1
|
Tasma Z, Garelja ML, Jamaluddin A, Alexander TI, Rees TA. Where are we now? Biased signalling of Class B G protein-coupled receptor-targeted therapeutics. Pharmacol Ther 2025; 270:108846. [PMID: 40216261 DOI: 10.1016/j.pharmthera.2025.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Class B G protein-coupled receptors (GPCRs) are a subfamily of 15 peptide hormone receptors with diverse roles in physiological functions and disease pathogenesis. Over the past decade, several novel therapeutics targeting these receptors have been approved for conditions like migraine, diabetes, and obesity, many of which are ground-breaking and first-in-class. Most of these therapeutics are agonist analogues with modified endogenous peptide sequences to enhance receptor activation or stability. Several small molecule and monoclonal antibody antagonists have also been approved or are in late-stage development. Differences in the sequence and structure of these therapeutic ligands lead to distinct signalling profiles, including biased behaviour or inhibition of specific pathways. Understanding this biased pharmacology offers unique development opportunities for improving therapeutic efficacy and reducing adverse effects. This review summarises current knowledge on the ligand bias of approved class B GPCR drugs, highlights strategies to refine and exploit their pharmacological profiles, and discusses key considerations related to receptor structure, localisation, and regulation for developing new therapies.
Collapse
Affiliation(s)
- Zoe Tasma
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Tyla I Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tayla A Rees
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Chepurny OG, Liles AN, Cham N, Matsoukas MT, Liapakis G, Meng Q, Cooney RN, Doyle RP, Holz GG. GLP-1 receptor agonist properties of a chimeric peptide derived by hybridization of Latrodectus αLatrotoxin and Heloderma Exendin-4. Gen Comp Endocrinol 2025; 368:114745. [PMID: 40347985 DOI: 10.1016/j.ygcen.2025.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Chimeric peptides comprised of amino acid sequence motifs found within hormones, neuropeptides, and insect or lizard toxins are now under investigation for their potential use in therapeutics. Here, we report the discovery of one such peptide designated as Black Widow Spider-Exendin-4 (BW-Ex-4). It consists of a putative G protein-coupled receptor (GPCR) binding domain present within αLatrotoxin (αLTX) isolated from Latrodectus, and fused to N- and C- terminal motifs found within the glucagon-like peptide-1 receptor (GLP-1R) agonist Exendin-4 isolated from Heloderma. FRET reporter assays that monitor cAMP production establish BW-Ex-4 to be a specific GLP-1R agonist without any stimulatory action at glucose-dependent insulinotropic peptide (GIP), glucagon, or corticotropin releasing hormone (CRH) receptors. Structural modeling studies of the predicted BW-Ex-4 binding sites at GPCRs of Family B provide new insights concerning the molecular basis for chimeric peptide stimulatory actions at the GLP-1R. We also report that BW-Ex-4 acts in obese hyperglycemic Leprdb/db mice to suppress appetite, lower body weight, improve glucoregulation, and to reduce circulating levels of pro-inflammatory cytokines. Collectively, these findings establish a combinatorial chimeric peptide chemistry in which αLTX serves as a molecular scaffold for the design of hybrid peptides with novel GPCR stimulating properties.
Collapse
Affiliation(s)
- Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, 505 Irving Avenue, IHP 4310, Syracuse, NY 13210, USA
| | - Amber N Liles
- Department of Chemistry, 111 College Place, Syracuse University, Syracuse, NY 13244, USA
| | - Nancy Cham
- Department of Chemistry, 111 College Place, Syracuse University, Syracuse, NY 13244, USA
| | - Minos-Timotheos Matsoukas
- Department of Biomedical Engineering, University of West Attica (UNIWA), Agiou Spiridonos 28, Egaleo 122 43, Athens, Greece.
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece
| | - Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 East Adams St., Suite 89141, Syracuse, NY 13210, USA
| | - Robert N Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 East Adams St., Suite 89141, Syracuse, NY 13210, USA
| | - Robert P Doyle
- Department of Chemistry, 111 College Place, Syracuse University, Syracuse, NY 13244, USA.
| | - George G Holz
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, 505 Irving Avenue, IHP 4310, Syracuse, NY 13210, USA.
| |
Collapse
|
3
|
Zhou Q, Zhao F, Zhang Y, Yang D, Wang MW. Structural pharmacology and mechanisms of GLP-1R signaling. Trends Pharmacol Sci 2025; 46:422-436. [PMID: 40221226 DOI: 10.1016/j.tips.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/14/2025]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R), a class B1 G protein-coupled receptor, plays critical roles in glucose homeostasis. Recent structural pharmacology studies using cryogenic electron microscopy, X-ray crystallography, mass spectrometry, and functional analyses, have provided valuable insights into its activation by endogenous hormones and mono- or dual agonists like semaglutide and tirzepatide, highly effective in treating type 2 diabetes and obesity. They highlight significant conformational changes in the extracellular and transmembrane domains of GLP-1R that drive receptor activation and downstream signal transduction. Additionally, allosteric modulators, supported by emerging structural information, show great promises as an alternative strategy. Future research investigating unexplored effector interactions, biased signaling, weight rebound mechanisms, and personalized therapy strategies will be critical for developing better therapeutic agents targeting GLP-1R.
Collapse
Affiliation(s)
- Qingtong Zhou
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Fenghui Zhao
- The National Center for Drug Screening, Shanghai 201203, China
| | - Yao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China; The National Center for Drug Screening, Shanghai 201203, China
| | - Ming-Wei Wang
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570228, China; Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Jayakody T, Budagoda DK, Mendis K, Dilshan WD, Bethmage D, Dissasekara R, Dawe GS. Biased agonism in peptide-GPCRs: A structural perspective. Pharmacol Ther 2025; 269:108806. [PMID: 39889970 DOI: 10.1016/j.pharmthera.2025.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
G protein-coupled receptors (GPCRs) are dynamic membrane receptors that transduce extracellular signals to the cell interior by forming a ligand-receptor-effector (ternary) complex that functions via allosterism. Peptides constitute an important class of ligands that interact with their cognate GPCRs (peptide-GPCRs) to form the ternary complex. "Biased agonism", a therapeutically relevant phenomenon exhibited by GPCRs owing to their allosteric nature, has also been observed in peptide-GPCRs, leading to the development of selective therapeutics with fewer side effects. In this review, we have focused on the structural basis of signalling bias at peptide-GPCRs of classes A and B, and reviewed the therapeutic relevance of bias at peptide-GPCRs, with the hope of contributing to the discovery of novel biased peptide drugs.
Collapse
Affiliation(s)
- Tharindunee Jayakody
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Krishan Mendis
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Duvindu Bethmage
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | - Rashmi Dissasekara
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka; The Graduate School, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Deganutti G, Pipito L, Rujan RM, Weizmann T, Griffin P, Ciancetta A, Moro S, Reynolds CA. Hidden GPCR structural transitions addressed by multiple walker supervised molecular dynamics (mwSuMD). eLife 2025; 13:RP96513. [PMID: 40305095 PMCID: PMC12043319 DOI: 10.7554/elife.96513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
The structural basis for the pharmacology of human G protein-coupled receptors (GPCRs), the most abundant membrane proteins and the target of about 35% of approved drugs, is still a matter of intense study. What makes GPCRs challenging to study is the inherent flexibility and the metastable nature of interaction with extra- and intracellular partners that drive their effects. Here, we present a molecular dynamics (MD) adaptive sampling algorithm, namely multiple walker supervised molecular dynamics (mwSuMD), to address complex structural transitions involving GPCRs without energy input. We first report the binding and unbinding of the vasopressin peptide from its receptor V2. Successively, we present the complete transition of the glucagon-like peptide-1 receptor (GLP-1R) from inactive to active, agonist and Gs-bound state, and the guanosine diphosphate (GDP) release from Gs. To our knowledge, this is the first time the whole sequence of events leading from an inactive GPCR to the GDP release is simulated without any energy bias. We demonstrate that mwSuMD can address complex binding processes intrinsically linked to protein dynamics out of reach of classic MD.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Centre for Health and Life Sciences, Coventry UniversityCoventryUnited Kingdom
| | - Ludovico Pipito
- Centre for Health and Life Sciences, Coventry UniversityCoventryUnited Kingdom
| | - Roxana Maria Rujan
- Centre for Health and Life Sciences, Coventry UniversityCoventryUnited Kingdom
| | - Tal Weizmann
- Centre for Health and Life Sciences, Coventry UniversityCoventryUnited Kingdom
| | - Peter Griffin
- Centre for Health and Life Sciences, Coventry UniversityCoventryUnited Kingdom
| | - Antonella Ciancetta
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, University of FerraraFerraraItaly
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, University of Padua via MarzoloPadovaItaly
| | - Christopher Arthur Reynolds
- Centre for Health and Life Sciences, Coventry UniversityCoventryUnited Kingdom
- School of Life Sciences, University of Essex, Wivenhoe ParkColchesterUnited Kingdom
| |
Collapse
|
6
|
Cary BP, Hager MV, Mariam Z, Morris RK, Belousoff MJ, Deganutti G, Sexton PM, Wootten D, Gellman SH. Prolonged signaling of backbone-modified glucagon-like peptide- 1 analogues with diverse receptor trafficking. Proc Natl Acad Sci U S A 2025; 122:e2407574122. [PMID: 40168114 PMCID: PMC12002026 DOI: 10.1073/pnas.2407574122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/07/2025] [Indexed: 04/03/2025] Open
Abstract
Signal duration and subcellular location are emerging as important facets of G protein-coupled receptor (GPCR) function. The glucagon-like peptide-1 receptor (GLP-1R), a clinically relevant class B1 GPCR, stimulates production of the second messenger cyclic adenosine monophosphate (cAMP) upon activation by the native hormone, GLP-1. cAMP production continues after the hormone-receptor complex has been internalized via endocytosis. Here, we report GLP-1 analogues that induce prolonged signaling relative to GLP-1. A single β-amino acid substitution at position 18, with the residue derived from (S,S)-trans-2-aminocyclopentanecarboxylic acid (ACPC), enhances signaling duration with retention of receptor endocytosis. Pairing ACPC at position 18 with a second substitution, α-aminoisobutyric acid (Aib) at position 16, abrogates endocytosis, but prolonged signaling is maintained. Prolonged signaling is sensitive to the structure of the β residue at position 18. Cryoelectron microscopy structures of two GLP-1 analogues bound to the GLP-1R:Gs complex suggest substantial alterations to bound peptide structure and dynamics compared to the GLP-1:GLP-1R:Gs complex. These structural findings strengthen an emerging view that agonist dynamics in the receptor-bound state influence signaling profiles. Our results advance understanding of the structural underpinnings of receptor activation and introduce tools for exploring the impact of spatiotemporal signaling profiles following GLP-1R activation.
