1
|
Yang J, Zeng X, Zhu B, Rahman S, Bie C, Yong M, Sun K, Tebyetekerwa M, Wang Z, Guo L, Sun X, Kang Y, Thomsen L, Sun Z, Zhang Z, Zhang X. Self-Trapped Excitons Activate Pseudo-Inert Basal Planes of 2D Organic Semiconductors for Improved Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505653. [PMID: 40377363 DOI: 10.1002/adma.202505653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Indexed: 05/18/2025]
Abstract
2D organic semiconductors are widely considered superior photocatalysts due to their large basal planes, which host abundant and tunable reaction sites. However, here, it is discovered that these basal planes can be pseudo-inert, fundamentally challenging conventional design strategies that assume uniform activity on the surface of 2D organic semiconductors. Using 2D potassium-poly (heptazine imide) (KPHI) for hydrogen peroxide photocatalysis as a model, it is demonstrated that the pseudo-inertness of basal planes stems from preferential exciton transport to edges, instead of interlayer transport in highly ordered structures. Thus, their dimension reduction enables controlled localization of exciton due to the self-trapping mechanism, whereby the basal planes can transform from pseudo-inert state into active catalytic sites. With this knowledge, a modified 2D KPHI capable of generating 35 mmol g-1 h-1 of H2O2, which is over 350% increase compared to pristine KPHI, is reported. More interestingly, the activated basal planes promote H2O2 production through a reaction pathway distinct from that of pseudo-inert basal planes. These findings establish fundamental principles connecting crystal structure, exciton dynamics, and reactive site distribution, providing new insights into the design of high-performance photocatalysts.
Collapse
Affiliation(s)
- Jindi Yang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland St Lucia, Queensland, 4072, Australia
| | - Xiangkang Zeng
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland St Lucia, Queensland, 4072, Australia
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Sharidya Rahman
- ARC Centre of Excellence in Exciton Science, Department of Materials Science & Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Chuanbiao Bie
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Ming Yong
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland St Lucia, Queensland, 4072, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Kaige Sun
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland St Lucia, Queensland, 4072, Australia
| | - Mike Tebyetekerwa
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland St Lucia, Queensland, 4072, Australia
| | - Zhuyuan Wang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland St Lucia, Queensland, 4072, Australia
| | - Lijun Guo
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland St Lucia, Queensland, 4072, Australia
| | - Xin Sun
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland St Lucia, Queensland, 4072, Australia
| | - Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Lars Thomsen
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Zhimeng Sun
- Institute of Resources and Environment, Beijing Academy of Science and Technology, North Xisanhuan Road 27, Haidian District, Beijing, 100089, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, North Xisanhuan Road 27, Haidian District, Beijing, 100089, China
| | - Xiwang Zhang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland St Lucia, Queensland, 4072, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland St Lucia, Queensland, 4072, Australia
| |
Collapse
|
2
|
Ma W, Zhang Q, Zhu J, Guo Y, Sun Y, Li L, Geng D. Edge-induced selective etching of bilayer MoS 2 kirigami structures via a space-confined method. NANOSCALE HORIZONS 2025; 10:957-965. [PMID: 40111972 DOI: 10.1039/d4nh00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The controllable preparation of edge arrangements, particularly the customization of zigzag edges on demand, remains elusive. Here, a selective etching strategy to directly regulate Mo-zigzag and S-zigzag edges of MoS2 kirigami structures is proposed, paving the way for edge engineering of 2D materials and providing promising candidates for next-generation optoelectronics.
Collapse
Affiliation(s)
- Weijie Ma
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Jie Zhu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yang Guo
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yajing Sun
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
3
|
Putnam ST, Santiago-Carboney A, Qian P, Rodríguez-López J. Scanning Electrochemical Microscopy: An Evolving Toolbox for Revealing the Chemistry within Electrochemical Processes. Anal Chem 2025; 97:8147-8181. [PMID: 40193215 DOI: 10.1021/acs.analchem.4c06996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Affiliation(s)
- Seth T Putnam
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Armando Santiago-Carboney
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Peisen Qian
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Ying Y, Fan K, Lin Z, Huang H. Facing the "Cutting Edge:" Edge Site Engineering on 2D Materials for Electrocatalysis and Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418757. [PMID: 39887476 PMCID: PMC11899551 DOI: 10.1002/adma.202418757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Indexed: 02/01/2025]
Abstract
The utilization of 2D materials as catalysts has garnered significant attention in recent years, primarily due to their exceptional features including high surface area, abundant exposed active sites, and tunable physicochemical properties. The unique geometry of 2D materials imparts them with versatile active sites for catalysis, including basal plane, interlayer, defect, and edge sites. Among these, edge sites hold particular significance as they not only enable the activation of inert 2D catalysts but also serve as platforms for engineering active sites to achieve enhanced catalytic performance. Here it is comprehensively aimed to summarize the state-of-the-art advancements in the utilization of edge sites on 2D materials for electrocatalysis and photocatalysis, with applications ranging from water splitting, oxygen reduction, and nitrogen reduction to CO2 reduction. Additionally, various approaches for harnessing and modifying edge sites are summarized and discussed. Here guidelines for the rational engineering of 2D materials for heterogeneous catalysis are provided.
