1
|
Fang L, Zhang Y, Zhang L, Jiang Y. A facile strategy to prepare fibrous and water resistant moist-electric generator with adjustable response speed. Int J Biol Macromol 2025; 306:141643. [PMID: 40032088 DOI: 10.1016/j.ijbiomac.2025.141643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
This work presents a polyvinyl alcohol (PVA) and cellulose nanofiber (CNF) based fiber structure moist-electric generator (FMEG), which demonstrates enhanced suitability for smart wearable electronics compared to traditional MEGs. The resulting PVA FMEG generated a relatively high output voltage of 0.50 V and a current of 4 μA per 2 cm fiber. The improved performance stems from the efficient directional ion movement enabled by the fiber structure (from outer to inner layers). Water resistance and response speed of FMEG were further improved by crosslinking PVA with boric acid (BA) and the introduction of CNF. After five washing cycles, the crosslinked FMEG retained 86 % of its initial weight. Additionally, the response time (time to reach 0.40 V) of the CNF-enhanced FMEG was reduced to 140 s, significantly shorter than that of pure PVA FMEG (600 s) and BA-crosslinked FMEG (1300 s). By tuning the crosslinking degree and CNF content, the response speed could be precisely regulated for applications such as breath sensing or powering a red LED bulb. This study demonstrates a promising FMEG with high output, water resistance, and tunable sensitivity, offering superior applicability for smart wearable devices compared to conventional MEGs.
Collapse
Affiliation(s)
- Liu Fang
- College of Textile and Clothing, Qingdao University, Ningxia Road 308, Qingdao, Shandong 266071, China
| | - Yuying Zhang
- College of Textile and Clothing, Qingdao University, Ningxia Road 308, Qingdao, Shandong 266071, China
| | - Liming Zhang
- College of Textile and Clothing, Qingdao University, Ningxia Road 308, Qingdao, Shandong 266071, China; Shandong Jiejing Group Corporation, Shenzhen Road 98, Rizhao, Shandong 276826, China.
| | - Yijun Jiang
- College of Textile and Clothing, Qingdao University, Ningxia Road 308, Qingdao, Shandong 266071, China.
| |
Collapse
|
2
|
Zhang X, Yang Y, Zhong C, Xiang D, Sun H, Li D, Yan G, Wu Y. High-Performance Phase Change Films Prepared by a Strategy for Thermal Management at Interfaces and Environmental Camouflage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500683. [PMID: 40135337 DOI: 10.1002/smll.202500683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/04/2025] [Indexed: 03/27/2025]
Abstract
With the development of electronic equipment and the advancement of environmental camouflage technology, higher requirements are placed on the flexibility, thermal conductivity, and heat storage capacity of phase change films. This work fabricated a high-performance dual-encapsulation composite phase change film through the employment of Pickering emulsion polymerization and sol-gel techniques, incorporating n-octadecane (n-OD), liquid metal gallium (Ga), and poly(p-phenylene benzobisoxazole) (PBO). Phase change microcapsules (PM) serve to prevent leakage during phase changes, maintain high levels of enthalpy, and enhance the dispersion of n-OD in matrices, as well as improve adhesion at interfaces. It is possible to achieve excellent thermal conductivity with only a small amount of modified Ga (MGa) by chitosan quaternary ammonium salt in the confined network since the material has a smaller size and a more uniform distribution. Owing to its distinctive structural design and modification strategy, the composite phase change film (MGa/PM/PBO) manifests outstanding mechanical properties (featuring a tensile strength of 7.0 MPa), remarkable thermal conductivity (9.4752 W m-1 K-1) in-plane), and excellent heat storage capacity (100.9 J g-1). It harbors significant potential for application in the thermal management of electronic devices and in environmental camouflage.
Collapse
Affiliation(s)
- Xuezhong Zhang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Yanhong Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Cheng Zhong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Dong Xiang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Haoming Sun
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Dong Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Guilong Yan
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Yuanpeng Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P. R. China
| |
Collapse
|
3
|
Hou L, Li S, Qi Y, Liu J, Cui Z, Liu X, Zhang Y, Wang N, Zhao Y. Advancing Efficiency in Solar-Driven Interfacial Evaporation: Strategies and Applications. ACS NANO 2025; 19:9636-9683. [PMID: 40056136 DOI: 10.1021/acsnano.4c16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Solar-driven interfacial evaporation (SDIE) has emerged as a promising technology for addressing global water scarcity by utilizing solar-thermal conversion and evaporation at the air/material/water interface. The exceptional performance of these systems has attracted significant interest; it is imperative to establish rigorous and scientific standards for evaluating effectiveness, optimizing system design, and ensuring efficient practical applications. In this Review, we propose consensus criteria for accurately assessing system performance and guiding future advancements. We then explore the fundamental mechanisms driving system synergy, emphasizing how material compositions, microscopic hierarchical material structures, and macroscopic three-dimensional spatial architecture designs enhance solar absorption and photothermal conversion; balance heat confinement with water pathway optimization; manage salt resistance; and regulate enthalpy during vaporization. These matched coordination strategies are crucial for maximizing the target SDIE efficiency. Additionally, we investigate the practical applications of SDIE technologies, focusing on cutting-edge progress and versatile water purification, combined with atmospheric water harvesting, salt collection, electric generation, and photothermal deicing. Finally, we highlight the challenges and exciting opportunities for advancing research, emphasizing future efforts to integrate fundamental principles, system-level collaboration, and application-driven approaches to boost sustainable and highly efficient water and energy technologies. By linking system performance evaluation with optimization strategies for influencing factors, we offer a comprehensive overview of the field and a future outlook that promotes highly efficient clean water production and synergistic applications.
Collapse
Affiliation(s)
- Lanlan Hou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Shuai Li
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Yingqun Qi
- School of Printing and Packaging Engineer, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Jingchong Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhimin Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Xiaofei Liu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Ying Zhang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, State Key Laboratory of Bioinspired interfacial Materials Science, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Liu Q, Guo P, Zhang X, Ren H, Liang J, Li Q, Tang W, Wu W. Fully Printable Manufacturing of Miniaturized, Highly Integrated, Flexible Evaporation-Driven Electricity Generator Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413779. [PMID: 39686729 PMCID: PMC11809399 DOI: 10.1002/advs.202413779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/24/2024] [Indexed: 12/18/2024]
Abstract
Harvesting sustainable clean energy from natural water evaporation holds great promise to provide continuous power for portable and wearable electronics. However, poor portability and complex fabrication processes hinder the low-cost and large-scale integration of flexible evaporation-driven electricity generators (FEEGs). Herein, a fully-printed flexible evaporation-driven generator (PFEEG) is developed. Utilizing custom-formulated functional inks, the asymmetric structures, current collectors, and hygroscopic water storage units can be manufactured by a patternable, scalable, and layer-by-layer deposition technique of screen printing. Thus, a PFEEG unit (0.5 cm × 1 cm × 38 µm) can generate a voltage of ≈0.8 V over a wide relative humidity (RH) range from 20% to 90%, and a maximum power density of 1.55 µW cm-2 at 70% RH. An array of 200 PFEEGs connected in series or parallel can produce voltages up to 152.41 V or a current up to 1.02 mA. Furthermore, the scalable PFEEG array can not only be seamlessly connected with the printed flexible circuit but can also be integrated with a humidity sensor and display arrays to form a self-powered printed flexible sensing system. This work presents a practical strategy for continuous power supply of portable and wearable electronics.