Collapse
Affiliation(s)
- Brian P. Cary
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Marlies V. Hager
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Rylie K. Morris
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Giuseppe Deganutti
- Centre for Health and Life Sciences, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
7
|
Xu C, Zou L, Wang L, Lv W, Cao X, Jia X, Wang Y, Jiang G, Ji L. Gestational diabetes mellitus-derived miR-7-19488 targets PIK3R2 mRNA to stimulate the abnormal development and maturation of offspring-islets. Life Sci 2025; 363:123369. [PMID: 39778763 DOI: 10.1016/j.lfs.2025.123369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
AIMS Gestational diabetes mellitus (GDM) provides offspring with a hyper-metabolic intrauterine microenvironment. In this study, we aimed to identify key differential microRNAs in GDM-derived exosomes and explore the potential mechanisms of abnormal embryonic development of islets in offspring. MAIN METHODS Exosomes were extracted from umbilical vein blood of GDM and non-GDM (NGDM) parturients for microRNA sequencing. Offspring islets were collected on E18.5 and P0 to detect the expression and location of key proteins by immunofluorescence. Target binding of miR-7-19488 and PIK3R2 mRNA was verified using a dual-luciferase reporter assay. The miR-7-19488-mimic, PI3K/mTOR inhibitors were used to treat primarily islet cells to explore the relationship among miR-7-19488, PI3K, and Akt-FoxO1/mTORC1 signaling. The miR-7-19488 agomir was synthesized for further in vivo validation. KEY FINDINGS GDM-derived exosomes caused the overdevelopment of offspring-islets at E18.5 with an increased production of insulin and glucagon co-staining cells, increased number of α cells synthesizing GLP-1, and stimulation of mTORC1 singling, which were more serious at birth. The up-regulated miR-7-19488 in GDM-exosomes targeted PIK3R2 mRNA, leading to translation stagnation of p85β and activation of PI3K-Akt singling in fetal islets. Importantly, the activated PI3K-Akt-FoxO1 singling promoted development and differentiation of α and β cells and enhanced the GLP-1/GLP-1R axis, which cooperates with miR-7-19488 to activate PI3K-Akt-FoxO1/mTORC1 signaling, leading to the early initiation of the functional maturation of overdeveloped β cells. SIGNIFICANCE miR-7-19488 loaded in GDM-derived exosomes induce the abnormal overdevelopment and functional maturation of fetal islets, which is one of the contributors of high incidence of diabetes in adulthood.
Collapse
Affiliation(s)
- Chunxue Xu
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Linhai Zou
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Li Wang
- Department of Obstetrics, Affiliated Hospital of Qingdao University, Qingdao 266035, China
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiangju Cao
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Xinyu Jia
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Guohui Jiang
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Lixia Ji
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China; Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| |
Collapse
|
8
|
El Eid L, Deane-Alder K, Rujan RM, Mariam Z, Oqua AI, Manchanda Y, Belousoff MJ, Bernardino de la Serna J, Sloop KW, Rutter GA, Montoya A, Withers DJ, Millership S, Bouzakri K, Jones B, Reynolds CA, Sexton PM, Wootten D, Deganutti G, Tomas A. In vivo functional profiling and structural characterisation of the human Glp1r A316T variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.19.619191. [PMID: 39484598 PMCID: PMC11527029 DOI: 10.1101/2024.10.19.619191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective therapies for type 2 diabetes (T2D) and obesity, yet patient responses are variable. Variation in the human Glp1r gene might be directly linked to therapeutic responses. A naturally occurring missense variant, A316T, protects against T2D and cardiovascular disease. Here, we have generated and characterised a human Glp1r A316T mouse model. Human Glp1r A316T/A316T mice displayed lower fasting blood glucose versus wildtype littermates, even under metabolic stress, and exhibited alterations in islet cytoarchitecture and α/β identity under a high-fat, high-sucrose diet. This was however associated with blunted responses to GLP-1RAs in vivo. Further investigations in rodent and human β-cell models demonstrated that human Glp1r A316T exhibits characteristics of constitutive activation but dampened GLP-1RA responses. Results are further supported by cryo-EM analyses and molecular dynamics simulations of GLP-1R A316T structure, collectively demonstrating that the A316T variant governs basal GLP-1R activity and pharmacological responses to GLP-1R-targeting therapies.
Collapse
|
9
|
Sangwung P, Ho JD, Siddall T, Lin J, Tomas A, Jones B, Sloop KW. Class B1 GPCRs: insights into multireceptor pharmacology for the treatment of metabolic disease. Am J Physiol Endocrinol Metab 2024; 327:E600-E615. [PMID: 38984948 PMCID: PMC11559640 DOI: 10.1152/ajpendo.00371.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
The secretin-like, class B1 subfamily of seven transmembrane-spanning G protein-coupled receptors (GPCRs) consists of 15 members that coordinate important physiological processes. These receptors bind peptide ligands and use a distinct mechanism of activation that is driven by evolutionarily conserved structural features. For the class B1 receptors, the C-terminus of the cognate ligand is initially recognized by the receptor via an N-terminal extracellular domain that forms a hydrophobic ligand-binding groove. This binding enables the N-terminus of the ligand to engage deep into a large volume, open transmembrane pocket of the receptor. Importantly, the phylogenetic basis of this ligand-receptor activation mechanism has provided opportunities to engineer analogs of several class B1 ligands for therapeutic use. Among the most accepted of these are drugs targeting the glucagon-like peptide-1 (GLP-1) receptor for the treatment of type 2 diabetes and obesity. Recently, multifunctional agonists possessing activity at the GLP-1 receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor, such as tirzepatide, and others that also contain glucagon receptor activity, have been developed. In this article, we review members of the class B1 GPCR family with focus on receptors for GLP-1, GIP, and glucagon, including their signal transduction and receptor trafficking characteristics. The metabolic importance of these receptors is also highlighted, along with the benefit of polypharmacologic ligands. Furthermore, key structural features and comparative analyses of high-resolution cryogenic electron microscopy structures for these receptors in active-state complexes with either native ligands or multifunctional agonists are provided, supporting the pharmacological basis of such therapeutic agents.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Joseph D Ho
- Department of Structural Biology, Lilly Biotechnology Center, San Diego, California, United States
| | - Tessa Siddall
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jerry Lin
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Kyle W Sloop
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| |
Collapse
|
10
|
Melendez-Martinez D, Morales-Martinez A, Sierra-Valdez F, Cossío-Ramírez R, Lozano O, Mayolo-Deloisa K, Rito-Palomares M, Benavides J. Insights into the mechanism of crotamine and potential targets involved in obesity-related metabolic pathways. Comput Biol Med 2024; 181:109049. [PMID: 39180854 DOI: 10.1016/j.compbiomed.2024.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Crotamine (Ctm) is a peptide isolated from Crotalus durissus terrificus venom. This molecule has been demonstrated to diminish body weight gain and enhance browning in adipose tissue, glucose tolerance, and insulin sensitivity; hence, it has been postulated as an anti-obesogenic peptide. However, the mechanism to elicit the anti-obesogenic effects has yet to be elucidated. Thus, we investigated the possible interaction of Ctm with receptors involved in obesity-related metabolic pathways through protein-protein docking and molecular dynamics refinement. To test the anti-obesogenic mechanism of Ctm, we selected and retrieved 18 targets involved in obesity-related drug discovery from Protein Data Bank. Then, we performed protein-protein dockings. The best three Ctm-target models were selected and refined by molecular dynamics simulations. Molecular docking demonstrated that Ctm was able to interact with 13 of the 18 targets tested. Having a better docking score with glucagon-like peptide-1 receptor (GLP-1R) (-1430.2 kcal/mol), DPP-IV (dipeptidyl peptidase-IV) (-1781.7 kcal/mol) and α-glucosidase (-1232.3 kcal/mol). These three models were refined by molecular dynamics. Ctm demonstrated a higher affinity for GLP-1R (ΔG: -41.886 ± 2.289 kcal/mol). However, Ctm interaction was more stable with DPP-IV (RMSD: 0.360 ± 0.015 nm, Radius of gyration: 2.781 ± 0.009 nm). Moreover, the number of interactions and the molecular mechanics energies of Ctm residues suggest that the interaction of Ctm with these receptors is mainly mediated by basic-hydrophobic dyads Y1-K2, W31-R32, and W33-R34. Together, all these results allow elucidating a possible molecular mechanism behind the previously described anti-obesogenic effects.