Collapse
Affiliation(s)
- Yiran Ying
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072China
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Ke Fan
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
- School of Materials Science and EngineeringAnhui UniversityHefei230601P. R. China
| | - Zezhou Lin
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Haitao Huang
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| |
Collapse
|
5
|
Bo T, Ghoshal D, Wilder LM, Miller EM, Mirkin MV. High-Resolution Mapping of Photocatalytic Activity by Diffusion-Based and Tunneling Modes of Photo-Scanning Electrochemical Microscopy. ACS NANO 2025; 19:3490-3499. [PMID: 39792635 PMCID: PMC11781031 DOI: 10.1021/acsnano.4c13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained. In this article, we report photoreactivity imaging of two-dimensional MoS2 photocatalysts by two modes of photoscanning electrochemical microscopy (photo-SECM): diffusion and tunneling-based modes. Diffusion-based (feedback mode) photo-SECM is used to map the electron transfer and hydrogen evolution rates on mixed-phase MoS2 nanosheets and MoS2 chemical vapor deposition (CVD)-grown triangles. An extremely high resolution of photoelectrochemical imaging (about 1-2 nm) by the tunneling mode of the photo-SECM is demonstrated.
Collapse
Affiliation(s)
- Tianyu Bo
- Department
of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The
Graduate Center of CUNY, New York, New York 10016, United States
| | - Debjit Ghoshal
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Logan M. Wilder
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Elisa M. Miller
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced
Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
6
|
Gupta S, Zhang JJ, Lei J, Yu H, Liu M, Zou X, Yakobson BI. Two-Dimensional Transition Metal Dichalcogenides: A Theory and Simulation Perspective. Chem Rev 2025; 125:786-834. [PMID: 39746214 DOI: 10.1021/acs.chemrev.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) are a promising class of functional materials for fundamental physics explorations and applications in next-generation electronics, catalysis, quantum technologies, and energy-related fields. Theory and simulations have played a pivotal role in recent advancements, from understanding physical properties and discovering new materials to elucidating synthesis processes and designing novel devices. The key has been developments in ab initio theory, deep learning, molecular dynamics, high-throughput computations, and multiscale methods. This review focuses on how theory and simulations have contributed to recent progress in 2D TMDs research, particularly in understanding properties of twisted moiré-based TMDs, predicting exotic quantum phases in TMD monolayers and heterostructures, understanding nucleation and growth processes in TMD synthesis, and comprehending electron transport and characteristics of different contacts in potential devices based on TMD heterostructures. The notable achievements provided by theory and simulations are highlighted, along with the challenges that need to be addressed. Although 2D TMDs have demonstrated potential and prototype devices have been created, we conclude by highlighting research areas that demand the most attention and how theory and simulation might address them and aid in attaining the true potential of 2D TMDs toward commercial device realizations.
Collapse
Affiliation(s)
- Sunny Gupta
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jun-Jie Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- School of Physics, Southeast University, Nanjing 211189 China
| | - Jincheng Lei
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Henry Yu
- Quantum Simulation Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mingjie Liu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center & Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Qorbani M, Chen KH, Chen LC. Hybrid and Asymmetric Supercapacitors: Achieving Balanced Stored Charge across Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400558. [PMID: 38570734 DOI: 10.1002/smll.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Indexed: 04/05/2024]
Abstract
An electrochemical capacitor configuration extends its operational potential window by leveraging diverse charge storage mechanisms on the positive and negative electrodes. Beyond harnessing capacitive, pseudocapacitive, or Faradaic energy storage mechanisms and enhancing electrochemical performance at high rates, achieving a balance of stored charge across electrodes poses a significant challenge over a wide range of charge-discharge currents or sweep rates. Consequently, fabricating hybrid and asymmetric supercapacitors demands precise electrochemical evaluations of electrode materials and the development of a reliable methodology. This work provides an overview of fundamental aspects related to charge-storage mechanisms and electrochemical methods, aiming to discern the contribution of each process. Subsequently, the electrochemical properties, including the working potential windows, rate capability profiles, and stabilities, of various families of electrode materials are explored. It is then demonstrated, how charge balancing between electrodes falters across a broad range of charge-discharge currents or sweep rates. Finally, a methodology for achieving charge balance in hybrid and asymmetric supercapacitors is proposed, outlining multiple conditions dependent on loaded mass and charge-discharge current. Two step-by-step tutorials and model examples for applying this methodology are also provided. The proposed methodology is anticipated to stimulate continued dialogue among researchers, fostering advancements in achieving stable and high-performance supercapacitor devices.
