1
|
Thu NQ, Oh JH, Tien NTN, Park SM, Yen NTH, Phat NK, Hung TM, Nguyen HT, Nguyen DN, Yoon S, Kim DH, Long NP. The lipidome landscape of amiodarone toxicity: An in vivo lipid-centric multi-omics study. Toxicol Appl Pharmacol 2025; 499:117341. [PMID: 40216313 DOI: 10.1016/j.taap.2025.117341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Amiodarone is an effective therapy for arrhythmias, its prolonged management may lead to significant adverse drug reactions. Amiodarone-induced hepatotoxicity is described by phospholipidosis, hepatic steatosis, cholestatic hepatitis, and cirrhosis. However, the systemic and hepatic lipidome disturbances and underlying toxicological mechanisms remain comprehensively elucidated. Untargeted lipidomics were utilized to analyze serum and liver samples from the rats orally administered a daily dose of amiodarone of either 100 or 300 mg/kg for one week. Changes in the expression of hepatic lipid-related genes were also examined utilizing transcriptomics. We found a higher magnitude of lipidome alterations in the 300 mg/kg than those in the 100 mg/kg groups. Treated animals showed elevated abundances of phosphatidylcholines, ether-linked phosphatidylcholines, sphingomyelins, and ceramides, and decreased levels of triacylglycerols, ether-linked triacylglycerols, and fatty acids. We also found 199 lipid-related differentially expressed hepatic genes between the 300 mg/kg group versus controls, implying lipid metabolism and signaling pathways disturbances. Specifically, elevation of serum phosphatidylcholines and ether-linked phosphatidylcholines, as well as hepatic bismonoacylglycerophosphates might be associated with reduced expression of phospholipase genes and elevated expression of glycerophospholipid biosynthesis genes, possibly driving phospholipidosis. Perturbations of sphingolipid metabolism might also be the key events for amiodarone-induced toxicity. Alterations in gene expression levels related to lipid storage and metabolism, mitochondria functions, and energy homeostasis were also found. Collectively, our study characterized the sophisticated perturbations in the lipidome and transcriptome of amiodarone-treated rats and suggested potential mechanisms responsible for amiodarone-induced hepatotoxicity.
Collapse
Affiliation(s)
- Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Tran Minh Hung
- School of Medicine, Tan Tao University, Long An 850000, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Duc Ninh Nguyen
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea.
| |
Collapse
|
2
|
Ye Q, Xiao Z, Bai C, Yao H, Zhao L, Tan WS. Unveiling the multi-characteristic potential of hyper-productive suspension MDCK cells for advanced influenza A virus propagation. Vaccine 2025; 52:126900. [PMID: 39985968 DOI: 10.1016/j.vaccine.2025.126900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
The global population faces persistent threats from influenza viruses, with vaccination remaining the most cost-effective preventive measure against influenza. Mammalian cell-based influenza vaccine production has garnered significant attention due to its enhanced safety profile, process controllability, and ability to circumvent adaptive mutations commonly associated with traditional egg-based vaccines, and the particular promise of suspension cell-based production systems for their convenience, economic viability, and scalability potential. Despite years of development and an increasing number of approved animal substrate-based vaccines, numerous challenges persist, especially the incomplete understanding of influenza virus amplification features in the producing cell lines. In previous research, we developed a high-titer suspension MDCK cell-based influenza virus production process and established a high-generation MDCK cell line (MDCK-HG). This study demonstrated enhanced productive capacity of MDCK-HG cells across diverse operational conditions. The maximum hemagglutination titer achieved 15.02 Log2HAU/100 μL for H9N2 strain and 12.55 Log2HAU/100 μL for H1N1 strain, which evidenced by a 56.95 % and a 189.79 % increase compared to the original suspension MDCK cells. Through kinetics analyses, transcriptomic profiling, and metabolic characterization, we identified the kinetic features of high-generation cell lines for efficient influenza virus production and discovered that the redistribution of cell cycles, enhanced anti-apoptotic capabilities, elevated membrane synthesis rates, and efficient energy metabolism likely contribute to their increased viral production capacity. These findings not only deepen our understanding of the influenza vaccine production process but also provide valuable guidance for future systematic metabolic engineering efforts aimed at establishing more robust vaccine production processes.
Collapse
Affiliation(s)
- Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Zhiying Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Chunli Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hong Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai BioEngine Sci-Tech Co., LTD, Shanghai 201203, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China.
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai BioEngine Sci-Tech Co., LTD, Shanghai 201203, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| |
Collapse
|
3
|
Behera P, Mishra M. Lipid Droplet in Lipodystrophy and Neurodegeneration. Biol Cell 2025; 117:e70009. [PMID: 40249069 DOI: 10.1111/boc.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 02/22/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Lipid droplets are ubiquitous yet distinct intracellular organelles that are gaining attention for their uses outside of energy storage. Their formation, role in the physiological function, and the onset of the pathology have been gaining attention recently. Their structure, synthesis, and turnover play dynamic roles in both lipodystrophy and neurodegeneration. Factors like development, aging, inflammation, and cellular stress regulate the synthesis of lipid droplets. The biogenesis of lipid droplets has a critical role in reducing cellular stress. Lipid droplets, in response to stress, sequester hazardous lipids into their neutral lipid core, preserving energy and redox balance while guarding against lipotoxicity. Thus, the maintenance of lipid droplet homeostasis in adipose tissue, CNS, and other body tissues is essential for maintaining organismal health. Insulin resistance, hypertriglyceridemia, and lipid droplet accumulation are the severe metabolic abnormalities that accompany lipodystrophy-related fat deficit. Accumulation of lipid droplets is detected in almost all neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Hereditary spastic paraplegia. Hence, the regulation of lipid droplets can be used as an alternative approach to the treatment of several diseases. The current review summarizes the structure, composition, biogenesis, and turnover of lipid droplets, with an emphasis on the factors responsible for the accumulation and importance of lipid droplets in lipodystrophy and neurodegenerative disease.