Collapse
Affiliation(s)
- David Melendez-Martinez
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico
| | - Adriana Morales-Martinez
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, C.P. 64460 Monterrey, N.L, Mexico
| | - Francisco Sierra-Valdez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico
| | - Raquel Cossío-Ramírez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico
| | - Omar Lozano
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, C.P. 64460 Monterrey, N.L, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, C.P. 64460 Monterrey, N.L, Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico.
| |
Collapse
|
11
|
Horváth D, Stráner P, Taricska N, Fazekas Z, Menyhárd DK, Perczel A. Influence of Trp-Cage on the Function and Stability of GLP-1R Agonist Exenatide Derivatives. J Med Chem 2024; 67:16757-16772. [PMID: 39254428 PMCID: PMC11440607 DOI: 10.1021/acs.jmedchem.4c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Exenatide (Ex4), a GLP-1 incretin mimetic polypeptide, is an effective therapeutic agent against diabetes and obesity. We highlight the indirect role of Ex4's structure-stabilizing Trp-cage (Tc) motif in governing GLP-1 receptor (GLP-1R) signal transduction. We use various Ex4 derivatives to explore how Tc compactness influences thermal stability, aggregation, enhancement of insulin secretion, and GLP-1R binding. We found that Ex4 variants decorated with fortified Tc motifs exhibit increased resistance to unfolding and aggregation but show an inverse relationship between the bioactivity and stability. Molecular dynamics simulations coupled with a rigid-body segmentation protocol to analyze dynamic interconnectedness revealed that the constrained Tc motifs remain intact within the receptor-ligand complexes but interfere with one of the major stabilizing contacts and recognition loci on the extracellular side of GLP-1R, dislodging the N-terminal activating region of the hormone mimetics, and restrict the free movement of TM6, the main signal transduction device of GLP-1R.
Collapse
Affiliation(s)
- Dániel Horváth
- HUN-REN−ELTE
Protein Modeling Research Group, ELTE Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
- Laboratory
of Structural Chemistry and Biology, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
| | - Pál Stráner
- HUN-REN−ELTE
Protein Modeling Research Group, ELTE Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
- Laboratory
of Structural Chemistry and Biology, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
| | - Nóra Taricska
- HUN-REN−ELTE
Protein Modeling Research Group, ELTE Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
- Laboratory
of Structural Chemistry and Biology, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
| | - Zsolt Fazekas
- Laboratory
of Structural Chemistry and Biology, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
| | - Dóra K. Menyhárd
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117Budapest, Hungary
- HUN-REN−ELTE
Protein Modeling Research Group, ELTE Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
- Laboratory
of Structural Chemistry and Biology, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
| | - András Perczel
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117Budapest, Hungary
- HUN-REN−ELTE
Protein Modeling Research Group, ELTE Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
- Laboratory
of Structural Chemistry and Biology, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
| |
Collapse
|
12
|
Li B, Yang MY, Kim SK, Goddard WA. The G Protein-First Mechanism for Activation of the Class B Glucagon-like Peptide 1 Receptor Coupled to N-Terminal Domain-Mediated Conformational Progression. J Am Chem Soc 2024; 146:26251-26260. [PMID: 39266057 DOI: 10.1021/jacs.4c08128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Recently, there has been a great deal of excitement about new glucagon-like peptide 1 receptor (GLP-1R) agonists (e.g., semaglutide and tirzepatide) that have received FDA approval for type 2 diabetes and obesity. Although effective, these drugs come with side effects that limit their use. While research efforts continue to focus intensively on long-lasting, orally administered GLP-1R medications with fewer side effects, a major impediment to developing improved GLP-1R medications is that the mechanism by which an agonist activates GLP-1R to imitate signaling is not known. Here we present and validate the G protein (GP)-first mechanism for the GLP-1R supported by extensive atomistic simulations. We propose that GLP-1R is preactivated through the formation of a GLP-1R-GP precoupled complex at the cell membrane prior to ligand binding. Despite a transmembrane helix 6 (TM6)-bentout conformation characteristic of activated GLP-1R, this precoupled complex remains unactivated until an agonist binds to elicit signaling. Notably, this new hypothesis offers a unified and predictive model for the activities of a series of full and partial agonists, including the peptides ExP5, GLP-1(7-36), and GLP-1(9-36). Most surprisingly, our simulations reveal an N-terminus domain (NTD)-swing/agonist-insertion mechanism wherein the long extracellular NTD of GLP-1R tightly holds the C-terminal half of the peptide agonist and progressively shifts the N-terminal head of the peptide to facilitate insertion into the orthosteric pocket. Our findings provide novel mechanistic insights into the activation and function of class B GPCRs and should provide a realistic basis for structure-based ligand design.
Collapse
Affiliation(s)
- Bo Li
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Moon Young Yang
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
14
|
Burger WAC, Draper-Joyce CJ, Valant C, Christopoulos A, Thal DM. Positive allosteric modulation of a GPCR ternary complex. SCIENCE ADVANCES 2024; 10:eadp7040. [PMID: 39259792 PMCID: PMC11389776 DOI: 10.1126/sciadv.adp7040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
The activation of a G protein-coupled receptor (GPCR) leads to the formation of a ternary complex between agonist, receptor, and G protein that is characterized by high-affinity binding. Allosteric modulators bind to a distinct binding site from the orthosteric agonist and can modulate both the affinity and the efficacy of orthosteric agonists. The influence allosteric modulators have on the high-affinity active state of the GPCR-G protein ternary complex is unknown due to limitations on attempting to characterize this interaction in recombinant whole cell or membrane-based assays. Here, we use the purified M2 muscarinic acetylcholine receptor reconstituted into nanodiscs to show that, once the agonist-bound high-affinity state is promoted by the G protein, positive allosteric modulators stabilize the ternary complex that, in the presence of nucleotides, leads to an enhanced initial rate of signaling. Our results enhance our understanding of how allosteric modulators influence orthosteric ligand signaling and will aid the design of allosteric therapeutics.
Collapse
Affiliation(s)
- Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J Draper-Joyce
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
15
|
Aksu H, Demirbilek A, Uba AI. Insights into the structure and activation mechanism of some class B1 GPCR family members. Mol Biol Rep 2024; 51:966. [PMID: 39240462 DOI: 10.1007/s11033-024-09876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
In humans, 15 genes encode the class B1 family of GPCRs, which are polypeptide hormone receptors characterized by having a large N-terminal extracellular domain (ECD) and receive signals from outside the cell to activate cellular response. For example, the insulinotropic polypeptide (GIP) stimulates the glucose-dependent insulinotropic polypeptide receptor (GIPR), while the glucagon receptor (GCGR) responds to glucagon by increasing blood glucose levels and promoting the breakdown of liver glycogen to induce the production of insulin. The glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) elicit a response from glucagon-like peptide receptor types 1 and 2 (GLP1R and GLP2R), respectively. Since these receptors are implicated in the pathogenesis of diabetes, studying their activation is crucial for the development of effective therapies for the condition. With more structural information being revealed by experimental methods such as X-ray crystallography, cryo-EM, and NMR, the activation mechanism of class B1 GPCRs becomes unraveled. The available crystal and cryo-EM structures reveal that class B1 GPCRs follow a two-step model for peptide binding and receptor activation. The regions close to the C-termini of hormones interact with the N-terminal ECD of the receptor while the regions close to the N-terminus of the peptide interact with the TM domain and transmit signals. This review highlights the structural details of class B1 GPCRs and their conformational changes following activation. The roles of MD simulation in characterizing those conformational changes are briefly discussed, providing insights into the potential structural exploration for future ligand designs.
Collapse
MESH Headings
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Crystallography, X-Ray/methods
- Protein Conformation
- Animals
- Glucagon-Like Peptide-1 Receptor/metabolism
- Glucagon-Like Peptide-1 Receptor/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Glucagon-Like Peptide 1/metabolism
- Models, Molecular
- Protein Binding
- Signal Transduction
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/genetics
- Receptors, Glucagon/chemistry
Collapse
Affiliation(s)
- Hayrunisa Aksu
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Ayşenur Demirbilek
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| |
Collapse
|
16
|
Ciardullo S, Morieri ML, Daniele G, Fiorentino TV, Mezza T, Tricò D, Consoli A, Del Prato S, Giorgino F, Piro S, Solini A, Avogaro A. GLP1-GIP receptor co-agonists: a promising evolution in the treatment of type 2 diabetes. Acta Diabetol 2024; 61:941-950. [PMID: 38831203 PMCID: PMC11329401 DOI: 10.1007/s00592-024-02300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/04/2024] [Indexed: 06/05/2024]
Abstract
Type 2 diabetes represents a growing challenge for global public health. Its prevalence is increasing worldwide, and, like obesity, it affects progressively younger populations compared to the past, with potentially greater impact on chronic complications. Dual glucagon like peptide 1 (GLP1) and glucose-dependent insulinotropic peptide (GIP) receptor agonists are among the new pharmacological strategies recently developed to address this challenge. Tirzepatide, characterized by its ability to selectively bind and activate receptors for the intestinal hormones GIP and GLP-1, has been tested in numerous clinical studies and is already currently authorized in several countries for the treatment of type 2 diabetes and obesity. In this context, the aim of the present document is to summarize, in the form of a narrative literature review, the currently available data on the main mechanisms of action of GIP/GLP-1 co-agonists and the clinical effects of tirzepatide evaluated in various clinical trials.
Collapse
Affiliation(s)
- Stefano Ciardullo
- Department of Medicine and Surgery, Università degli Studi di Milano Bicocca, Milan, Italy.
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900, Monza, Italy.
| | | | - Giuseppe Daniele
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- CISUP, Center for Instrument Sharing, University of Pisa, 56124, Pisa, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Teresa Mezza
- Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Agostino Consoli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST, Ex CeSIMet) G. d'Annunzio University Chieti-Pescara, Chieti, Italy
- Endocrinology and Metabolism Unit, Pescara Health Service, Pescara, Italy
| | | | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Angelo Avogaro
- Unit of Metabolic Disease, University Hospital of Padua, Padua, Italy
| |
Collapse
|
17
|
Peart LA, Draper M, Tarasov AI. The impact of GLP-1 signalling on the energy metabolism of pancreatic islet β-cells and extrapancreatic tissues. Peptides 2024; 178:171243. [PMID: 38788902 DOI: 10.1016/j.peptides.2024.171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.