Collapse
Affiliation(s)
- Mohammad Qorbani
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
8
|
Hussien MK, Sabbah A, Qorbani M, Putikam R, Kholimatussadiah S, Tzou DLM, Elsayed MH, Lu YJ, Wang YY, Lee XH, Lin TY, Thang NQ, Wu HL, Haw SC, Wu KCW, Lin MC, Chen KH, Chen LC. Constructing B─N─P Bonds in Ultrathin Holey g-C 3N 4 for Regulating the Local Chemical Environment in Photocatalytic CO 2 Reduction to CO. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400724. [PMID: 38639018 DOI: 10.1002/smll.202400724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Indexed: 04/20/2024]
Abstract
The lack of intrinsic active sites for photocatalytic CO2 reduction reaction (CO2RR) and fast recombination rate of charge carriers are the main obstacles to achieving high photocatalytic activity. In this work, a novel phosphorus and boron binary-doped graphitic carbon nitride, highly porous material that exhibits powerful photocatalytic CO2 reduction activity, specifically toward selective CO generation, is disclosed. The coexistence of Lewis-acidic and Lewis-basic sites plays a key role in tuning the electronic structure, promoting charge distribution, extending light-harvesting ability, and promoting dissociation of excitons into active carriers. Porosity and dual dopants create local chemical environments that activate the pyridinic nitrogen atom between the phosphorus and boron atoms on the exposed surface, enabling it to function as an active site for CO2RR. The P-N-B triad is found to lower the activation barrier for reduction of CO2 by stabilizing the COOH reaction intermediate and altering the rate-determining step. As a result, CO yield increased to 22.45 µmol g-1 h-1 under visible light irradiation, which is ≈12 times larger than that of pristine graphitic carbon nitride. This study provides insights into the mechanism of charge carrier dynamics and active site determination, contributing to the understanding of the photocatalytic CO2RR mechanism.
Collapse
Affiliation(s)
- Mahmoud Kamal Hussien
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Amr Sabbah
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Tabbin Institute for Metallurgical Studies, Tabbin, Helwan 109, Cairo, 11421, Egypt
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Mohammad Qorbani
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Raghunath Putikam
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Septia Kholimatussadiah
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Nano Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Mohamed Hammad Elsayed
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Yu-Jung Lu
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
- Research Center for Applied Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Yen-Yu Wang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
- Research Center for Applied Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Xing-Hao Lee
- Research Center for Applied Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsai-Yu Lin
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, 11529, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei, 10617, Taiwan
| | - Nguyen Quoc Thang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Shu-Chih Haw
- Nano-science Group, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ming-Chang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
9
|
Sun Y, Fan K, Li J, Wang L, Yang Y, Li Z, Shao M, Duan X. Boosting electrochemical oxygen reduction to hydrogen peroxide coupled with organic oxidation. Nat Commun 2024; 15:6098. [PMID: 39030230 PMCID: PMC11271547 DOI: 10.1038/s41467-024-50446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
The electrochemical oxygen reduction reaction (ORR) to produce hydrogen peroxide (H2O2) is appealing due to its sustainability. However, its efficiency is compromised by the competing 4e- ORR pathway. In this work, we report a hierarchical carbon nanosheet array electrode with a single-atom Ni catalyst synthesized using organic molecule-intercalated layered double hydroxides as precursors. The electrode exhibits excellent 2e- ORR performance under alkaline conditions and achieves H2O2 yield rates of 0.73 mol gcat-1 h-1 in the H-cell and 5.48 mol gcat-1 h-1 in the flow cell, outperforming most reported catalysts. The experimental results show that the Ni atoms selectively adsorb O2, while carbon nanosheets generate reactive hydrogen species, synergistically enhancing H2O2 production. Furthermore, a coupling reaction system integrating the 2e- ORR with ethylene glycol oxidation significantly enhances H2O2 yield rate to 7.30 mol gcat-1 h-1 while producing valuable glycolic acid. Moreover, we convert alkaline electrolyte containing H2O2 directly into the downstream product sodium perborate to reduce the separation cost further. Techno-economic analysis validates the economic viability of this system.
Collapse
Affiliation(s)
- Yining Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kui Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinze Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China.
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China.