Collapse
Affiliation(s)
- Qun Liu
- Laboratory of Printable Functional Materials and Printed ElectronicsSchool of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Panwang Guo
- Laboratory of Printable Functional Materials and Printed ElectronicsSchool of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Xinyu Zhang
- Laboratory of Printable Functional Materials and Printed ElectronicsSchool of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Hehe Ren
- Laboratory of Printable Functional Materials and Printed ElectronicsSchool of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Jing Liang
- Laboratory of Printable Functional Materials and Printed ElectronicsSchool of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Quancai Li
- Laboratory of Printable Functional Materials and Printed ElectronicsSchool of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Weinan Tang
- Laboratory of Printable Functional Materials and Printed ElectronicsSchool of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed ElectronicsSchool of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
5
|
Yu F, Wang L, Yang X, Yang Y, Li X, Gao Y, Jiang Y, Jiang K, Lü W, Sun X, Li D. Moisture-Electric Generators Working in Subzero Environments Based on Laser-Engraved Hygroscopic Hydrogel Arrays. ACS NANO 2025; 19:3807-3817. [PMID: 39810602 DOI: 10.1021/acsnano.4c14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Moisture-electric generators (MEGs) generate power by adsorbing water from the air. However, their performance at low temperatures is hindered due to icing. In the present work, MEG arrays are developed by laser engraving techniques and a modulated low-temperature hydrogel as the absorbent material. LTH effectively captures moisture and maintains ion dissociation and migration even at subzero temperatures. Based on the double electric layer pseudocapacitance model, the oscillating circuit theory is introduced to explain the effects of moisture absorption, evaporation, and ion migration on the output current of the MEG, and the circuit calculations are matched with the experimental results. Molecular dynamics simulations indicate that LTH's low-temperature stability results from preferential hydrogen bonding between glycerol molecules and H2O, which disrupts H2O-H2O hydrogen bonds and slows water crystallization. A single MEG unit (0.25 cm2) can produce up to ∼0.8 V and ∼21.2 μW/cm2 at room temperature, and at -35 °C with 16% RH, it generates ∼0.58 V and ∼14.35 μA. MEG realizes the following applications: MEG successfully drives electronic devices in snow; arrays of 16 MEGs can power portable electronics, and 384 MEGs can achieve up to 210 V; MEG absorbs moisture in water and drives LEDs by blowing up; MEG has a flexible wearable nature; MEG is used for respiratory monitoring and photoelectric sensors.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Liying Wang
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xijia Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yue Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xuesong Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yang Gao
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yi Jiang
- School of Science, Changchun Institute of Technology, Changchun 130012, China
| | - Ke Jiang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Dabing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| |
Collapse
|
6
|
Liu JZ, Jiang W, Zhuo S, Rong Y, Li YY, Lu H, Hu J, Wang XQ, Chen W, Liao LS, Zhuo MP, Zhang KQ. Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation. SCIENCE ADVANCES 2025; 11:eadr2158. [PMID: 39752504 PMCID: PMC11698087 DOI: 10.1126/sciadv.adr2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile. These arrays were integrated with the radiation-modulated thermoelectric fabrics of electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membranes for the low-cost and high-performance wearable self-power application. Combined with the excellent photothermal properties of CNTs, the resulting thermoelectric fabric (0.2 square meters) achieves a substantial ΔT of 37 kelvin under a solar intensity of ~800 watt per square meter, yielding a peak power density of 0.20 milliwatt per square meter. This study offers a pragmatic pathway to simultaneously address thermal management and electricity generation in self-powered wearable applications by efficiently harvesting solar energy.
Collapse
Affiliation(s)
- Jin-Zhuo Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Wangkai Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
| | - Sheng Zhuo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Yun Rong
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yuan-Yuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hang Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jianchen Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
| | - Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
| | - Weifan Chen
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ming-Peng Zhuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
| |
Collapse
|
7
|
Ma H, Zhou Z, Chen F, Li L, Wang R, Ye Y, Li J, Zou G, Zhu J. MoS 2/porous carbon nanofiber heterostructures for efficient evaporation-driven generators. NANOTECHNOLOGY 2024; 36:055401. [PMID: 39467329 DOI: 10.1088/1361-6528/ad8bca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Evaporation power generators (EPGs) based on natural water evaporation can directly convert heat energy from the surrounding environment into electrical energy. Nevertheless, the commercialization of EPGs faces challenges due to the low charge generation and transport efficiency of single material systems, leading to unsatisfactory open-circuit voltages and short-circuit currents. Here, we systematically prepared molybdenum sulfide (MoS2)/porous carbon nanofiber (PCNF) heterogeneous systems by electrospinning and hydrothermal methods. Electron microscope measurements have confirmed the uniform coating of high-crystalline quality MoS2nanosheets on PCNF fabrics, and the uneven concave-convex surface increased the specific surface area. MoS2covered PCNF fabrics retained excellent hydrophilicity, which was suitable for absorbing water and keeping the surface wet during long-term evaporation. Moreover, layered MoS2with rich surface charge improved the charge transfer of the MoS2/PCNF fabrics. As a result, the open-circuit voltage and short-circuit current of the EPGs fabricated with MoS2/PCNF fabrics were enhanced to 0.25 V and 75μA, respectively, in comparison to those based on PCNF fabrics, which demonstrated that the MoS2coatings improved the interaction area with water and the charge transfer effect of the EPGs. This heterogeneous combination strategy provides ideas for the preparation of high-performance EPG materials.
