comprehending cellular communications within the TME is difficult due to a lack of research models that can recapitulate human PDAC-TME. Previously, we recapitulated, in part, the PDAC-TME containing a diversity of cancer-associated fibroblasts (CAFs) in vitro. This was done by establishing a PDAC organoid by co-culturing patient-derived cancer cells with human induced pluripotent stem cell (hiPSC)-derived mesenchymal and endothelial cells, which was designated the fused pancreatic cancer organoid (FPCO). We further incorporated macrophages derived from the THP-1 cell line, which are the source of tumor-associated macrophages (TAMs), a major TME component, into FPCO, which was designated M0-FPCO. Bulk RNA sequencing (RNAseq) analysis revealed that macrophages in M0-FPCO (FPCO-Mac) lost their pro-inflammatory features but acquired pro-angiogenic features. Consistently, the formation of an endothelial cell network was enhanced in M0-FPCO. Single-cell RNA-seq (scRNA-seq) analysis revealed that M0-FPCO contained five TAM subpopulations similar to the corresponding TAM in human PDAC tissue in the integrated analysis, including SPP1+-TAM, which has been correlated with tumor angiogenesis and cell proliferation. Focusing on PDAC cells, we found that they could survive longer within the organoid in the presence of TAM. Consistent with the prolonged proliferation and survival of PDAC cells, PDAC subclusters were characterized by proliferative features, such as increased M0-FPCO. Therefore, by establishing a PDAC organoid with macrophages, we recapitulated the diversity of TAMs and identified the role of TAM in endothelial network formation as well as in the modulation of PDAC cell properties. SIGNIFICANCE: PDAC organoids, including macrophages using hiPSC, showed that PDAC-TAM has angiogenic features and contributes to PDAC cell survival.
Collapse
Affiliation(s)
- Shunsuke Tabe
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan; Department of General Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Kenta Takeuchi
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan
| | - Ayumu Okumura
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan
| | - Yuya Yamamoto
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan; Department of General Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Kazuki Yanagisawa
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan
| | - Ryotaro Eto
- Department of General Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Megumi Matsuo
- Department of General Surgery, Graduate School of Medicine, Chiba University, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yasuharu Ueno
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan
| | - Takanori Konishi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Japan
| | - Soichiro Morinaga
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan.
| | - Hideki Taniguchi
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.
| |
Collapse
|
5
|
Handschin C, Shalhoub H, Mazet A, Guyon C, Dusserre N, Boutet-Robinet E, Oliveira H, Guillermet-Guibert J. Biotechnological advances in 3D modeling of cancer initiation. Examples from pancreatic cancer research and beyond. Biofabrication 2025; 17:022008. [PMID: 40018875 DOI: 10.1088/1758-5090/adb51c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
In recent years, biofabrication technologies have garnered significant attention within the scientific community for their potential to create advancedin vitrocancer models. While these technologies have been predominantly applied to model advanced stages of cancer, there exists a pressing need to develop pertinent, reproducible, and sensitive 3D models that mimic cancer initiation lesions within their native tissue microenvironment. Such models hold profound relevance for comprehending the intricacies of cancer initiation, to devise novel strategies for early intervention, and/or to conduct sophisticated toxicology assessments of putative carcinogens. Here, we will explain the pivotal factors that must be faithfully recapitulated when constructing these models, with a specific focus on early pancreatic cancer lesions. By synthesizing the current state of research in this field, we will provide insights into recent advances and breakthroughs. Additionally, we will delineate the key technological and biological challenges that necessitate resolution in future endeavors, thereby paving the way for more accurate and insightfulin vitrocancer initiation models.
Collapse
Affiliation(s)
- C Handschin
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - H Shalhoub
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
| | - A Mazet
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - C Guyon
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - N Dusserre
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - E Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - H Oliveira
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - J Guillermet-Guibert
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| |
Collapse
|
6
|
Xu J, Pham MD, Corbo V, Ponz-Sarvise M, Oni T, Öhlund D, Hwang CI. Advancing pancreatic cancer research and therapeutics: the transformative role of organoid technology. Exp Mol Med 2025; 57:50-58. [PMID: 39814914 PMCID: PMC11799150 DOI: 10.1038/s12276-024-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 01/18/2025] Open
Abstract
Research on pancreatic cancer has transformed with the advent of organoid technology, providing a better platform that closely mimics cancer biology in vivo. This review highlights the critical advancements facilitated by pancreatic organoid models in understanding disease progression, evaluating therapeutic responses, and identifying biomarkers. These three-dimensional cultures enable the proper recapitulation of the cellular architecture and genetic makeup of the original tumors, providing insights into the complex molecular and cellular dynamics at various stages of pancreatic ductal adenocarcinoma (PDAC). We explore the applications of pancreatic organoids in dissecting the tumor microenvironment (TME); elucidating cancer progression, metastasis, and drug resistance mechanisms; and personalizing therapeutic strategies. By overcoming the limitations of traditional 2D cultures and animal models, the use of pancreatic organoids has significantly accelerated translational research, which is promising for improving diagnostic and therapeutic approaches in clinical settings, ultimately aiming to improve the outcomes of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Jihao Xu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Minh Duc Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Mariano Ponz-Sarvise
- Department of Medical Oncology and Program in Solid Tumors, Cima-Universidad de Navarra, Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Pamplona, Spain
| | - Tobiloba Oni
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Daniel Öhlund
- Umeå University, Department of Diagnostics and Intervention, and Wallenberg Centre for Molecular Medicine at Umeå University, Umeå, Sweden
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA.
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
7
|
Gregory E, Powers I, Jamshidi-Parsian A, Griffin RJ, Song Y. Pancreatic cancer extracellular vesicles stimulate Schwann cell activation and perineural invasion in vitro via IL-8/CCL2. IN VITRO MODELS 2025; 4:45-58. [PMID: 40160208 PMCID: PMC11950487 DOI: 10.1007/s44164-025-00083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 04/02/2025]
Abstract
Purpose Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer-related deaths, and perineural invasion (PNI), in which cancer cells infiltrate nerves, enables metastasis in most patients. PNI is largely attributed to Schwann cells (SC) that, when activated, accelerate cancer cell migration towards nerves. However, this cancer-associated reprogramming is generally under-appreciated. Additionally, tumor extracellular vesicle (EV) facilitation of cancer aggravation is well documented, but more investigation is required to better understand their role in PNI. Here, we assessed whether PDAC EVs mediate PNI via SC activation using tissue-engineered in vitro platforms and PANC-1 and HPNE human cell lines as models. Methods NanoSight, Luminex®, and proteomic-pathway analyses characterized tumor (PANC-1) and healthy cell (HPNE) EVs. Human Schwann-like cells (sNF96.2) were embedded in decellularized nerve matrix hydrogels and then treated with EVs and a cargo-function-blocking antibody. Immunofluorescence and Luminex® multiplex assays assessed Schwann cell activation. Subsequently, sNF96.2 cells were co-cultured with EVs and either PANC-1 or HPNE cells; Transwell® invasion assays with SC-conditioned media were also conducted to establish a mechanism of in vitro PNI. Results PANC-1 EVs contained higher levels of interleukin-8 (IL-8) signaling-associated proteins than HPNE EVs. Within nerve-mimetic in vitro testbeds, PANC-1 EVs promoted sNF96.2 activation per cytoskeletal marker alterations and secretion of pro-tumorigenic cytokines, e.g., chemokine ligand-2 (CCL2), via IL-8 cargoes. Furthermore, the IL-8/CCL2 axis heightened PANC-1 invasiveness. Conclusion These findings highlight the potential role of PDAC EVs in PNI, which necessitates continued preclinical assessments with increased biodiversity to determine the efficacy of targeting IL-8/CCL2 for PNI. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-025-00083-w.
Collapse
Affiliation(s)
- Emory Gregory
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR USA
| | - Isabel Powers
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR USA
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Younghye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR USA
| |
Collapse
|
8
|
Ravichandran A, Mahajan V, van de Kemp T, Taubenberger A, Bray LJ. Phenotypic analysis of complex bioengineered 3D models. Trends Cell Biol 2025:S0962-8924(24)00257-5. [PMID: 39794253 DOI: 10.1016/j.tcb.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
With advances in underlying technologies such as complex multicellular systems, synthetic materials, and bioengineering techniques, we can now generate in vitro miniaturized human tissues that recapitulate the organotypic features of normal or diseased tissues. Importantly, these 3D culture models have increasingly provided experimental access to diverse and complex tissues architectures and their morphogenic assembly in vitro. This review presents an analytical toolbox for biological researchers using 3D modeling technologies through which they can find a collation of currently available methods to phenotypically assess their 3D models in their normal state as well as their response to therapeutic or pathological agents.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Vaibhav Mahajan
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Tom van de Kemp
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Laura J Bray
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
| |
Collapse
|
9
|
Acimovic I, Gabrielová V, Martínková S, Eid M, Vlažný J, Moravčík P, Hlavsa J, Moráň L, Cakmakci RC, Staňo P, Procházka V, Kala Z, Trnka J, Vaňhara P. Ex-Vivo 3D Cellular Models of Pancreatic Ductal Adenocarcinoma: From Embryonic Development to Precision Oncology. Pancreas 2025; 54:e57-e71. [PMID: 39074056 DOI: 10.1097/mpa.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
Collapse
Affiliation(s)
- Ivana Acimovic
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Viktorie Gabrielová
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | - Michal Eid
- Departments of Internal Medicine, Hematology and Oncology
| | | | - Petr Moravčík
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Hlavsa
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | | | - Riza Can Cakmakci
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Peter Staňo
- Departments of Internal Medicine, Hematology and Oncology
| | - Vladimír Procházka
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Zdeněk Kala
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | | |
Collapse
|
10
|
Co IL, Fomina A, Nurse M, McGuigan AP. Applications and evolution of 3D cancer-immune cell models. Trends Biotechnol 2024; 42:1615-1627. [PMID: 39025680 DOI: 10.1016/j.tibtech.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.