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China
| |
Collapse
|
10
|
Khan MY, Hassan A, Samad A, Souwaileh AA. Exploring the Structural Stability of 1T-PdO 2 and the Interface Properties of the 1T-PdO 2/Graphene Heterojunction. ACS OMEGA 2024; 9:28176-28185. [PMID: 38973886 PMCID: PMC11223223 DOI: 10.1021/acsomega.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Motivated by a recent study on the air stability of PdSe2, which also reports the metastability of the PdO2 monolayer [Hoffman A. N.. npj 2D Mater. Appl.2019, 3( (1), ), 50.], in this work, we use density functional theory (DFT) to further explore the thermal, dynamic, and mechanical stability of monolayer PdO2 and study its structural and electronic properties. We further studied its vertical heterojunction composed of 1T-PdO2 and graphene monolayers. We show that both the monolayer and the heterojunction are energetically and dynamically stable with no negative frequencies in the phonon spectrum and belong to the vdW-type. 1T-PdO2 is an indirect-band-gap semiconductor with band-gap values of 0.5 eV (GGA) and 1.54 eV (HSE06). The interface properties of the heterojunction show that the n-type Schottky barrier height (SBH) becomes negative at the vertical interface in the PdO2/graphene contact, forming an Ohmic contact and mainly suggesting the potential of graphene for efficient electrical contact with the PdO2 monolayer. However, at the same time, a negative band bending occurs at the lateral interface based on the current-in-plane model. Moreover, the optical absorption of the PdO2/graphene heterojunction under visible-light irradiation is significantly enhanced compared to the situation in their free-standing monolayers.
Collapse
Affiliation(s)
- Muhammad Yar Khan
- Foundation
department Qilu Institute of Technology, Jinan 250200, Shandong, P. R. China
- School
of Materials Science and Engineering, Zhejiang
University, Hangzhou 310027, P.
R. China
| | - Arzoo Hassan
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong 518060, P. R. China
| | - Abdus Samad
- Department
of Physics, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Abdullah Al Souwaileh
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Raman R, Muthu J, Yen ZL, Qorbani M, Chen YX, Chen DR, Hofmann M, Hsieh YP. Selective activation of MoS 2 grain boundaries for enhanced electrochemical activity. NANOSCALE HORIZONS 2024; 9:946-955. [PMID: 38456521 DOI: 10.1039/d4nh00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Molybdenum disulfide (MoS2) has emerged as a promising material for catalysis and sustainable energy conversion. However, the inertness of its basal plane to electrochemical reactions poses challenges to the utilization of wafer-scale MoS2 in electrocatalysis. To overcome this limitation, we present a technique that enhances the catalytic activity of continuous MoS2 by preferentially activating its buried grain boundaries (GBs). Through mild UV irradiation, a significant enhancement in GB activity was observed that approaches the values for MoS2 edges, as confirmed by a site-selective photo-deposition technique and micro-electrochemical hydrogen evolution reaction (HER) measurements. Combined spectroscopic characterization and ab-initio simulation demonstrates substitutional oxygen functionalization at the grain boundaries to be the origin of this selective catalytic enhancement by an order of magnitude. Our approach not only improves the density of active sites in MoS2 catalytic processes but yields a new photocatalytic conversion process. By exploiting the difference in electronic structure between activated GBs and the basal plane, homo-compositional junctions were realized that improve the photocatalytic synthesis of hydrogen by 47% and achieve performances beyond the capabilities of other catalytic sites.
Collapse
Affiliation(s)
- Radha Raman
- Department of Physics, National Central University, Taoyuan 32001, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jeyavelan Muthu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan.
| | - Zhi-Long Yen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Mohammad Qorbani
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Xiang Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ding-Rui Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Mario Hofmann
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Ping Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| |
Collapse
|
12
|
Zou T, Heo S, Byeon G, Yoo S, Kim M, Reo Y, Kim S, Liu A, Noh YY. Two-Dimensional Tunneling Memtransistor with Thin-Film Heterostructure for Low-Power Logic-in-Memory Complementary Metal-Oxide Semiconductor. ACS NANO 2024; 18:13849-13857. [PMID: 38748609 DOI: 10.1021/acsnano.4c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
With the demand for high-performance and miniaturized semiconductor devices continuously rising, the development of innovative tunneling transistors via efficient stacking methods using two-dimensional (2D) building blocks has paramount importance in the electronic industry. Hence, 2D semiconductors with atomically thin geometries hold significant promise for advancements in electronics. In this study, we introduced tunneling memtransistors with a thin-film heterostructure composed of 2D semiconducting MoS2 and WSe2. Devices with the dual function of tuning and memory operation were realized by the gate-regulated modulation of the barrier height at the heterojunction and manipulation of intrinsic defects within the exfoliated nanoflakes using solution processes. Further, our investigation revealed extensive edge defects and four distinct defect types, namely monoselenium vacancies, diselenium vacancies, tungsten vacancies, and tungsten adatoms, in the interior of electrochemically exfoliated WSe2 nanoflakes. Additionally, we constructed complementary metal-oxide semiconductor-based logic-in-memory devices with a small static power in the range of picowatts using the developed tunneling memtransistors, demonstrating a promising approach for next-generation low-power nanoelectronics.