Collapse
Affiliation(s)
- Haoyu Ma
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Zhicheng Zhou
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Fengnan Chen
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Lutao Li
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Ruonan Wang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Yaqi Ye
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Jiating Li
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Guifu Zou
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Juntong Zhu
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
8
|
Li F, Zhao J, Li B, Han Z, Guo L, Han P, Kim HH, Su Y, Zhu LM, Shen D. Water-Triboelectrification-Complemented Moisture Electric Generator. ACS NANO 2024; 18:30658-30667. [PMID: 39443166 DOI: 10.1021/acsnano.4c09581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Energy harvesting from ubiquitous natural water vapor based on moisture electric generator (MEG) technology holds great potential to power portable electronics, the Internet of Things, and wireless transmission. However, most devices still encounter challenges of low output, and a single MEG complemented with another form of energy harvesting for achieving high power has seldom been demonstrated. Herein, we report a flexible and efficient hybrid generator capable of harvesting moisture and tribo energies simultaneously, both from the source of water droplets. The moisture electric and triboelectric layers are based on a water-absorbent citric acid (CA)-mediated polyglutamic acid (PGA) hydrogel and porous electret expanded polytetrafluoroethylene (E-PTFE), respectively. Such a waterproof E-PTFE film not only enables efficient triboelectrification with water droplets' contact but also facilitates water vapor to be transferred into the hydrogel layer for moisture electricity generation. A single hybrid generator under water droplets' impact delivers a DC voltage of 0.55 V and a peak current density of 120 μA cm-2 from the MEG, together with a simultaneous AC output voltage of 300 V and a current of 400 μA from the complementary water-based triboelectric generator (TEG) side. Such a hybrid generator can work even under harsh wild environments with 5 °C cold and saltwater impacts. Significantly, an optical alarm and wireless communication system for wild, complex, and emergency scenarios is demonstrated with power from the hybrid generators. This work expands the applications of water-based electricity generation technologies and provides insight into harvesting multiple potential energies in the natural environment with high output.
Collapse
Affiliation(s)
- Fangzhou Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jian Zhao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Bin Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zechao Han
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linglan Guo
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peicheng Han
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hyun Ho Kim
- Department of Energy Engineering Convergence, School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yanjie Su
- Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Min Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daozhi Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Chen J, Wang X, Wang B, Wu T, Zhang L, Zhang K, Fang G, Wang Y, Zhao Y, Yang G. Recent Advances of Bio-Based Hydrogel Derived Interfacial Evaporator for Sustainable Water and Collaborative Energy Storage Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403221. [PMID: 39012064 DOI: 10.1002/smll.202403221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Indexed: 07/17/2024]
Abstract
Solar interfacial evaporation strategy (SIES) has shown great potential to deal with water scarcity and energy crisis. Biobased hydrogel derived interfacial evaporator can realize efficient evaporation due to the unique structure- properties relationship. As such, increasing studies have focused on water treatment or even potential accompanying advanced energy storage applications with respect of efficiency and mechanism of bio-based hydrogel derived interfacial evaporation from microscale to molecular scale. In this review, the interrelationship between efficient interfacial evaporator and bio-based hydrogel is first presented. Then, special attention is paid on the inherent molecular characteristics of the biopolymer related to the up-to-date studies of promising biopolymers derived interfacial evaporator with the objective to showcase the unique superiority of biopolymer. In addition, the applications of the bio-based hydrogels are highlighted concerning the aspects including water desalination, water decontamination atmospheric water harvesting, energy storage and conversion. Finally, the challenges and future perspectives are given to unveil the bottleneck of the biobased hydrogel derived SIES in sustainable water and other energy storage applications.
Collapse
Affiliation(s)
- Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiaofa Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Baobin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Lei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu Province, 210042, China
| | - Yueying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| |
Collapse
|
10
|
Zhao L, Chu W, Li L, Wang C, Wei Z, Deng W, Nie R. Starch Cross-Linked Glass Fibers for Water Evaporation-Induced Electricity Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57544-57551. [PMID: 39388340 DOI: 10.1021/acsami.4c12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Water evaporation-induced electricity devices (WEDs) have become extremely attractive, converting ambient heat into electricity while being environmentally friendly. However, most current WEDs are costly and cumbersome to fabricate, which greatly limits their commercialization process. Here, we present WEDs based on starch cross-linked with glass fiber filter paper (Starch-GF). A single device produced an open-circuit voltage of 0.3 V, a short-circuit current of 1.2 μA, and a maximum power density of 1.8 mW/m2 in a natural environment under 24 h of continuous measurements. Starch-GF devices can drive electronics after charging capacitors and have environmentally friendly properties. This research contributes significantly to the discovery of hydrovoltaic materials and their practical implementation in hydrovoltaic devices.
Collapse
Affiliation(s)
- Luyao Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Weicun Chu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Luyao Li
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Cheng Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Zeliang Wei
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wei Deng
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Riming Nie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
11
|
Wei T, Hu X, Zeng M, Zhang Q, Song Y, Zhao W, Li J, Yang Z, Fei M, Xu N, Zhu J. High-Current Water-Enabled Electricity Generation in Mushrooms via Synergistic Ion Sieving and Adsorption. NANO LETTERS 2024; 24:12036-12044. [PMID: 39311142 DOI: 10.1021/acs.nanolett.4c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Water-enabled electricity generation (WEG), which harvests energy from the natural water cycle, is a novel strategy for producing green electricity. Taking advantage of the ion sieving effect based on evaporation-induced water flows in charged nanopores, various WEG devices have been developed. Here, we report that a carbonized mushroom produces a record-high current output of up to 96.7 μA, which is attributed to a unique ion adsorption effect combined with an ion sieving effect. Specifically, the natural gradient potential from root to cap in a mushroom caused by tissue differentiation adsorbs different ions, enhancing the traditional ion sieving current. In synergy with the two effects, the mushroom can operate under a broad range of concentrations (0 to 0.6 mol L-1) and represents significant improvements in current, duration, and total charge transfer. These findings reveal the hidden talent of mushrooms as natural materials for WEG, providing inspiration for the development of high-performance WEG devices.
Collapse
Affiliation(s)
- Tianqi Wei
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiaozhen Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210093, People's Republic of China
| | - Mengyue Zeng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Qi Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yan Song
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wei Zhao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jinlei Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhengwei Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Minfei Fei
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ning Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, People's Republic of China
- School of Sustainable Energy and Resources, Nanjing University, Suzhou 215163, People's Republic of China
| |
Collapse
|
12
|
Cheng P, Zou Y, Li Z. Harvesting Water Energy through the Liquid-Solid Triboelectrification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47050-47074. [PMID: 39207453 DOI: 10.1021/acsami.4c09044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The escalating energy and environmental challenges have catalyzed a global shift toward seeking more sustainable, economical, and eco-friendly energy solutions. Water, capturing 35% of the Earth's solar energy, represents a vast reservoir of clean energy. However, current industrial capabilities harness only a fraction of the energy within the hydrological cycle. The past decade has seen rapid advancements in nanoscience and nanomaterials leading to a comprehensive exploration of liquid-solid triboelectrification as a low-carbon, efficient method for water energy harvesting. This review explores two fundamental principle models involved in liquid-solid triboelectrification. On the basis of these models, two distinct types of water energy harvesting devices, including droplet-based nanogenerators and water evaporation-induced nanogenerators, are summarized from their working principles, recent developments, materials, structures, and performance optimization techniques. Additionally, the applications of these nanogenerators in energy harvesting, self-powered sensing, and healthcare are also discussed. Ultimately, the challenges and future prospects of liquid-solid triboelectrification are further explored.