Collapse
Affiliation(s)
- Priyatama Behera
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| |
Collapse
|
4
|
Che X, Zhao Y, Xu Z, Hu Y, Ren A, Wu C, Yang J. Unlocking the Potential of l-α-Glycerylphosphorylcholine: From Metabolic Pathways to Therapeutic Applications. Nutr Rev 2025:nuaf008. [PMID: 40036805 DOI: 10.1093/nutrit/nuaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
l-α-Glycerylphosphorylcholine (GPC), also known as choline alphoscerate or α-glycerophosphorylcholine, serves as both a pharmaceutical product and a dietary supplement. Through its metabolic pathways, GPC acts as the precursor not only of choline and acetylcholine but also of various phospholipids. Extensive preclinical and clinical evidence demonstrates that GPC effectively alleviates cognitive impairment associated with Alzheimer's disease, vascular dementia, cerebral ischemia, stress, and epilepsy, among other conditions. Additionally, GPC has beneficial effects on such conditions and measures as ischemic/hypoxic conditions, ionizing radiation-induced damage, exercise performance, growth hormone release, and liver damage. As well as facilitating cholinergic neurotransmission, evidence also indicates GPC, among other activities, also can promote γ-aminobutyric acid release, enhance protein kinase C activity, facilitate hippocampal neurogenesis, upregulate neurotrophic factors, and inhibit inflammation. In preclinical studies, results indicate that GPC is not genotoxic in vitro or in vivo. Extensive human studies indicate GPC causes no severe adverse effects. Possible risks of atherosclerosis and stroke await necessary validation. In this review, the GPC-related metabolic pathways, pharmacological effects, mechanisms of action, and safety evaluation are discussed with the aim of providing a comprehensive understanding of GPC.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhongtian Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aoxin Ren
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Han W, Cheng W, Fan M, Liu D, Cao Y, Mei X, Wan J, Hu G, Gao H, Ji N. Effects of Alexandrium pacificum Exposure on Exopalaemon carinicauda: Hepatopancreas Histology, Antioxidant Enzyme Activity, and Transcriptome Analysis. Int J Mol Sci 2025; 26:1605. [PMID: 40004076 PMCID: PMC11855214 DOI: 10.3390/ijms26041605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Alexandrium pacificum, a dinoflagellate known for causing harmful algal blooms (HABs), has garnered significant attention due to its potential toxicity to marine ecosystems, fisheries, and human health. However, the effects of this toxin-producing alga on shrimp are not yet comprehensively understood. This study aimed to assess the hepatopancreas damage induced by A. pacificum in the economically important shrimp species E. carinicauda and to elucidate the underlying molecular mechanisms through histology, antioxidant enzyme activity, and transcriptome analysis. The shrimp were assigned to either a control group or an exposed group, with the latter involving exposure to A. pacificum at a concentration of 1.0 × 104 cells/mL for 7 days. A histological analysis subsequently revealed pathological changes in the hepatopancreas tissue of the exposed group, including lumen expansion and the separation of the basement membrane from epithelial cells, while antioxidant enzyme activity assays demonstrated that exposure to A. pacificum weakened the antioxidant defense system, as evidenced by the reduced activities of catalase, superoxide dismutase, and glutathione, along with increased malondialdehyde levels. Transcriptome analysis further identified 663 significantly upregulated genes and 1735 significantly downregulated ones in the exposed group, with these differentially expressed genes being primarily associated with pathways such as protein processing in the endoplasmic reticulum, mitophagy, glycolysis/gluconeogenesis, sphingolipid metabolism, and glycerophospholipid metabolism. This study provides novel insights into the toxicological effects of A. pacificum on aquatic organisms and enhances the current understanding of the ecotoxicological risks posed by HABs.
Collapse
Affiliation(s)
- Wanyu Han
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Weitao Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Menghao Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Dexue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Yanrong Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Xuao Mei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Jiaxuan Wan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Guangwei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Nanjing Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
6
|
Yang Z, Wang J, Zhao T, Wang L, Liang T, Zheng Y. Mitochondrial structure and function: A new direction for the targeted treatment of chronic liver disease with Chinese herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118461. [PMID: 38908494 DOI: 10.1016/j.jep.2024.118461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive fat accumulation, biological clock dysregulation, viral infections, and sustained inflammatory responses can lead to liver inflammation, fibrosis, and cancer, thus promoting the development of chronic liver disease. A comprehensive understanding of the etiological factors leading to chronic liver disease and the intrinsic mechanisms influencing its onset and progression can aid in identifying potential targets for targeted therapy. Mitochondria, as key organelles that maintain the metabolic homeostasis of the liver, provide an important foundation for exploring therapeutic targets for chronic liver disease. Recent studies have shown that active ingredients in herbal medicines and their natural products can modulate chronic liver disease by influencing the structure and function of mitochondria. Therefore, studying how Chinese herbs target mitochondrial structure and function to treat chronic liver diseases is of great significance. AIM OF THE STUDY Investigating the prospects of herbal medicine the Lens of chronic liver disease based on mitochondrial structure and function. MATERIALS AND METHODS A computerized search of PubMed was conducted using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "botanicals, mitochondria and chronic liver disease".Data from the Web of Science and Science Direct databases were also included. The research findings regarding herbal medicines targeting mitochondrial structure and function for the treatment of chronic liver disease are summarized. RESULTS A computerized search of PubMed using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "phytopharmaceuticals, mitochondria, and chronic liver disease", as well as the Web of Science and Science Direct databases was conducted to summarize information on studies of mitochondrial structure- and function-based Chinese herbal medicines for the treatment of chronic liver disease and to suggest that the effects of herbal medicines on mitochondrial division and fusion.The study suggested that there is much room for research on the influence of Chinese herbs on mitochondrial division and fusion. CONCLUSIONS Targeting mitochondrial structure and function is crucial for herbal medicine to combat chronic liver disease.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tiejian Zhao
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| |
Collapse
|
7
|
Chen Z, He M, Wang H, Li X, Qin R, Ye D, Zhai X, Zhu J, Zhang Q, Hu P, Shui G, Sun Y. Intestinal DHA-PA-PG axis promotes digestive organ expansion by mediating usage of maternally deposited yolk lipids. Nat Commun 2024; 15:9769. [PMID: 39528516 PMCID: PMC11555417 DOI: 10.1038/s41467-024-54258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Although the metabolism of yolk lipids such as docosahexaenoic acid (DHA) is pivotal for embryonic development, the underlying mechanism remains elusive. Here we find that the zebrafish hydroxysteroid (17-β) dehydrogenase 12a (hsd17b12a), which encodes an intestinal epithelial-specific enzyme, is essential for the biosynthesis of long-chain polyunsaturated fatty acids in primitive intestine of larval fish. The deficiency of hsd17b12a leads to severe developmental defects in the primitive intestine and exocrine pancreas. Mechanistically, hsd17b12a deficiency interrupts DHA synthesis from essential fatty acids derived from yolk-deposited triglycerides, and consequently disrupts the intestinal DHA-phosphatidic acid (PA)-phosphatidylglycerol (PG) axis. This ultimately results in developmental defects of digestive organs, primarily driven by ferroptosis. Our findings indicate that the DHA-PA-PG axis in the primitive intestine facilitates the uptake of yolk lipids and promotes the expansion of digestive organs, thereby uncovering a mechanism through which DHA regulates embryonic development.