Collapse
Affiliation(s)
- Taoyu Zou
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Seongmin Heo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Gwon Byeon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Soohwan Yoo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Mingyu Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Youjin Reo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Soonhyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Ao Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
13
|
Xue S, Tang H, Shen M, Liang X, Li X, Xing W, Yang C, Yu Z. Establishing Multiple-Order Built-In Electric Fields Within Heterojunctions to Achieve Photocarrier Spatial Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311937. [PMID: 38191131 DOI: 10.1002/adma.202311937] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Hybridizing two heterocomponents to construct a built-in electric field (BIEF) at the interface represents a significant strategy for facilitating charge separation in carbon dioxide (CO2)-photoreduction. However, the unidirectional nature of BIEFs formed by various low-dimensional materials poses challenges in adequately segregating the photogenerated carriers produced in bulk. In this study, leveraging zinc oxide (ZnO) nanodisks, a sulfurization reaction is employed to fabricate Z-scheme ZnO/zinc sulfide (ZnS) heterojunctions featuring a multiple-order BIEF. These heterojunctions reveal distinctive interfacial structures characterized by two semicoherent phase boundaries. The cathodoluminescence 2D maps and density functional theory calculation results demonstrate that the direction of the multiple-order BIEF spans from ZnS to ZnO. This directional alignment significantly fosters the spatial separation of photogenerated electrons and holes within ZnS nanoparticles and enhances CO2-to-carbon monoxide photoreduction performance (3811.7 µmol h-1 g-1). The findings present a novel pathway for structurally designing BIEFs within heterojunctions, while providing fresh insights into the migratory behavior of photogenerated carriers across interfaces.
Collapse
Affiliation(s)
- Sikang Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China, College of Chemical Engineering, Fuzhou University, Quanzhou, 362114, P. R. China
| | - Hao Tang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Min Shen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaocong Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoyan Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
14
|
Gao W, Shi L, Hou W, Ding C, Liu Q, Long R, Chi H, Zhang Y, Xu X, Ma X, Tang Z, Yang Y, Wang X, Shen Q, Xiong Y, Wang J, Zou Z, Zhou Y. Tandem Synergistic Effect of Cu-In Dual Sites Confined on the Edge of Monolayer CuInP 2 S 6 toward Selective Photoreduction of CO 2 into Multi-Carbon Solar Fuels. Angew Chem Int Ed Engl 2024; 63:e202317852. [PMID: 38141033 DOI: 10.1002/anie.202317852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
One-unit-cell, single-crystal, hexagonal CuInP2 S6 atomically thin sheets of≈0.81 nm in thickness was successfully synthesized for photocatalytic reduction of CO2 . Exciting ethene (C2 H4 ) as the main product was dominantly generated with the yield-based selectivity reaching ≈56.4 %, and the electron-based selectivity as high as ≈74.6 %. The tandem synergistic effect of charge-enriched Cu-In dual sites confined on the lateral edge of the CuInP2 S6 monolayer (ML) is mainly responsible for efficient conversion and high selectivity of the C2 H4 product as the basal surface site of the ML, exposing S atoms, can not derive the CO2 photoreduction due to the high energy barrier for the proton-coupled electron transfer of CO2 into *COOH. The marginal In site of the ML preeminently targets CO2 conversion to *CO under light illumination, and the *CO then migrates to the neighbor Cu sites for the subsequent C-C coupling reaction into C2 H4 with thermodynamic and kinetic feasibility. Moreover, ultrathin structure of the ML also allows to shorten the transfer distance of charge carriers from the interior onto the surface, thus inhibiting electron-hole recombination and enabling more electrons to survive and accumulate on the exposed active sites for CO2 reduction.