Collapse
Affiliation(s)
- Peng Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Hu T, Zhang K, Deng W, Guo W. Hydrovoltaic Effects from Mechanical-Electric Coupling at the Water-Solid Interface. ACS NANO 2024; 18:23912-23940. [PMID: 39168863 DOI: 10.1021/acsnano.4c07900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The natural water cycle on the Earth carries an enormous amount of energy as thirty-five percent of solar energy reaching the Earth's surface goes into water. However, only a very marginal part of the contained energy, mostly kinetic energy of large volume bulk water, is harvested by hydroelectric power plants. Natural processes in the water cycle, such as rainfall, water evaporation, and moisture adsorption, are widespread but have remained underexploited in the past due to the lack of appropriate technologies. In the past decade, the emergence of hydrovoltaic technology has provided ever-increasing opportunities to extend the technical capability for energy harvesting from the water cycle. Featuring electricity generation from mechanical-electric coupling at the water-solid interface, hydrovoltaic technology embraces almost all dynamic processes associated with water, including raining, waving, flowing, evaporating, and moisture adsorbing. This versatility in dealing with various forms of water and associated energy renders hydrovoltaic technology a solution for fossil fuel-caused environmental problems. Here, we review the current progress of hydrovoltaic energy harvesting from water motion, evaporation, and ambient moisture. Device configuration, energy conversion mechanism mediated by mechanical-electric coupling at various water-solid interfaces, as well as materials selection and functionalization are discussed. Useful strategies guided by established mechanisms for device optimization are then covered. Finally, we provide an outlook on this emerging field and outline the challenges of improving output performance toward potential practical applications.
Collapse
Affiliation(s)
- Tao Hu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Kelan Zhang
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wei Deng
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
14
|
Xiao H, Yu Z, Liang J, Ding L, Zhu J, Wang Y, Chen S, Xin JH. Wetting Behavior-Induced Interfacial transmission of Energy and Signal: Materials, Mechanisms, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407856. [PMID: 39032113 DOI: 10.1002/adma.202407856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Wetting behaviors can significantly affect the transport of energy and signal (E&S) through vapor, solid, and liquid interfaces, which has prompted increased interest in interfacial science and technology. E&S transmission can be achieved using electricity, light, and heat, which often accompany and interact with each other. Over the past decade, their distinctive transport phenomena during wetting processes have made significant contributions to various domains. However, few studies have analyzed the intricate relationship between wetting behavior and E&S transport. This review summarizes and discusses the mechanisms of electrical, light, and heat transmission at wetting interfaces to elucidate their respective scientific issues, technical characteristics, challenges, commonalities, and potential for technological convergence. The materials, structures, and devices involved in E&S transportation are also analyzed. Particularly, harnessing synergistic advantages in practical applications and constructing advanced, multifunctional, and highly efficient smart systems based on wetted interfaces is the aim to provide strategies.
Collapse
Affiliation(s)
- Haoyuan Xiao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zilin Yu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiechang Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Ding
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingshuai Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanfeng Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shiguo Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - John H Xin
- Research Centre of Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
15
|
Liu H, Cui P, Zhang J, Wang J, Ge Y, Zhou Z, Meng Y, Huang Z, Yang K, Du Z, Cheng G. Harnessing Natural Evaporation for Electricity Generation using MOF-Based Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400961. [PMID: 38534173 DOI: 10.1002/smll.202400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Functionalized nanochannels can convert environmental thermal energy into electrical energy by driving water evaporation. This process involves the interaction between the solid-liquid interface and the natural water evaporation. The evaporation-driven water potential effect is a novel green environmental energy capture technology that has a wide range of applications and does not depend on geographical location or environmental conditions, it can generate power as long as there is water, light, and heat. However, suitable materials and structures are needed to harness this natural process for power generation. MOF materials are an emerging field for water evaporation power generation, but there are still many challenges to overcome. This work uses MOF-801, which has high porosity, charged surface, and hydrophilicity, to enhance the output performance of evaporation-driven power generation. It can produce an open circuit voltage of ≈2.2 V and a short circuit current of ≈1.9 µA. This work has a simple structure, easy preparation, low-cost and readily available materials, and good stability. It can operate stably in natural environments with high practical value.
Collapse
Affiliation(s)
- Huimin Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Peng Cui
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Jingjing Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Jingjing Wang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Ying Ge
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Zunkang Zhou
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Yao Meng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Zanying Huang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Ke Yang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Gang Cheng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
16
|
Ren G, Ye J, Hu Q, Zhang D, Yuan Y, Zhou S. Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation. Nat Commun 2024; 15:4992. [PMID: 38862519 PMCID: PMC11166942 DOI: 10.1038/s41467-024-49429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
It has been previously shown that devices based on microbial biofilms can generate hydrovoltaic energy from water evaporation. However, the potential of hydrovoltaic energy as an energy source for microbial growth has remained unexplored. Here, we show that the electroautotrophic bacterium Rhodopseudomonas palustris can directly utilize evaporation-induced hydrovoltaic electrons for growth within biofilms through extracellular electron uptake, with a strong reliance on carbon fixation coupled with nitrate reduction. We obtained similar results with two other electroautotrophic bacterial species. Although the energy conversion efficiency for microbial growth based on hydrovoltaic energy is low compared to other processes such as photosynthesis, we hypothesize that hydrovoltaic energy may potentially contribute to microbial survival and growth in energy-limited environments, given the ubiquity of microbial biofilms and water evaporation conditions.
Collapse
Affiliation(s)
- Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qichang Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
17
|
Gao F, Tu J, Qu J, Ge J, Yin Q, Zang Y, Zhong W, Jiao Z. Dual mechanisms based on synergistic effects of evaporation potential and streaming potential for natural water evaporation. J Colloid Interface Sci 2024; 663:251-261. [PMID: 38401445 DOI: 10.1016/j.jcis.2024.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
Electricity generation by natural water evaporation generators (NWEGs) using porous materials shows great potential for energy harvesting, but mechanistic investigations of NWEGs have mostly been limited to streaming potential studies. In this study, we propose the coexistence of an evaporation potential and streaming potential in a NWEG using ZSM-5 as the generation material. The iron probe method, salt concentration regulation, solution regulation, and side evaporation area regulation were used to analyze the NWEG mechanism. Our findings revealed that a streaming potential formed as water flowed inside the ZSM-5 nanochannels, driven by electrodynamic effects that increased from the bottom to the top of the generator. In addition, an evaporation potential existed at the surface interface between ZSM-5 and water, which decreased from the bottom to the top as the evaporation height of the generator increased. The resulting open-circuit voltage (Voc) depended on the balance between the evaporation and streaming potentials, both of which were influenced by the evaporation enthalpy (Ee) or vapor pressure. Generally, a higher Ee or lower vapor pressure led to a lower evaporation potential and subsequently a lower Voc. A dual mechanism involving synergistic evaporation potential and streaming potential is proposed to explain the mechanism of NWEGs.