Collapse
Affiliation(s)
- Leah A Peart
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Matthew Draper
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
18
|
Harikumar KG, Zhao P, Cary BP, Xu X, Desai AJ, Dong M, Mobbs JI, Toufaily C, Furness SGB, Christopoulos A, Belousoff MJ, Wootten D, Sexton PM, Miller LJ. Cholesterol-dependent dynamic changes in the conformation of the type 1 cholecystokinin receptor affect ligand binding and G protein coupling. PLoS Biol 2024; 22:e3002673. [PMID: 39083706 PMCID: PMC11290853 DOI: 10.1371/journal.pbio.3002673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 08/02/2024] Open
Abstract
Development of optimal therapeutics for disease states that can be associated with increased membrane cholesterol requires better molecular understanding of lipid modulation of the drug target. Type 1 cholecystokinin receptor (CCK1R) agonist actions are affected by increased membrane cholesterol, enhancing ligand binding and reducing calcium signaling, while agonist actions of the closely related CCK2R are not. In this work, we identified a set of chimeric human CCK1R/CCK2R mutations that exchange the cholesterol sensitivity of these 2 receptors, providing powerful tools when expressed in CHO and HEK-293 model cell lines to explore mechanisms. Static, low energy, high-resolution structures of the mutant CCK1R constructs, stabilized in complex with G protein, were not substantially different, suggesting that alterations to receptor dynamics were key to altered function. We reveal that cholesterol-dependent dynamic changes in the conformation of the helical bundle of CCK receptors affects both ligand binding at the extracellular surface and G protein coupling at the cytosolic surface, as well as their interrelationships involved in stimulus-response coupling. This provides an ideal setting for potential allosteric modulators to correct the negative impact of membrane cholesterol on CCK1R.
Collapse
Affiliation(s)
- Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Peishen Zhao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Brian P. Cary
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Aditya J. Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jesse I. Mobbs
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Chirine Toufaily
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Sebastian G. B. Furness
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- School of Biomedical Sciences, University Queensland, Queensland, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| |
Collapse
|
19
|
Thorens B, Hodson DJ. Building the Glucagon-Like Peptide-1 Receptor Brick by Brick: Revisiting a 1993 Diabetes Classic by Thorens et al. Diabetes 2024; 73:1027-1031. [PMID: 38900951 PMCID: PMC11189827 DOI: 10.2337/dbi24-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/14/2024] [Indexed: 06/22/2024]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor involved in the regulation of blood glucose levels and food intake. Stabilized agonists targeting GLP-1R are used in the treatment of type 2 diabetes and have recently become a breakthrough obesity therapy. Here, we revisit a classic article in Diabetes by Thorens et al. that described the cloning, sequencing, and functional expression of the human GLP-1R. The article also demonstrated that exendin4(1-39) was a full agonist of the human GLP-1R whereas exendin4(9-39) was a full antagonist. We discuss how the knowledge imparted by these studies has gone on to inform multiple strands of GLP-1R biology over the past three decades, including pharmacology, signaling, human genetics, structural biology, and chemical biology.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - David J. Hodson
- Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), National Institute for Health and Care Research Oxford Biomedical Research Centre, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, U.K
| |
Collapse
|
20
|
Rosenkilde MM, Lindquist P, Kizilkaya HS, Gasbjerg LS. GIP-derived GIP receptor antagonists - a review of their role in GIP receptor pharmacology. Peptides 2024; 177:171212. [PMID: 38608836 DOI: 10.1016/j.peptides.2024.171212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Surprisingly, agonists, as well as antagonists of the glucose-dependent insulinotropic polypeptide receptor (GIPR), are currently being used or investigated as treatment options for type 2 diabetes and obesity - and both, when combined with glucagon-like peptide 1 receptor (GLP-1R) agonism, enhance GLP-1-induced glycemia and weight loss further. This paradox raises several questions regarding not only the mechanisms of actions of GIP but also the processes engaged during the activation of both the GIP and GLP-1 receptors. Here, we provide an overview of studies of the properties and actions of peptide-derived GIPR antagonists, focusing on GIP(3-30)NH2, a naturally occurring N- and C-terminal truncation of GIP(1-42). GIP(3-30)NH2 was the first GIPR antagonist administered to humans. GIP(3-30)NH2 and a few additional antagonists, like Pro3-GIP, have been used in both in vitro and in vivo studies to elucidate the molecular and cellular consequences of GIPR inhibition, desensitization, and internalization and, at a larger scale, the role of the GIP system in health and disease. We provide an overview of these studies combined with recent knowledge regarding the effects of naturally occurring variants of the GIPR system and species differences within the GIP system to enhance our understanding of the GIPR as a drug target.
Collapse
Affiliation(s)
- Mette Marie Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Peter Lindquist
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün Sheyma Kizilkaya
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Lei S, Meng Q, Liu Y, Liu Q, Dai A, Cai X, Wang MW, Zhou Q, Zhou H, Yang D. Distinct roles of the extracellular surface residues of glucagon-like peptide-1 receptor in β-arrestin 1/2 signaling. Eur J Pharmacol 2024; 968:176419. [PMID: 38360293 DOI: 10.1016/j.ejphar.2024.176419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a prime drug target for type 2 diabetes and obesity. The ligand initiated GLP-1R interaction with G protein has been well studied, but not with β-arrestin 1/2. Therefore, bioluminescence resonance energy transfer (BRET), mutagenesis and an operational model were used to evaluate the roles of 85 extracellular surface residues on GLP-1R in β-arrestin 1/2 recruitment triggered by three representative GLP-1R agonists (GLP-1, exendin-4 and oxyntomodulin). Residues selectively regulated β-arrestin 1/2 recruitment for diverse ligands, and β-arrestin isoforms were identified. Mutation of residues K130-S136, L142 and Y145 on the transmembrane helix 1 (TM1)-extracellular domain (ECD) linker decreased β-arrestin 1 recruitment but increased β-arrestin 2 recruitment. Other extracellular loop (ECL) mutations, including P137A, Q211A, D222A and M303A selectively affected β-arrestin 1 recruitment while D215A, L217A, Q221A, S223A, Y289A, S301A, F381A and I382A involved more in β-arrestin 2 recruitment for the ligands. Oxyntomodulin engaged more broadly with GLP-1R extracellular surface to drive β-arrestin 1/2 recruitment than GLP-1 and exendin-4; I147, W214 and L218 involved in β-arrestin 1 recruitment, while L141, D215, L218, D293 and F381 in β-arrestin 2 recruitment for oxyntomodulin particularly. Additionally, the non-conserved residues on β-arrestin 1/2 C-domains contributed to interaction with GLP-1R. Further proteomic profiling of GLP-1R stably expressed cell line upon ligand stimulation with or without β-arrestin 1/2 overexpression demonstrated both commonly and biasedly regulated proteins and pathways associated with cognate ligands and β-arrestins. Our study offers valuable information about ligand induced β-arrestin recruitment mediated by GLP-1R and consequent intracellular signaling events.
Collapse
Affiliation(s)
- Saifei Lei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qian Meng
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yanyun Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China; Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan; School of Pharmacy, Hainan Medical University, Haikou, 570228, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| | - Hu Zhou
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| |
Collapse
|
22
|
Zou L, Xu C, Wang L, Cao X, Jia X, Yang Z, Jiang G, Ji L. Human gestational diabetes mellitus-derived exosomes impair glucose homeostasis in pregnant mice and stimulate functional maturation of offspring-islets. Life Sci 2024; 342:122514. [PMID: 38395386 DOI: 10.1016/j.lfs.2024.122514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
AIMS Pancreatic islets undergo critical development and functional maturation during the perinatal period when they are highly sensitive to microenvironment. We aim to determine the effects and mechanisms of gestational diabetes mellitus (GDM) hypermetabolic stress on glucose homeostasis in pregnant mice and functional maturation of the islets of their offspring. MAIN METHODS Exosomes were extracted from the umbilical vein blood of individuals with or without GDM for administration to pregnant mice. The blood glucose, serum insulin, glycosylated hemoglobin, and lipopolysaccharide levels were measured in pregnant mice. The expression and localization of insulin, glucagon, PC1/3, PDX1, and p-S6 in the islets of neonatal rats were continuously monitored using immunofluorescence to evaluate their functional status. Primary islet cells were cultured and treated with GDM exosomes and exendin to determine the expression of GLP-1R, AKT, p-AKT, and p-S6 via western blotting. KEY FINDINGS GDM exosomes induced remarkable oral glucose intolerance, hyperinsulinemia, and metabolic inflammation in pregnant mice. The islets of GDM offspring exhibited high insulin, glucagon, PC1/3, PDX1, and p-S6 expression at and after birth, and activation of the local GLP-1/GLP-1R axis. The functional maturation of normal-offspring islets did not commence until after birth, while it was activated prior to birth in GDM offspring, seriously disrupting the whole process. GDM exosomes activated the GLP-1/GLP-1R axis between α and β cells, and stimulated functional maturation of β cells via the Akt-mTORC1-pS6 pathway. SIGNIFICANCE These findings provide preliminary insights into the mechanisms underlying the high incidence of diabetes in the offspring of mothers with GDM.