Collapse
Affiliation(s)
- Zhengfang Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mudan He
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Houpeng Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuehui Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ruirui Qin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ding Ye
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xue Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junwen Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Quanqing Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yonghua Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
8
|
Jian H, Li R, Huang X, Li J, Li Y, Ma J, Zhu M, Dong X, Yang H, Zou X. Branched-chain amino acids alleviate NAFLD via inhibiting de novo lipogenesis and activating fatty acid β-oxidation in laying hens. Redox Biol 2024; 77:103385. [PMID: 39426289 PMCID: PMC11536022 DOI: 10.1016/j.redox.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The adverse metabolic impacts of branched-chain amino acids (BCAA) have been elucidated are mediated by isoleucine and valine. Dietary restriction of isoleucine promotes metabolic health and increases lifespan. However, a high protein diet enriched in BCAA is presently the most useful therapeutic strategy for nonalcoholic fatty liver disease (NAFLD), yet, its underlying mechanism remains largely unknown. Fatty liver hemorrhagic syndrome (FLHS), a specialized laying hen NAFLD model, can spontaneously develop fatty liver and hepatic steatosis under a high-energy and high-protein dietary background that the pathogenesis of FLHS is similar to human NAFLD. The mechanism underlying dietary BCAA control of NAFLD development in laying hens remains unclear. Herein, we demonstrate that dietary supplementation with 67 % High BCAA has unique mitigative impacts on NAFLD in laying hens. A High BCAA diet alleviates NAFLD, by inhibiting the tryptophan-ILA-AHR axis and MAPK9-mediated de novo lipogenesis (DNL), promoting ketogenesis and energy metabolism, and activating PPAR-RXR and pexophagy to promote fatty acid β-oxidation. Furthermore, we uncover that High BCAA strongly activates ubiquitin-proteasome autophagy via downregulating UFMylation to trigger MAPK9-mediated DNL, fatty acid elongation and lipid droplet formation-related proteins ubiquitination degradation, activating PPAR-RXR and pexophagy mediated fatty acid β-oxidation and lipolysis. Together, our data highlight moderating intake of high BCAA by inhibiting the AHR/MAPK9 are promising new strategies in NAFLD and FLHS treatment.
Collapse
Affiliation(s)
- Huafeng Jian
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Ru Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Xuan Huang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Jiankui Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Yan Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | | | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xinyang Dong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoting Zou
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Collins DM, Janardan V, Barneda D, Anderson KE, Niewczas I, Taylor D, Qiu D, Jessen HJ, Lopez-Clavijo AF, Walker S, Raghu P, Clark J, Stephens LR, Hawkins PT. CDS2 expression regulates de novo phosphatidic acid synthesis. Biochem J 2024; 481:1449-1473. [PMID: 39312194 PMCID: PMC11555650 DOI: 10.1042/bcj20240456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
CDS enzymes (CDS1 and 2 in mammals) convert phosphatidic acid (PA) to CDP-DG, an essential intermediate in the de novo synthesis of PI. Genetic deletion of CDS2 in primary mouse macrophages resulted in only modest changes in the steady-state levels of major phospholipid species, including PI, but substantial increases in several species of PA, CDP-DG, DG and TG. Stable isotope labelling experiments employing both 13C6- and 13C6D7-glucose revealed loss of CDS2 resulted in a minimal reduction in the rate of de novo PI synthesis but a substantial increase in the rate of de novo PA synthesis from G3P, derived from DHAP via glycolysis. This increased synthesis of PA provides a potential explanation for normal basal PI synthesis in the face of reduced CDS capacity (via increased provision of substrate to CDS1) and increased synthesis of DG and TG (via increased provision of substrate to LIPINs). However, under conditions of sustained GPCR-stimulation of PLC, CDS2-deficient macrophages were unable to maintain enhanced rates of PI synthesis via the 'PI cycle', leading to a substantial loss of PI. CDS2-deficient macrophages also exhibited significant defects in calcium homeostasis which were unrelated to the activation of PLC and thus probably an indirect effect of increased basal PA. These experiments reveal that an important homeostatic response in mammalian cells to a reduction in CDS capacity is increased de novo synthesis of PA, likely related to maintaining normal levels of PI, and provides a new interpretation of previous work describing pleiotropic effects of CDS2 deletion on lipid metabolism/signalling.