Collapse
Affiliation(s)
- Feng Gao
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jingjing Tu
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jiangying Qu
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Jiawei Ge
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Qian Yin
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Yunhao Zang
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Weijun Zhong
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zhe Jiao
- Dongguan Key Laboratory of Low-Carbon Recycling and Utilization, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
18
|
Park H, Choi G, Yoon S, Jung Y, Bang J, Kim M, Ko SH. MXene-Enhanced Ionovoltaic Effect by Evaporation and Water Infiltration in Semiconductor Nanochannels. ACS NANO 2024; 18:13130-13140. [PMID: 38709625 DOI: 10.1021/acsnano.4c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In recent years, substantial attention has been directed toward energy-harvesting systems that exploit sunlight energy and water resources. Intensive research efforts are underway to develop energy generation methodologies through interactions with water using various materials. In the present investigation, we synthesized sodium vanadium oxide (SVO) nanorods with n-type semiconductor characteristics. These nanorods facilitate the initiation of capillary phenomena within nanochannels, thereby enhancing the interfacial area between nanomaterials and ions. The open-circuit voltage (VOC) was 0.8 V, and the short-circuit current (ISC) was 30 μA, which were continuously monitored at room temperature using a 0.1 M saltwater solution. Additionally, we achieved enhanced energy generation by efficiently converting light energy into thermal energy using MXene, a 2D material. This was accomplished through the photothermal effect, leveraging the inherent semiconductor characteristics. Under light exposure, the system exhibited improved performance attributed to heightened ion diffusion and increased conductivity. This phenomenon was a result of the concerted synergy between ions and electrons facilitated by a semiconductor nanofluidic channel. Ultimately, we demonstrated an application to showcase real-world viability. In this scenario, electricity was harvested through a smart buoy floating on the water, and, based on this, data from the surrounding environment was sensed and wirelessly transmitted.
Collapse
Affiliation(s)
- Huijae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Gyuho Choi
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Sangjin Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-road, Gwanak-gu, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
19
|
Li SM, Qiu Y, Xie YM, Wang XT, Wang K, Cheng H, Zhang D, Zheng QN, Wang YH, Li JF. Synergistic Effects of TiO 2 and Carbon Black for Water Evaporation-Induced Electricity Generation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38706443 DOI: 10.1021/acsami.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Water evaporation-induced electricity generators (WEGs) have drawn widespread attention in the field of hydrovoltaic technology, which can convert atmospheric thermal energy into sustainable electric power. However, it is restricted in the wide application of WEGs due to the low power output, complex fabrication process, and high cost. Herein, we present a simple and effective approach to fabricate TiO2-carbon black film-based WEGs (TC-WEGs). A single TC-WEG device can sustainably output an open-circuit voltage of 1.9 V and a maximum power density of 40.9 μW/cm2. Moreover, it has been shown that TC-WEGs exhibit stable electrical energy output when operating in seawater, which can yield a short-circuit current of 1.2 μA. The superior electricity generation performance can be attributed to the intrinsic characteristics of the TC-WEGs, including hydrophilicity, porous structure, and electrical conductivity. This work provides an important reference for the constant harvesting of clean energy.
Collapse
Affiliation(s)
- Shu-Min Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yingru Qiu
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yi-Meng Xie
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Xiao-Ting Wang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Kun Wang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Huan Cheng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dongao Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Qing-Na Zheng
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yao-Hui Wang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
20
|
Saqib QM, Ahmad I, Mannan A, Mahmood J, Ameen S, Patil CS, Noman M, Kim J, Okyay MS, Patil SR, Ko Y, Noh HJ, Wong BM, Kim B, Bae J, Baek JB. Triboelectric Energy Harvesting from Highly Conjugated Fused Aromatic Ladder Structure Under Extreme Environmental Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311029. [PMID: 38299366 DOI: 10.1002/adma.202311029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Practical application of triboelectric nanogenerators (TENGs) has been challenging, particularly, under harsh environmental conditions. This work proposes a novel 3D-fused aromatic ladder (FAL) structure as a tribo-positive material for TENGs, to address these challenges. The 3D-FAL offers a unique materials engineering platform for tailored properties, such as high specific surface area and porosity, good thermal and mechanical stability, and tunable electronic properties. The fabricated 3D-FAL-based TENG reaches a maximum peak power density of 451.2 µW cm-2 at 5 Hz frequency. More importantly, the 3D-FAL-based TENG maintains stable output performance under harsh operating environments, over wide temperature (-45-100 °C) and humidity ranges (8.3-96.7% RH), representing the development of novel FAL for sustainable energy generation under challenging environmental conditions. Furthermore, the 3D-FAL-based TENG proves to be a promising device for a speed monitoring system engaging reconstruction in virtual reality in a snowy environment.
Collapse
Affiliation(s)
- Qazi Muhammad Saqib
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ishfaq Ahmad
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San, Sebastian, 20018, Spain
| | - Abdul Mannan
- Department of Physics, University of Management and Technology, Lahore, 54770, Pakistan
| | - Javeed Mahmood
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Oxide & Organic Nanomaterials for Energy & Environment (ONE) Laboratory, Chemistry Program; Advanced Membranes & Porous Materials (AMPM) Center; KAUST Catalysis Center (KCC); Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Shahid Ameen
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chandrashekhar S Patil
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Muhammad Noman
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jungmin Kim
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Mahmut Sait Okyay
- Materials Science & Engineering Program, Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| | - Swapnil R Patil
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Youngbin Ko
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Bryan M Wong
- Materials Science & Engineering Program, Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| | - BongSoo Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinho Bae
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
21
|
Zhang K, Li X, Yan C, Shi R, Fang Z, Zhou S, Cao R, Tian J. All-Wood-Based Ionic Power Generator with Dual Functions for Alkaline Wastewater Reuse and Energy Harvesting. ACS NANO 2024; 18:10259-10269. [PMID: 38551447 DOI: 10.1021/acsnano.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Water-induced electricity harvesting has gained much significance for energy sustainability. Bio-based hydrovoltaic materials increase the attractiveness of this strategy. Although promising, it faces a challenge due to its reliance on fresh water and its inherently low power output. Herein, the energy from alkalinity-gradient power generation demonstrated the feasibility of reuse of alkaline wastewater to develop an all-wood-based water-induced electric generator (WEG) based on ion concentration gradients. The intermittent water droplets bring about uneven distribution of electrolyte and endow delignified wood with the difference of ion concentration along aligned cellulose nanochannels, thus supplying electrical power. The practice of using alkali reservoirs, including industrial wastewater, further contributes to electricity generation. The cubic WEG with a side length of 2 cm can produce an ultrahigh open-circuit voltage of about 1.1 V and a short-circuit current of up to 320 μA. A power output of 6.75 μW cm-2 is correspondingly realized. Series-connected WEGs can be used as an energy source for commercial electronics and self-powered systems. Our design provides a double value proposition, allowing for sustainable energy generation and wastewater reuse.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xin Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chenyang Yan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rongxiang Shi
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rong Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| |
Collapse
|
22
|
Ge C, Wang Y, Wang M, Zheng Z, Wang S, Kong Y, Gao Q, Liu M, Sun F, Li L, Zhang T. Silk Fibroin-Regulated Nanochannels for Flexible Hydrovoltaic Ion Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310260. [PMID: 38116707 DOI: 10.1002/adma.202310260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/10/2023] [Indexed: 12/21/2023]
Abstract
The evaporation-induced hydrovoltaic effect based on ion-selective nanochannels can theoretically be employed for high-performance ion sensing; yet, the indeterminate ion-sensing properties and the acquisition of high sensing performance are rarely explored. Herein, a controllable nanochannel regulation strategy for flexible hydrovoltaic devices with highly sensitive ion-sensing abilities is presented across a wide concentration range. By multiple dip-coating of silk fibroin (SF) on an electrospinning nylon-66 nanofiber (NNF) film, the surface polarity enhancement, the fibers size regulation with a precision of ≈25 nm, and the nanostructure firm binding are achieved simultaneously. The resultant flexible freestanding hydrovoltaic device exhibits an open circuit voltage up to 4.82 V in deionized water, a wide ion sensing range of 10-7 to 100 m, and ultrahigh sensitivity as high as 1.37 V dec-1, which is significantly higher than the sensitivity of the traditional solid-contact ion-selective electrodes (SC-ISEs). The fabricated flexible ion-sensitive hydrovoltaic device is successfully applied for wearable human sweat electrolyte sensing and for environmental trace-ion monitoring, thereby confirming the potential application of the hydrovoltaic effect for ion sensing.