Collapse
Affiliation(s)
- Ileana L Co
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Aleksandra Fomina
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Michelle Nurse
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
11
|
Padilla-Lopategui S, Ligorio C, Bu W, Yin C, Laurenza D, Redondo C, Owen R, Sun H, Rose FRAJ, Iskratsch T, Mata A. Biocooperative Regenerative Materials by Harnessing Blood-Clotting and Peptide Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407156. [PMID: 39543808 DOI: 10.1002/adma.202407156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/10/2024] [Indexed: 11/17/2024]
Abstract
The immune system has evolved to heal small ruptures and fractures with remarkable efficacy through regulation of the regenerative hematoma (RH); a rich and dynamic environment that coordinates numerous molecular and cellular processes to achieve complete repair. Here, a biocooperative approach that harnesses endogenous molecules and natural healing to engineer personalized regenerative materials is presented. Peptide amphiphiles (PAs) are co-assembled with blood components during coagulation to engineer a living material that exhibits key compositional and structural properties of the RH. By exploiting non-selective and selective PA-blood interactions, the material can be immediately manipulated, mechanically-tuned, and 3D printed. The material preserves normal platelet behavior, generates and provides a continuous source of growth factors, and promotes in vitro growth of mesenchymal stromal cells, endothelial cells, and fibroblasts. Furthermore, using a personalized autologous approach to convert whole blood into PA-blood gel implants, bone regeneration is shown in a critical-sized rat calvarial defect. This study provides proof-of-concept for a biocooperative approach that goes beyond biomimicry by using mechanisms that Nature has evolved to heal as tools to engineer accessible, personalized, and regenerative biomaterials that can be readily formed at point of use.
Collapse
Affiliation(s)
- Soraya Padilla-Lopategui
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Cosimo Ligorio
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, NG7 2UH, UK
| | - Wenhuan Bu
- School of Stomatology, China Medical University, Shenyang, 110001, China
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Chengcheng Yin
- School of Stomatology, China Medical University, Shenyang, 110001, China
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Domenico Laurenza
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Carlos Redondo
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Robert Owen
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Hongchen Sun
- School of Stomatology, China Medical University, Shenyang, 110001, China
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Felicity R A J Rose
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
12
|
Ligorio C, Martinez-Espuga M, Laurenza D, Hartley A, Rodgers CB, Kotowska AM, Scurr DJ, Dalby MJ, Ordóñez-Morán P, Mata A. Disassembly of self-assembling peptide hydrogels as a versatile method for cell extraction and manipulation. J Mater Chem B 2024; 12:11939-11952. [PMID: 39449374 PMCID: PMC11502993 DOI: 10.1039/d4tb01575d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Self-assembling peptide hydrogels (SAPHs) are increasingly being used as two-dimensional (2D) cell culture substrates and three-dimensional (3D) matrices due to their tunable properties and biomimicry of native tissues. Despite these advantages, SAPHs often represent an end-point in cell culture, as isolating cells from them leads to low yields and disruption of cells, limiting their use and post-culture analyses. Here, we report on a protocol designed to easily and effectively disassemble peptide amphiphile (PA) SAPHs to retrieve 3D encapsulated cells with high viability and minimal disruption. Due to the pivotal role played by salt ions in SAPH gelation, tetrasodium ethylenediaminetetraacetic acid (Na4EDTA) was used as metal chelator to sequester ions participating in PA self-assembly and induce a rapid, efficient, clean, and gentle gel-to-sol transition. We characterise PA disassembly from the nano- to the macro-scale, provide mechanistic and practical insights into the PA disassembly mechanism, and assess the potential use of the process. As proof-of-concept, we isolated different cell types from cell-laden PA hydrogels and demonstrated the possibility to perform downstream biological analyses including cell re-plating, gene analysis, and flow cytometry with high reproducibility and no material interference. Our work offers new opportunities for the use of SAPHs in cell culture and the potential use of cells cultured on SAPHs, in applications such as cell expansion, analysis of in vitro models, cell therapies, and regenerative medicine.
Collapse
Affiliation(s)
- Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| | - Magda Martinez-Espuga
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Domenico Laurenza
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Alex Hartley
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Chloe B Rodgers
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Anna M Kotowska
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David J Scurr
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Paloma Ordóñez-Morán
- Translational Medical Sciences Unit, School of Medicine, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Pan C, Wang X, Yang C, Fu K, Wang F, Fu L. The culture and application of circulating tumor cell-derived organoids. Trends Cell Biol 2024:S0962-8924(24)00210-1. [PMID: 39523200 DOI: 10.1016/j.tcb.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Circulating tumor cells (CTCs), which have the heterogeneity and histological properties of the primary tumor and metastases, are shed from the primary tumor and/or metastatic lesions into the vasculature and initiate metastases at remote sites. In the clinic, CTCs are used extensively in liquid biopsies for early screening, diagnosis, treatment, and prognosis. Current research focuses on using CTC-derived models to study tumor heterogeneity and metastasis, with 3D organoids emerging as a promising tool in cancer research and precision oncology. However, isolating and enriching CTCs from blood remains challenging due to their scarcity, exacerbated by the lack of an optimized culture medium for CTC-derived organoids (CTCDOs). In this review, we summarize the origin, isolation, enrichment, culture, validation, and clinical application of CTCs and CTCDOs.
Collapse
Affiliation(s)
- Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
14
|
Siciliano AC, Forciniti S, Onesto V, Iuele H, Cave DD, Carnevali F, Gigli G, Lonardo E, Del Mercato LL. A 3D Pancreatic Cancer Model with Integrated Optical Sensors for Noninvasive Metabolism Monitoring and Drug Screening. Adv Healthc Mater 2024; 13:e2401138. [PMID: 38978424 DOI: 10.1002/adhm.202401138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Indexed: 07/10/2024]
Abstract
A distinct feature of pancreatic ductal adenocarcinoma (PDAC) is a prominent tumor microenvironment (TME) with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. The dynamic crosstalk between cancer cells and the dense stromal compartment leads to spatially and temporally heterogeneous metabolic alterations, such as acidic pH that contributes to drug resistance in PDAC. Thus, monitoring the extracellular pH metabolic fluctuations within the TME is crucial to predict and to quantify anticancer drug efficacy. Here, a simple and reliable alginate-based 3D PDAC model embedding ratiometric optical pH sensors and cocultures of tumor (AsPC-1) and stromal cells for simultaneously monitoring metabolic pH variations and quantify drug response is presented. By means of time-lapse confocal laser scanning microscopy (CLSM) coupled with a fully automated computational analysis, the extracellular pH metabolic variations are monitored and quantified over time during drug testing with gemcitabine, folfirinox, and paclitaxel, commonly used in PDAC therapy. In particular, the extracellular acidification is more pronounced after drugs treatment, resulting in increased antitumor effect correlated with apoptotic cell death. These findings highlight the importance of studying the influence of cellular metabolic mechanisms on tumor response to therapy in 3D tumor models, this being crucial for the development of personalized medicine approaches.
Collapse
Affiliation(s)
- Anna Chiara Siciliano
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Helena Iuele
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Donatella Delle Cave
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council (Cnr-IGB), Naples, 80131, Italy
| | - Federica Carnevali
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
- Department of Experimental Medicine, University of Salento, c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council (Cnr-IGB), Naples, 80131, Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
15
|
Murphy JF, Lavelle M, Asciak L, Burdis R, Levis HJ, Ligorio C, McGuire J, Polleres M, Smith PO, Tullie L, Uribe-Gomez J, Chen B, Dawson JI, Gautrot JE, Hooper NM, Kelly DJ, Li VSW, Mata A, Pandit A, Phillips JB, Shu W, Stevens MM, Williams RL, Armstrong JPK, Huang YYS. Biofabrication and biomanufacturing in Ireland and the UK. Biodes Manuf 2024; 7:825-856. [PMID: 39650072 PMCID: PMC11618173 DOI: 10.1007/s42242-024-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/11/2024] [Indexed: 12/11/2024]
Abstract
As we navigate the transition from the Fourth to the Fifth Industrial Revolution, the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare. These sectors are benefiting from a synergy of synthetic and engineering biology, sustainable manufacturing, and integrated design principles. Advanced techniques such as 3D bioprinting, tissue engineering, directed assembly, and self-assembly are instrumental in creating biomimetic scaffolds, tissues, organoids, medical devices, and biohybrid systems. The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare, propelled by cutting-edge research and development. Concentrating on the production of biologically functional products for use in drug delivery, in vitro models, and tissue engineering, research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability, affordability, and healthcare system benefits. Graphic abstract
Collapse
Affiliation(s)
- Jack F. Murphy
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ UK
| | - Martha Lavelle
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | - Lisa Asciak
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Ross Burdis
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
| | - Jamie McGuire
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Marlene Polleres
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Poppy O. Smith
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Juan Uribe-Gomez
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH UK
| | - Jonathan I. Dawson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Julien E. Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS UK
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, M13 9PL UK
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 H903 Ireland
| | - Vivian S. W. Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - James B. Phillips
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Molly M. Stevens
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
- Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | - Rachel L. Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - James P. K. Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | | |
Collapse
|
16
|
Li M, Freeman S, Franco-Barraza J, Cai KQ, Kim A, Jin S, Cukierman E, Ye K. A bioprinted sea-and-island multicellular model for dissecting human pancreatic tumor-stroma reciprocity and adaptive metabolism. Biomaterials 2024; 310:122631. [PMID: 38815457 PMCID: PMC11186049 DOI: 10.1016/j.biomaterials.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable clinical challenge due to its intricate microenvironment characterized by desmoplasia and complex tumor-stroma interactions. Conventional models hinder studying cellular crosstalk for therapeutic development. To recapitulate key features of PDAC masses, this study creates a novel sea-and-island PDAC tumor construct (s&i PTC). The s&i PTC consists of 3D-printed islands of human PDAC cells positioned within an interstitial extracellular matrix (ECM) populated by human cancer-associated fibroblasts (CAFs). This design closely mimics the in vivo desmoplastic architecture and nutrient-poor conditions. The model enables studying dynamic tumor-stroma crosstalk and signaling reciprocity, revealing both known and yet-to-be-discovered multicellular metabolic adaptations. Using the model, we discovered the orchestrated dynamic alterations of CAFs under nutrient stress, resembling critical in vivo human tumor niches, such as the secretion of pro-tumoral inflammatory factors. Additionally, nutrient scarcity induces dynamic alterations in the ECM composition and exacerbates poor cancer cell differentiation-features well-established in PDAC progression. Proteomic analysis unveiled the enrichment of proteins associated with aggressive tumor behavior and ECM remodeling in response to poor nutritional conditions, mimicking the metabolic stresses experienced by avascular pancreatic tumor cores. Importantly, the model's relevance to patient outcomes is evident through an inverse correlation between biomarker expression patterns in the s&i PTCs and PDAC patient survival rates. Key findings include upregulated MMPs and key ECM proteins (such as collagen 11 and TGFβ) under nutrient-avid conditions, known to be regulated by CAFs, alongside the concomitant reduction in E-cadherin expression associated with a poorly differentiated PDAC state under nutrient deprivation. Furthermore, elevated levels of hyaluronic acid (HA) and integrins in response to nutrient deprivation underscore the model's fidelity to the PDAC microenvironment. We also observed increased IL-6 and reduced α-SMA expression under poor nutritional conditions, suggesting a transition of CAFs from myofibroblastic to inflammatory phenotypes under a nutrient stress akin to in vivo niches. In conclusion, the s&i PTC represents a significant advancement in engineering clinically relevant 3D models of PDAC masses. It offers a promising platform for elucidating tumor-stroma interactions and guiding future therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Ming Li
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sebastian Freeman
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA
| | - Amy Kim
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz Temple School of Medicine, Philadelphia, PA, USA.
