1
|
Bulteau R, Barbier L, Lamour G, Lemseffer Y, Verlhac MH, Tessandier N, Labrune E, Lenz M, Terret ME, Campillo C. Atomic Force Microscopy Reveals Differences In Mechanical Properties Linked To Cortical Structure In Mouse And Human Oocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500221. [PMID: 40159757 DOI: 10.1002/smll.202500221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2025] [Revised: 11/03/2025] [Indexed: 04/02/2025]
Abstract
Cell mechanical properties regulate biological processes such as oocyte development. Cortical tension is regulated via actomyosin cortex remodeling to ensure optimal oocyte quality. However, the evolution of other mechanical parameters and their relationship with cortex structure remain poorly understood in mammalian oocytes. In this work, a methodology combining multiple mechanical parameters measured through Atomic Force Microscopy is proposed to investigate the relationship between oocyte mechanical properties and cortex organization. By studying mouse oocytes at various stages of development, along with engineered ones with specific cortex organization, it is demonstrated that a thin actin cortex corresponds to stiff oocytes while a thick one is associated with softer oocytes. It is further revealed that maternal age, a critical factor for fertility, affects mouse oocytes mechanics, correlating with alterations in their cortex structure. Finally, it is shown that the evolution of mechanical properties differs between human and mouse oocyte development, highlighting species-specific differences in cortex organization.
Collapse
Affiliation(s)
- Rose Bulteau
- LAMBE, Univ Evry, CNRS, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, 75005, France
| | - Lucie Barbier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, 75005, France
| | - Guillaume Lamour
- LAMBE, Univ Evry, CNRS, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
| | - Yassir Lemseffer
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité; Inserm U1208, SBRI, Université Claude Bernard Lyon 1, faculté de médecine, Laennec, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, 75005, France
| | - Nicolas Tessandier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, 75005, France
| | - Elsa Labrune
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité; Inserm U1208, SBRI, Université Claude Bernard Lyon 1, faculté de médecine, Laennec, France
| | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, 75005, France
| | - Clément Campillo
- LAMBE, Univ Evry, CNRS, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| |
Collapse
|
2
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
3
|
Fan H, Zhao H, Hou Y, Meng D, Jiang J, Lee EB, Fu Y, Zhang X, Chen R, Wang Y. Heterogeneous focal adhesion cytoskeleton nanoarchitectures from microengineered interfacial curvature to oversee nuclear remodeling and mechanotransduction of mesenchymal stem cells. Cell Mol Biol Lett 2025; 30:10. [PMID: 39856556 PMCID: PMC11762875 DOI: 10.1186/s11658-025-00692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure. METHODS Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture. The colonies of human mesenchymal stem cells (hMSCs) were formed by controlling cell seeding density to investigate the influences of cell density, curvature and heterogeneity on mechanotransduction. Immunofluorescent staining of integrin, vinculin, and talin-1 was conducted to evaluate adhesion-related expression levels. Then, immunofluorescent staining of actin, actinin, and myosin was performed to detect cytoskeleton distribution, especially at the periphery. Nuclear force-sensing mechanotransduction was explained by yes-associated protein (YAP) and laminA/C analysis. RESULTS The micropatterned colony of hMSCs demonstrated the coincident characters with engineered micropores of microstencils. The cell colony obviously developed the heterogeneous morphogenesis. Heterogeneous focal adhesion guided the development of actin, actinin, and myosin together to regulate cellular contractility and movement by integrin, vinculin, and talin-1. Cytoskeletal staining showed that actin, actinin, and myosin fibers were reorganized at the periphery of microstencils. YAP nuclear translocation and laminA/C nuclear remodeling were enhanced at the periphery by the regulation of heterogeneous focal adhesion (FA) and cytoskeleton arrangement. CONCLUSIONS The characters of the engineered clustering colony showed similar results with prepared microstencils, and colony curvature was also well adjusted to establish heterogeneous balance at the periphery of cell colony. The mechanism of curvature, spreading, and elongation was also investigated to disclose the compliance of FA and cytoskeleton along with curvature microarrays for increased nuclear force-sensing mechanotransduction. The results may provide helpful information for understanding interfacial heterogeneity and nuclear mechanotransduction of stem cells.
Collapse
Affiliation(s)
- Huayu Fan
- Luoyang Orthopedic-Traumatological Hospital Of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, 450008, Henan, China
| | - Hui Zhao
- Zhengzhou Revogene Technology Co., LTD, Airport District, Zhengzhou, 451162, Henan, China
| | - Yan Hou
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Danni Meng
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jizong Jiang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Eon-Bee Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yinzheng Fu
- Zhengzhou Revogene Technology Co., LTD, Airport District, Zhengzhou, 451162, Henan, China
| | - Xiangdong Zhang
- Luoyang Orthopedic-Traumatological Hospital Of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, 450008, Henan, China.
| | - Rui Chen
- Luoyang Orthopedic-Traumatological Hospital Of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, 450008, Henan, China.