Collapse
Affiliation(s)
- Wa Gao
- School of Physical Science and Technology, Tiangong University, Tianjin, 300387, P. R. China
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Li Shi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Wentao Hou
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Cheng Ding
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Qi Liu
- School of Chemical and Environmental Engineering, School of Materials and Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230036, Anhui, P. R. China
| | - Haoqiang Chi
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yongcai Zhang
- Chemistry Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoyong Xu
- Chemistry Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xueying Ma
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zheng Tang
- Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yong Yang
- Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xiaoyong Wang
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Qing Shen
- Graduate School of Informatics and Engineering, University of Electrocommunication, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230036, Anhui, P. R. China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, Jiangsu, P. R. China
| | - Zhigang Zou
- School of Chemical and Environmental Engineering, School of Materials and Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- School of Science and Engineering, The Chinese University of Hongkong (Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Yong Zhou
- School of Chemical and Environmental Engineering, School of Materials and Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- School of Science and Engineering, The Chinese University of Hongkong (Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
15
|
Zhang Y, Chang Y, Zhao L, Liu H, Gao J. Atomic insight into the effects of precursor clusters on monolayer WSe 2. NANOSCALE 2024; 16:2391-2401. [PMID: 38226664 DOI: 10.1039/d3nr05562k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been attracting much attention due to their rich physical and chemical properties. At the end of the chemical vapor deposition growth of 2D TMDCs, the adsorption of excess precursor clusters onto the sample is unavoidable, which will have significant effects on the properties of TMDCs. This is a concern to the academic community. However, the structures of the supported precursor clusters and their effects on the properties of the prepared 2D TMDCs are still poorly understood. Herein, taking monolayer WSe2 as the prototype, we investigated the structure and electronic properties of SeN, WN (N = 1-8), and W8-NSeN (N = 1-7) clusters adsorbed on monolayer WSe2 to gain atomic insight into the precursor cluster adsorption. In contrast to W clusters that tightly bind to the WSe2 surface, Se clusters except for Se1 and Se2 are weakly adsorbed onto WSe2. The interaction between W8-NSeN (N = 1-7) clusters and the WSe2 monolayer decreases with the increase in the Se/W ratio and eventually becomes van der Waals interaction for W1Se7. According to the phase diagram, increasing the Se/W ratio by changing the experimental conditions will increase the ratio of SeN and W1Se7 clusters in the precursor, which can be removed by proper annealing after growth. W clusters induce lots of defect energy levels in the band gap region, while the adsorption of W1Se7 and SeN clusters (N = 3-6, 8) promotes the spatial separation of photo generated carriers at the interface, which is important for optoelectronic applications. Our results indicate that by controlling the Se/W ratio, the interaction between the precursor clusters and WSe2 as well as the electronic properties of the prepared WSe2 monolayer can be effectively tuned, which is significant for the high-quality growth and applications of WSe2.
Collapse
Affiliation(s)
- Yanxue Zhang
- Key laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, 116024, China.
| | - Yuan Chang
- Key laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, 116024, China.
| | - Luneng Zhao
- Key laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, 116024, China.
| | - Hongsheng Liu
- Key laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, 116024, China.
| | - Junfeng Gao
- Key laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, 116024, China.
| |
Collapse
|
16
|
Gao F, Liu G, Chen A, Hu Y, Wang H, Pan J, Feng J, Zhang H, Wang Y, Min Y, Gao C, Xiong Y. Artificial photosynthetic cells with biotic-abiotic hybrid energy modules for customized CO 2 conversion. Nat Commun 2023; 14:6783. [PMID: 37880265 PMCID: PMC10600252 DOI: 10.1038/s41467-023-42591-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
Programmable artificial photosynthetic cell is the ultimate goal for mimicking natural photosynthesis, offering tunable product selectivity via reductase selection toward device integration. However, this concept is limited by the capacity of regenerating the multiple cofactors that hold the key to various reductases. Here, we report the design of artificial photosynthetic cells using biotic-abiotic thylakoid-CdTe as hybrid energy modules. The rational integration of thylakoid with CdTe quantum dots substantially enhances the regeneration of bioactive NADPH, NADH and ATP cofactors without external supplements by promoting proton-coupled electron transfer. Particularly, this approach turns thylakoid highly active for NADH regeneration, providing a more versatile platform for programming artificial photosynthetic cells. Such artificial photosynthetic cells can be programmed by coupling with diverse reductases, such as formate dehydrogenase and remodeled nitrogenase for highly selective production of formate or methane, respectively. This work opens an avenue for customizing artificial photosynthetic cells toward multifarious demands for CO2 conversion.
Collapse
Affiliation(s)
- Feng Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Guangyu Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Aobo Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yangguang Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Huihui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jiangyuan Pan
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jinglei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Hongwei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yujie Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yuanzeng Min
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Chao Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd., 230031, Hefei, Anhui, China.
- Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, 241002, Wuhu, Anhui, China.
| |
Collapse
|
17
|
Naito H, Makino Y, Zhang W, Ogawa T, Endo T, Sannomiya T, Kaneda M, Hashimoto K, Lim HE, Nakanishi Y, Watanabe K, Taniguchi T, Matsuda K, Miyata Y. High-throughput dry transfer and excitonic properties of twisted bilayers based on CVD-grown transition metal dichalcogenides. NANOSCALE ADVANCES 2023; 5:5115-5121. [PMID: 37705802 PMCID: PMC10496764 DOI: 10.1039/d3na00371j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
van der Waals (vdW) layered materials have attracted much attention because their physical properties can be controlled by varying the twist angle and layer composition. However, such twisted vdW assemblies are often prepared using mechanically exfoliated monolayer flakes with unintended shapes through a time-consuming search for such materials. Here, we report the rapid and dry fabrication of twisted multilayers using chemical vapor deposition (CVD) grown transition metal chalcogenide (TMDC) monolayers. By improving the adhesion of an acrylic resin stamp to the monolayers, the single crystals of various TMDC monolayers with desired grain size and density on a SiO2/Si substrate can be efficiently picked up. The present dry transfer process demonstrates the one-step fabrication of more than 100 twisted bilayers and the sequential stacking of a twisted 10-layer MoS2 single crystal. Furthermore, we also fabricated hBN-encapsulated TMDC monolayers and various twisted bilayers including MoSe2/MoS2, MoSe2/WSe2, and MoSe2/WS2. The interlayer interaction and quality of dry-transferred, CVD-grown TMDCs were characterized by using photoluminescence (PL), cathodoluminescence (CL) spectroscopy, and cross-sectional electron microscopy. The prominent PL peaks of interlayer excitons can be observed for MoSe2/MoS2 and MoSe2/WSe2 with small twist angles at room temperature. We also found that the optical spectra were locally modulated due to nanosized bubbles, which are formed by the presence of interface carbon impurities. The present findings indicate the widely applicable potential of the present method and enable an efficient search of the emergent optical and electrical properties of TMDC-based vdW heterostructures.