Collapse
Affiliation(s)
| | - Vishnu Janardan
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - David Barneda
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | | | | | - Diane Taylor
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | | | - Simon Walker
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR GKVK Campus, Bangalore, India
| | - Jonathan Clark
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | - Len R. Stephens
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| | | |
Collapse
|
10
|
Zhang X, Bao J, Zhang Y, Wang X. Alpha-Linolenic Acid Ameliorates Cognitive Impairment and Liver Damage Caused by Obesity. Diabetes Metab Syndr Obes 2024; 17:981-995. [PMID: 38435630 PMCID: PMC10909331 DOI: 10.2147/dmso.s434671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 03/05/2024] Open
Abstract
Background Obesity is a growing global problem that causes various complications such as diabetes, cognitive dysfunction, cardiovascular diseases, and hepatobiliary disease. Alpha-linolenic acid (ALA) has been reported to exhibit multiple pharmaceutical effects. This study aimed to explore the effects of ALA on obesity-induced adipose tissue accumulation, cognitive impairment, inflammation, and colonic mucosal barrier integrity. Methods Mice were fed with high-fat diet (HFD) and were treated with ALA (60 or 100 mg/kg). Body weight, adipose tissue, serum glucose and lipid levels, glucose resistance, and insulin resistance were measured. Cognitive ability was analyzed using the behavior tests. PTP1B and IRS/p-AKT/p-GSK3β/p-Tau signaling were examined to evaluate inflammation and synaptogenesis. Colon mucosal barrier integrity was examined by Alcian blue staining and expression of the tight junction proteins. The production of pro-inflammatory cytokines and liver damages were evaluated. 3T3-L1 cells were used for in vitro experiments. Cell viability, migration and invasion were detected. The levels of ROS, iron, and ferrous ions were measured to assess ferroptosis. Metabolomic analysis of adipose tissues was performed. Results ALA treatment prevented HFD-induced adipose tissue accumulation, improved glucose and lipid homeostasis and metabolism. Administration of ALA repressed the HFD-induced increase in insulin levels and insulin resistance index. Serum and colon levels of pro-inflammatory cytokines were decreased after ALA treatment. ALA elevated mitochondrial content in brown adipose tissues. ALA ameliorated obesity-induced cognitive impairment and hippocampal inflammation, enhanced colon mucosa integrity. ALA treatment ameliorated HFD-induced liver damage and lipid accumulation and inhibited differentiation of preadipocyte 3T3-L1 cells into mature adipocytes and induces ferroptosis. Metabolomic analysis suggested that ALA may target the glycerolipid metabolism pathway to ameliorate obesity. Knockdown of AGPAT2 abolished the protective effects of ALA. Conclusion ALA treatment suppressed adipose accumulation in adipocytes, improved cognitive ability and colon integrity, and alleviated liver damage by modulating the 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2).
Collapse
Affiliation(s)
- Xian Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| | - Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, People’s Republic of China
| |
Collapse
|
11
|
Jonnakuti VS, Wagner EJ, Maletić-Savatić M, Liu Z, Yalamanchili HK. PolyAMiner-Bulk is a deep learning-based algorithm that decodes alternative polyadenylation dynamics from bulk RNA-seq data. CELL REPORTS METHODS 2024; 4:100707. [PMID: 38325383 PMCID: PMC10921021 DOI: 10.1016/j.crmeth.2024.100707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Alternative polyadenylation (APA) is a key post-transcriptional regulatory mechanism; yet, its regulation and impact on human diseases remain understudied. Existing bulk RNA sequencing (RNA-seq)-based APA methods predominantly rely on predefined annotations, severely impacting their ability to decode novel tissue- and disease-specific APA changes. Furthermore, they only account for the most proximal and distal cleavage and polyadenylation sites (C/PASs). Deconvoluting overlapping C/PASs and the inherent noisy 3' UTR coverage in bulk RNA-seq data pose additional challenges. To overcome these limitations, we introduce PolyAMiner-Bulk, an attention-based deep learning algorithm that accurately recapitulates C/PAS sequence grammar, resolves overlapping C/PASs, captures non-proximal-to-distal APA changes, and generates visualizations to illustrate APA dynamics. Evaluation on multiple datasets strongly evinces the performance merit of PolyAMiner-Bulk, accurately identifying more APA changes compared with other methods. With the growing importance of APA and the abundance of bulk RNA-seq data, PolyAMiner-Bulk establishes a robust paradigm of APA analysis.
Collapse
Affiliation(s)
- Venkata Soumith Jonnakuti
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mirjana Maletić-Savatić
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Jin Y, Shi H, Zhao Y, Dai J, Zhang K. Organophosphate ester cresyl diphenyl phosphate disrupts lipid homeostasis in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123149. [PMID: 38097162 DOI: 10.1016/j.envpol.2023.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
As a new class of organophosphate ester, cresyl diphenyl phosphate (CDP) has been widely monitored in environmental matrices and human samples, nonetheless, its toxicity is not fully understood. Here we described an in-depth analysis of the disruptions in lipid homeostasis of zebrafish following exposure to CDP concentrations ranging from 2.0 to 313.0 μg/L. Nile red staining revealed significant alterations in lipid contents in 72 hpf zebrafish embryos at CDP concentrations of 5.3 μg/L and above. Lipidomic analysis unveiled substantial disruptions in lipid homeostasis. Notably, disruptive effects were detected in various lipid classes, including phospholipids (i.e. cardiolipin, lysophosphatidylcholine, and phosphatidylethanolamine), glycerolipids (triglycerides), and fatty acids (fatty acids (FA) and wax esters (WE)). These alterations were further supported by transcriptional changes, with remarkable shifts observed in genes associated with lipid synthesis, transport, and metabolism, encompassing phospholipids, glycerolipids, fatty acids, and sphingolipids. Furthermore, CDP exposure elicited a significant elevation in ATP content and swimming activity in embryos, signifying perturbed energy homeostasis. Taken together, the present findings underscore the disruptive effects of CDP on lipid homeostasis, thereby providing novel insights essential for advancing the health risk assessment of organophosphate flame retardants.
Collapse
Affiliation(s)
- Yiheng Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
13
|
Pan J, Yang X, Hu C, Fu T, Zhang X, Liu Z, Wang Y, Zhang F, He X, Yu JH. Functional, transcriptomic, and lipidomic studies of the choC gene encoding a phospholipid methyltransferase in Aspergillus fumigatus. Microbiol Spectr 2024; 12:e0216823. [PMID: 38009944 PMCID: PMC10783049 DOI: 10.1128/spectrum.02168-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE This study explored the phospholipid metabolic pathway in A. fumigatus and its relationship with fungal growth, metabolism, and pathogenicity. ChoC, based on its critical roles in many aspects of the fungus and relatively conserved characteristics in filamentous fungi with low similarity with mammalian ones, can be a novel target of new antifungal drugs.