| | - Kaiming Ye
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, SUNY, Binghamton, NY, USA.
| |
Collapse
|
17
|
Chen L, Li F, Li R, Zheng K, Zhang X, Ma H, Li K, Nie L. Thermo-Responsive Hydrogel Based on Lung Decellularized Extracellular Matrix for 3D Culture Model to Enhance Cancer Stem Cell Characteristics. Molecules 2024; 29:4385. [PMID: 39339380 PMCID: PMC11433703 DOI: 10.3390/molecules29184385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) are most likely the main cause of lung cancer formation, metastasis, drug resistance, and genetic heterogeneity. Three-dimensional (3D) ex vivo cell culture models can facilitate stemness improvement and CSC enrichment. Considering the critical role of extracellular matrix (ECM) on CSC properties, the present study developed a thermo-responsive hydrogel using the porcine decellularized lung for 3D cell culture, and the cell-laden hydrogel culturing model was used to explore the CSC characteristics and potential utilization in CSC-specific drug evaluation. Results showed that the lung dECM hydrogel (LEH) was composed of the main ECM components and displayed excellent cellular compatibility. In addition, lung cancer cells 3D cultured in LEH displayed the overexpression of metastasis-related genes and enhanced migration properties, as compared with those in two-dimensional (2D) conditions. Notably, the CSC features, including the expression level of stemness-associated genes, colony formation capability, drug resistance, and the proportion of cancer stem-like cells (CD133+), were also enhanced in 3D cells. Furthermore, the attenuation effect of epigallocatechin gallate (EGCG) on CSC properties in the 3D model was observed, confirming the potential practicability of the 3D culture on CSC-targeted drug screening. Overall, our results suggest that the fabricated LEH is an effective and facile platform for 3D cell culture and CSC-specific drug evaluation.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fanglu Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ruobing Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ke Zheng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xinyi Zhang
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Huijing Ma
- Library, Xinyang Normal University, Xinyang 464000, China
| | - Kaiming Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lei Nie
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
18
|
Minaei E, Ranson M, Aghmesheh M, Sluyter R, Vine KL. Enhancing pancreatic cancer immunotherapy: Leveraging localized delivery strategies through the use of implantable devices and scaffolds. J Control Release 2024; 373:145-160. [PMID: 38996923 DOI: 10.1016/j.jconrel.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Pancreatic cancer (PC) remains the predominant type of upper gastrointestinal tract cancer, associated with heightened morbidity and a survival rate below 12%. While immunotherapy has brought about transformative changes in the standards of care for most solid tumors, its application in PC is hindered by the ''cold tumor'' microenvironment, marked by the presence of immunosuppressive cells. Modest response rates in PC are attributed, in part to, the fibrotic stroma that obstructs the delivery of systemic immunotherapy. Furthermore, the occurrence of immune-related adverse events (iRAEs) often necessitates the use of sub-therapeutic doses or treatment discontinuation. In the pursuit of innovative approaches to enhance the effectiveness of immunotherapy for PC, implantable drug delivery devices and scaffolds emerge as promising strategies. These technologies offer the potential for sustained drug delivery directly to the tumor site, overcoming stromal barriers, immunosuppression, T cell exclusion, immunotherapy resistance, optimizing drug dosage, and mitigating systemic toxicity. This review offers a comprehensive exploration of pancreatic ductal adenocarcinoma (PDAC), the most common and aggressive form of PC, accompanied by a critical analysis of the challenges the microenvironment presents to the development of successful combinational immunotherapy approaches. Despite efforts, these approaches have thus far fallen short in enhancing treatment outcomes for PDAC. The review will subsequently delve into the imperative need for refining delivery strategies, providing an examination of past and ongoing studies in the field of localized immunotherapy for PDAC. Addressing these issues will lay the groundwork for the development of effective new therapies, thereby enhancing treatment response, patient survival, and overall quality of life for individuals diagnosed with PDAC.
Collapse
Affiliation(s)
- E Minaei
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - M Ranson
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - M Aghmesheh
- Nelune Comprehensive Cancer Centre, Bright Building, Prince of Wales Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - R Sluyter
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - K L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
19
|
Zhu T, Hu Y, Cui H, Cui H. 3D Multispheroid Assembly Strategies towards Tissue Engineering and Disease Modeling. Adv Healthc Mater 2024; 13:e2400957. [PMID: 38924326 DOI: 10.1002/adhm.202400957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Cell spheroids (esp. organoids) as 3D culture platforms are popular models for representing cell-cell and cell-extracellular matrix (ECM) interactions, bridging the gap between 2D cell cultures and natural tissues. 3D cell models with spatially organized multiple cell types are preferred for gaining comprehensive insights into tissue pathophysiology and constructing in vitro tissues and disease models because of the complexities of natural tissues. In recent years, an assembly strategy using cell spheroids (or organoids) as living building blocks has been developed to construct complex 3D tissue models with spatial organization. Here, a comprehensive overview of recent advances in multispheroid assembly studies is provided. The different mechanisms of the multispheroid assembly techniques, i.e., automated directed assembly, noncontact remote assembly, and programmed self-assembly, are introduced. The processing steps, advantages, and technical limitations of the existing methodologies are summarized. Applications of the multispheroid assembly strategies in disease modeling, drug screening, tissue engineering, and organogenesis are reviewed. Finally, this review concludes by emphasizing persistent issues and future perspectives, encouraging researchers to adopt multispheroid assembly techniques for generating advanced 3D cell models that better resemble real tissues.
Collapse
Affiliation(s)
- Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
20
|
Sgarminato V, Madrid-Wolff J, Boniface A, Ciardelli G, Tonda-Turo C, Moser C. 3D in vitromodeling of the exocrine pancreatic unit using tomographic volumetric bioprinting. Biofabrication 2024; 16:045034. [PMID: 39121863 DOI: 10.1088/1758-5090/ad6d8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, a leading cause of cancer-related deaths globally. Initial lesions of PDAC develop within the exocrine pancreas' functional units, with tumor progression driven by interactions between PDAC and stromal cells. Effective therapies require anatomically and functionally relevantin vitrohuman models of the pancreatic cancer microenvironment. We employed tomographic volumetric bioprinting, a novel biofabrication method, to create human fibroblast-laden constructs mimicking the tubuloacinar structures of the exocrine pancreas. Human pancreatic ductal epithelial (HPDE) cells overexpressing the KRAS oncogene (HPDE-KRAS) were seeded in the multiacinar cavity to replicate pathological tissue. HPDE cell growth and organization within the structure were assessed, demonstrating the formation of a thin epithelium covering the acini inner surfaces. Immunofluorescence assays showed significantly higher alpha smooth muscle actin (α-SMA) vs. F-actin expression in fibroblasts co-cultured with cancerous versus wild-type HPDE cells. Additionally,α-SMA expression increased over time and was higher in fibroblasts closer to HPDE cells. Elevated interleukin (IL)-6 levels were quantified in supernatants from co-cultures of stromal and HPDE-KRAS cells. These findings align with inflamed tumor-associated myofibroblast behavior, serving as relevant biomarkers to monitor early disease progression and target drug efficacy. To our knowledge, this is the first demonstration of a 3D bioprinted model of exocrine pancreas that recapitulates its true 3-dimensional microanatomy and shows tumor triggered inflammation.
Collapse
Affiliation(s)
- Viola Sgarminato
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Jorge Madrid-Wolff
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antoine Boniface
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Connaughton M, Dabagh M. Impact of stroma remodeling on forces experienced by cancer cells and stromal cells within a pancreatic tumor tissue. Biomed Eng Online 2024; 23:88. [PMID: 39210409 PMCID: PMC11363431 DOI: 10.1186/s12938-024-01278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Remodeling (re-engineering) of a tumor's stroma has been shown to improve the efficacy of anti-tumor therapies, without destroying the stroma. Even though it still remains unclear which stromal component/-s and what characteristics hinder the reach of nanoparticles deep into cancer cells, we hypothesis that mechanisms behind stroma's resistance to the penetration of nanoparticles rely heavily on extrinsic mechanical forces on stromal cells and cancer cells. Our hypothesis has been formulated on the basis of our previous study which has shown that changes in extracellular matrix (ECM) stiffness with tumor growth influence stresses exerted on fibroblasts and cancer cells, and that malignant cancer cells generate higher stresses on their stroma. This study attempts to establish a distinct identification of the components' remodeling on the distribution and magnitude of stress within a tumor tissue which ultimately will impact the resistance of stroma to treatment. In this study, our objective is to construct a three-dimensional in silico model of a pancreas tumor tissue consisting of cancer cells, stromal cells, and ECM to determine how stromal remodeling alters the stresses distribution and magnitude within the pancreas tumor tissue. Our results show that changes in mechanical properties of ECM significantly alter the magnitude and distribution of stresses within the pancreas tumor tissue. Our results revealed that these stresses are more sensitive to ECM properties as we see the stresses reaching to a maximum of 22,000 Pa for softer ECM with Young's modulus of 250 Pa. The stress distribution and magnitude within the pancreas tumor tissue does not show high sensitivity to the changes in mechanical properties of stromal cells surrounding stiffer cancer cells (PANC-1 with Young's modulus of 2400 Pa). However, softer cancer cells (MIA-PaCa-2 with (Young's modulus of 500 Pa) increase the stresses experienced by stiffer stromal cells and for stiffer ECM. By providing a unique platform to dissect and quantify the impact of individual stromal components on the stress distribution within a tumor tissue, this study serves as an important first step in understanding of which stromal components are vital for an efficient remodeling. This knowledge will be leveraged to overcome a tumor's resistance against the penetration of nanoparticles on a per-patient basis.