Collapse
Affiliation(s)
- Changlei Ge
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Yongfeng Wang
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Mingxu Wang
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Zhuo Zheng
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Shuqi Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Yaping Kong
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Qiang Gao
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Mengyuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Fuqin Sun
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Lianhui Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Ting Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
23
|
Lim H, Kim MS, Cho Y, Ahn J, Ahn S, Nam JS, Bae J, Yun TG, Kim ID. Hydrovoltaic Electricity Generator with Hygroscopic Materials: A Review and New Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301080. [PMID: 37084408 DOI: 10.1002/adma.202301080] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The global energy crisis caused by the overconsumption of nonrenewable fuels has prompted researchers to develop alternative strategies for producing electrical energy. In this review, a fascinating strategy that simply utilizes water, an abundant natural substance throughout the globe and even in air as moisture, as a power source is introduced. The concept of the hydrovoltaic electricity generator (HEG) proposed herein involves generating an electrical potential gradient by exposing the two ends of the HEG device to dissimilar physicochemical environments, which leads to the production of an electrical current through the active material. HEGs, with a large variety of viable active materials, have much potential for expansion toward diverse applications including permanent and/or emergency power sources. In this review, representative HEGs that generate electricity by the mechanisms of diffusion, streaming, and capacitance as case studies for building a fundamental understanding of the electricity generation process are discussed. In particular, by comparing the use and absence of hygroscopic materials, HEG mechanism studies to establish active material design principles are meticulously elucidated. The review with future perspectives on electrode design using conducting nanomaterials, considerations for high performance device construction, and potential impacts of the HEG technology in improving the livelihoods are reviewed.
Collapse
Affiliation(s)
- Haeseong Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Min Soo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yujang Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seongcheol Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong Seok Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaehyeong Bae
- Department of Chemical Engineering, College of Engineering Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Tae Gwang Yun
- Department of Materials Science and Engineering, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
24
|
Xue W, Zhao Z, Zhang S, Li Y, Wang X, Qiu J. Power Generation from the Interaction of a Carbon Foam and Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2825-2835. [PMID: 38176096 DOI: 10.1021/acsami.3c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Understanding the interaction mechanisms between the surface of carbon-based materials and water is of great significance for the development of water-based energy storage and energy conversion devices. Herein, a self-supporting electric generator is demonstrated based on water adsorption on the surface of the carbon foam (CF) that works with various water resources, including deionized (DI) water, tap water, wastewater, and seawater. It is revealed that the dissociation of oxygen-containing groups on the surface of CF after water molecule adsorption leads to a reduction of the surface potential of the CF. Through surface modulation techniques such as reduction and oxidation, a balance has been uncovered between the oxygen content and conductivity for the high-performance CFs. The generator can generate an open-circuit voltage of approximately 0.6 V in natural seawater with a power density of up to 0.77 mW g-1. A high voltage of more than 2 V can be achieved easily by assembling components connected in series to drive electronic devices, such as a light-emitting diode (LED). This work demonstrates a simple and low-cost method for electricity harvesting, offering an additional option for self-powered devices.
Collapse
Affiliation(s)
- Wan Xue
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongbin Zhao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Su Zhang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yong Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Xuzhen Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
25
|
Cao YM, Su Y, Zheng M, Luo P, Xue YB, Han BB, Zheng M, Wang Z, Liao LS, Zhuo MP. Vertical Phase-Engineering MoS 2 Nanosheet-Enhanced Textiles for Efficient Moisture-Based Energy Generation. ACS NANO 2024; 18:492-505. [PMID: 38117279 DOI: 10.1021/acsnano.3c08132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Flexible moisture-electric generators (MEGs) capture chemical energy from atmospheric moisture for sustainable electricity, gaining attention in wearable electronics. However, challenges persist in the large-scale integration and miniaturization of MEGs for long-term, high-power output. Herein, a vertical heterogeneous phase-engineering MoS2 nanosheet structure based silk and cotton were rationally designed and successfully applied to construct wearable MEGs for moisture-energy conversion. The prepared METs exhibit ∼0.8 V open-circuit voltage, ∼0.27 mA/cm2 current density for >10 h, and >36.12 μW/cm2 peak output power density, 3 orders higher than current standards. And the large-scale device realizes a current output of 0.145 A. An internal phase gradient between the 2H semiconductor MoS2 in carbonized silks and 1T metallic MoS2 in cotton fibers enables a phase-engineering-based heterogeneous electric double layer functioning as an equivalent parallel circuit, leading to enhanced high-power output. Owing to their facile customization for seamless adaptation to the human body, we envision exciting possibilities for these wearable METs as integrated self-power sources, enabling real-time monitoring of physiological parameters in wearable electronics.