Collapse
Affiliation(s)
- Linhai Zou
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Chunxue Xu
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Li Wang
- Department of Obstetrics, Affiliated Hospital of Qingdao University, Qingdao 266035, China
| | - Xiangju Cao
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Xinyu Jia
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Zhihong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China
| | - Guohui Jiang
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China; Zhaoqing Yikai international pharmaceutical research institute, Zhaoqing 526000, China
| | - Lixia Ji
- Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China.
| |
Collapse
|
23
|
Meireles FATP, Antunes D, Temerozo JR, Bou-Habib DC, Caffarena ER. PACAP key interactions with PAC1, VPAC1, and VPAC2 identified by molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:3128-3144. [PMID: 37216328 DOI: 10.1080/07391102.2023.2213349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent. It can also suppress HIV-1 and SARS-CoV-2 viral replication in vitro. This work aimed to identify, in each peptide-receptor system, the most relevant residues for complex stability and interaction energy communication via Molecular Dynamics (MD), Free Energy calculations, and Protein-energy networks, thus revealing in detail the underlying mechanisms of activation of these receptors. Hydrogen bond formation, interaction energies, and computational alanine scanning between PACAP and its receptors showed that His1, Asp3, Arg12, Arg14, and Lys15 are crucial to the peptide's stability. Furthermore, several PACAP interactions with structurally conserved positions deemed necessary in GPCR B1 activation, including Arg2.60, Lys2.67, and Glu7.42, were significant for the peptide's stability within the receptors. According to the protein-energy network, the connection between Asp3 of PACAP and the receptors' conserved Arg2.60 represents a critical energy communication hub in all complexes. Additionally, the ECDs of the receptors were also found to function as energy communication hubs for PACAP. Although the overall binding mode of PACAP in the three receptors was found to be highly conserved, Arg12 and Tyr13 of PACAP were more prominent in complex with PAC1, while Ser2 of PACAP was with VPAC2. The detailed analyses performed in this work pave the way for using PACAP and its receptors as therapeutic targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deborah Antunes
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Ernesto Raul Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Program/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Kong X, Wang W, Zhong Y, Wang N, Bai K, Wu Y, Qi Q, Zhang Y, Liu X, Xie J. Recent advances in the exploration and discovery of SARS-CoV-2 inhibitory peptides from edible animal proteins. Front Nutr 2024; 11:1346510. [PMID: 38389797 PMCID: PMC10883054 DOI: 10.3389/fnut.2024.1346510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19), is spreading worldwide. Although the COVID-19 epidemic has passed its peak of transmission, the harm it has caused deserves our attention. Scientists are striving to develop medications that can effectively treat COVID-19 symptoms without causing any adverse reactions. SARS-CoV-2 inhibitory peptides derived from animal proteins have a wide range of functional activities in addition to safety. Identifying animal protein sources is crucial to obtaining SARS-CoV-2 inhibitory peptides from animal sources. This review aims to reveal the mechanisms of action of these peptides on SARS-CoV-2 and the possibility of animal proteins as a material source of SARS-CoV-2 inhibitory peptides. Also, it introduces the utilization of computer-aided design methods, phage display, and drug delivery strategies in the research on SARS-CoV-2 inhibitor peptides from animal proteins. In order to identify new antiviral peptides and boost their efficiency, we recommend investigating the interaction between SARS-CoV-2 inhibitory peptides from animal protein sources and non-structural proteins (Nsps) using a variety of technologies, including computer-aided drug approaches, phage display techniques, and drug delivery techniques. This article provides useful information for the development of novel anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Xiaoyue Kong
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yi Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yu Zhang
- Institute of Quality and Standard for Agriculture Products, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Naglekar A, Chattopadhyay A, Sengupta D. Palmitoylation of the Glucagon-like Peptide-1 Receptor Modulates Cholesterol Interactions at the Receptor-Lipid Microenvironment. J Phys Chem B 2023; 127:11000-11010. [PMID: 38111968 DOI: 10.1021/acs.jpcb.3c05930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The G protein-coupled receptor (GPCR) superfamily of cell surface receptors has been shown to be functionally modulated by post-translational modifications. The glucagon-like peptide receptor-1 (GLP-1R), which is a drug target in diabetes and obesity, undergoes agonist-dependent palmitoyl tail conjugation. The palmitoylation in the C-terminal domain of GLP-1R has been suggested to modulate the receptor-lipid microenvironment. In this work, we have performed coarse-grain molecular dynamics simulations of palmitoylated and nonpalmitoylated GLP-1R to analyze the differential receptor-lipid interactions. Interestingly, the placement and dynamics of the C-terminal domain of GLP-1R are found to be directly dependent on the palmitoyl tail. We observe that both cholesterol and phospholipids interact with the receptor but display differential interactions in the presence and absence of the palmitoyl tail. We characterize important cholesterol-binding sites and validate sites that have been previously reported in experimentally resolved structures of the receptor. We show that the receptor acts like a conduit for cholesterol flip-flop by stabilizing cholesterol in the membrane core. Taken together, our work represents an important step in understanding the molecular effects of lipid modifications in GPCRs.
Collapse
Affiliation(s)
- Amit Naglekar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Luo S, Zuo Y, Cui X, Zhang M, Jin H, Hong L. Effects of liraglutide on ANP secretion and cardiac dynamics. Endocr Connect 2023; 12:e230176. [PMID: 37681442 PMCID: PMC10563649 DOI: 10.1530/ec-23-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
To observe the effects of liraglutide (analog of glucagon-like peptide 1 (GLP-1)) on atrial natriuretic peptide (ANP) secretion and atrial dynamics, an ex vivo isolated rat atrial perfusion model was used to determine atrial ANP secretion and pulse pressure. DPP-4-/- mice were also established in vivo. ANP levels were determined by radioimmunoassay; GLP-1 content was determined by Elisa. The expression levels of GLP-1 receptor (GLP-1R), PI3K/AKT/mTOR, piezo 1, and cathepsin K were analyzed by Western blot. In the clinical study, patients with acute coronary syndrome (ACS) had low levels of plasma GLP-1 but relatively high levels of plasma ANP. In ex vivo (3.2 nmol/L) and in vivo (30 μg/kg) models, liraglutide significantly decreased ANP levels and atrial pulse pressure. Exendin9-39 alone (GLP-1R antagonist) reversibly significantly increased ANP secretion, and the reduction effect of liraglutide on the secretion of ANP was significantly alleviated by Exendin9-39. Exendin9-39 demonstrated slightly decreased atrial pulse pressure; however, combined liraglutide and Exendin9-39 significantly decreased atrial pulse pressure. Ly294002 (PI3K/AKT inhibitor) inhibited the increase of ANP secretion by liraglutide for a short time, while Ly294002 didn't counteract the decrease in pulse pressure by liraglutide in atrial dynamics studies. Liraglutide increased the expression of GLP-1R and PI3K/AKT/mTOR in isolated rat atria and the hearts of mice in vivo, whereas Exendin9-39 reversibly reduced the expression of GLP-1R and PI3K/AKT/mTOR. Piezo 1 was significantly decreased in wild type and DPP-4-/- mouse heart or isolated rat atria after being treated with liraglutide. Cathepsin K expression was only decreased in in vivo model hearts. Liraglutide can inhibit ANP secretion while decreasing atrial pulse pressure mediated by GLP-1R. Liraglutide probably plays a role in the reduction of ANP secretion via the PI3K/AKT/mTOR signaling pathway. Piezo 1 and cathepsin K may be involved in the liraglutide mechanism of reduction.
Collapse
Affiliation(s)
- Shenghe Luo
- College of Pharmacy, Yanbian University, Yanji, China
| | - Yunhui Zuo
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Xiaotian Cui
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Meiping Zhang
- Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Honghua Jin
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
27
|
Wright SC, Motso A, Koutsilieri S, Beusch CM, Sabatier P, Berghella A, Blondel-Tepaz É, Mangenot K, Pittarokoilis I, Sismanoglou DC, Le Gouill C, Olsen JV, Zubarev RA, Lambert NA, Hauser AS, Bouvier M, Lauschke VM. GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics. Nat Commun 2023; 14:6243. [PMID: 37813859 PMCID: PMC10562414 DOI: 10.1038/s41467-023-41893-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
G protein-coupled receptors are important drug targets that engage and activate signaling transducers in multiple cellular compartments. Delineating therapeutic signaling from signaling associated with adverse events is an important step towards rational drug design. The glucagon-like peptide-1 receptor (GLP-1R) is a validated target for the treatment of diabetes and obesity, but drugs that target this receptor are a frequent cause of adverse events. Using recently developed biosensors, we explored the ability of GLP-1R to activate 15 pathways in 4 cellular compartments and demonstrate that modifications aimed at improving the therapeutic potential of GLP-1R agonists greatly influence compound efficacy, potency, and safety in a pathway- and compartment-selective manner. These findings, together with comparative structure analysis, time-lapse microscopy, and phosphoproteomics, reveal unique signaling signatures for GLP-1R agonists at the level of receptor conformation, functional selectivity, and location bias, thus associating signaling neighborhoods with functionally distinct cellular outcomes and clinical consequences.
Collapse
Affiliation(s)
- Shane C Wright
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| | - Aikaterini Motso
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Koutsilieri
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Surgical Sciences, Uppsala University, Uppsala, 75185, Sweden
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, 64100, Italy
| | - Élodie Blondel-Tepaz
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Kimberley Mangenot
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | | | | | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jesper V Olsen
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Roman A Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
- The National Medical Research Center for Endocrinology, Moscow, 115478, Russia
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| | - Volker M Lauschke
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tübingen, Tübingen, Germany.
| |
Collapse
|
28
|
Lees JA, Dias JM, Rajamohan F, Fortin JP, O'Connor R, Kong JX, Hughes EAG, Fisher EL, Tuttle JB, Lovett G, Kormos BL, Unwalla RJ, Zhang L, Dechert Schmitt AM, Zhou D, Moran M, Stevens KA, Fennell KF, Varghese AE, Maxwell A, Cote EE, Zhang Y, Han S. An inverse agonist of orphan receptor GPR61 acts by a G protein-competitive allosteric mechanism. Nat Commun 2023; 14:5938. [PMID: 37741852 PMCID: PMC10517971 DOI: 10.1038/s41467-023-41646-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
GPR61 is an orphan GPCR related to biogenic amine receptors. Its association with phenotypes relating to appetite makes it of interest as a druggable target to treat disorders of metabolism and body weight, such as obesity and cachexia. To date, the lack of structural information or a known biological ligand or tool compound has hindered comprehensive efforts to study GPR61 structure and function. Here, we report a structural characterization of GPR61, in both its active-like complex with heterotrimeric G protein and in its inactive state. Moreover, we report the discovery of a potent and selective small-molecule inverse agonist against GPR61 and structural elucidation of its allosteric binding site and mode of action. These findings offer mechanistic insights into an orphan GPCR while providing both a structural framework and tool compound to support further studies of GPR61 function and modulation.