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Faure LM, Gómez‐González M, Baguer O, Comelles J, Martínez E, Arroyo M, Trepat X, Roca‐Cusachs P. 3D Micropatterned Traction Force Microscopy: A Technique to Control 3D Cell Shape While Measuring Cell-Substrate Force Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406932. [PMID: 39443837 PMCID: PMC11633470 DOI: 10.1002/advs.202406932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Cell shape and function are intimately linked, in a way that is mediated by the forces exerted between cells and their environment. The relationship between cell shape and forces has been extensively studied for cells seeded on flat 2D substrates, but not for cells in more physiological 3D settings. Here, a technique called 3D micropatterned traction force microscopy (3D-µTFM) to confine cells in 3D wells of defined shape, while simultaneously measuring the forces transmitted between cells and their microenvironment is demonstrated. This technique is based on the 3D micropatterning of polyacrylamide wells and on the calculation of 3D traction force from their deformation. With 3D-µTFM, it is shown that MCF10A breast epithelial cells exert defined, reproducible patterns of forces on their microenvironment, which can be both contractile and extensile. Cells switch from a global contractile to extensile behavior as their volume is reduced are further shown. The technique enables the quantitative study of cell mechanobiology with full access to 3D cellular forces while having accurate control over cell morphology and the mechanical conditions of the microenvironment.
Collapse
Affiliation(s)
- Laura M. Faure
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
| | - Manuel Gómez‐González
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
| | - Ona Baguer
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Biomedical SciencesUniversity of BarcelonaC. Casanova 143Barcelona08034Spain
| | - Jordi Comelles
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Electronics and Biomedical EngineeringUniversity of BarcelonaC. Martí Franquès 1Barcelona08028Spain
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Electronics and Biomedical EngineeringUniversity of BarcelonaC. Martí Franquès 1Barcelona08028Spain
- Centro de Investigación Biomédica en Red en BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Avenida Monforte de Lemos 3‐5Madrid28029Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Laboratori de Càlcul Numèric (LaCàN)Universitat Politècnica de Catalunya (UPC)Jordi Girona 1‐3Barcelona08036Spain
- Institut de Matemàtiques de la UPC–BarcelonaTech (IMTech)Pau Gargallo 14Barcelona08028Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)Gran Capità S/NBarcelona08034Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Biomedical SciencesUniversity of BarcelonaC. Casanova 143Barcelona08034Spain
- Centro de Investigación Biomédica en Red en BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Avenida Monforte de Lemos 3‐5Madrid28029Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Lluis Companys 23Barcelona08010Spain
| | - Pere Roca‐Cusachs
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Biomedical SciencesUniversity of BarcelonaC. Casanova 143Barcelona08034Spain
| |
Collapse
|
5
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Gibieža P, Petrikaitė V. The Complex Regulation of Cytokinesis upon Abscission Checkpoint Activation. Mol Cancer Res 2024; 22:909-919. [PMID: 39133919 DOI: 10.1158/1541-7786.mcr-24-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 10/03/2024]
Abstract
Cytokinetic abscission is a crucial process that guides the separation of daughter cells at the end of each cell division. This process involves the cleavage of the intercellular bridge, which connects the newly formed daughter cells. Over the years, researchers have identified several cellular contributors and intracellular processes that influence the spatial and temporal distribution of the cytoskeleton during cytokinetic abscission. This review presents the most important scientific discoveries that allow activation of the abscission checkpoint, ensuring a smooth and successful separation of a single cell into two cells during cell division. Here, we describe different factors, such as abscission checkpoint, ICB tension, nuclear pore defects, DNA replication stress, chromosomal stability, and midbody proteins, which play a role in the regulation and correct timing of cytokinetic abscission. Furthermore, we explore the downsides associated with the dysregulation of abscission, including its negative impact on cells and the potential to induce tumor formation in humans. Finally, we propose a novel factor for improving cancer therapy and give future perspectives in this research field.
Collapse
Affiliation(s)
- Paulius Gibieža
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| |
Collapse
|
7
|
Jawahar A, Vermeil J, Heuvingh J, du Roure O, Piel M. The third dimension of the actin cortex. Curr Opin Cell Biol 2024; 89:102381. [PMID: 38905917 DOI: 10.1016/j.ceb.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.
Collapse
Affiliation(s)
- Anumita Jawahar
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.
| | - Joseph Vermeil
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| |
Collapse
|
8
|
Chinthalapudi K, Heissler SM. Structure, regulation, and mechanisms of nonmuscle myosin-2. Cell Mol Life Sci 2024; 81:263. [PMID: 38878079 PMCID: PMC11335295 DOI: 10.1007/s00018-024-05264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/23/2024]
Abstract
Members of the myosin superfamily of molecular motors are large mechanochemical ATPases that are implicated in an ever-expanding array of cellular functions. This review focuses on mammalian nonmuscle myosin-2 (NM2) paralogs, ubiquitous members of the myosin-2 family of filament-forming motors. Through the conversion of chemical energy into mechanical work, NM2 paralogs remodel and shape cells and tissues. This process is tightly controlled in time and space by numerous synergetic regulation mechanisms to meet cellular demands. We review how recent advances in structural biology together with elegant biophysical and cell biological approaches have contributed to our understanding of the shared and unique mechanisms of NM2 paralogs as they relate to their kinetics, regulation, assembly, and cellular function.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
10
|
Livne G, Gat S, Armon S, Bernheim-Groswasser A. Self-assembled active actomyosin gels spontaneously curve and wrinkle similar to biological cells and tissues. Proc Natl Acad Sci U S A 2024; 121:e2309125121. [PMID: 38175871 PMCID: PMC10786314 DOI: 10.1073/pnas.2309125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Living systems adopt a diversity of curved and highly dynamic shapes. These diverse morphologies appear on many length scales, from cells to tissues and organismal scales. The common driving force for these dynamic shape changes are contractile stresses generated by myosin motors in the cell cytoskeleton, that converts chemical energy into mechanical work. A good understanding of how contractile stresses in the cytoskeleton arise into different three-dimensional (3D) shapes and what are the shape selection rules that determine their final configurations is still lacking. To obtain insight into the relevant physical mechanisms, we recreate the actomyosin cytoskeleton in vitro, with precisely controlled composition and initial geometry. A set of actomyosin gel discs, intrinsically identical but of variable initial geometry, dynamically self-organize into a family of 3D shapes, such as domes and wrinkled shapes, without the need for specific preprogramming or additional regulation. Shape deformation is driven by the spontaneous emergence of stress gradients driven by myosin and is encoded in the initial disc radius to thickness aspect ratio, which may indicate shaping scalability. Our results suggest that while the dynamical pathways may depend on the detailed interactions between the different microscopic components within the gel, the final selected shapes obey the general theory of elastic deformations of thin sheets. Altogether, our results emphasize the importance for the emergence of active stress gradients for buckling-driven shape deformations and provide insights on the mechanically induced spontaneous shape transitions in contractile active matter, revealing potential shared mechanisms with living systems across scales.