Collapse
Affiliation(s)
- Hibiki Naito
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Yasuyuki Makino
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Wenjin Zhang
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Tomoya Ogawa
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Takahiko Endo
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Takumi Sannomiya
- Department of Materials Science and Engineering, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Masahiko Kaneda
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Kazuki Hashimoto
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Hong En Lim
- Department of Chemistry, Saitama University Saitama 338-8570 Japan
| | - Yusuke Nakanishi
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, NIMS Tsukuba 305-0044 Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, NIMS Tsukuba 305-0044 Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University Kyoto 611-0011 Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University Hachioji 192-0397 Japan
| |
Collapse
|
18
|
Di J, Hao G, Liu G, Zhou J, Jiang W, Liu Z. Defective materials for CO2 photoreduction: From C1 to C2+ products. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
19
|
Saisopa T, Bunpheng A, Wechprasit T, Kidkhunthod P, Songsiriritthigul P, Jiamprasertboon A, Bootchanont A, Sailuam W, Rattanachai Y, Nualchimplee C, Hirunpinyopas W, Iamprasertkun P. A structural study of size selected WSe2 nanoflakes prepared via liquid phase exfoliation: X-ray absorption to electrochemical application. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Liu J, Ma Y, Chi F, Chao L, Niu J. Linear photogalvanic effects in monolayer WSe 2 with defects. OPTICS EXPRESS 2023; 31:12026-12035. [PMID: 37157370 DOI: 10.1364/oe.480203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Linear photogalvanic effects in monolayer WSe2 with defects are investigated by non-equilibrium Green's function technique combined with density functional theory. Monolayer WSe2 generates photoresponse in the absence of external bias voltage, showing potential applications in low-power consumption photoelectronic devices. Our results show that the photocurrent changes in perfect sine form with the polarization angle. The maximum photoresponse Rmax produced in the monoatomic S substituted defect material is 28 times that of the perfect material when the photon energy is 3.1 eV irradiated, which is the most outstanding among all the defects. Monoatomic Ga substitution extinction ratio (ER) is the largest, and its ER value is more than 157 times that of the pure condition at 2.7 eV. As the defects concentration increases, the photoresponse is changed. The concentrations of Ga substituted defects have little effect on the photocurrent. The concentrations of Se/W vacancy and S/Te substituted defect have a great influence on the photocurrent increase. Our numerical results also show that monolayer WSe2 is a candidate material for solar cells in the visible light range and a promising polarization detector material.
Collapse
|
21
|
Zhang S, Li H, Wang L, Liu J, Liang G, Davey K, Ran J, Qiao SZ. Boosted Photoreforming of Plastic Waste via Defect-Rich NiPS 3 Nanosheets. J Am Chem Soc 2023; 145:6410-6419. [PMID: 36913199 DOI: 10.1021/jacs.2c13590] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Sustainable conversion of plastic waste to mitigate environmental threats and reclaim waste value is important. Ambient-condition photoreforming is practically attractive to convert waste to hydrogen (H2); however, it has poor performance because of mutual constraint between proton reduction and substrate oxidation. Here, we realize a cooperative photoredox using defect-rich chalcogenide nanosheet-coupled photocatalysts, e.g., d-NiPS3/CdS, to give an ultrahigh H2 evolution of ∼40 mmol gcat-1 h-1 and organic acid yield up to 78 μmol within 9 h, together with excellent stability beyond 100 h in photoreforming of commercial waste plastic poly(lactic acid) and poly(ethylene terephthalate). Significantly, these metrics represent one of the most efficient plastic photoreforming reported. In situ ultrafast spectroscopic studies confirm a charge transfer-mediated reaction mechanism in which d-NiPS3 rapidly extracts electrons from CdS to boost H2 evolution, favoring hole-dominated substrate oxidation to improve overall efficiency. This work opens practical avenues for converting plastic waste into fuels and chemicals.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Haobo Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lei Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Jiandang Liu
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jingrun Ran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
Yang R, Fan Y, Zhang Y, Mei L, Zhu R, Qin J, Hu J, Chen Z, Hau Ng Y, Voiry D, Li S, Lu Q, Wang Q, Yu JC, Zeng Z. 2D Transition Metal Dichalcogenides for Photocatalysis. Angew Chem Int Ed Engl 2023; 62:e202218016. [PMID: 36593736 DOI: 10.1002/anie.202218016] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs), a rising star in the post-graphene era, are fundamentally and technologically intriguing for photocatalysis. Their extraordinary electronic, optical, and chemical properties endow them as promising materials for effectively harvesting light and catalyzing the redox reaction in photocatalysis. Here, we present a tutorial-style review of the field of 2D TMDs for photocatalysis to educate researchers (especially the new-comers), which begins with a brief introduction of the fundamentals of 2D TMDs and photocatalysis along with the synthesis of this type of material, then look deeply into the merits of 2D TMDs as co-catalysts and active photocatalysts, followed by an overview of the challenges and corresponding strategies of 2D TMDs for photocatalysis, and finally look ahead this topic.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.,Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yingying Fan