Collapse
Affiliation(s)
- Morgan Connaughton
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Mahsa Dabagh
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
22
|
Khorsandi D, Yang JW, Foster S, Khosravi S, Hoseinzadeh N, Zarei F, Lee YB, Runa F, Gangrade A, Voskanian L, Adnan D, Zhu Y, Wang Z, Jucaud V, Dokmeci MR, Shen X, Bishehsari F, Kelber JA, Khademhosseini A, de Barros NR. Patient-Derived Organoids as Therapy Screening Platforms in Cancer Patients. Adv Healthc Mater 2024; 13:e2302331. [PMID: 38359321 PMCID: PMC11324859 DOI: 10.1002/adhm.202302331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Patient-derived organoids (PDOs) developed ex vivo and in vitro are increasingly used for therapeutic screening. They provide a more physiologically relevant model for drug discovery and development compared to traditional cell lines. However, several challenges remain to be addressed to fully realize the potential of PDOs in therapeutic screening. This paper summarizes recent advancements in PDO development and the enhancement of PDO culture models. This is achieved by leveraging materials engineering and microfabrication technologies, including organs-on-a-chip and droplet microfluidics. Additionally, this work discusses the application of PDOs in therapy screening to meet diverse requirements and overcome bottlenecks in cancer treatment. Furthermore, this work introduces tools for data processing and analysis of organoids, along with their microenvironment. These tools aim to achieve enhanced readouts. Finally, this work explores the challenges and future perspectives of using PDOs in drug development and personalized screening for cancer patients.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Samuel Foster
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Negar Hoseinzadeh
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Fahimeh Zarei
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Yun Bin Lee
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Farhana Runa
- California State University Northridge, 18111 Nordhoff Street, Northridge, California, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710 USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, 60612, USA
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jonathan A. Kelber
- California State University Northridge, 18111 Nordhoff Street, Northridge, California, USA
- Baylor University, 101 Bagby Ave, Waco, Texas, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| |
Collapse
|
23
|
Liu Y, Okesola BO, Osuna de la Peña D, Li W, Lin M, Trabulo S, Tatari M, Lawlor RT, Scarpa A, Wang W, Knight M, Loessner D, Heeschen C, Mata A, Pearce OMT. A Self-Assembled 3D Model Demonstrates How Stiffness Educates Tumor Cell Phenotypes and Therapy Resistance in Pancreatic Cancer. Adv Healthc Mater 2024; 13:e2301941. [PMID: 38471128 PMCID: PMC11468796 DOI: 10.1002/adhm.202301941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Indexed: 03/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells. Enhanced tuneability of stiffness is demonstrated by interacting thermally annealed aqueous solutions of PA-E3Y (PA-E3Yh) with divalent cations to create hydrogels with mechanical properties and ultrastructure similar to native tumor ECM. It is shown that stiffening of PA-E3Yh hydrogels to levels found in PDAC induces ECM deposition, promotes epithelial-to-mesenchymal transition (EMT), enriches CD133+/CXCR4+ cancer stem cells (CSCs), and subsequently enhances drug resistance. The findings reveal how a stiff 3D environment renders PDAC cells more aggressive and therefore more faithfully recapitulates in vivo tumors.
Collapse
Affiliation(s)
- Ying Liu
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Babatunde O. Okesola
- School of Life SciencesFaculty of Medicine and Health SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - David Osuna de la Peña
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Weiqi Li
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Meng‐Lay Lin
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Sara Trabulo
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Marianthi Tatari
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Rita T. Lawlor
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Wen Wang
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Martin Knight
- Centre for BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Centre for Predictive in vitro ModelsQueen Mary University of LondonLondonE1 4NSUK
| | - Daniela Loessner
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- Department of Chemical and Biological EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Materials Science and EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Anatomy and Developmental BiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourneVIC3800Australia
| | - Christopher Heeschen
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSCandiolo (TO)10060Italy
| | - Alvaro Mata
- School of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Biodiscovery InstituteUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Department of Chemical and Environmental EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | |
Collapse
|
24
|
Gupta P, Bermejo-Rodriguez C, Kocher H, Pérez-Mancera PA, Velliou EG. Chemotherapy Assessment in Advanced Multicellular 3D Models of Pancreatic Cancer: Unravelling the Importance of Spatiotemporal Mimicry of the Tumor Microenvironment. Adv Biol (Weinh) 2024; 8:e2300580. [PMID: 38327154 DOI: 10.1002/adbi.202300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a challenge for global health with very low survival rate and high therapeutic resistance. Hence, advanced preclinical models for treatment screening are of paramount importance. Herein, chemotherapeutic (gemcitabine) assessment on novel (polyurethane) scaffold-based spatially advanced 3D multicellular PDAC models is carried out. Through comprehensive image-based analysis at the protein level, and expression analysis at the mRNA level, the importance of stromal cells is confirmed, primarily activated stellate cells in the chemoresistance of PDAC cells within the models. Furthermore, it is demonstrated that, in addition to the presence of activated stellate cells, the spatial architecture of the scaffolds, i.e., segregation/compartmentalization of the cancer and stromal zones, affect the cellular evolution and is necessary for the development of chemoresistance. These results highlight that, further to multicellularity, mapping the tumor structure/architecture and zonal complexity in 3D cancer models is important for better mimicry of the in vivo therapeutic response.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| | - Camino Bermejo-Rodriguez
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Eirini G Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| |
Collapse
|
25
|
Ashworth JC, Cox TR. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat Rev Cancer 2024; 24:461-479. [PMID: 38886573 DOI: 10.1038/s41568-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of 'precision biomaterials' is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell-matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Jennifer C Ashworth
- School of Veterinary Medicine & Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
26
|
Zhai J, Liu Y, Ji W, Huang X, Wang P, Li Y, Li H, Wong AHH, Zhou X, Chen P, Wang L, Yang N, Chen C, Chen H, Mak PI, Deng CX, Martins R, Yang M, Ho TY, Yi S, Yao H, Jia Y. Drug screening on digital microfluidics for cancer precision medicine. Nat Commun 2024; 15:4363. [PMID: 38778087 PMCID: PMC11111680 DOI: 10.1038/s41467-024-48616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Drug screening based on in-vitro primary tumor cell culture has demonstrated potential in personalized cancer diagnosis. However, the limited number of tumor cells, especially from patients with early stage cancer, has hindered the widespread application of this technique. Hence, we developed a digital microfluidic system for drug screening using primary tumor cells and established a working protocol for precision medicine. Smart control logic was developed to increase the throughput of the system and decrease its footprint to parallelly screen three drugs on a 4 × 4 cm2 chip in a device measuring 23 × 16 × 3.5 cm3. We validated this method in an MDA-MB-231 breast cancer xenograft mouse model and liver cancer specimens from patients, demonstrating tumor suppression in mice/patients treated with drugs that were screened to be effective on individual primary tumor cells. Mice treated with drugs screened on-chip as ineffective exhibited similar results to those in the control groups. The effective drug identified through on-chip screening demonstrated consistency with the absence of mutations in their related genes determined via exome sequencing of individual tumors, further validating this protocol. Therefore, this technique and system may promote advances in precision medicine for cancer treatment and, eventually, for any disease.
Collapse
Affiliation(s)
- Jiao Zhai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Yingying Liu
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Weiqing Ji
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xinru Huang
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunyi Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
| | - Haoran Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Ada Hang-Heng Wong
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiong Zhou
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- College of electrical and information engineering, Hunan University, Changsha, China
| | - Ping Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lianhong Wang
- College of electrical and information engineering, Hunan University, Changsha, China
| | - Ning Yang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Department of Electronic Information Engineering, Jiangsu University, Zhenjiang, China
| | - Chi Chen
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haitian Chen
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pui-In Mak
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Rui Martins
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
- On leave from Instituto Superior Tecnico, Universidade de Lisboa, Lisboa, Portugal
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Tsung-Yi Ho
- Department of Compute Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuhong Yi
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hailong Yao
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China.