Collapse
Affiliation(s)
- Gefen Livne
- Department of Chemical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva84105, Israel
| | - Shachar Gat
- Department of Chemical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva84105, Israel
| | - Shahaf Armon
- Department of Physics, Weizmann Institute of Science, Rehovot76100, Israel
| | - Anne Bernheim-Groswasser
- Department of Chemical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva84105, Israel
| |
Collapse
|
11
|
Desroches S, Harris AR. Quantifying cytoskeletal organization from optical microscopy data. Front Cell Dev Biol 2024; 11:1327994. [PMID: 38234685 PMCID: PMC10792062 DOI: 10.3389/fcell.2023.1327994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a pivotal role in a broad range of physiological processes including directing cell shape and subcellular organization, determining cell mechanical properties, and sensing and transducing mechanical forces. The versatility of the actin cytoskeleton arises from the ability of actin filaments to assemble into higher order structures through their interaction with a vast set of regulatory proteins. Actin filaments assemble into bundles, meshes, and networks, where different combinations of these structures fulfill specific functional roles. Analyzing the organization and abundance of different actin structures from optical microscopy data provides a valuable metric for assessing cell physiological function and changes associated with disease. However, quantitative measurements of the size, abundance, orientation, and distribution of different types of actin structure remains challenging both from an experimental and image analysis perspective. In this review, we summarize image analysis methods for extracting quantitative values that can be used for characterizing the organization of actin structures and provide selected examples. We summarize the potential sample types and metric reported with different approaches as a guide for selecting an image analysis strategy.
Collapse
Affiliation(s)
- Sarah Desroches
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
- Ottawa-Carleton Institute for Biomedical Engineering Graduate Program, Ottawa, ON, Canada
| | - Andrew R. Harris
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
12
|
Vermeil J, Laplaud V, Jawahar A, Bujaa D, Cuvelier D, Heuvingh J, du Roure O, Piel M. A Magnetic Pincher for the Dynamic Measurement of the Actin Cortex Thickness in Live Cells. Methods Mol Biol 2024; 2800:115-145. [PMID: 38709482 DOI: 10.1007/978-1-0716-3834-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The actin cortex is an essential element of the cytoskeleton allowing cells to control and modify their shape. It is involved in cell division and migration. However, probing precisely the physical properties of the actin cortex has proved to be challenging: it is a thin and dynamic material, and its location in the cell-directly under the plasma membrane-makes it difficult to study with standard light microscopy and cell mechanics techniques. In this chapter, we present a novel protocol to probe dynamically the thickness of the cortex and its fluctuations using superparamagnetic microbeads in a uniform magnetic field. A bead ingested by the cell and another outside the cell attract each other due to dipolar forces. By tracking their position with nanometer precision, one can measure the thickness of the cortex pinched between two beads and monitor its evolution in time. We first present the set of elements necessary to realize this protocol: a magnetic field generator adapted to a specific imaging setup and the aforementioned superparamagnetic microbeads. Then we detail the different steps of a protocol that can be used on diverse cell types, adherent or not.
Collapse
Affiliation(s)
- Joseph Vermeil
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France
- UMR 144, Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Valentin Laplaud
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Anumita Jawahar
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France
- UMR 144, Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Dulamkhuu Bujaa
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France
| | - Damien Cuvelier
- UMR 144, Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France
| | - Matthieu Piel
- UMR 144, Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.
| |
Collapse
|
13
|
Wang D, Wang Y, Di X, Wang F, Wanninayaka A, Carnell M, Hardeman EC, Jin D, Gunning PW. Cortical tension drug screen links mitotic spindle integrity to Rho pathway. Curr Biol 2023; 33:4458-4469.e4. [PMID: 37875071 DOI: 10.1016/j.cub.2023.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023]
Abstract
Mechanical force generation plays an essential role in many cellular functions, including mitosis. Actomyosin contractile forces mediate changes in cell shape in mitosis and are implicated in mitotic spindle integrity via cortical tension. An unbiased screen of 150 small molecules that impact actin organization and 32 anti-mitotic drugs identified two molecular targets, Rho kinase (ROCK) and tropomyosin 3.1/2 (Tpm3.1/2), whose inhibition has the greatest impact on mitotic cortical tension. The converse was found for compounds that depolymerize microtubules. Tpm3.1/2 forms a co-polymer with mitotic cortical actin filaments, and its inhibition prevents rescue of multipolar spindles induced by anti-microtubule chemotherapeutics. We examined the role of mitotic cortical tension in this rescue mechanism. Inhibition of ROCK and Tpm3.1/2 and knockdown (KD) of cortical nonmuscle myosin 2A (NM2A), all of which reduce cortical tension, inhibited rescue of multipolar mitotic spindles, further implicating cortical tension in the rescue mechanism. GEF-H1 released from microtubules by depolymerization increased cortical tension through the RhoA pathway, and its KD also inhibited rescue of multipolar mitotic spindles. We conclude that microtubule depolymerization by anti-cancer drugs induces cortical-tension-based rescue to ensure integrity of the mitotic bipolar spindle mediated via the RhoA pathway. Central to this mechanism is the dependence of NM2A on Tpm3.1/2 to produce the functional engagement of actin filaments responsible for cortical tension.