Collapse
Affiliation(s)
- Joshua A Lees
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - João M Dias
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | - Rebecca O'Connor
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Jimmy X Kong
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Emily A G Hughes
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Ethan L Fisher
- Internal Medicine, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Jamison B Tuttle
- Internal Medicine, Medicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Gabrielle Lovett
- Internal Medicine, Medicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Bethany L Kormos
- Internal Medicine, Medicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Lei Zhang
- Internal Medicine, Medicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Dahui Zhou
- Internal Medicine, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Michael Moran
- Internal Medicine, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | - Andrew Maxwell
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Emmaline E Cote
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Yuan Zhang
- Internal Medicine, Medicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA.
| |
Collapse
|
29
|
Li B, Maruszko K, Kim SK, Yang MY, Vo ADP, Goddard WA. Structure and Molecular Mechanism of Signaling for the Glucagon-like Peptide-1 Receptor Bound to Gs Protein and Exendin-P5 Biased Agonist. J Am Chem Soc 2023; 145:20422-20431. [PMID: 37672637 PMCID: PMC10777869 DOI: 10.1021/jacs.3c05996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of blood glucose and a prime target for the treatment of type II diabetes and obesity with multiple public drugs. Here we present a comprehensive computational analysis of the interactions of the activated GLP-1R-Gs signaling complex with a G protein biased agonist, Exendin P5 (ExP5), which possesses a unique N-terminal sequence responsible for the signal bias. Using a refined all-atom model of the ExP5-GLP-1R-Gs complex in molecular dynamics (MD) simulations, we propose a novel mechanism of conformation transduction in which the unique interaction network of ExP5 N-terminus propagates the binding signal across an array of conserved residues at the transmembrane domain to enhance Gs protein coupling at the cytoplasmic end of the receptor. Our simulations reveal previously unobserved interactions important for activation by ExP5 toward GDP-GTP signaling, providing new insights into the mechanism of class B G protein-coupled receptor (GPCR) signaling. These findings offer a framework for the structure-based design of more effective therapeutics.
Collapse
Affiliation(s)
- Bo Li
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Krystyna Maruszko
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Moon Young Yang
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Amy-Doan P Vo
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
30
|
Gibadullin R, Kim TW, Tran LML, Gellman SH. Hormone Analogues with Unique Signaling Profiles from Replacement of α-Residue Triads with β/γ Diads. J Am Chem Soc 2023; 145:20539-20550. [PMID: 37697685 PMCID: PMC10588032 DOI: 10.1021/jacs.3c06703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We have applied an underexplored backbone modification strategy to generate new analogues of peptides that activate two clinically important class B1 G protein-coupled receptors (GPCRs). Most peptide modification strategies involve changing side chains or, less commonly, changing the configuration at side chain-bearing carbons (i.e., l residues replaced by d residues). In contrast, backbone modifications alter the number of backbone atoms and the identities of backbone atoms relative to a poly-α-amino acid backbone. Starting from the peptide agonists PTH(1-34) (the first 34 residues of the parathyroid hormone, used clinically as the drug teriparatide) and glucagon-like peptide-1 (7-36) (GLP-1(7-36)), we replaced native α-residue triads with a diad composed of a β-amino acid residue and a γ-amino acid residue. The β/γ diad retains the number of backbone atoms in the ααα triad. Because the β and γ residue each bear a single side chain, we implemented ααα→βγ replacements at sites that contained a Gly residue (i.e., at α-residue triads that presented only two side chains). All seven of the α/β/γ-peptides derived from PTH(1-34) or GLP-1(7-36) bind to the cognate receptor (the PTHR1 or the GLP-1R), but they vary considerably in their activity profiles. Outcomes include functional mimicry of the all-α agonist, receptor-selective agonist activity, biased agonism, or strong binding with weak activation, which could lead to antagonist development. Collectively, these findings demonstrate that ααα→βγ replacements, which are easily implemented via solid-phase synthesis, can generate peptide hormone analogues that display unique and potentially useful signaling behavior.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tae Wook Kim
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lauren My-Linh Tran
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Lagou V, Jiang L, Ulrich A, Zudina L, González KSG, Balkhiyarova Z, Faggian A, Maina JG, Chen S, Todorov PV, Sharapov S, David A, Marullo L, Mägi R, Rujan RM, Ahlqvist E, Thorleifsson G, Gao Η, Εvangelou Ε, Benyamin B, Scott RA, Isaacs A, Zhao JH, Willems SM, Johnson T, Gieger C, Grallert H, Meisinger C, Müller-Nurasyid M, Strawbridge RJ, Goel A, Rybin D, Albrecht E, Jackson AU, Stringham HM, Corrêa IR, Farber-Eger E, Steinthorsdottir V, Uitterlinden AG, Munroe PB, Brown MJ, Schmidberger J, Holmen O, Thorand B, Hveem K, Wilsgaard T, Mohlke KL, Wang Z, Shmeliov A, den Hoed M, Loos RJF, Kratzer W, Haenle M, Koenig W, Boehm BO, Tan TM, Tomas A, Salem V, Barroso I, Tuomilehto J, Boehnke M, Florez JC, Hamsten A, Watkins H, Njølstad I, Wichmann HE, Caulfield MJ, Khaw KT, van Duijn CM, Hofman A, Wareham NJ, Langenberg C, Whitfield JB, Martin NG, Montgomery G, Scapoli C, Tzoulaki I, Elliott P, Thorsteinsdottir U, Stefansson K, Brittain EL, McCarthy MI, Froguel P, Sexton PM, Wootten D, Groop L, Dupuis J, Meigs JB, Deganutti G, Demirkan A, Pers TH, Reynolds CA, Aulchenko YS, Kaakinen MA, Jones B, Prokopenko I. GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification. Nat Genet 2023; 55:1448-1461. [PMID: 37679419 PMCID: PMC10484788 DOI: 10.1038/s41588-023-01462-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 06/27/2023] [Indexed: 09/09/2023]
Abstract
Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on 'around the clock' glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification.
Collapse
Affiliation(s)
- Vasiliki Lagou
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Human Genetics, Wellcome Sanger Institute, Hinxton, UK
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Longda Jiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Ulrich
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Liudmila Zudina
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Karla Sofia Gutiérrez González
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Molecular Diagnostics, Clinical Laboratory, Clinica Biblica Hospital, San José, Costa Rica
| | - Zhanna Balkhiyarova
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
| | - Alessia Faggian
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Jared G Maina
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Petar V Todorov
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sodbo Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Alessia David
- Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Letizia Marullo
- Department of Evolutionary Biology, Genetic Section, University of Ferrara, Ferrara, Italy
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roxana-Maria Rujan
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
| | - Emma Ahlqvist
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | | | - Ηe Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Εvangelos Εvangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Beben Benyamin
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Aaron Isaacs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- CARIM School for Cardiovascular Diseases and Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, the Netherlands
| | - Jing Hua Zhao
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sara M Willems
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Toby Johnson
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christa Meisinger
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Rona J Strawbridge
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Denis Rybin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Eric Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research and Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, USA
| | | | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Morris J Brown
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julian Schmidberger
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Oddgeir Holmen
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kristian Hveem
- K G Jebsen Centre for Genetic Epdiemiology, Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Aleksey Shmeliov
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Marcel den Hoed
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Wolfgang Kratzer
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Mark Haenle
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore and Department of Endocrinology, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, UK
| | - Victoria Salem
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter Medical School, Exeter, UK
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Inger Njølstad
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - H-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Centre for Medical Systems Biology, Leiden, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, the Hague, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute for Health Research Imperial College London Biomedical Research Centre, Imperial College London, London, UK
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Evan L Brittain
- Vanderbilt University Medical Center and the Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, USA
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Leif Groop
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Finnish Institute for Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - James B Meigs
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Giuseppe Deganutti
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
| | - Ayse Demirkan
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christopher A Reynolds
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Yurii S Aulchenko
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Laboratory of Glycogenomics, Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Marika A Kaakinen
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK.
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK.
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK.
| | - Inga Prokopenko
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK.
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK.
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France.
| |
Collapse
|
32
|
Li Y, Zhou Q, Dai A, Zhao F, Chang R, Ying T, Wu B, Yang D, Wang MW, Cong Z. Structural analysis of the dual agonism at GLP-1R and GCGR. Proc Natl Acad Sci U S A 2023; 120:e2303696120. [PMID: 37549266 PMCID: PMC10438375 DOI: 10.1073/pnas.2303696120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/15/2023] [Indexed: 08/09/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR), two members of class B1 G protein-coupled receptors, play important roles in glucose homeostasis and energy metabolism. They share a high degree of sequence homology but have different functionalities. Unimolecular dual agonists of both receptors developed recently displayed better clinical efficacies than that of monotherapy. To study the underlying molecular mechanisms, we determined high-resolution cryo-electron microscopy structures of GLP-1R or GCGR in complex with heterotrimeric Gs protein and three GLP-1R/GCGR dual agonists including peptide 15, MEDI0382 (cotadutide) and SAR425899 with variable activating profiles at GLP-1R versus GCGR. Compared with related structures reported previously and supported by our published pharmacological data, key residues responsible for ligand recognition and dual agonism were identified. Analyses of peptide conformational features revealed a difference in side chain orientations within the first three residues, indicating that distinct engagements in the deep binding pocket are required to achieve receptor selectivity. The middle region recognizes extracellular loop 1 (ECL1), ECL2, and the top of transmembrane helix 1 (TM1) resulting in specific conformational changes of both ligand and receptor, especially the dual agonists reshaped ECL1 conformation of GLP-1R relative to that of GCGR, suggesting an important role of ECL1 interaction in executing dual agonism. Structural investigation of lipid modification showed a better interaction between lipid moiety of MEDI0382 and TM1-TM2 cleft, in line with its increased potency at GCGR than SAR425899. Together, the results provide insightful information for the design and development of improved therapeutics targeting these two receptors simultaneously.