Collapse
Affiliation(s)
- Yuan-Ming Cao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yang Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Mi Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Peng Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yang-Biao Xue
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Bin-Bin Han
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Min Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zuoshan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ming-Peng Zhuo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
26
|
Yuan X, Bai G, Wang Y, Zeng X, Shao B, Wang Y, Sun B. Mapping Capillary Infiltration-Induced Potential in Water-Triggered Electric Generator Using an Electrical Probe Integrated Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307201. [PMID: 37950403 DOI: 10.1002/smll.202307201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Power generation from water-triggered capillary action in porous structures has recently geared extensive attention, offering the potential for generating electricity from ubiquitous water evaporation. However, conclusively establishing the nature of electrical generation and charge transfer is extremely challenging arising from the complicated aqueous solid-liquid interfacial phenomenon. Here, an electric probe-integrated microscope is developed to on-line monitor the correlation between water capillary action and potential values at any desired position of an active layer. With a probe spatial resolution reaching up to fifty micrometers, the internal factors prevailing over the potential distribution across the whole wet and dry regions are comprehensively identified. Further, the self-powered sensing capabilities of this integrated system are also demonstrated, including real-time monitoring of wind speed, environmental humidity, ionic strength, and inclination angle of generators. The combination of electric potential and chemical color indicator suggests that charge generation is likely correlated with ion-selective transport in the nanoporous channel during the water infiltration process. And unipolar ions (for instance protons) should be the dominant charge-transfer species. The work reveals the fundamental principles regulating charge generation/transfer during the water-triggered electric generation process.
Collapse
Affiliation(s)
- Xianrong Yuan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Guilin Bai
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yanan Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xuelian Zeng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Beibei Shao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yusheng Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| | - Baoquan Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| |
Collapse
|
27
|
Eun J, Jeon S. Janus Membrane-Based Hydrovoltaic Power Generation with Enhanced Performance under Suppressed Evaporation Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50126-50133. [PMID: 37852215 DOI: 10.1021/acsami.3c08618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
We developed a novel hydrovoltaic power generator (HPG) using a Janus bilayer membrane with an asymmetric wettability. The Janus bilayer membrane was fabricated by stacking a hydrophobic graphene oxide (GO)-cellulose nanofiber (CNF) composite layer on a hydrophilic GO-CNF composite layer. Water supplied through the hydrophilic layer stops at the surface of the hydrophobic layer, producing separate wet and dry regions within the thin bilayer. Protons and sodium ions dissociate from oxygen-containing functional groups in the hydrophilic GO-CNF layer and migrate toward the hydrophobic layer, resulting in a maximum output voltage and current of 0.35 V and 20 μA, respectively, in deionized (DI) water. By replacement of DI water with a 0.6 M NaCl solution (i.e., the concentration of seawater), the output voltage and current were further increased to 0.55 V and 60 μA, respectively. This performance was consistent not only under low humidity due to the water supply but also under high humidity, where evaporation was restricted, indicating humidity-independent performance. The asymmetric wettability of the membrane remained stable throughout the experiment (7 days), enabling continuous power generation.
Collapse
Affiliation(s)
- Jakyung Eun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 37673, Gyeongbuk, Republic of Korea
| |
Collapse
|
28
|
Jiao S, Zhang Y, Li Y, Maryam B, Xu S, Liu W, Liu M, Li J, Zhang X, Liu X. Evaporation Driven Hydrovoltaic Generator Based on Nano-Alumina-Coated Polyethylene Terephthalate Film. Polymers (Basel) 2023; 15:4079. [PMID: 37896323 PMCID: PMC10610091 DOI: 10.3390/polym15204079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Collecting energy from the ambient environment through green and sustainable methods is highly expected to alleviate pollution and energy problems worldwide. Here, we report a facile and flexible hydrovoltaic generator capable of utilizing natural water evaporation for sustainable electricity production. The generator was fabricated by coating nano-Al2O3 on a twistable polyethylene terephthalate film. An open circuit voltage of 1.7 V was obtained on a piece of centimeter-sized hydrovoltaic generator under ambient conditions. The supercapacitor charged by the hydrovoltaic device can power a mini-motor efficiently. Moreover, by expanding the size or connecting it in series/parallel, the energy output of the generator can be further improved. Finally, the influence factors and the mechanism for power generation were primarily investigated. Electrical energy is produced by the migration of water through charged capillary channels. The environmental conditions, the properties of the solution and the morphology of the film have important effects on the electrical performance. This study is anticipated to offer enlightenment into designing novel hydrovoltaic devices, providing diverse energy sources for various self-powered devices and systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; (S.J.); (Y.Z.); (Y.L.); (B.M.); (S.X.); (W.L.); (M.L.); (J.L.); (X.Z.)
| |
Collapse
|
29
|
Li L, Zheng Z, Ge C, Wang Y, Dai H, Li L, Wang S, Gao Q, Liu M, Sun F, Zhang T. A Flexible Tough Hydrovoltaic Coating for Wearable Sensing Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304099. [PMID: 37401733 DOI: 10.1002/adma.202304099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
The lack of a strong binding mechanism between nanomaterials severely restricts the advantages of the evaporation-driven hydrovoltaic effect in wearable sensing electronics. It is a challenging task to observably improve the mechanical toughness and flexibility of hydrovoltaic devices to match the wearable demand without abandoning the nanostructures and surface function. Here, a flexible tough polyacrylonitrile/alumina (PAN/Al2 O3 ) hydrovoltaic coating with both good electricity generation (open-circuit voltage, Voc ≈ 3.18 V) and sensitive ion sensing (2285 V M-1 for NaCl solutions in 10-4 to 10-3 m) capabilities is developed. The porous nanostructure composed of Al2 O3 nanoparticles is firmly locked by the strong binding effect of PAN, giving a critical binding force 4 times that of Al2 O3 film to easily deal with 9.92 m s-1 strong water-flow impact. Finally, skin-tight and non-contact device structures are proposed to achieve wearable multifunctional self-powered sensing directly using sweat. The flexible tough PAN/Al2 O3 hydrovoltaic coating breaks through the mechanical brittleness limitation and broadens the applications of the evaporation-induced hydrovoltaic effect in self-powered wearable sensing electronics.