Collapse
Affiliation(s)
- Dejiang Wang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yao Wang
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Xiangjun Di
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fan Wang
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Physics, Beihang University, Beijing 100191, P.R. China
| | - Amanda Wanninayaka
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michael Carnell
- Katharina Gaus Light Microscope Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Peter W Gunning
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Wang C, Ding J, Wei Q, Du S, Gong X, Chew TG. Mechanosensitive accumulation of non-muscle myosin IIB during mitosis requires its translocation activity. iScience 2023; 26:107773. [PMID: 37720093 PMCID: PMC10504539 DOI: 10.1016/j.isci.2023.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/02/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Non-muscle myosin II (NMII) is a force-generating mechanosensitive enzyme that responds to mechanical forces. NMIIs mechanoaccumulate at the cell cortex in response to mechanical forces. It is essential for cells to mechanically adapt to the physical environment, failure of which results in mitotic defects when dividing in confined environment. Much less is known about how NMII mechanoaccumulation is regulated during mitosis. We show that mitotic cells respond to compressive stress by promoting accumulation of active RhoA at the cell cortex as in interphase cells. RhoA mechanoresponse during mitosis activates and stabilizes NMIIB via ROCK signaling, leading to NMIIB mechanoaccumulation at the cell cortex. Using disease-related myosin II mutations, we found that NMIIB mechanoaccumulation requires its motor activity that translocates actin filaments, but not just its actin-binding function. Thus, the motor activity coordinates structural movement and nucleotide state changes to fine-tune actin-binding affinity optimal for NMIIs to generate and respond to forces.
Collapse
Affiliation(s)
- Chao Wang
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Jingjing Ding
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qiaodong Wei
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shoukang Du
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xiaobo Gong
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Gang Chew
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| |
Collapse
|
15
|
Hosseini K, Frenzel A, Fischer-Friedrich E. EMT induces characteristic changes of Rho GTPases and downstream effectors with a mitosis-specific twist. Phys Biol 2023; 20:066001. [PMID: 37652025 DOI: 10.1088/1478-3975/acf5bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key cellular transformation for many physiological and pathological processes ranging from cancer over wound healing to embryogenesis. Changes in cell migration, cell morphology and cellular contractility were identified as hallmarks of EMT. These cellular properties are known to be tightly regulated by the actin cytoskeleton. EMT-induced changes of actin-cytoskeletal regulation were demonstrated by previous reports of changes of actin cortex mechanics in conjunction with modifications of cortex-associated f-actin and myosin. However, at the current state, the changes of upstream actomyosin signaling that lead to corresponding mechanical and compositional changes of the cortex are not well understood. In this work, we show in breast epithelial cancer cells MCF-7 that EMT results in characteristic changes of the cortical association of Rho-GTPases Rac1, RhoA and RhoC and downstream actin regulators cofilin, mDia1 and Arp2/3. In the light of our findings, we propose that EMT-induced changes in cortical mechanics rely on two hitherto unappreciated signaling paths-i) an interaction between Rac1 and RhoC and ii) an inhibitory effect of Arp2/3 activity on cortical association of myosin II.
Collapse
Affiliation(s)
- Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Annika Frenzel
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Faculty of Physics, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
16
|
Zhang Y, Kitagawa T, Furutani-Seiki M, Yoshimura SH. Yes-associated protein regulates cortical actin architecture and dynamics through intracellular translocation of Rho GTPase-activating protein 18. FASEB J 2023; 37:e23161. [PMID: 37638562 DOI: 10.1096/fj.202201992r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Yes-associated protein (YAP) is a transcriptional co-activator that controls the transcription of target genes and modulates the structures of various cytoskeletal architecture as mechanical responses. Although it has been known that YAP regulates actin-regulatory proteins, the detailed molecular mechanism of how they control and coordinate intracellular actin architecture remains elusive. Herein, we aimed to examine the structure and dynamics of intracellular actin architecture from molecular to cellular scales in normal and YAP-knockout (YAP-KO) cells utilizing high-speed atomic force microscopy (HS-AFM) for live-cell imaging and other microscope-based mechanical manipulation and measurement techniques. YAP-KO Madin-Darby canine kidney cells had a higher density and turnover of actin filaments in the cell cortex and a higher elastic modulus. Laser aberration assay demonstrated that YAP-KO cells were more resistant to damage than normal cells. We also found that Rho GTPase-activating protein 18 (ARHGAP18), a downstream factor of YAP, translocated from the cortex to the edge of sparsely cultured YAP-KO cells. It resulted in high RhoA activity and promotion of actin polymerization in the cell cortex and their reductions at the edge. HS-AFM imaging of live cell edge and a cell-migration assay demonstrated lower membrane dynamics and motility of YAP-KO cells than those of normal cells, suggesting lower actin dynamics at the edge. Together, these results demonstrate that a YAP-dependent pathway changes the intracellular distribution of RhoGAP and modulates actin dynamics in different parts of the cell, providing a mechanistic insight into how a mechano-sensitive transcription cofactor regulates multiple intracellular actin architecture and coordinates mechano-responses.