Collapse
Affiliation(s)
- Jiao Pan
- Institute for Cultural Heritage and History of Science and Technology, University of Science and Technology Beijing, Beijing, China
| | - Xinyu Yang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Cuiting Hu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tongtong Fu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiuyan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zijun Liu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Wang
- Institute for Cultural Heritage and History of Science and Technology, University of Science and Technology Beijing, Beijing, China
| | - Fengyu Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyuan He
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Cui X, Yang Y, Zhang M, Bao L, Jiao F, Liu S, Wang H, Wei X, Qian W, Shi X, Su C, Qian Y. Mulberry leaves supplementation alters lipid metabolism and promotes fatty acid β oxidation in growing mutton sheep. J Anim Sci 2024; 102:skae076. [PMID: 38908013 PMCID: PMC11196999 DOI: 10.1093/jas/skae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/21/2024] [Indexed: 06/24/2024] Open
Abstract
Mulberry leaves (MLs) are an unconventional feed with fiber and various active ingredients, and are acknowledged as likely to regulate lipid metabolism, while the molecular mechanism remains undefined. Therefore, our objective was to define the role of MLs on the overall lipid metabolism. We conducted a feeding experiment of three groups on growing mutton sheep fed with dried mulberry leaves (DMLs), with fermented mulberry leaves (FMLs), or without MLs (as control). Analyses of transcriptome and widely target lipids demonstrated the addition of MLs triggered big perturbations in genes and metabolites related to glycerolipid, phospholipid, ether lipid, and sphingolipid metabolism. Additionally, the variations of the above lipids in the treatment of MLs possibly facilitate immunity enhancement of growing mutton sheep via the activation of complement and coagulation cascades. Furthermore, treatments with MLs could expedite proceedings of lipid degradation and fatty acid β oxidation in mitochondria, thereby to achieve the effect of lipid reduction. Besides, added DMLs also fuel fatty acid β-oxidation in peroxisomes and own much stronger lipolysis than added FMLs, possibly attributed to high fiber content in DMLs. These findings establish the novel lipid-lowering role and immune protection of MLs, which lays the foundation for the medicinal application of MLs.
Collapse
Affiliation(s)
- Xiaopeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212000, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minjuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun Bao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Jiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hexin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinlan Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Qian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yonghua Qian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shenzhen Fengnong Holding Co., Ltd, Shenzhen, Guangdong 518000, China
| |
Collapse
|
15
|
Peng K, Chen X, Pei K, Wang X, Ma X, Liang C, Dong Q, Liu Z, Han M, Liu G, Yang H, Zheng M, Liu G, Gao M. Lipodystrophic gene Agpat2 deficiency aggravates hyperlipidemia and atherosclerosis in Ldlr -/- mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166850. [PMID: 37591406 DOI: 10.1016/j.bbadis.2023.166850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
AIMS Dysfunction of adipose tissue increases the risk of cardiovascular disease. It was well established that obesity aggravates atherosclerosis, but the effect of adipose tissue loss on atherosclerosis has been less studied. AGPAT2 is the first causative gene of congenital generalized lipodystrophy (CGL), but the role of AGPAT2 on atherosclerosis has not been reported. Hypertriglyceridemia is one of the clinical manifestations of CGL patients, but it is usually absent in CGL mouse model on a normal diet. This study will investigate the effect of Agpat2 on hyperlipidemia and atherosclerosis. METHODS AND RESULTS In this study, Agpat2 knockout (Agpat2-/-) mice were generated using CRISPR/Cas system, which showed severe loss of adipose tissue and fatty liver, consistent with previous reports. Agpat2-/- mice were then crossed with hypercholesterolemic and atherosclerotic prone LDL receptor knockout (Ldlr-/-) mice to obtain double knockout mouse model (Agpat2-/-Ldlr-/-). Plasma lipid profile, insulin resistance, fatty liver, and atherosclerotic lesions were observed after 12 weeks of the atherogenic high-fat diet (HFD) feeding. We found that compared with Ldlr-/- mice, Agpat2-/-Ldlr-/- mice showed significantly higher plasma total cholesterol and triglycerides after HFD feeding. Agpat2-/-Ldlr-/- mice also developed hyperglycemia and hyperinsulinemia, with increased pancreatic islet area. The liver weight of Agpat2-/-Ldlr-/- mice was about 4 times higher than that of Ldlr-/- mice. The liver lipid deposition was severe and Sirius red staining showed liver fibrosis. In addition, in Agpat2-/-Ldlr-/- mice, the area of atherosclerotic lesions in aortic arch and aortic root was significantly increased. CONCLUSIONS Our results show that Agpat2 deficiency led to more severe hyperlipidemia, liver fibrosis and aggravation of atherosclerosis in Ldlr-/- mice. This study provided additional insights into the role of adipose tissue in hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Kenan Peng
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Laboratory Department of Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xin Chen
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Kexin Pei
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xindi Ma
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chenxi Liang
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qianqian Dong
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Ziwei Liu
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China.
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
16
|
Jin HL, Feng XY, Feng SL, Dai L, Zhu WT, Yuan ZW. Isoquercitrin attenuates the progression of non-alcoholic steatohepatitis in mice by modulating galectin-3-mediated insulin resistance and lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155188. [PMID: 38056146 DOI: 10.1016/j.phymed.2023.155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a global health problem with no effective treatment. Isoquercitrin (IQ) alters hepatic lipid metabolism and inhibits adipocyte differentiation. The underlying regulatory mechanisms of IQ in regulating insulin resistance (IR) and lipid metabolism remain unclear. PURPOSE This study was aimed at investigating the effects of IQ on NASH and deciphering whether the underlying mechanisms are via modulation of galectin-3 mediated IR and lipid metabolism. METHODS IR-HepG2 cell lines were used to demonstrate the ability of IQ to modulate galectin-3-mediated glucose disposal and lipid metabolism. A 20-week high-fat diet (HFD)-induced NASH model was established in C57BL/6J mice, and the protective effect of IQ on lipid disposal in the liver was verified. Further, the mRNA and protein levels of glucose and lipid metabolism were investigated, and lysophosphatidylcholine (LPC) and acylcarnitine (AC) profiling were performed to characterize the changes in endogenous substances associated with mitochondrial function and lipid metabolism in serum and cells. Furthermore, the pharmacokinetic features of IQ were explored in a rat model of NASH. RESULTS IQ restored liver function and ameliorated inflammation and lipid accumulationin NASH model mice. Notably, significant regulation of the proteins included fatty acid-generating and transporting, cholesterol metabolism enzymes, nuclear transcription factors, mitochondrial metabolism, and IR-related enzymes was noted to be responsible for the therapeutic mechanisms of IQ against experimental NASH. Serum lipid metabolism-related metabolomic assay confirmed that LPC and AC biosynthesis mostly accounted for the therapeutic effect of IQ in mice with NASH and that IQ maintained the homeostasis of LPC and AC levels. CONCLUSION This is the first study showing that IQ protects against of NASH by modulating galectin-3-mediated IR and lipid metabolism. The mechanisms responsible for liver protection and improved lipid metabolic disorder by IQ may be related to the suppression of IR and regulation of mitochondrial function and lipid metabolism. Galectin-3 down-regulation represents a potentially novel approach for the treatment and prevention of NASH.