- Faculty of Science and Technology, University of Macau, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
27
|
Angelopoulou A. Nanostructured Biomaterials in 3D Tumor Tissue Engineering Scaffolds: Regenerative Medicine and Immunotherapies. Int J Mol Sci 2024; 25:5414. [PMID: 38791452 PMCID: PMC11121067 DOI: 10.3390/ijms25105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The evaluation of nanostructured biomaterials and medicines is associated with 2D cultures that provide insight into biological mechanisms at the molecular level, while critical aspects of the tumor microenvironment (TME) are provided by the study of animal xenograft models. More realistic models that can histologically reproduce human tumors are provided by tissue engineering methods of co-culturing cells of varied phenotypes to provide 3D tumor spheroids that recapitulate the dynamic TME in 3D matrices. The novel approaches of creating 3D tumor models are combined with tumor tissue engineering (TTE) scaffolds including hydrogels, bioprinted materials, decellularized tissues, fibrous and nanostructured matrices. This review focuses on the use of nanostructured materials in cancer therapy and regeneration, and the development of realistic models for studying TME molecular and immune characteristics. Tissue regeneration is an important aspect of TTE scaffolds used for restoring the normal function of the tissues, while providing cancer treatment. Thus, this article reports recent advancements in the development of 3D TTE models for antitumor drug screening, studying tumor metastasis, and tissue regeneration. Also, this review identifies the significant opportunities of using 3D TTE scaffolds in the evaluation of the immunological mechanisms and processes involved in the application of immunotherapies.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
28
|
Khorsandi D, Rezayat D, Sezen S, Ferrao R, Khosravi A, Zarepour A, Khorsandi M, Hashemian M, Iravani S, Zarrabi A. Application of 3D, 4D, 5D, and 6D bioprinting in cancer research: what does the future look like? J Mater Chem B 2024; 12:4584-4612. [PMID: 38686396 DOI: 10.1039/d4tb00310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The application of three- and four-dimensional (3D/4D) printing in cancer research represents a significant advancement in understanding and addressing the complexities of cancer biology. 3D/4D materials provide more physiologically relevant environments compared to traditional two-dimensional models, allowing for a more accurate representation of the tumor microenvironment that enables researchers to study tumor progression, drug responses, and interactions with surrounding tissues under conditions similar to in vivo conditions. The dynamic nature of 4D materials introduces the element of time, allowing for the observation of temporal changes in cancer behavior and response to therapeutic interventions. The use of 3D/4D printing in cancer research holds great promise for advancing our understanding of the disease and improving the translation of preclinical findings to clinical applications. Accordingly, this review aims to briefly discuss 3D and 4D printing and their advantages and limitations in the field of cancer. Moreover, new techniques such as 5D/6D printing and artificial intelligence (AI) are also introduced as methods that could be used to overcome the limitations of 3D/4D printing and opened promising ways for the fast and precise diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Dorsa Rezayat
- Center for Global Design and Manufacturing, College of Engineering and Applied Science, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221, USA
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956 Istanbul, Türkiye
- Nanotechnology Research and Application Center, Sabanci University, Tuzla 34956 Istanbul, Türkiye
| | - Rafaela Ferrao
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
- University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Melika Khorsandi
- Department of Cellular and Molecular Biology, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Hashemian
- Department of Cellular and Molecular Biology, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
29
|
Tanaka HY, Nakazawa T, Miyazaki T, Cabral H, Masamune A, Kano MR. Targeting ROCK2 improves macromolecular permeability in a 3D fibrotic pancreatic cancer microenvironment model. J Control Release 2024; 369:283-295. [PMID: 38522816 DOI: 10.1016/j.jconrel.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Pancreatic cancer is characterized by a densely fibrotic stroma. The fibrotic stroma hinders the intratumoral penetration of nanomedicine and diminishes therapeutic efficacy. Fibrosis is characterized by an abnormal organization of extracellular matrix (ECM) components, namely the abnormal deposition and/or orientation of collagen and fibronectin. Abnormal ECM organization is chiefly driven by pathological signaling in pancreatic stellate cells (PSCs), the main cell type involved in fibrogenesis. However, whether targeting signaling pathways involved in abnormal ECM organization improves the intratumoral penetration of nanomedicines is unknown. Here, we show that targeting transforming growth factor-β (TGFβ)/Rho-associated kinase (ROCK) 1/2 signaling in PSCs normalizes ECM organization and concomitantly improves macromolecular permeability of the fibrotic stroma. Using a 3-dimensional cell culture model of the fibrotic pancreatic cancer microenvironment, we found that pharmacological inhibition of TGFβ or ROCK1/2 improves the permeation of various macromolecules. By using an isoform-specific pharmacological inhibitor and siRNAs, we show that targeting ROCK2, but not ROCK1, alone is sufficient to normalize ECM organization and improve macromolecular permeability. Moreover, we found that ROCK2 inhibition/knockdown attenuates Yes-associated protein (YAP) nuclear localization in fibroblasts co-cultured with pancreatic cancer cells in 3D. Finally, pharmacological inhibition or siRNA-mediated knockdown of YAP normalized ECM organization and improved macromolecular permeability. Our results together suggest that the TGFβ/ROCK2/YAP signaling axis may be therapeutically targeted to normalize ECM organization and improve macromolecular permeability to augment therapeutic efficacy of nanomedicines in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina-shi, Kanagawa 243-0435, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi, Miyagi 980-8574, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| |
Collapse
|
30
|
Gaebler D, Hachey SJ, Hughes CCW. Microphysiological systems as models for immunologically 'cold' tumors. Front Cell Dev Biol 2024; 12:1389012. [PMID: 38711620 PMCID: PMC11070549 DOI: 10.3389/fcell.2024.1389012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The tumor microenvironment (TME) is a diverse milieu of cells including cancerous and non-cancerous cells such as fibroblasts, pericytes, endothelial cells and immune cells. The intricate cellular interactions within the TME hold a central role in shaping the dynamics of cancer progression, influencing pivotal aspects such as tumor initiation, growth, invasion, response to therapeutic interventions, and the emergence of drug resistance. In immunologically 'cold' tumors, the TME is marked by a scarcity of infiltrating immune cells, limited antigen presentation in the absence of potent immune-stimulating signals, and an abundance of immunosuppressive factors. While strategies targeting the TME as a therapeutic avenue in 'cold' tumors have emerged, there is a pressing need for novel approaches that faithfully replicate the complex cellular and non-cellular interactions in order to develop targeted therapies that can effectively stimulate immune responses and improve therapeutic outcomes in patients. Microfluidic devices offer distinct advantages over traditional in vitro 3D co-culture models and in vivo animal models, as they better recapitulate key characteristics of the TME and allow for precise, controlled insights into the dynamic interplay between various immune, stromal and cancerous cell types at any timepoint. This review aims to underscore the pivotal role of microfluidic systems in advancing our understanding of the TME and presents current microfluidic model systems that aim to dissect tumor-stromal, tumor-immune and immune-stromal cellular interactions in various 'cold' tumors. Understanding the intricacies of the TME in 'cold' tumors is crucial for devising effective targeted therapies to reinvigorate immune responses and overcome the challenges of current immunotherapy approaches.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
31
|
Zhang Y, Hu Q, Pei Y, Luo H, Wang Z, Xu X, Zhang Q, Dai J, Wang Q, Fan Z, Fang Y, Ye M, Li B, Chen M, Xue Q, Zheng Q, Zhang S, Huang M, Zhang T, Gu J, Xiong Z. A patient-specific lung cancer assembloid model with heterogeneous tumor microenvironments. Nat Commun 2024; 15:3382. [PMID: 38643164 PMCID: PMC11032376 DOI: 10.1038/s41467-024-47737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Cancer models play critical roles in basic cancer research and precision medicine. However, current in vitro cancer models are limited by their inability to mimic the three-dimensional architecture and heterogeneous tumor microenvironments (TME) of in vivo tumors. Here, we develop an innovative patient-specific lung cancer assembloid (LCA) model by using droplet microfluidic technology based on a microinjection strategy. This method enables precise manipulation of clinical microsamples and rapid generation of LCAs with good intra-batch consistency in size and cell composition by evenly encapsulating patient tumor-derived TME cells and lung cancer organoids inside microgels. LCAs recapitulate the inter- and intratumoral heterogeneity, TME cellular diversity, and genomic and transcriptomic landscape of their parental tumors. LCA model could reconstruct the functional heterogeneity of cancer-associated fibroblasts and reflect the influence of TME on drug responses compared to cancer organoids. Notably, LCAs accurately replicate the clinical outcomes of patients, suggesting the potential of the LCA model to predict personalized treatments. Collectively, our studies provide a valuable method for precisely fabricating cancer assembloids and a promising LCA model for cancer research and personalized medicine.
Collapse
Affiliation(s)
- Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Qifan Hu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Yuquan Pei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Hao Luo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Xinxin Xu
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Qing Zhang
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Jianli Dai
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Qianqian Wang
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Zilian Fan
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Min Ye
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Binhan Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Mailin Chen
- Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qingfeng Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shulin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Miao Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China.
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Beijing, 100084, China.
| |
Collapse
|
32
|
Connaughton M, Dabagh M. Modeling Physical Forces Experienced by Cancer and Stromal Cells Within Different Organ-Specific Tumor Tissue. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:413-434. [PMID: 38765886 PMCID: PMC11100865 DOI: 10.1109/jtehm.2024.3388561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Mechanical force exerted on cancer cells by their microenvironment have been reported to drive cells toward invasive phenotypes by altering cells' motility, proliferation, and apoptosis. These mechanical forces include compressive, tensile, hydrostatic, and shear forces. The importance of forces is then hypothesized to be an alteration of cancer cells' and their microenvironment's biophysical properties as the indicator of a tumor's malignancy state. Our objective is to investigate and quantify the correlation between a tumor's malignancy state and forces experienced by the cancer cells and components of the microenvironment. In this study, we have developed a multicomponent, three-dimensional model of tumor tissue consisting of a cancer cell surrounded by fibroblasts and extracellular matrix (ECM). Our results on three different organs including breast, kidney, and pancreas show that: A) the stresses within tumor tissue are impacted by the organ specific ECM's biophysical properties, B) more invasive cancer cells experience higher stresses, C) in pancreas which has a softer ECM (Young modulus of 1.0 kPa) and stiffer cancer cells (Young modulus of 2.4 kPa and 1.7 kPa) than breast and kidney, cancer cells experienced significantly higher stresses, D) cancer cells in contact with ECM experienced higher stresses compared to cells surrounded by fibroblasts but the area of tumor stroma experiencing high stresses has a maximum length of 40 μm when the cancer cell is surrounded by fibroblasts and 12 μm for when the cancer cell is in vicinity of ECM. This study serves as an important first step in understanding of how the stresses experienced by cancer cells, fibroblasts, and ECM are associated with malignancy states of cancer cells in different organs. The quantification of forces exerted on cancer cells by different organ-specific ECM and at different stages of malignancy will help, first to develop theranostic strategies, second to predict accurately which tumors will become highly malignant, and third to establish accurate criteria controlling the progression of cancer cells malignancy. Furthermore, our in silico model of tumor tissue can yield critical, useful information for guiding ex vivo or in vitro experiments, narrowing down variables to be investigated, understanding what factors could be impacting cancer treatments or even biomarkers to be looking for.
Collapse
Affiliation(s)
- Morgan Connaughton
- Department of Biomedical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeWI53211USA
| | - Mahsa Dabagh
- Department of Biomedical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeWI53211USA
| |
Collapse
|
33
|
Hirani P, McDermott J, Rajeeve V, Cutillas PR, Jones JL, Pennington DJ, Wight TN, Santamaria S, Alonge KM, Pearce OM. Versican Associates with Tumor Immune Phenotype and Limits T-cell Trafficking via Chondroitin Sulfate. CANCER RESEARCH COMMUNICATIONS 2024; 4:970-985. [PMID: 38517140 PMCID: PMC10989462 DOI: 10.1158/2767-9764.crc-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Immunotherapies for cancers of epithelial origin have limited efficacy, and a growing body of evidence links the composition of extracellular matrix (ECM) with the likelihood of a favorable response to treatment. The ECM may be considered an immunologic barrier, restricting the localization of cytotoxic immune cells to stromal areas and inhibiting their contact with tumor cells. Identifying ECM components of this immunologic barrier could provide targets that whether degraded in situ may support antitumor immunity and improve immunotherapy response. Using a library of primary triple-negative breast cancer tissues, we correlated CD8+ T-cell tumor contact with ECM composition and identified a proteoglycan, versican (VCAN), as a putative member of the immunologic barrier. Our analysis reveals that CD8+ T-cell contact with tumor associates with the location of VCAN expression, the specific glycovariant of VCAN [defined through the pattern of posttranslational attachments of glycosaminoglycans (GAG)], and the cell types that produce the variant. In functional studies, the isomers of chondroitin sulfate presented on VCAN have opposing roles being either supportive or inhibiting of T-cell trafficking, and removal of the GAGs ameliorates these effects on T-cell trafficking. Overall, we conclude that VCAN can either support or inhibit T-cell trafficking within the tumor microenvironment depending on the pattern of GAGs present, and that VCAN is a major component of the ECM immunologic barrier that defines the type of response to immunotherapy. SIGNIFICANCE The response to immunotherapy has been poor toward solid tumors despite immune cells infiltrating into the tumor. The ECM has been associated with impacting T-cell infiltration toward the tumor and in this article we have identified VCAN and its structural modification, chondroitin sulfate as having a key role in T-cell invasion.