Collapse
Affiliation(s)
- Yanshu Zhang
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takao Kitagawa
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | | |
Collapse
|
17
|
Sampietro M, Cassina V, Salerno D, Barbaglio F, Buglione E, Marrano CA, Campanile R, Scarfò L, Biedenweg D, Fregin B, Zamai M, Díaz Torres A, Labrador Cantarero V, Ghia P, Otto O, Mantegazza F, Caiolfa VR, Scielzo C. The Nanomechanical Properties of CLL Cells Are Linked to the Actin Cytoskeleton and Are a Potential Target of BTK Inhibitors. Hemasphere 2023; 7:e931. [PMID: 37492437 PMCID: PMC10365208 DOI: 10.1097/hs9.0000000000000931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an intense trafficking of the leukemic cells between the peripheral blood and lymphoid tissues. It is known that the ability of lymphocytes to recirculate strongly depends on their capability to rapidly rearrange their cytoskeleton and adapt to external cues; however, little is known about the differences occurring between CLL and healthy B cells during these processes. To investigate this point, we applied a single-cell optical (super resolution microscopy) and nanomechanical approaches (atomic force microscopy, real-time deformability cytometry) to both CLL and healthy B lymphocytes and compared their behavior. We demonstrated that CLL cells have a specific actomyosin complex organization and altered mechanical properties in comparison to their healthy counterpart. To evaluate the clinical relevance of our findings, we treated the cells in vitro with the Bruton's tyrosine kinase inhibitors and we found for the first time that the drug restores the CLL cells mechanical properties to a healthy phenotype and activates the actomyosin complex. We further validated these results in vivo on CLL cells isolated from patients undergoing ibrutinib treatment. Our results suggest that CLL cells' mechanical properties are linked to their actin cytoskeleton organization and might be involved in novel mechanisms of drug resistance, thus becoming a new potential therapeutic target aiming at the normalization of the mechanical fingerprints of the leukemic cells.
Collapse
Affiliation(s)
- Marta Sampietro
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Valeria Cassina
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Domenico Salerno
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Federica Barbaglio
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Enrico Buglione
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Claudia Adriana Marrano
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Riccardo Campanile
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Lydia Scarfò
- Unit B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Doreen Biedenweg
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Fleischmannstr, Germany
| | - Bob Fregin
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr, Germany
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr, Germany
- Institute of Physics, Universität Greifswald, Felix-Hausdorff-Strasse, Germany
| | - Moreno Zamai
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonsa Díaz Torres
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Veronica Labrador Cantarero
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Paolo Ghia
- Unit B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Oliver Otto
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr, Germany
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr, Germany
- Institute of Physics, Universität Greifswald, Felix-Hausdorff-Strasse, Germany
| | - Francesco Mantegazza
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Vedano al Lambro, Italy
| | - Valeria R. Caiolfa
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cristina Scielzo
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
18
|
Cazzagon G, Roubinet C, Baum B. Polarized SCAR and the Arp2/3 complex regulate apical cortical remodeling in asymmetrically dividing neuroblasts. iScience 2023; 26:107129. [PMID: 37434695 PMCID: PMC10331462 DOI: 10.1016/j.isci.2023.107129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 06/10/2023] [Indexed: 07/13/2023] Open
Abstract
Although the formin-nucleated actomyosin cortex has been shown to drive the changes in cell shape that accompany animal cell division in both symmetric and asymmetric cell divisions, the mitotic role of cortical Arp2/3-nucleated actin networks remain unclear. Here using asymmetrically dividing Drosophila neural stem cells as a model system, we identify a pool of membrane protrusions that form at the apical cortex of neuroblasts as they enter mitosis. Strikingly, these apically localized protrusions are enriched in SCAR, and depend on SCAR and Arp2/3 complexes for their formation. Because compromising SCAR or the Arp2/3 complex delays the apical clearance of Myosin II at the onset of anaphase and induces cortical instability at cytokinesis, these data point to a role for an apical branched actin filament network in fine-tuning the actomyosin cortex to enable the precise control of cell shape changes during an asymmetric cell division.
Collapse
Affiliation(s)
- Giulia Cazzagon
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Chantal Roubinet
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
19
|
Solowiej-Wedderburn J, Dunlop CM. Cell-strain-energy costs of active control of contractility. Phys Rev E 2023; 107:L062401. [PMID: 37464714 DOI: 10.1103/physreve.107.l062401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/08/2023] [Indexed: 07/20/2023]
Abstract
Cell mechanosensing is implicated in the control of a broad range of cell behaviors, with cytoskeletal contractility a key component. Experimentally, it is observed that the contractility of the cell responds to increasing substrate stiffness, showing increased contractile force and changing the distribution of cytoskeletal elements. Here, we show using a theoretical model of active cell contractility that upregulation of contractility need not be energetically expensive, especially when combined with changes in adhesion and contractile distribution. Indeed, we show that a feedback mechanism based on the maintenance of strain energy would require an upregulation in contractile pressure on all but the softest substrates. We consider both the commonly reported substrate strain energy and active work done. We demonstrate substrate strain energy would preferentially select for the experimentally observed clustering of cell adhesions on stiffer substrates which effectively soften the substrate and enable an upregulation of total contractile pressure, while the localization of contractility has the greatest impact on the internal work.