Collapse
Affiliation(s)
- Hong-Liu Jin
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiao-Ying Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Sen-Ling Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ling Dai
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wen-Ting Zhu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhong-Wen Yuan
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
17
|
Sakuma I, Gaspar RC, Luukkonen PK, Kahn M, Zhang D, Zhang X, Murray S, Golla JP, Vatner DF, Samuel VT, Petersen KF, Shulman GI. Lysophosphatidic acid triggers inflammation in the liver and white adipose tissue in rat models of 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 deficiency and overnutrition. Proc Natl Acad Sci U S A 2023; 120:e2312666120. [PMID: 38127985 PMCID: PMC10756285 DOI: 10.1073/pnas.2312666120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
AGPAT2 (1-acyl-sn-glycerol-3-phosphate-acyltransferase-2) converts lysophosphatidic acid (LPA) into phosphatidic acid (PA), and mutations of the AGPAT2 gene cause the most common form of congenital generalized lipodystrophy which leads to steatohepatitis. The underlying mechanism by which AGPAT2 deficiency leads to lipodystrophy and steatohepatitis has not been elucidated. We addressed this question using an antisense oligonucleotide (ASO) to knockdown expression of Agpat2 in the liver and white adipose tissue (WAT) of adult male Sprague-Dawley rats. Agpat2 ASO treatment induced lipodystrophy and inflammation in WAT and the liver, which was associated with increased LPA content in both tissues, whereas PA content was unchanged. We found that a controlled-release mitochondrial protonophore (CRMP) prevented LPA accumulation and inflammation in WAT whereas an ASO against glycerol-3-phosphate acyltransferase, mitochondrial (Gpam) prevented LPA content and inflammation in the liver in Agpat2 ASO-treated rats. In addition, we show that overnutrition, due to high sucrose feeding, resulted in increased hepatic LPA content and increased activated macrophage content which were both abrogated with Gpam ASO treatment. Taken together, these data identify LPA as a key mediator of liver and WAT inflammation and lipodystrophy due to AGPAT2 deficiency as well as liver inflammation due to overnutrition and identify LPA as a potential therapeutic target to ameliorate these conditions.
Collapse
Affiliation(s)
- Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
- Department of Molecular Diagnosis, Graduate School of Medicine Chiba University, Chiba260-8670, Japan
| | - Rafael C. Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Panu K. Luukkonen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | | | - Jaya Prakash Golla
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Daniel F. Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Varman T. Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT06520
- Howard Hughes Medical Institute, Chevy Chase, MD20815
| |
Collapse
|
18
|
Li Z, Zhang G, Pan K, Niu X, Shu-Chien AC, Chen T, Zhang X, Wu X. Functional transcriptome reveals hepatopancreatic lipid metabolism during the molting cycle of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111474. [PMID: 37406959 DOI: 10.1016/j.cbpa.2023.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Crustacean molting is highly related to energy and lipid metabolism. This study was conducted to detect the changes of total lipids (TL), triacylglyceride (TAG), phospholipid (PL) and lipid droplets in hepatopancreas, and then to investigate the gene expression patterns related to hepatopancreatic lipid metabolism during the molting cycle of Chinese mitten crab Eriocheir sinensis. Hepatopancreatic TL and TAG increased significantly from post-molt stage to pre-molt stage, then decreased significantly from pre-molt stage to ecdysis stage, which is consistent to the changes of neutral lipid-rich adipocytes in hepatopancreas. By transcriptomic analysis, 65,325 transcripts were sequenced and assembled, and 28,033 transcripts were annotated. Most genes were related to energy metabolism, and the enriched genes were involved in carbohydrate and lipid metabolism and biosynthesis, especially in de novo synthesis of fatty acids and TAG, and ketone body production. Compared to the inter-molt stages, acetyl-CoA carboxylase, fatty acid synthase and other genes related to the synthesis of fatty acids were upregulated in the pre-molt stage. TAG synthesis related genes, including Glycerol-3-phosphate acyltransferase and 1-acylglycerol-3-phosphate acyltransferases, were upregulated in the post-molt stage compared to the inter-molt stage. The expression of ketone body-related genes had no significant changes during the molting cycle. Compared to the TAG synthetic pathway, ketone body biosynthesis may contribute less/secondarily to fatty acid metabolic processes, which could be involved in the other physiological processes or metabolism. In conclusion, these results showed that TAG is the major lipid deposition during inter- and pre-molt stages, and the most genes are related to the fatty acids and TAG metabolism in the hepatopancreas during the molting cycle of E. sinensis.