Collapse
Affiliation(s)
- Yang Li
- Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Rulue Chang
- School of Pharmacy, Fudan University, Shanghai201203, China
| | - Tianlei Ying
- Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Beili Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Dehua Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- Research Center for Deepsea Bioresources, Sanya, Hainan572025, China
| | - Ming-Wei Wang
- Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan572025, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo113-0033, Japan
- School of Pharmacy, Hainan Medical College, Haikou570228, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
33
|
Wygas MM, Laugwitz JM, Schmidt P, Elgeti M, Kaiser A. Dynamics of the Second Extracellular Loop Control Transducer Coupling of Peptide-Activated GPCRs. Int J Mol Sci 2023; 24:12197. [PMID: 37569573 PMCID: PMC10419011 DOI: 10.3390/ijms241512197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Many peptide-activated rhodopsin-like GPCRs share a β-hairpin folding motif in the extracellular loop 2 (ECL2), which interacts with the peptide ligand while at the same time being connected to transmembrane helix 3 (TM3) via a highly conserved disulfide bond. Currently, it remains unknown whether the coupling of the specifically shaped ECL2 to TM3 influences the activation of peptide-activated GPCRs. We investigated this possibility in a selection of peptide GPCRs with known structures. Most of the receptors with cysteine to alanine mutations folded like the respective wild-type and resided in the cell membrane, challenging pure folding stabilization by the disulfide bridge. G-protein signaling of the disulfide mutants was retained to a greater extent in secretin-like GPCRs than in rhodopsin-like GPCRs, while recruitment of arrestin was completely abolished in both groups, which may be linked to alterations in ligand residence time. We found a correlation between receptor activity of the neuropeptide Y2 receptor and alterations in ECL2 dynamics using engineered disulfide bridges or site-directed spin labeling and EPR spectroscopy. These data highlight the functional importance of the TM3-ECL2 link for the activation of specific signaling pathways in peptide-activated GPCRs, which might have implications for future drug discovery.
Collapse
Affiliation(s)
- Marcel M. Wygas
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Jeannette M. Laugwitz
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
| | - Peter Schmidt
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
| | - Matthias Elgeti
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
- Medical Faculty, Department of Anesthesiology and Intensive Care, Leipzig University, Liebigstrasse 19, 04103 Leipzig, Germany
| |
Collapse
|
34
|
Korovesis D, Gaspar VP, Beard HA, Chen S, Zahédi RP, Verhelst SHL. Mapping Peptide-Protein Interactions by Amine-Reactive Cleavable Photoaffinity Reagents. ACS OMEGA 2023; 8:25487-25495. [PMID: 37483247 PMCID: PMC10357517 DOI: 10.1021/acsomega.3c03064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
Photoaffinity labeling followed by tandem mass spectrometry is an often used strategy to identify protein targets of small-molecule drugs or drug candidates, which, under ideal conditions, enables the identification of the actual drug binding site. In the case of bioactive peptides, however, identifying the distinct binding site is hampered because of complex fragmentation patterns during tandem mass spectrometry. We here report the development and use of small cleavable photoaffinity reagents that allow functionalization of bioactive peptides for light-induced covalent binding to their protein targets. Upon cleavage of the covalently linked peptide drug, a chemical remnant of a defined mass remains on the bound amino acid, which is then used to unambiguously identify the drug binding site. Applying our approach to known peptide-drug/protein pairs with reported crystal structures, such as the calmodulin-melittin interaction, we were able to validate the identified binding sites based on structural models. Overall, our cleavable photoaffinity labeling strategy represents a powerful tool to enable the identification of protein targets and specific binding sites of a wide variety of bioactive peptides in the future.
Collapse
Affiliation(s)
- Dimitris Korovesis
- Laboratory
of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven−University of Leuven, Herestraat 49 Box 802, Leuven 3000, Belgium
| | - Vanessa P. Gaspar
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research and McGill University, Montreal, Quebec H3T 1E2, Canada
- Gerald
Bronfman Department of Oncology, McGill
University, Montreal, Quebec H4A 3T2, Canada
| | - Hester A. Beard
- Laboratory
of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven−University of Leuven, Herestraat 49 Box 802, Leuven 3000, Belgium
| | - Suyuan Chen
- AG
Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS,
e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - René P. Zahédi
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research and McGill University, Montreal, Quebec H3T 1E2, Canada
- Manitoba
Centre for Proteomics and Systems Biology, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0Z2, Canada
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, Manitoba R3E 3N4, Canada
- Cancer
Care Manitoba Research Institute, Winnipeg, Manitoba R3E
0V9, Canada
| | - Steven H. L. Verhelst
- Laboratory
of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven−University of Leuven, Herestraat 49 Box 802, Leuven 3000, Belgium
- AG
Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS,
e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| |
Collapse
|
35
|
Wang H, Hu W, Xu T, Yuan Y, Liu D, Wüthrich K. Selective polypeptide ligand binding to the extracellular surface of the transmembrane domains of the class B GPCRs GLP-1R and GCGR. iScience 2023; 26:106918. [PMID: 37332600 PMCID: PMC10276138 DOI: 10.1016/j.isci.2023.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 05/14/2023] [Indexed: 06/20/2023] Open
Abstract
Crystal and cryo-EM structures of the glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) bound with their peptide ligands have been obtained with full-length constructs, indicating that the extracellular domain (ECD) is indispensable for specific ligand binding. This article complements these data with studies of ligand recognition of the two receptors in solution. Paramagnetic NMR relaxation enhancement measurements using dual labeling with fluorine-19 probes on the receptor and nitroxide spin labels on the peptide ligands provided new insights. The glucagon-like peptide-1 (GLP-1) was found to interact with GLP-1R by selective binding to the extracellular surface. The ligand selectivity toward the extracellular surface of the receptor was preserved in the transmembrane domain (TMD) devoid of the ECD. The dual labeling approach further provided evidence of cross-reactivity of GLP-1R and GCGR with glucagon and GLP-1, respectively, which is of interest in the context of medical treatments using combinations of the two polypeptides.
Collapse
Affiliation(s)
- Huixia Wang
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wanhui Hu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Tiandan Xu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya Yuan
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Dongsheng Liu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kurt Wüthrich
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
36
|
Gibadullin R, Cary BP, Gellman SH. Differential Responses of the GLP-1 and GLP-2 Receptors to N-Terminal Modification of a Dual Agonist. J Am Chem Soc 2023; 145:12105-12114. [PMID: 37235770 PMCID: PMC10335629 DOI: 10.1021/jacs.3c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Class B1 G protein-coupled receptors (GPCRs), collectively, respond to a diverse repertoire of extracellular polypeptide agonists and transmit the encoded messages to cytosolic partners. To fulfill these tasks, these highly mobile receptors must interconvert among conformational states in response to agonists. We recently showed that conformational mobility in polypeptide agonists themselves plays a role in activation of one class B1 GPCR, the receptor for glucagon-like peptide-1 (GLP-1). Exchange between helical and nonhelical conformations near the N-termini of agonists bound to the GLP-1R was revealed to be critical for receptor activation. Here, we ask whether agonist conformational mobility plays a role in the activation of a related receptor, the GLP-2R. Using variants of the hormone GLP-2 and the designed clinical agonist glepaglutide (GLE), we find that the GLP-2R is quite tolerant of variations in α-helical propensity near the agonist N-terminus, which contrasts with signaling at the GLP-1R. A fully α-helical conformation of the bound agonist may be sufficient for GLP-2R signal transduction. GLE is a GLP-2R/GLP-1R dual agonist, and the GLE system therefore enables direct comparison of the responses of these two GPCRs to a single set of agonist variants. This comparison supports the conclusion that the GLP-1R and GLP-2R differ in their response to variations in helical propensity near the agonist N-terminus. The data offer a basis for development of new hormone analogues with distinctive and potentially useful activity profiles; for example, one of the GLE analogues is a potent agonist of the GLP-2R but also a potent antagonist of the GLP-1R, a novel form of polypharmacology.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Brian P. Cary
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
37
|
Vuckovic Z, Wang J, Pham V, Mobbs JI, Belousoff MJ, Bhattarai A, Burger WAC, Thompson G, Yeasmin M, Nawaratne V, Leach K, van der Westhuizen ET, Khajehali E, Liang YL, Glukhova A, Wootten D, Lindsley CW, Tobin A, Sexton P, Danev R, Valant C, Miao Y, Christopoulos A, Thal DM. Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. eLife 2023; 12:83477. [PMID: 37248726 DOI: 10.7554/elife.83477] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.
Collapse
Affiliation(s)
- Ziva Vuckovic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Mahmuda Yeasmin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Vindhya Nawaratne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Craig W Lindsley
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, United States
| | - Andrew Tobin
- The Centre for Translational Pharmacology, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
38
|
Yuan S, Xia L, Wang C, Wu F, Zhang B, Pan C, Fan Z, Lei X, Stevens RC, Sali A, Sun L, Shui W. Conformational Dynamics of the Activated GLP-1 Receptor-G s Complex Revealed by Cross-Linking Mass Spectrometry and Integrative Structure Modeling. ACS CENTRAL SCIENCE 2023; 9:992-1007. [PMID: 37252352 PMCID: PMC10214531 DOI: 10.1021/acscentsci.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Indexed: 05/31/2023]
Abstract
Despite advances in characterizing the structures and functions of G protein-coupled receptors (GPCRs), our understanding of GPCR activation and signaling is still limited by the lack of information on conformational dynamics. It is particularly challenging to study the dynamics of GPCR complexes with their signaling partners because of their transient nature and low stability. Here, by combining cross-linking mass spectrometry (CLMS) with integrative structure modeling, we map the conformational ensemble of an activated GPCR-G protein complex at near-atomic resolution. The integrative structures describe heterogeneous conformations for a high number of potential alternative active states of the GLP-1 receptor-Gs complex. These structures show marked differences from the previously determined cryo-EM structure, especially at the receptor-Gs interface and in the interior of the Gs heterotrimer. Alanine-scanning mutagenesis coupled with pharmacological assays validates the functional significance of 24 interface residue contacts only observed in the integrative structures, yet absent in the cryo-EM structure. Through the integration of spatial connectivity data from CLMS with structure modeling, our study provides a new approach that is generalizable to characterizing the conformational dynamics of GPCR signaling complexes.