Collapse
Affiliation(s)
- Priyanka Hirani
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Jacqueline McDermott
- Department of Histopathology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Pedro R. Cutillas
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - J. Louise Jones
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Daniel J. Pennington
- Centre for Immunobiology, Blizard Institute, Barts and the London Medical School, Queen Mary University of London, London, United Kingdom
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Surrey, United Kingdom
| | - Kimberly M. Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Oliver M.T. Pearce
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
34
|
Song X, Nihashi Y, Imai Y, Mori N, Kagaya N, Suenaga H, Shin-ya K, Yamamoto M, Setoyama D, Kunisaki Y, Kida YS. Collagen Lattice Model, Populated with Heterogeneous Cancer-Associated Fibroblasts, Facilitates Advanced Reconstruction of Pancreatic Cancer Microenvironment. Int J Mol Sci 2024; 25:3740. [PMID: 38612551 PMCID: PMC11011612 DOI: 10.3390/ijms25073740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid-tumor malignancy. To enhance the treatment landscape of PDAC, a 3D model optimized for rigorous drug screening is essential. Within the PDAC tumor microenvironment, a dense stroma comprising a large extracellular matrix and cancer-associated fibroblasts (CAFs) is well-known for its vital role in modulating tumor growth, cellular heterogeneity, bidirectional paracrine signaling, and chemoresistance. In this study, we employed a fibroblast-populated collagen lattice (FPCL) modeling approach that has the ability to replicate fibroblast contractility in the collagenous matrix to build dense stroma. This FPCL model allows CAF differentiation by facilitating multifaceted cell-cell interactions between cancer cells and CAFs, with the differentiation further influenced by mechanical forces and hypoxia carried within the 3D structure. Our FPCL models displayed hallmark features, including ductal gland structures and differentiated CAFs with spindle shapes. Through morphological explorations alongside in-depth transcriptomic and metabolomic profiling, we identified substantial molecular shifts from the nascent to mature model stages and potential metabolic biomarkers, such as proline. The initial pharmacological assays highlighted the effectiveness of our FPCL model in screening for improved therapeutic strategies. In conclusion, our PDAC modeling platform mirrors complex tumor microenvironmental dynamics and offers an unparalleled perspective for therapeutic exploration.
Collapse
Affiliation(s)
- Xiaoyu Song
- Tsukuba Life Science Innovation Program (T-LSI), School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Yukiko Imai
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Nobuhito Mori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Noritaka Kagaya
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Hikaru Suenaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Kazuo Shin-ya
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Ki-shibe-Shimmachi, Suita 564-8565, Japan;
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan;
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Yasuyuki S. Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan; (Y.N.); (N.M.); (N.K.); (H.S.); (K.S.-y.)
- School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
35
|
Nguyen HD, Lin CC. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids. Acta Biomater 2024; 177:203-215. [PMID: 38354874 PMCID: PMC10958777 DOI: 10.1016/j.actbio.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The tumor microenvironment (TME) in pancreatic adenocarcinoma (PDAC) is a complex milieu of cellular and non-cellular components. Pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF) are two major cell types in PDAC TME, whereas the non-cellular components are enriched with extracellular matrices (ECM) that contribute to high stiffness and fast stress-relaxation. Previous studies have suggested that higher matrix rigidity promoted aggressive phenotypes of tumors, including PDAC. However, the effects of dynamic viscoelastic matrix properties on cancer cell fate remain largely unexplored. The focus of this work was to understand the effects of such dynamic matrix properties on PDAC cell behaviors, particularly in the context of PCC/CAF co-culture. To this end, we engineered gelatin-norbornene (GelNB) based hydrogels with a built-in mechanism for simultaneously increasing matrix elastic modulus and viscoelasticity. Two GelNB-based macromers, namely GelNB-hydroxyphenylacetic acid (GelNB-HPA) and GelNB-boronic acid (GelNB-BA), were modularly mixed and crosslinked with 4-arm poly(ethylene glycol)-thiol (PEG4SH) to form elastic hydrogels. Treating the hybrid hydrogels with tyrosinase not only increased the elastic moduli of the gels (due to HPA dimerization) but also concurrently produced 1,2-diols that formed reversible boronic acid-diol bonding with the BA groups on GelNB-BA. We employed patient-derived CAF and a PCC cell line COLO-357 to demonstrate the effect of increasing matrix stiffness and viscoelasticity on CAF and PCC cell fate. Our results indicated that in the stiffened environment, PCC underwent epithelial-mesenchymal transition. In the co-culture PCC and CAF spheroid, CAF enhanced PCC spreading and stimulated collagen 1 production. Through mRNA-sequencing, we further showed that stiffened matrices, regardless of the degree of stress-relaxation, heightened the malignant phenotype of PDAC cells. STATEMENT OF SIGNIFICANCE: The pancreatic cancer microenvironment is a complex milieu composed of various cell types and extracellular matrices. It has been suggested that stiffer matrices could promote aggressive behavior in pancreatic cancer, but the effect of dynamic stiffening and matrix stress-relaxation on cancer cell fate remains largely undefined. This study aimed to explore the impact of dynamic changes in matrix viscoelasticity on pancreatic ductal adenocarcinoma (PDAC) cell behavior by developing a hydrogel system capable of simultaneously increasing stiffness and stress-relaxation on demand. This is achieved by crosslinking two gelatin-based macromers through orthogonal thiol-norbornene photochemistry and post-gelation stiffening with mushroom tyrosinase. The results revealed that higher matrix stiffness, regardless of the degree of stress relaxation, exacerbated the malignant characteristics of PDAC cells.
Collapse
Affiliation(s)
- Han D Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
36
|
Kalli M, Stylianopoulos T. Toward innovative approaches for exploring the mechanically regulated tumor-immune microenvironment. APL Bioeng 2024; 8:011501. [PMID: 38390314 PMCID: PMC10883717 DOI: 10.1063/5.0183302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Within the complex tumor microenvironment, cells experience mechanical cues-such as extracellular matrix stiffening and elevation of solid stress, interstitial fluid pressure, and fluid shear stress-that significantly impact cancer cell behavior and immune responses. Recognizing the significance of these mechanical cues not only sheds light on cancer progression but also holds promise for identifying potential biomarkers that would predict therapeutic outcomes. However, standardizing methods for studying how mechanical cues affect tumor progression is challenging. This challenge stems from the limitations of traditional in vitro cell culture systems, which fail to encompass the critical contextual cues present in vivo. To address this, 3D tumor spheroids have been established as a preferred model, more closely mimicking cancer progression, but they usually lack reproduction of the mechanical microenvironment encountered in actual solid tumors. Here, we review the role of mechanical forces in modulating tumor- and immune-cell responses and discuss how grasping the importance of these mechanical cues could revolutionize in vitro tumor tissue engineering. The creation of more physiologically relevant environments that better replicate in vivo conditions will eventually increase the efficacy of currently available treatments, including immunotherapies.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
37
|
Sharma K, Dey S, Karmakar R, Rengan AK. A comprehensive review of 3D cancer models for drug screening and translational research. CANCER INNOVATION 2024; 3:e102. [PMID: 38948533 PMCID: PMC11212324 DOI: 10.1002/cai2.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 07/02/2024]
Abstract
The 3D cancer models fill the discovery gap of 2D cancer models and play an important role in cancer research. In addition to cancer cells, a range of other factors include the stroma, density and composition of extracellular matrix, cancer-associated immune cells (e.g., cancer-associated fibroblasts cancer cell-stroma interactions and subsequent interactions, and a number of other factors (e.g., tumor vasculature and tumor-like microenvironment in vivo) has been widely ignored in the 2D concept of culture. Despite this knowledge, the continued use of monolayer cell culture methods has led to the failure of a series of clinical trials. This review discusses the immense importance of tumor microenvironment (TME) recapitulation in cancer research, prioritizing the individual roles of TME elements in cancer histopathology. The TME provided by the 3D model fulfills the requirements of in vivo spatiotemporal arrangement, components, and is helpful in analyzing various different aspects of drug sensitivity in preclinical and clinical trials, some of which are discussed here. Furthermore, it discusses models for the co-assembly of different TME elements in vitro and focuses on their synergistic function and responsiveness as tumors. Furthermore, this review broadly describes of a handful of recently developed 3D models whose main focus is limited to drug development and their screening and/or the impact of this approach in preclinical and translational research.
Collapse
Affiliation(s)
- Karthikey Sharma
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Sreenath Dey
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Rounik Karmakar
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Aravind Kumar Rengan
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| |
Collapse
|
38
|
Xu Y, Nipper MH, Dominguez AA, Ye Z, Akanuma N, Lopez K, Deng JJ, Arenas D, Sanchez A, Sharkey FE, Court CM, Singhi AD, Wang H, Fernandez-Zapico ME, Sun LZ, Zheng S, Chen Y, Liu J, Wang P. Reconstitution of human PDAC using primary cells reveals oncogenic transcriptomic features at tumor onset. Nat Commun 2024; 15:818. [PMID: 38280869 PMCID: PMC10821902 DOI: 10.1038/s41467-024-45097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Animal studies have demonstrated the ability of pancreatic acinar cells to transform into pancreatic ductal adenocarcinoma (PDAC). However, the tumorigenic potential of human pancreatic acinar cells remains under debate. To address this gap in knowledge, we expand sorted human acinar cells as 3D organoids and genetically modify them through introduction of common PDAC mutations. The acinar organoids undergo dramatic transcriptional alterations but maintain a recognizable DNA methylation signature. The transcriptomes of acinar organoids are similar to those of disease-specific cell populations. Oncogenic KRAS alone do not transform acinar organoids. However, acinar organoids can form PDAC in vivo after acquiring the four most common driver mutations of this disease. Similarly, sorted ductal cells carrying these genetic mutations can also form PDAC, thus experimentally proving that PDACs can originate from both human acinar and ductal cells. RNA-seq analysis reveal the transcriptional shift from normal acinar cells towards PDACs with enhanced proliferation, metabolic rewiring, down-regulation of MHC molecules, and alterations in the coagulation and complement cascade. By comparing PDAC-like cells with normal pancreas and PDAC samples, we identify a group of genes with elevated expression during early transformation which represent potential early diagnostic biomarkers.