Collapse
Affiliation(s)
- Zhi Li
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Guangbao Zhang
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Kewu Pan
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Xingjian Niu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | | | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Xugan Wu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; School of Biological Sciences, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
19
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Xiong L, Pei J, Bao P, Wang X, Guo S, Cao M, Kang Y, Yan P, Guo X. The Effect of the Feeding System on Fat Deposition in Yak Subcutaneous Fat. Int J Mol Sci 2023; 24:ijms24087381. [PMID: 37108542 PMCID: PMC10138426 DOI: 10.3390/ijms24087381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Fat deposition is very important to the growth and reproduction of yaks. In this study, the effect of the feeding system on fat deposition in yaks was explored by transcriptomics and lipidomics. The thickness of the subcutaneous fat in yaks under stall (SF) and graze feeding (GF) was evaluated. The transcriptomes and lipidomes of the subcutaneous fat in yaks under different feeding systems were detected by RNA-sequencing (RNA-Seq) and non-targeted lipidomics based on ultrahigh-phase liquid chromatography tandem mass spectrometry (UHPLC-MS), respectively. The differences in lipid metabolism were explored, and the function of differentially expressed genes (DEGs) was evaluated by gene ontology (GO) and Kyoto encyclopedia of genes and genome (KEGG) analysis. Compared with GF yaks, SF yaks possessed stronger fat deposition capacity. The abundance of 12 triglycerides (TGs), 3 phosphatidylethanolamines (PEs), 3 diglycerides (DGs), 2 sphingomyelins (SMs) and 1 phosphatidylcholine (PC) in the subcutaneous fat of SF and GF yaks was significantly different. Under the mediation of the cGMP-PKG signaling pathway, the blood volume of SF and GF yaks may be different, which resulted in the different concentrations of precursors for fat deposition, including non-esterified fatty acid (NEFA), glucose (GLU), TG and cholesterol (CH). The metabolism of C16:0, C16:1, C17:0, C18:0, C18:1, C18:2 and C18:3 in yak subcutaneous fat was mainly realized under the regulation of the INSIG1, ACACA, FASN, ELOVL6 and SCD genes, and TG synthesis was regulated by the AGPAT2 and DGAT2 genes. This study will provide a theoretical basis for yak genetic breeding and healthy feeding.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Yandong Kang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| |
Collapse
|
21
|
Korbecki J, Bosiacki M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis. Cancers (Basel) 2023; 15:cancers15072183. [PMID: 37046844 PMCID: PMC10093493 DOI: 10.3390/cancers15072183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR).
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
22
|
Feng T, Tao Y, Yan Y, Lu S, Li Y, Zhang X, Qiang J. Transcriptional Inhibition of AGPAT2 Induces Abnormal Lipid Metabolism and Oxidative Stress in the Liver of Nile Tilapia Oreochromis niloticus. Antioxidants (Basel) 2023; 12:antiox12030700. [PMID: 36978948 PMCID: PMC10045202 DOI: 10.3390/antiox12030700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The enzyme 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) is an intermediate enzyme in triglyceride synthesis. The aim was to study the regulatory mechanism of AGPAT2 on Nile tilapia, Oreochromis niloticus. In this study, antisense RNA technology was used to knock-down AGPAT2 in Nile tilapia. Compared with the control groups (transfected with ultrapure water or the blank expression vector), the AGPAT2 knock-down group showed a significantly higher weight gain rate, special growth rate, visceral somatic index, and hepatopancreas somatic index; and significantly increased the total cholesterol, triglycerides, glucose, low-density lipoprotein cholesterol, and insulin levels in serum. In addition, the contents of total cholesterol and triglycerides and the abundance of superoxide dismutase, catalase, and glutathione peroxidase in the liver significantly increased, while the malondialdehyde content significantly decreased. The liver cells became severely vacuolated and accumulated lipids in the AGPAT2 knock-down group. Comparative transcriptome analyses (AGPAT2 knock-down vs. control group) revealed 1789 differentially expressed genes (DEGs), including 472 upregulated genes and 1313 downregulated genes in the AGPAT2 knock-down group. Functional analysis showed that the main pathway of differentially expressed genes enrichment was lipid metabolism and oxidative stress, such as steroid biosynthesis, unsaturated fatty acid biosynthesis, the PPAR signaling pathway, and the P53 pathway. We used qRT-PCR to verify the mRNA expression changes of 13 downstream differential genes in related signaling pathways. These findings demonstrate that knock-down of AGPAT2 in tilapia leads to abnormal lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yue Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Qiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence:
| |
Collapse
|
23
|
Jonnakuti VS, Wagner EJ, Maletić-Savatić M, Liu Z, Yalamanchili HK. PolyAMiner-Bulk: A Machine Learning Based Bioinformatics Algorithm to Infer and Decode Alternative Polyadenylation Dynamics from bulk RNA-seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.523471. [PMID: 36747700 PMCID: PMC9900750 DOI: 10.1101/2023.01.23.523471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
More than half of human genes exercise alternative polyadenylation (APA) and generate mRNA transcripts with varying 3' untranslated regions (UTR). However, current computational approaches for identifying cleavage and polyadenylation sites (C/PASs) and quantifying 3'UTR length changes from bulk RNA-seq data fail to unravel tissue- and disease-specific APA dynamics. Here, we developed a next-generation bioinformatics algorithm and application, PolyAMiner-Bulk, that utilizes an attention-based machine learning architecture and an improved vector projection-based engine to infer differential APA dynamics accurately. When applied to earlier studies, PolyAMiner-Bulk accurately identified more than twice the number of APA changes in an RBM17 knockdown bulk RNA-seq dataset compared to current generation tools. Moreover, on a separate dataset, PolyAMiner-Bulk revealed novel APA dynamics and pathways in scleroderma pathology and identified differential APA in a gene that was identified as being involved in scleroderma pathogenesis in an independent study. Lastly, we used PolyAMiner-Bulk to analyze the RNA-seq data of post-mortem prefrontal cortexes from the ROSMAP data consortium and unraveled novel APA dynamics in Alzheimer's Disease. Our method, PolyAMiner-Bulk, creates a paradigm for future alternative polyadenylation analysis from bulk RNA-seq data.
Collapse
Affiliation(s)
- Venkata Soumith Jonnakuti
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric J. Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mirjana Maletić-Savatić
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| |
Collapse
|
24
|
Barneda D, Janardan V, Niewczas I, Collins DM, Cosulich S, Clark J, Stephens LR, Hawkins PT. Acyl chain selection couples the consumption and synthesis of phosphoinositides. EMBO J 2022; 41:e110038. [PMID: 35771169 PMCID: PMC9475507 DOI: 10.15252/embj.2021110038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositides (PIPn) in mammalian tissues are enriched in the stearoyl/arachidonoyl acyl chain species ("C38:4"), but its functional significance is unclear. We have used metabolic tracers (isotopologues of inositol, glucose and water) to study PIPn synthesis in cell lines in which this enrichment is preserved to differing relative extents. We show that PIs synthesised from glucose are initially enriched in shorter/more saturated acyl chains, but then rapidly remodelled towards the C38:4 species. PIs are also synthesised by a distinct 're-cycling pathway', which utilises existing precursors and exhibits substantial selectivity for the synthesis of C38:4-PA and -PI. This re-cycling pathway is rapidly stimulated during receptor activation of phospholipase-C, both allowing the retention of the C38:4 backbone and the close coupling of PIPn consumption to its resynthesis, thus maintaining pool sizes. These results suggest that one property of the specific acyl chain composition of PIPn is that of a molecular code, to facilitate 'metabolic channelling' from PIP2 to PI via pools of intermediates (DG, PA and CDP-DG) common to other lipid metabolic pathways.