Collapse
Affiliation(s)
- Shijia Yuan
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lisha Xia
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Wang
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Wu
- Structure
Therapeutics, South San Francisco, California 94080, United States
| | - Bingjie Zhang
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Chen Pan
- National
Facility for Protein Science in Shanghai, Shanghai Advanced Research
Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Zhiran Fan
- Biocreater
(WuHan) Biotechnology Co., Ltd, Wuhan 430075, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Natural and Biomimetic Drugs, Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, Department of
Chemical Biology, College of Chemistry and Molecular Engineering,
Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Raymond C. Stevens
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- Structure
Therapeutics, South San Francisco, California 94080, United States
| | - Andrej Sali
- Quantitative
Biosciences Institute, University of California,
San Francisco, San Francisco, California 94143, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San
Francisco, California 94143, United States
| | - Liping Sun
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Shui
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| |
Collapse
|
39
|
Cary BP, Gerrard EJ, Belousoff MJ, Fletcher MM, Jiang Y, Russell IC, Piper SJ, Wootten D, Sexton PM. Molecular insights into peptide agonist engagement with the PTH receptor. Structure 2023:S0969-2126(23)00125-9. [PMID: 37148874 DOI: 10.1016/j.str.2023.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/30/2022] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
The parathyroid hormone (PTH) 1 receptor (PTH1R) is a G protein-coupled receptor (GPCR) that regulates skeletal development and calcium homeostasis. Here, we describe cryo-EM structures of the PTH1R in complex with fragments of the two hormones, PTH and PTH-related protein, the drug abaloparatide, as well as the engineered tool compounds, long-acting PTH (LA-PTH) and the truncated peptide, M-PTH(1-14). We found that the critical N terminus of each agonist engages the transmembrane bundle in a topologically similar fashion, reflecting similarities in measures of Gαs activation. The full-length peptides induce subtly different extracellular domain (ECD) orientations relative to the transmembrane domain. In the structure bound to M-PTH, the ECD is unresolved, demonstrating that the ECD is highly dynamic when unconstrained by a peptide. High resolutions enabled identification of water molecules near peptide and G protein binding sites. Our results illuminate the action of orthosteric agonists of the PTH1R.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Elliot J Gerrard
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Madeleine M Fletcher
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Yan Jiang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Isabella C Russell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Sarah J Piper
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| |
Collapse
|
40
|
Darbalaei S, Chang RL, Zhou QT, Chen Y, Dai AT, Wang MW, Yang DH. Effects of site-directed mutagenesis of GLP-1 and glucagon receptors on signal transduction activated by dual and triple agonists. Acta Pharmacol Sin 2023; 44:421-433. [PMID: 35953646 PMCID: PMC9889767 DOI: 10.1038/s41401-022-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023]
Abstract
The paradigm of one drug against multiple targets, known as unimolecular polypharmacology, offers the potential to improve efficacy while overcoming some adverse events associated with the treatment. This approach is best exemplified by targeting two or three class B1 G protein-coupled receptors, namely, glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic polypeptide receptor for treatment of type 2 diabetes and obesity. Some of the dual and triple agonists have already shown initial successes in clinical trials, although the molecular mechanisms underlying their multiplexed pharmacology remain elusive. In this study we employed structure-based site-directed mutagenesis together with pharmacological assays to compare agonist efficacy across two key signaling pathways, cAMP accumulation and ERK1/2 phosphorylation (pERK1/2). Three dual agonists (peptide 15, MEDI0382 and SAR425899) and one triple agonist (peptide 20) were evaluated at GLP-1R and GCGR, relative to the native peptidic ligands (GLP-1 and glucagon). Our results reveal the existence of residue networks crucial for unimolecular agonist-mediated receptor activation and their distinct signaling patterns, which might be useful to the rational design of biased drug leads.
Collapse
Affiliation(s)
- Sanaz Darbalaei
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ru-Lue Chang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - An-Tao Dai
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - De-Hua Yang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
| |
Collapse
|
41
|
Shi Y, Chen Y, Deng L, Du K, Lu S, Chen T. Structural Understanding of Peptide-Bound G Protein-Coupled Receptors: Peptide-Target Interactions. J Med Chem 2023; 66:1083-1111. [PMID: 36625741 DOI: 10.1021/acs.jmedchem.2c01309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of G protein-coupled receptors (GPCRs) is triggered by ligand binding to their orthosteric sites, which induces ligand-specific conformational changes. Agonists and antagonists bound to GPCR orthosteric sites provide detailed information on ligand-binding modes. Among these, peptide ligands play an instrumental role in GPCR pharmacology and have attracted increased attention as therapeutic drugs. The recent breakthrough in GPCR structural biology has resulted in the remarkable availability of peptide-bound GPCR complexes. Despite the several structural similarities shared by these receptors, they exhibit distinct features in terms of peptide recognition and receptor activation. From this perspective, we have summarized the current status of peptide-bound GPCR structural complexes, largely focusing on the interactions between the receptor and its peptide ligand at the orthosteric site. In-depth structural investigations have yielded valuable insights into the molecular mechanisms underlying peptide recognition. This study would contribute to the discovery of GPCR peptide drugs with improved therapeutic effects.
Collapse
Affiliation(s)
- Yuxin Shi
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yi Chen
- Department of Ultrasound Interventional, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
42
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
43
|
Does receptor balance matter? – Comparing the efficacies of the dual amylin and calcitonin receptor agonists cagrilintide and KBP-336 on metabolic parameters in preclinical models. Biomed Pharmacother 2022; 156:113842. [DOI: 10.1016/j.biopha.2022.113842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
44
|
Lu J, Piper SJ, Zhao P, Miller LJ, Wootten D, Sexton PM. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int J Mol Sci 2022; 23:8069. [PMID: 35897648 PMCID: PMC9331257 DOI: 10.3390/ijms23158069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Lu
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Sarah J. Piper
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Peishen Zhao
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Denise Wootten
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Patrick M. Sexton
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| |
Collapse
|
45
|
Frimann TM, Ko SK, Harris P, Bukrinski JT, Peters GHJ. In-silico study of the interactions between acylated glucagon like-peptide-1 analogues and the native receptor. J Biomol Struct Dyn 2022:1-15. [PMID: 35612899 DOI: 10.1080/07391102.2022.2078409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have performed a series of multiple molecular dynamics (MD) simulations of glucagon-like peptide-1 (GLP-1) and acylated GLP-1 analogues in complex with the endogenous receptor (GLP-1R) to obtain a molecular understanding of how fatty acid (FA) chain structure, acylation position on the peptide, and presence of a linker affect the binding. MD simulations were analysed to extract heatmaps of receptor-peptide interaction patterns and to determine the free energy of binding using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach. The extracted free energies from MM-PBSA calculations are in qualitative agreement with experimentally determined potencies. Furthermore, the interaction patterns seen in the receptor-GLP-1 complex simulations resemble previously reported binding interactions validating the simulations. Analysing the receptor-GLP-1 analogue complex simulations, we found that the major differences between the systems stem from FA interactions and positioning of acylation in the peptide. Hydrophobic interactions between the FA chain and a hydrophobic patch on the extracellular domain contribute significantly to the binding affinity. Acylation on Lys26 resulted in noticeably more interactions between the FA chain and the extracellular domain hydrophobic patch than found for acylation on Lys34 and Lys38, respectively. The presence of a charged linker between the peptide and FA chain can potentially stabilise the complex by forming hydrogen bonds to arginine residues in the linker region between the extracellular domain and the transmembrane domain. A molecular understanding of the fatty acid structure and its effect on binding provides important insights into designing acylated agonists for GLP-1R.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tine Maja Frimann
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Suk Kyu Ko
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark.,Department of Chemistry, H.C. Ørsted Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
46
|
Zhao P, Truong TT, Merlin J, Sexton PM, Wootten D. Implications of ligand-receptor binding kinetics on GLP-1R signalling. Biochem Pharmacol 2022; 199:114985. [PMID: 35300966 DOI: 10.1016/j.bcp.2022.114985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane proteins and in recent years there has been a growing appreciation of the importance in understanding temporal aspects of GPCR behaviour, including the kinetics of ligand binding and downstream receptor mediated signalling. Class B1 GPCRs are activated by peptide agonists and are validated therapeutic targets for numerous diseases. However, the kinetics of ligand binding and how this is linked to downstream activation of signalling cascades is not routinely assessed in development of peptide agonists for this receptor class. The glucagon-like peptide-1 receptor (GLP-1R) is a prototypical class B1 GPCR and a validated target for treatment of global health burdens, including type 2 diabetes and obesity. In this study we examined the kinetics of different steps in GLP-1R activation and subsequent cAMP production mediated by a series of GLP-1R peptide agonists, including the ligand-receptor interaction, ligand-receptor-mediated G protein engagement and conformational change and cAMP production. Our results revealed GLP-1R peptide agonist dissociation kinetics (Koff), but not association kinetics (Kon), were positively correlated with the onset of receptor-G protein coupling/conformational change, onset of cAMP production and duration of cAMP signalling. Thus, this study advances the understanding of molecular events that couple GLP-1R ligand binding to intracellular signaling, with the findings likely to have implications for mechanistic understanding of agonist action at other related class B1 GPCRs.
Collapse
Affiliation(s)
- Peishen Zhao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.
| | - Tin T Truong
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Jon Merlin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.
| |
Collapse
|