Collapse
Affiliation(s)
| | - Carina M Dunlop
- School of Mathematics and Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
20
|
Nyga A, Plak K, Kräter M, Urbanska M, Kim K, Guck J, Baum B. Dynamics of cell rounding during detachment. iScience 2023; 26:106696. [PMID: 37168576 PMCID: PMC10165398 DOI: 10.1016/j.isci.2023.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Animal cells undergo repeated shape changes, for example by rounding up and respreading as they divide. Cell rounding can be also observed in interphase cells, for example when cancer cells switch from a mesenchymal to an ameboid mode of cell migration. Nevertheless, it remains unclear how interphase cells round up. In this article, we demonstrate that a partial loss of substrate adhesion triggers actomyosin-dependent cortical remodeling and ERM activation, which facilitates further adhesion loss causing cells to round. Although the path of rounding in this case superficially resembles mitotic rounding in involving ERM phosphorylation, retraction fiber formation, and cortical remodeling downstream of ROCK, it does not require Ect2. This work provides insights into the way partial loss of adhesion actives cortical remodeling to drive cell detachment from the substrate. This is important to consider when studying the mechanics of cells in suspension, for example using methods like real-time deformability cytometry (RT-DC).
Collapse
Affiliation(s)
- Agata Nyga
- Cell Biology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Katarzyna Plak
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Marta Urbanska
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Buzz Baum
- Cell Biology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
21
|
Liebe NL, Mey I, Vuong L, Shikho F, Geil B, Janshoff A, Steinem C. Bioinspired Membrane Interfaces: Controlling Actomyosin Architecture and Contractility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11586-11598. [PMID: 36848241 PMCID: PMC9999349 DOI: 10.1021/acsami.3c00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The creation of biologically inspired artificial lipid bilayers on planar supports provides a unique platform to study membrane-confined processes in a well-controlled setting. At the plasma membrane of mammalian cells, the linkage of the filamentous (F)-actin network is of pivotal importance leading to cell-specific and dynamic F-actin architectures, which are essential for the cell's shape, mechanical resilience, and biological function. These networks are established through the coordinated action of diverse actin-binding proteins and the presence of the plasma membrane. Here, we established phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2)-doped supported planar lipid bilayers to which contractile actomyosin networks were bound via the membrane-actin linker ezrin. This membrane system, amenable to high-resolution fluorescence microscopy, enabled us to analyze the connectivity and contractility of the actomyosin network. We found that the network architecture and dynamics are not only a function of the PtdIns[4,5]P2 concentration but also depend on the presence of negatively charged phosphatidylserine (PS). PS drives the attached network into a regime, where low but physiologically relevant connectivity to the membrane results in strong contractility of the actomyosin network, emphasizing the importance of the lipid composition of the membrane interface.
Collapse
Affiliation(s)
- Nils L. Liebe
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Ingo Mey
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Loan Vuong
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Fadi Shikho
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
| | - Burkhard Geil
- Institut
für Physikalische Chemie, Georg-August
Universität, Tammannstr. 6, Göttingen 37077, Germany
| | - Andreas Janshoff
- Institut
für Physikalische Chemie, Georg-August
Universität, Tammannstr. 6, Göttingen 37077, Germany
| | - Claudia Steinem
- Institut
für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstr. 2, Göttingen 37077, Germany
- Max-Planck-Institut
für Dynamik und Selbstorganisation, Am Fassberg 17, Göttingen 37077, Germany
| |
Collapse
|
22
|
Nunes Vicente F, Chen T, Rossier O, Giannone G. Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends Cell Biol 2023; 33:204-220. [PMID: 36055943 DOI: 10.1016/j.tcb.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Detection and conversion of mechanical forces into biochemical signals is known as mechanotransduction. From cells to tissues, mechanotransduction regulates migration, proliferation, and differentiation in processes such as immune responses, development, and cancer progression. Mechanosensitive structures such as integrin adhesions, the actin cortex, ion channels, caveolae, and the nucleus sense and transmit forces. In vitro approaches showed that mechanosensing is based on force-dependent protein deformations and reorganizations. However, the mechanisms in cells remained unclear since cell imaging techniques lacked molecular resolution. Thanks to recent developments in super-resolution microscopy (SRM) and molecular force sensors, it is possible to obtain molecular insight of mechanosensing in live cells. We discuss how understanding of molecular mechanotransduction was revolutionized by these innovative approaches, focusing on integrin adhesions, actin structures, and the plasma membrane.
Collapse
Affiliation(s)
- Filipe Nunes Vicente
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Tianchi Chen
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
23
|
Wang Y, Wang N, Chen Y, Yang Y. Regulation of micropatterned curvature-dependent FA heterogeneity on cytoskeleton tension and nuclear DNA synthesis of malignant breast cancer cells. J Mater Chem B 2022; 11:99-108. [PMID: 36477803 DOI: 10.1039/d2tb01774a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Breast cancer is considered as a worldwide disease due to its high incidence and malignant metastasis. Although numerous techniques have been developed well to conduct breast cancer therapy, the influence of micropattern-induced interfacial heterogeneity on the molecular mechanism and nuclear signalling transduction of carcinogenesis is rarely announced. In this study, PDMS stencil-assisted micropatterns were fabricated on tissue culture plates to manage cell clustering colony by adjusting initial cell seeding density and the size of microholes. The curvature of each microholes was controlled to construct the interfacial heterogeneity of MDA-MB231 cancer cells at the periphery of micropatterned colony. The distinguished focal adhesion (FA) and cytoskeleton distribution at the central and peripheral regions of the cell colony were regulated by heterogeneous properties. The interfacial heterogeneity of FA and cytoskeleton would induce the biased tension force to encourage more ezrin expression at the periphery and further promote DNA synthesis, therefore disclosing a stem-like phenotype in heterogeneous cells. This study will provide a value source of information for the development of micropattern-induced heterogeneity and the interpretation of metastatic mechanism in malignant breast cancer cells.