Collapse
Affiliation(s)
- David Barneda
- Signalling Programme, Babraham Institute, Cambridge, UK.,Projects, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Vishnu Janardan
- Cellular Organization and Signalling, National Centre for Biological Sciences, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Luo Z, Chen Z, Zhu Z, Hao Y, Feng J, Luo Q, Zhang Z, Yang X, Hu J, Liang W, Ding G. Angiotensin II induces podocyte metabolic reprogramming from glycolysis to glycerol-3-phosphate biosynthesis. Cell Signal 2022; 99:110443. [PMID: 35988808 DOI: 10.1016/j.cellsig.2022.110443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Recent studies have reported that Angiotensin II (Ang II) contributes to podocyte injury by interfering with metabolism. Glycolysis is essential for podocytes and glycolysis abnormality is associated with glomerular injury in chronic kidney disease (CKD). Glycerol-3-phosphate (G-3-P) biosynthesis is a shunt pathway of glycolysis, in which cytosolic glycerol-3-phosphate dehydrogenase 1 (GPD1) catalyzes dihydroxyacetone phosphate (DHAP) to generate G-3-P in the presence of the NADH. G-3-P is not only a substrate in glycerophospholipids and glyceride synthesis but also can be oxidated by mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) to regenerate DHAP in mitochondria. Since G-3-P biosynthesis links to glycolysis, mitochondrial metabolism and lipid synthesis, we speculate G-3-P biosynthesis abnormality is probably involved in podocyte injury. In this study, we demonstrated that Ang II upregulated GPD1 expression and increased G-3-P and glycerophospholipid syntheses in podocytes. GPD1 knockdown protected podocytes from Ang II-induced lipid accumulation and mitochondrial dysfunction. GPD1 overexpression exacerbated Ang II-induced podocyte injury. In addition, we proved that lipid accumulation and mitochondrial dysfunction were correlated with G-3-P content in podocytes. These results suggest that Ang II upregulates GPD1 and promotes G-3-P biosynthesis in podocytes, which promote lipid accumulation and mitochondrial dysfunction in podocytes.
Collapse
Affiliation(s)
- Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Qiang Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
26
|
Sánchez-deAlcázar D, Rodriguez-Abetxuko A, Beloqui A. Metal-Organic Enzyme Nanogels as Nanointegrated Self-Reporting Chemobiosensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27589-27598. [PMID: 35673709 PMCID: PMC9227723 DOI: 10.1021/acsami.2c04385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/25/2022] [Indexed: 05/26/2023]
Abstract
A fluorometric glucose biosensor based on fine-tuned chemoenzymatic nanohybrids is herein proposed. The successful integration of an engineered glucose oxidase enzyme and an optically responsive polymeric nanogel in a single entity has led to the fabrication of a highly efficient glucose chemobiosensor. The optical responsiveness has been achieved by the loading of preactivated polymeric hydrogel with fluorescent lanthanide, i.e., cerium (III), cations. A comprehensive investigation of the responsiveness of the biomaterial revealed the interplay between the oxidation state of the cerium lanthanide and the fluorescence emission of the polymer. Finally, a full structural, chemical, and biochemical characterization of the reported system supports the chemobiosensors as robust, specific, and sensitive materials that could be utilized to faithfully quantify the amount of glucose in tear fluids.
Collapse
Affiliation(s)
- Daniel Sánchez-deAlcázar
- POLYMAT
and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, E-20018 Donostia-San
Sebastián, Spain
| | - Andoni Rodriguez-Abetxuko
- CIC
nanoGUNE, Basque Research and Technology Alliance (BRTA), Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Spain
| | - Ana Beloqui
- POLYMAT
and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, E-20018 Donostia-San
Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| |
Collapse
|
27
|
Wang Q, Liu Y, Xu Y, Jin Y, Wu J, Ren Z. Comparative transcriptome and Lipidome analyses suggest a lipid droplet-specific response to heat exposure of brown adipose tissue in normal and obese mice. Life Sci 2022; 299:120540. [PMID: 35398332 DOI: 10.1016/j.lfs.2022.120540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
AIMS In mammals, heat stress (HS) from high-temperature environments has multiple adverse effects on the well-being of the organism. Brown adipose tissue (BAT) is a thermogenesis tissue that protects against obesity, and as an endocrine organ that regulates the systemic metabolism, but it is unclear how heat stress affects BAT in normal and obese subjects. Understanding the transcriptomic profiles and lipidomics of BAT upon heat exposure provides insights into the adaptive changes associated with this process. MATERIALS AND METHODS We constructed heat treatment (40 °C, 4 h) models for normal and obese mice, observed the effect of heat treatment on interscapular BAT (iBAT) and performed an assay for iBAT with RNA-seq and lipidomics to compare transcriptional programs and lipid dynamics. KEY FINDINGS In normal mice, heat treatment caused an iBAT damage by decreasing the expression of genes involved in thermogenesis, adipogenesis and lipid metabolism. Furthermore, HS disturbed the acyl-chain composition of triacylglycerols (TAGs) and glycerophospholipids (PEs, PCs and CLs), accelerated the production of cholesterol esters, and caused the formation of giant lipid droplets rich in cholesterol esters in iBAT. Unexpectedly, in obese mice, heat treatment had a smaller effect on iBAT by improving the composition of the saturated glycerolipids, PEs and PCs and increasing the proportion of oxidized lipid in lipid droplets. SIGNIFICANCE Our findings proved lipid droplets participated in the regulation of lipid components of iBAT in normal and obese mice after heat treatment, which provided a new view for the understanding of the adaptation of iBAT to high-temperature environments.
Collapse
Affiliation(s)
- Qiankun Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yue Liu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yue Xu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Hubei Province, PR China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Hubei Province, PR China.
| |
Collapse
|