Collapse
Affiliation(s)
- Lianhui Li
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Zhuo Zheng
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Changlei Ge
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yongfeng Wang
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Hao Dai
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lili Li
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Shuqi Wang
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Qiang Gao
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Mengyuan Liu
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Fuqin Sun
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
| | - Ting Zhang
- i-Lab, Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, 200031, P. R. China
| |
Collapse
|
30
|
Yu F, Li J, Jiang Y, Wang L, Yang X, Yang Y, Li X, Jiang K, Lü W, Sun X. High Hydrovoltaic Power Density Achieved by Universal Evaporating Potential Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302941. [PMID: 37712146 PMCID: PMC10602524 DOI: 10.1002/advs.202302941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/11/2023] [Indexed: 09/16/2023]
Abstract
While hydrovoltaic electrical energy generation developments in very recent years have provided an alternative strategy to generate electricity from the direct interaction of materials with water, the two main issues still need to be addressed: achieving satisfactory output power density and understanding the reliable mechanism. In the present work, the integration of capacitors and water evaporation devices is proposed to provide a stable power supply. The feasible device structure consuming only water and air is green and environmentally sustainable, achieving a recorded power density of 142.72 µW cm-2 . The output power of the series of devices is sufficient to drive portable electronic products with different voltage and current requirements, enabling self-driving systems for portable appliances. It has been shown that the working behavior originates from evaporating potential other than streaming potential. The present work provides both theoretical support and an experimental design for realizing practical application of hydrovoltaic electrical energy generation devices.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Jialun Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Yi Jiang
- School of ScienceChangchun Institute of TechnologyChangchun130012P. R. China
| | - Liying Wang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Xijia Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Yue Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Xuesong Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
| | - Ke Jiang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012P.R. China
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| |
Collapse
|
31
|
Ni K, Xu B, Wang Z, Ren Q, Gu W, Sun B, Liu R, Zhang X. Ion-Diode-Like Heterojunction for Improving Electricity Generation from Water Droplets by Capillary Infiltration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305438. [PMID: 37526223 DOI: 10.1002/adma.202305438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Water-droplet-based electricity generators are emerging hydrovoltaic technologies that harvest energy from water circulation through strong interactions between water and nanomaterials. However, such devices exhibit poor current performance owing to their unclear driving force (evaporation or infiltration) and undesirable reverse diffusion current. Herein, a water-droplet-based hydrovoltaic electricity generator induced by capillary infiltration with an asymmetric structure composed of a diode-like heterojunction formed by negatively and positively charged materials is fabricated. This device can generate current densities of 160 and 450 µA cm-2 at room temperature and 65 °C, respectively. The heterojunction achieves a rectification ratio of 12, which effectively suppresses the reverse current caused by concentration differences. This results in an improved charge accumulation of ≈60 mC cm-2 in 1000 s, which is three times the value observed in the control device. When the area of the device is increased to 6 cm2 , the current increases linearly to 1 mA, thus demonstrating the scale-up potential of the generator. It has been proven that the streaming potential originates from capillary infiltration, and the presence of ion rectification. The proposed method of constructing ion-diode-like structures provides a new strategy for improving generator performance.
Collapse
Affiliation(s)
- Kun Ni
- Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bentian Xu
- Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhiqi Wang
- Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qinyi Ren
- Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wenbo Gu
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Baoquan Sun
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ruiyuan Liu
- Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohong Zhang
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
32
|
Abstract
In recent years, excessive exploitation and rapid population growth have posed numerous challenges. The climate crisis is deepening because of the unabated use of fossil fuels and the ascendance of greenhouse gas levels, so there is still an urgent need to seek different clean energy sources and electricity generating methods with the purpose of adjusting energy structures and solving environmental problems. In the ubiquitous hydrologic cycle, at least 60 petawatts (1015 W) energy can be supplied, but little of it has yet been utilized. Nowadays, hydrovoltaic intelligence has emerged and exhibited an ecofriendly concept of electricity generation compared with traditional methods with the rise of nanoscience and nanomaterials. Hence, it provides the prospect of upgrading the mode of water energy use, constructing a renewable energy industry, and alleviating environmental issues. In this review, starting by introducing different types of hydrovoltaic effect mechanisms─energy harvesting based on drawing potential of liquids; energy harvesting based on water evaporation, and energy harvesting based on moisture adsorption─we summarize the fabrication processes, material classifications, intelligent applications, and representative advances in detail. Moreover, the future development trends of hydrovoltaic intelligence and the challenges for improvement in electrical output are further discussed.
Collapse
Affiliation(s)
- Luomin Wang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Weifeng Zhang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
33
|
Xin X, Zhang Y, Wang R, Wang Y, Guo P, Li X. Hydrovoltaic effect-enhanced photocatalysis by polyacrylic acid/cobaltous oxide–nitrogen doped carbon system for efficient photocatalytic water splitting. Nat Commun 2023; 14:1759. [PMID: 36997506 PMCID: PMC10063643 DOI: 10.1038/s41467-023-37366-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/12/2023] [Indexed: 04/01/2023] Open
Abstract
AbstractSevere carrier recombination and the slow kinetics of water splitting for photocatalysts hamper their efficient application. Herein, we propose a hydrovoltaic effect-enhanced photocatalytic system in which polyacrylic acid (PAA) and cobaltous oxide (CoO)–nitrogen doped carbon (NC) achieve an enhanced hydrovoltaic effect and CoO–NC acts as a photocatalyst to generate H2 and H2O2 products simultaneously. In this system, called PAA/CoO–NC, the Schottky barrier height between CoO and the NC interface decreases by 33% due to the hydrovoltaic effect. Moreover, the hydrovoltaic effect induced by H+ carrier diffusion in the system generates a strong interaction between H+ ions and the reaction centers of PAA/CoO–NC, improving the kinetics of water splitting in electron transport and species reaction. PAA/CoO–NC exhibits excellent photocatalytic performance, with H2 and H2O2 production rates of 48.4 and 20.4 mmol g−1 h−1, respectively, paving a new way for efficient photocatalyst system construction.
Collapse
|
34
|
Zhao K, Lee JW, Yu ZG, Jiang W, Oh JW, Kim G, Han H, Kim Y, Lee K, Lee S, Kim H, Kim T, Lee CE, Lee H, Jang J, Park JW, Zhang YW, Park C. Humidity-Tolerant Moisture-Driven Energy Generator with MXene Aerogel-Organohydrogel Bilayer. ACS NANO 2023; 17:5472-5485. [PMID: 36779414 DOI: 10.1021/acsnano.2c10747] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Free-standing and film-type moisture-driven energy generators (MEGs) that harness the preferential interaction of ionized moisture with hydrophilic materials are interesting because of their wearability and portability without needing a water container. However, most such MEGs work in limited humidity conditions, which provide a substantial moisture gradient. Herein, we present a high-performance MEG with sustainable power-production capability in a wide range of environments. The bilayer-based device comprises a negatively surface-charged, hydrophilic MXene (Ti3C2Tx) aerogel and polyacrylamide (PAM) ionic hydrogel. The preferential selection on the MXene aerogel of positive charges supplied from the salts and water in the hydrogel is predicted by the first-principle simulation, which results in a high electric output in a wide relative humidity range from 20% to 95%. Furthermore, by replacing the hydrogel with an organohydrogel of PAM that has excellent water retention and structural stability, a device with long-term electricity generation is realized for more than 15 days in a broad temperature range (from -20 to 80 °C). Our MXene aerogel MEGs connected in series supply sufficient power for commercial electronic components in various outdoor environments. Moreover, an MXene aerogel MEG works as a self-powered sensor for recognizing finger bending and facial expression.
Collapse
Affiliation(s)
- Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jae Won Lee
- Department of Materials Science and Engineering, Kangwon National University, Samcheok 25913, Korea
| | - Zhi Gen Yu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jin Woo Oh
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Gwanho Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Yeonji Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Taebin Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Chang Eun Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Hyeokjung Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jong Woong Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|