Collapse
Affiliation(s)
- Yongtao Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Nana Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yazhou Chen
- Medical 3D Printing center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yingjun Yang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
24
|
Andrade V, Echard A. Mechanics and regulation of cytokinetic abscission. Front Cell Dev Biol 2022; 10:1046617. [PMID: 36506096 PMCID: PMC9730121 DOI: 10.3389/fcell.2022.1046617] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Cytokinetic abscission leads to the physical cut of the intercellular bridge (ICB) connecting the daughter cells and concludes cell division. In different animal cells, it is well established that the ESCRT-III machinery is responsible for the constriction and scission of the ICB. Here, we review the mechanical context of abscission. We first summarize the evidence that the ICB is initially under high tension and explain why, paradoxically, this can inhibit abscission in epithelial cells by impacting on ESCRT-III assembly. We next detail the different mechanisms that have been recently identified to release ICB tension and trigger abscission. Finally, we discuss whether traction-induced mechanical cell rupture could represent an ancient alternative mechanism of abscission and suggest future research avenues to further understand the role of mechanics in regulating abscission.
Collapse
Affiliation(s)
- Virginia Andrade
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,Collège Doctoral, Sorbonne Université, Paris, France
| | - Arnaud Echard
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,*Correspondence: Arnaud Echard,
| |
Collapse
|
25
|
Cowan JM, Duggan JJ, Hewitt BR, Petrie RJ. Non-muscle myosin II and the plasticity of 3D cell migration. Front Cell Dev Biol 2022; 10:1047256. [PMID: 36438570 PMCID: PMC9691290 DOI: 10.3389/fcell.2022.1047256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Confined cells migrating through 3D environments are also constrained by the laws of physics, meaning for every action there must be an equal and opposite reaction for cells to achieve motion. Fascinatingly, there are several distinct molecular mechanisms that cells can use to move, and this is reflected in the diverse ways non-muscle myosin II (NMII) can generate the mechanical forces necessary to sustain 3D cell migration. This review summarizes the unique modes of 3D migration, as well as how NMII activity is regulated and localized within each of these different modes. In addition, we highlight tropomyosins and septins as two protein families that likely have more secrets to reveal about how NMII activity is governed during 3D cell migration. Together, this information suggests that investigating the mechanisms controlling NMII activity will be helpful in understanding how a single cell transitions between distinct modes of 3D migration in response to the physical environment.
Collapse
Affiliation(s)
| | | | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Baldauf L, van Buren L, Fanalista F, Koenderink GH. Actomyosin-Driven Division of a Synthetic Cell. ACS Synth Biol 2022; 11:3120-3133. [PMID: 36164967 PMCID: PMC9594324 DOI: 10.1021/acssynbio.2c00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 01/24/2023]
Abstract
One of the major challenges of bottom-up synthetic biology is rebuilding a minimal cell division machinery. From a reconstitution perspective, the animal cell division apparatus is mechanically the simplest and therefore attractive to rebuild. An actin-based ring produces contractile force to constrict the membrane. By contrast, microbes and plant cells have a cell wall, so division requires concerted membrane constriction and cell wall synthesis. Furthermore, reconstitution of the actin division machinery helps in understanding the physical and molecular mechanisms of cytokinesis in animal cells and thus our own cells. In this review, we describe the state-of-the-art research on reconstitution of minimal actin-mediated cytokinetic machineries. Based on the conceptual requirements that we obtained from the physics of the shape changes involved in cell division, we propose two major routes for building a minimal actin apparatus capable of division. Importantly, we acknowledge both the passive and active roles that the confining lipid membrane can play in synthetic cytokinesis. We conclude this review by identifying the most pressing challenges for future reconstitution work, thereby laying out a roadmap for building a synthetic cell equipped with a minimal actin division machinery.
Collapse
Affiliation(s)
| | | | - Federico Fanalista
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
27
|
Zambarda C, Pérez González C, Schoenit A, Veits N, Schimmer C, Jung R, Ollech D, Christian J, Roca-Cusachs P, Trepat X, Cavalcanti-Adam EA. Epithelial cell cluster size affects force distribution in response to EGF-induced collective contractility. Eur J Cell Biol 2022; 101:151274. [PMID: 36152392 DOI: 10.1016/j.ejcb.2022.151274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Several factors present in the extracellular environment regulate epithelial cell adhesion and dynamics. Among them, growth factors such as EGF, upon binding to their receptors at the cell surface, get internalized and directly activate the acto-myosin machinery. In this study we present the effects of EGF on the contractility of epithelial cancer cell colonies in confined geometry of different sizes. We show that the extent to which EGF triggers contractility scales with the cluster size and thus the number of cells. Moreover, the collective contractility results in a radial distribution of traction forces, which are dependent on integrin β1 peripheral adhesions and transmitted to neighboring cells through adherens junctions. Taken together, EGF-induced contractility acts on the mechanical crosstalk and linkage between the cell-cell and cell-matrix compartments, regulating collective responses.