Collapse
Affiliation(s)
- Yi Xu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Michael H Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Angel A Dominguez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Zhenqing Ye
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Naoki Akanuma
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kevin Lopez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Janice J Deng
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Destiny Arenas
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ava Sanchez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Francis E Sharkey
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Colin M Court
- Division of Surgical Oncology and Endocrine Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Huamin Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
39
|
Curvello R, Raghuwanshi VS, Wu CM, Mata J, Garnier G. Nano- and Microstructures of Collagen-Nanocellulose Hydrogels as Engineered Extracellular Matrices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1370-1379. [PMID: 38117479 DOI: 10.1021/acsami.3c10353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The extracellular matrix (ECM) is the fundamental acellular element of human tissues, providing their mechanical structure while delivering biomechanical and biochemical signals to cells. Three-dimensional (3D) tissue models commonly use hydrogels to recreate the ECM in vitro and support the growth of cells as organoids and spheroids. Collagen-nanocellulose (COL-NC) hydrogels rely on the blending of both polymers to design matrices with tailorable physical properties. Despite the promising application of these biomaterials in 3D tissue models, the architecture and network organization of COL-NC remain unclear. Here, we investigate the structural effects of incorporating NC fibers into COL hydrogels by small-angle neutron scattering (SANS) and ultra-SANS (USANS). The critical hierarchical structure parameters of fiber dimensions, interfiber distance, and coassembled open structures of NC and COL in the absence and presence of cells were determined. We found that NC expanded and increased the homogeneity in the COL network without affecting the inherent fiber properties of both polymers. Cells cultured as spheroids in COL-NC remodeled the hydrogel network without a significant impact on its architecture. Our study reveals the polymer organization of COL-NC hydrogels and demonstrates SANS and USANS as exceptional techniques to reveal nano- and micron-scale details on polymer organization, which leads to a better understanding of the structural properties of hydrogels to engineer novel ECMs.
Collapse
Affiliation(s)
- Rodrigo Curvello
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Vikram Singh Raghuwanshi
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Chun-Ming Wu
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Height, New South Wales 2234, Australia
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Jitendra Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Height, New South Wales 2234, Australia
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Gil Garnier
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
41
|
Song T, Kong B, Liu R, Luo Y, Wang Y, Zhao Y. Bioengineering Approaches for the Pancreatic Tumor Organoids Research and Application. Adv Healthc Mater 2024; 13:e2300984. [PMID: 37694339 DOI: 10.1002/adhm.202300984] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Pancreatic cancer is a highly lethal form of digestive malignancy that poses significant health risks to individuals worldwide. Chemotherapy-based comprehensive treatment is the primary therapeutic approach for midlife and late-life patients. Nevertheless, the heterogeneity of the tumor and individual genetic backgrounds result in substantial variations in drug sensitivity among patients, rendering a single treatment regimen unsuitable for all patients. Conventional pancreatic cancer tumor organoid models are capable of emulating the biological traits of pancreatic cancer and are utilized in drug development and screening. However, these tumor organoids can still not mimic the tumor microenvironment (TME) in vivo, and the poor controllability in the preparation process hinders translation from essential drug screening to clinical pharmacological therapy. In recent years, many engineering methods with remarkable results have been used to develop pancreatic cancer organoid models, including bio-hydrogel, co-culture, microfluidic, and gene editing. Here, this work summarizes and analyzes the recent developments in engineering pancreatic tumor organoid models. In addition, the future direction of improving engineered pancreatic cancer organoids is discussed for their application prospects in clinical treatment.
Collapse
Affiliation(s)
- Taiyu Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Bin Kong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
42
|
Rushin A, McLeod MA, Ragavan M, Merritt ME. Observing exocrine pancreas metabolism using a novel pancreas perfusion technique in combination with hyperpolarized [1- 13 C]pyruvate. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:748-758. [PMID: 37482899 PMCID: PMC10800648 DOI: 10.1002/mrc.5382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
In a clinical setting, ex vivo perfusions are routinely used to maintain and assess organ viability prior to transplants. Organ perfusions are also a model system to examine metabolic flux while retaining the local physiological structure, with significant success using hyperpolarized (HP) 13 C NMR in this context. We use a novel exocrine pancreas perfusion technique via the common bile duct to assess acinar cell metabolism with HP [1-13 C]pyruvate. The exocrine component of the pancreas produces digestive enzymes through the ductal system and is often neglected in research on the pancreas. Real-time production of [1-13 C]lactate, [1-13 C]alanine, [1-13 C]malate, [4-13 C]malate, [1-13 C]aspartate, and H13 CO3 - was detected. The appearance of these resonances indicates flux through both pyruvate dehydrogenase and pyruvate carboxylase. We studied excised pancreata from C57BL/6J mice and NOD.Rag1-/- .AI4α/β mice, a commonly used model of Type 1 Diabetes (T1D). Pancreata from the T1D mice displayed increased lactate to alanine ratio without changes in oxygen consumption, signifying increased cytosolic NADH levels. The mass isotopologue analysis of the extracted pancreas tissue using gas chromatography-mass spectrometry revealed confirmatory 13 C enrichment in multiple TCA cycle metabolites that are products of pyruvate carboxylation. The methodology presented here has the potential to provide insight into mechanisms underlying several pancreatic diseases, such as diabetes, pancreatitis, and pancreatic cancer.
Collapse
Affiliation(s)
- Anna Rushin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marc A. McLeod
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mukundan Ragavan
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
43
|
Moon HR, Surianarayanan N, Singh T, Han B. Microphysiological systems as reliable drug discovery and evaluation tools: Evolution from innovation to maturity. BIOMICROFLUIDICS 2023; 17:061504. [PMID: 38162229 PMCID: PMC10756708 DOI: 10.1063/5.0179444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Microphysiological systems (MPSs), also known as organ-on-chip or disease-on-chip, have recently emerged to reconstitute the in vivo cellular microenvironment of various organs and diseases on in vitro platforms. These microfluidics-based platforms are developed to provide reliable drug discovery and regulatory evaluation testbeds. Despite recent emergences and advances of various MPS platforms, their adoption of drug discovery and evaluation processes still lags. This delay is mainly due to a lack of rigorous standards with reproducibility and reliability, and practical difficulties to be adopted in pharmaceutical research and industry settings. This review discusses the current and potential use of MPS platforms in drug discovery processes while considering the context of several key steps during drug discovery processes, including target identification and validation, preclinical evaluation, and clinical trials. Opportunities and challenges are also discussed for the broader dissemination and adoption of MPSs in various drug discovery and regulatory evaluation steps. Addressing these challenges will transform long and expensive drug discovery and evaluation processes into more efficient discovery, screening, and approval of innovative drugs.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | - Tarun Singh
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bumsoo Han
- Author to whom correspondence should be addressed:. Tel: +1-765-494-5626
| |
Collapse
|
44
|
Isik M, Okesola BO, Eylem CC, Kocak E, Nemutlu E, D'Este M, Mata A, Derkus B. Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids. Acta Biomater 2023; 171:223-238. [PMID: 37793600 DOI: 10.1016/j.actbio.2023.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Organoids are an emerging technology with great potential in human disease modelling, drug development, diagnosis, tissue engineering, and regenerative medicine. Organoids as 3D-tissue culture systems have gained special attention in the past decades due to their ability to faithfully recapitulate the complexity of organ-specific tissues. Despite considerable successes in culturing physiologically relevant organoids, their real-life applications are currently limited by challenges such as scarcity of an appropriate biomimetic matrix. Peptide amphiphiles (PAs) due to their well-defined chemistry, tunable bioactivity, and extracellular matrix (ECM)-like nanofibrous architecture represent an attractive material scaffold for organoids development. Using cerebral organoids (COs) as exemplar, we demonstrate the possibility to create bio-instructive hydrogels with tunable stiffness ranging from 0.69 kPa to 2.24 kPa to culture and induce COs growth. We used orthogonal chemistry involving oxidative coupling and supramolecular interactions to create two-component hydrogels integrating the bio-instructive activity and ECM-like nanofibrous architecture of a laminin-mimetic PAs (IKVAV-PA) and tunable crosslinking density of hyaluronic acid functionalized with tyramine (HA-Try). Multi-omics technology including transcriptomics, proteomics, and metabolomics reveals the induction and growth of COs in soft HA-Tyr hydrogels containing PA-IKVAV such that the COs display morphology and biomolecular signatures similar to those grown in Matrigel scaffolds. Our materials hold great promise as a safe synthetic ECM for COs induction and growth. Our approach represents a well-defined alternative to animal-derived matrices for the culture of COs and might expand the applicability of organoids in basic and clinical research. STATEMENT OF SIGNIFICANCE: Synthetic bio-instructive materials which display tissue-specific functionality and nanoscale architecture of the native extracellular matrix are attractive matrices for organoids development. These synthetic matrices are chemically defined and animal-free compared to current gold standard matrices such as Matrigel. Here, we developed hydrogel matrices with tunable stiffness, which incorporate laminin-mimetic peptide amphiphiles to grow and expand cerebral organoids. Using multi-omics tools, the present study provides exciting data on the effects of neuro-inductive cues on the biomolecular profiles of brain organoids.
Collapse
Affiliation(s)
- Melis Isik
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Babatunde O Okesola
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara 06230, Turkey
| | - Engin Kocak
- Division of Analytical Chemistry, Faculty of Gulhane Pharmacy, Health Science University, Ankara 06018, Turkey
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara 06230, Turkey; Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
| | - Alvaro Mata
- School of Pharmacy University of Nottingham, University Park, Nottingham NG7 2RD, UK; Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Burak Derkus
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey.
| |
Collapse
|
45
|
Wu Y, Liang H, Luo A, Li Y, Liu Z, Li X, Li W, Liang K, Li J, Liu Z, Du Y. Gelatin-based 3D biomimetic scaffolds platform potentiates culture of cancer stem cells in esophageal squamous cell carcinoma. Biomaterials 2023; 302:122323. [PMID: 37717405 DOI: 10.1016/j.biomaterials.2023.122323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Cancer stem cells (CSCs) are crucial for tumorigenesis, metastasis, and therapy resistance in esophageal squamous cell carcinoma (ESCC). To further elucidate the mechanism underlying characteristics of CSCs and develop CSCs-targeted therapy, an efficient culture system that could expand and maintain CSCs is needed. CSCs reside in a complex tumor microenvironment, and three-dimensional (3D) culture systems of biomimetic scaffolds are expected to better support the growth of CSCs by recapitulating the biophysical properties of the extracellular matrix (ECM). Here, we established gelatin-based 3D biomimetic scaffolds mimicking the stiffness and collagen content of ESCC, which could enrich ESCC CSCs efficiently. Biological changes of ESCC cells laden in scaffolds with three different viscoelasticity emulating physiological stiffness of esophageal tissues were thoroughly investigated in varied aspects such as cell morphology, viability, cell phenotype markers, and transcriptomic profiling. The results demonstrated the priming effects of viscoelasticity on the stemness of ESCC. The highly viscous scaffolds (G': 6-403 Pa; G'': 2-75 Pa) better supported the enrichment of ESCC CSCs, and the TGF-beta signaling pathway might be involved in regulating the stemness of ESCC cells. Compared to two-dimensional (2D) cultures, highly viscous scaffolds significantly promoted the clonal expansion of ESCC cells in vitro and tumor formation ability in vivo. Our findings highlight the crucial role of biomaterials' viscoelasticity for the 3D culture of ESCC CSCs in vitro, and this newly-established culture system represents a valuable platform to support their growth, which could facilitate the CSCs-targeted therapy in the future.