Collapse
Affiliation(s)
- Chiara Zambarda
- Max Planck Institute for Medical Research, Jahnstr. 29, D-69120 Heidelberg, Germany
| | - Carlos Pérez González
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Andreas Schoenit
- Max Planck Institute for Medical Research, Jahnstr. 29, D-69120 Heidelberg, Germany
| | - Nisha Veits
- Max Planck Institute for Medical Research, Jahnstr. 29, D-69120 Heidelberg, Germany
| | - Clara Schimmer
- Max Planck Institute for Medical Research, Jahnstr. 29, D-69120 Heidelberg, Germany
| | - Raimund Jung
- Max Planck Institute for Medical Research, Jahnstr. 29, D-69120 Heidelberg, Germany
| | - Dirk Ollech
- Max Planck Institute for Medical Research, Jahnstr. 29, D-69120 Heidelberg, Germany
| | - Joel Christian
- Max Planck Institute for Medical Research, Jahnstr. 29, D-69120 Heidelberg, Germany
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain; University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), 08028 Barcelona, Spain
| | | |
Collapse
|
28
|
Liu G, Li J, Wu C. Reciprocal regulation of actin filaments and cellular metabolism. Eur J Cell Biol 2022; 101:151281. [PMID: 36343493 DOI: 10.1016/j.ejcb.2022.151281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
For cells to adhere, migrate and proliferate, remodeling of the actin cytoskeleton is required. This process consumes a large amount of ATP while having an intimate connection with cellular metabolism. Signaling pathways that regulate energy homeostasis can also affect actin dynamics, whereas a variety of actin binding proteins directly or indirectly interact with the anabolic and catabolic regulators in cells. Here, we discuss the inter-regulation between actin filaments and cellular metabolism, reviewing recent discoveries on key metabolic enzymes that respond to actin remodeling as well as historical findings on metabolic stress-induced cytoskeletal reorganization. We also address emerging techniques that would benefit the study of cytoskeletal dynamics and cellular metabolism in high spatial-temporal resolution.
Collapse
Affiliation(s)
- Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiayi Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; International Cancer Institute, Peking University, Beijing 100191, China.
| |
Collapse
|
29
|
Vadnjal N, Nourreddine S, Lavoie G, Serres M, Roux PP, Paluch EK. Proteomic analysis of the actin cortex in interphase and mitosis. J Cell Sci 2022; 135:276117. [PMID: 35892282 PMCID: PMC9481927 DOI: 10.1242/jcs.259993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Many animal cell shape changes are driven by gradients in the contractile tension of the actomyosin cortex, a thin cytoskeletal network supporting the plasma membrane. Elucidating cortical tension control is thus essential for understanding cell morphogenesis. Increasing evidence shows that alongside myosin activity, actin network organisation and composition are key to cortex tension regulation. However, owing to a poor understanding of how cortex composition changes when tension changes, which cortical components are important remains unclear. In this article, we compared cortices from cells with low and high cortex tensions. We purified cortex-enriched fractions from cells in interphase and mitosis, as mitosis is characterised by high cortical tension. Mass spectrometry analysis identified 922 proteins consistently represented in both interphase and mitotic cortices. Focusing on actin-related proteins narrowed down the list to 238 candidate regulators of the mitotic cortical tension increase. Among these candidates, we found that there is a role for septins in mitotic cell rounding control. Overall, our study provides a comprehensive dataset of candidate cortex regulators, paving the way for systematic investigations of the regulation of cell surface mechanics. This article has an associated First Person interview with the first author of the paper. Summary: Contractile tension at the actomyosin cortex is a key determinant of cell shape. Cortices from cells with high and low tension were analysed using mass spectrometry, generating a dataset of candidate cortex mechanics regulators.
Collapse
Affiliation(s)
- Neza Vadnjal
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Sami Nourreddine
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal QC, H3T 1J4, Canada
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal QC, H3T 1J4, Canada
| | - Murielle Serres
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal QC, H3T 1J4, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
30
|
Chelly H, Recho P. Cell motility as an energy minimization process. Phys Rev E 2022; 105:064401. [PMID: 35854577 DOI: 10.1103/physreve.105.064401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The dynamics of active matter driven by interacting molecular motors has a nonpotential structure at the local scale. However, we show that there exists a quasipotential effectively describing the collective self-organization of the motors propelling a cell at a continuum active gel level. Such a model allows us to understand cell motility as an active phase transition problem between the static and motile steady-state configurations that minimize the quasipotential. In particular, both configurations can coexist in a metastable fashion and a small stochastic disorder in the gel is sufficient to trigger an intermittent cell dynamics where either static or motile phases are more probable, depending on which state is the global minimum of the quasipotential.
Collapse
Affiliation(s)
- H Chelly
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - P Recho
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| |
Collapse
|
31
|
The Actin Cytoskeleton Responds to Inflammatory Cues and Alters Macrophage Activation. Cells 2022; 11:cells11111806. [PMID: 35681501 PMCID: PMC9180445 DOI: 10.3390/cells11111806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Much remains to be learned about the molecular mechanisms underlying a class of human disorders called actinopathies. These genetic disorders are characterized by loss-of-function mutations in actin-associated proteins that affect immune cells, leading to human immunopathology. However, much remains to be learned about how cytoskeletal dysregulation promotes immunological dysfunction. The current study reveals that the macrophage actin cytoskeleton responds to LPS/IFNγ stimulation in a biphasic manner that involves cellular contraction followed by cellular spreading. Myosin II inhibition by blebbistatin blocks the initial contraction phase and lowers iNOS protein levels and nitric oxide secretion. Conversely, conditional deletion of Arp2/3 complex in macrophages attenuates spreading and increases nitric oxide secretion. However, iNOS transcription is not altered by loss of myosin II or Arp2/3 function, suggesting post-transcriptional regulation of iNOS by the cytoskeleton. Consistent with this idea, proteasome inhibition reverses the effects of blebbistatin and rescues iNOS protein levels. Arp2/3-deficient macrophages demonstrate two additional phenotypes: defective MHCII surface localization, and depressed secretion of the T cell chemokine CCL22. These data suggest that interplay between myosin II and Arp2/3 influences macrophage activity, and potentially impacts adaptive-innate immune coordination. Disrupting this balance could have detrimental impacts, particularly in the context of Arp2/3-associated actinopathies.
Collapse
|