Collapse
Affiliation(s)
- Yenan Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haiwei Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiqiang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenxin Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junyang Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
46
|
Buwalda S. Advanced Functional Polymers for Unmet Medical Challenges. Biomacromolecules 2023; 24:4329-4332. [PMID: 37811641 DOI: 10.1021/acs.biomac.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A significant part of medicine relies on biomaterials, which are designed to interact with biological tissues for therapeutic or diagnostic purposes. A number of major trends can be distinguished in the multidisciplinary field of biomaterials science, including the precise synthesis of biomaterial building blocks, elucidation of biomaterial processing-structure-property correlations, as well as clarification of the interactions between living tissues and biomaterials. Moreover, advances in biofabrication facilitate the development of tailored implants with improved functionality, whereas recent achievements in medical imaging allow for a detailed evaluation of the performance and spatiotemporal behavior of medical devices and nanomedicine formulations.
Collapse
Affiliation(s)
- Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| |
Collapse
|
47
|
Majkowska A, Inostroza-Brito KE, Gonzalez M, Redondo-Gómez C, Rice A, Rodriguez-Cabello JC, Del Rio Hernandez AE, Mata A. Peptide-Protein Coassemblies into Hierarchical and Bioactive Tubular Membranes. Biomacromolecules 2023; 24:4419-4429. [PMID: 36696687 PMCID: PMC10565817 DOI: 10.1021/acs.biomac.2c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/16/2022] [Indexed: 01/26/2023]
Abstract
Multicomponent self-assembly offers opportunities for the design of complex and functional biomaterials with tunable properties. Here, we demonstrate how minor modifications in the molecular structures of peptide amphiphiles (PAs) and elastin-like recombinamers (ELs) can be used to generate coassembling tubular membranes with distinct structures, properties, and bioactivity. First, by introducing minor modifications in the charge density of PA molecules (PAK2, PAK3, PAK4), different diffusion-reaction processes can be triggered, resulting in distinct membrane microstructures. Second, by combining different types of these PAs prior to their coassembly with ELs, further modifications can be achieved, tuning the structures and properties of the tubular membranes. Finally, by introducing the cell adhesive peptide RGDS in either the PA or EL molecules, it is possible to harness the different diffusion-reaction processes to generate tubular membranes with distinct bioactivities. The study demonstrates the possibility to trigger and achieve minor but crucial differences in coassembling processes and tune material structure and bioactivity. The study demonstrates the possibility to use minor, yet crucial, differences in coassembling processes to tune material structure and bioactivity.
Collapse
Affiliation(s)
- Anna Majkowska
- William
Harvey Research Institute, Queen Mary University
of London, London EC1M 6BQ, U.K.
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Karla E. Inostroza-Brito
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Mariel Gonzalez
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Carlos Redondo-Gómez
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Alistair Rice
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| | | | | | - Alvaro Mata
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- School
of
Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Biodiscovery
Institute, University of Nottingham, Nottingham NG7 2RD, U.K.
- Department
of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
48
|
Urbanova M, Cihova M, Buocikova V, Slopovsky J, Dubovan P, Pindak D, Tomas M, García-Bermejo L, Rodríguez-Garrote M, Earl J, Kohl Y, Kataki A, Dusinska M, Sainz B, Smolkova B, Gabelova A. Nanomedicine and epigenetics: New alliances to increase the odds in pancreatic cancer survival. Biomed Pharmacother 2023; 165:115179. [PMID: 37481927 DOI: 10.1016/j.biopha.2023.115179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy. In recent years, targeting epigenetic pathways has emerged as a promising approach to overcome tumor immunosuppression and cancer progression. Moreover, the progress in nanotechnology has provided new opportunities for enhancing the efficacy of conventional and epigenetic drugs. Nano-based drug delivery systems (NDDSs) offer several advantages, including improved drug pharmacokinetics, enhanced tumor penetration, and reduced systemic toxicity. Smart NDDSs enable precise targeting of stromal components and augment the effectiveness of immunotherapy through multiple drug delivery options. This review offers an overview of the latest nano-based approaches developed to achieve superior therapeutic efficacy and overcome drug resistance. We specifically focus on the TME and epigenetic-targeted therapies in the context of PDAC, discussing the advantages and limitations of current strategies while highlighting promising new developments. By emphasizing the immense potential of NDDSs in improving therapeutic outcomes in PDAC, our review paves the way for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Maria Urbanova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Marina Cihova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Verona Buocikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Slopovsky
- 2nd Department of Oncology, National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Comenius University, Spitalska 24, 813 72 Bratislava, Slovakia
| | - Peter Dubovan
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Daniel Pindak
- Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Miroslav Tomas
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group, Area4, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Mercedes Rodríguez-Garrote
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Yvonne Kohl
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Agapi Kataki
- 1st Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Vasilissis Sofias 114, 11527 Athens, Greece
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Bruno Sainz
- CIBERONC, Madrid, Spain; Instituto de Investigaciones Biomédicas"Alberto Sols" (IIBM), CSIC-UAM, 28029 Madrid, Spain; Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia..
| |
Collapse
|
49
|
Kayser C, Brauer A, Susanne S, Wandmacher AM. The challenge of making the right choice: patient avatars in the era of cancer immunotherapies. Front Immunol 2023; 14:1237565. [PMID: 37638045 PMCID: PMC10449253 DOI: 10.3389/fimmu.2023.1237565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Immunotherapies are a key therapeutic strategy to fight cancer. Diverse approaches are used to activate tumor-directed immunity and to overcome tumor immune escape. The dynamic interplay between tumor cells and their tumor(immune)microenvironment (T(I)ME) poses a major challenge to create appropriate model systems. However, those model systems are needed to gain novel insights into tumor (immune) biology and a prerequisite to accurately develop and test immunotherapeutic approaches which can be successfully translated into clinical application. Several model systems have been established and advanced into so-called patient avatars to mimic the patient´s tumor biology. All models have their advantages but also disadvantages underscoring the necessity to pay attention in defining the rationale and requirements for which the patient avatar will be used. Here, we briefly outline the current state of tumor model systems used for tumor (immune)biological analysis as well as evaluation of immunotherapeutic agents. Finally, we provide a recommendation for further development to make patient avatars a complementary tool for testing and predicting immunotherapeutic strategies for personalization of tumor therapies.
Collapse
Affiliation(s)
- Charlotte Kayser
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Annika Brauer
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Sebens Susanne
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Anna Maxi Wandmacher
- Group of Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
- Department of Internal Medicine II, University Hospital Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
50
|
Muzzolini M, Belhabib I, Cardot V, Tijeras-Raballand A, Neuzillet C, Bousquet C, Lupinacci RM, Jean C. Pancreatic cancer orthotopic graft in a murine model. Acta Cir Bras 2023; 38:e382823. [PMID: 37556720 PMCID: PMC10403245 DOI: 10.1590/acb382823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/28/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with increasing incidence. Even if progress have been made, the five-year overall survival remains lower than 10%. There is a desperate need in therapeutic improvements. In the last two decades, new in-vitro models have been developed and improved, including tridimensional-culture spheroids and organoids. However, animal studies remain mandatory in the upscaling before clinical studies. Orthotopic and syngeneic grafting is a robust model to test a drug efficiency in a tumor and its microenvironment. METHODS We described a method for orthotopic and syngeneic graft of KRAS mutated, p53 wildtype, 8305 cells in a C57BL/6J mouse model. RESULTS With this microsurgical method, 30 mice were grafted, 24 by a junior and six by a senior, resulting in 95,8 and 100% of (partial and total) successful tumoral implantation, respectively. Twenty mice underwent ultrasound follow-up. It was an efficient method for the tumoral growth evaluation. At day 16 after grafting, 85% of the tumors were detectable by ultrasound, and at day 22 all tumors were detected. CONCLUSIONS The presented method appears to be a robust and reliable method for pre-clinical studies. A junior master student can provide positive results using this technique, which can be improved with training.
Collapse
Affiliation(s)
- Milena Muzzolini
- Ambroise Paré Hospital – Oncologic and Metabolic Surgery – Department of Digestive – Boulogne-Billancourt, France
- Paris Cité University Santé, France – Université des Sciences de la Santé – Santé, France
| | - Ismahane Belhabib
- Université Toulouse III-Paul Sabatier – Université de Toulouse – Centre de Recherche en Cancérologie de Toulouse – Institut National de la Santé et de la Recherche Médicale – Toulouse, France
| | | | | | - Cindy Neuzillet
- Ambroise Paré Hospital – Oncologic and Metabolic Surgery – Department of Digestive – Boulogne-Billancourt, France
- Versailles St-Quentin en-Yvelines/Paris Saclay University – UFR Simone Veil – Santé, France
- Institut Curie Saint Cloud – Saint-Cloud, France
| | - Corinne Bousquet
- Université Toulouse III-Paul Sabatier – Université de Toulouse – Centre de Recherche en Cancérologie de Toulouse – Institut National de la Santé et de la Recherche Médicale – Toulouse, France
| | - Renato Micelli Lupinacci
- Ambroise Paré Hospital – Oncologic and Metabolic Surgery – Department of Digestive – Boulogne-Billancourt, France
- Versailles St-Quentin en-Yvelines/Paris Saclay University – UFR Simone Veil – Santé, France
| | - Christine Jean
- Université Toulouse III-Paul Sabatier – Université de Toulouse – Centre de Recherche en Cancérologie de Toulouse – Institut National de la Santé et de la Recherche Médicale – Toulouse, France
| |
Collapse
|