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.,Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yuefeng Zhang
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Liang Mei
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Rongshu Zhu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, P. R. China
| | - Jiaqian Qin
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yun Hau Ng
- Low-Carbon and Climate Impact Research Centre, School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Qian Wang
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Jimmy C Yu
- Department of Chemistry and Materials Science and Technology Research Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
23
|
Wang L, Sun Y, Zhang F, Hu J, Hu W, Xie S, Wang Y, Feng J, Li Y, Wang G, Zhang B, Wang H, Zhang Q, Wang Y. Precisely Constructed Metal Sulfides with Localized Single-Atom Rhodium for Photocatalytic C-H Activation and Direct Methanol Coupling to Ethylene Glycol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205782. [PMID: 36427207 DOI: 10.1002/adma.202205782] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Although there are many studies on photocatalytic environmental remediation, hydrogen evolution, and chemical transformations, less success has been achieved for the synthesis of industrially important and largely demanded bulk chemicals using semiconductor photocatalysis, which holds great potential to drive unique chemical reactions that are difficult to implement by the conventional heterogeneous catalysis. The performance of semiconductors used for photochemical synthesis is, however, usually unsatisfactory due to limited efficiencies in light harvesting, charge-carrier separation, and surface reactions. The precise construction of heterogeneous photocatalysts to facilitate these processes is an attractive but challenging goal. Here, single-atom rhodium-doped metal sulfide nanorods composed of alternately stacked wurtzite/zinc-blende segments are successfully designed and fabricated, which demonstrate record-breaking efficiencies for visible light-driven preferential activation of C-H bond in methanol to form ethylene glycol (EG), a key bulk chemical used for the production of polyethylene terephthalate (PET) polymer. The wurtzite/zinc-blende heterojunctions lined regularly in one dimension accelerate the charge-carrier separation and migration. Single-atom rhodium selectively deposited onto the wurtzite segment with photogenerated holes accumulated facilitates methanol adsorption and C-H activation. The present work paves the way to harnessing photocatalysis for bulk chemical synthesis with structure-defined semiconductors.
Collapse
Affiliation(s)
- Limei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yu Sun
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Fuyong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jingting Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wentao Hu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yongke Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yubing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Genyuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Biao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Haiyan Wang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory of Applied Chemistry of Hebei Province, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
24
|
Zhao X, Zhou XL, Yang SY, Min Y, Chen JJ, Liu XW. Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts. Nat Commun 2022; 13:7869. [PMID: 36550149 PMCID: PMC9780338 DOI: 10.1038/s41467-022-35633-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Studying the localized electrocatalytic activity of heterogeneous electrocatalysts is crucial for understanding electrocatalytic reactions and further improving their performance. However, correlating the electrocatalytic activity with the microscopic structure of two-dimensional (2D) electrocatalysts remains a great challenge due to the lack of in situ imaging techniques and methods of tuning structures with atomic precision. Here, we present a general method of probing the layer-dependent electrocatalytic activity of 2D materials in situ using a plasmonic imaging technique. Unlike the existing methods, this approach was used to visualize the surface charge density and electrocatalytic activity of single 2D MoS2 nanosheets, enabling the correlation of layer-dependent electrocatalytic activity with the surface charge density of single MoS2 nanosheets. This work provides insights into the electrocatalytic mechanisms of 2D transition metal dichalcogenides, and our approach can serve as a promising platform for investigating electrocatalytic reactions at the heterogeneous interface, thus guiding the rational design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Xiaona Zhao
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Xiao-Li Zhou
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China ,grid.410579.e0000 0000 9116 9901School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Si-Yu Yang
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Yuan Min
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Jie-Jie Chen
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Xian-Wei Liu
- grid.59053.3a0000000121679639Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026 China ,grid.59053.3a0000000121679639Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
25
|
Heterojunction Design between WSe2 Nanosheets and TiO2 for Efficient Photocatalytic Hydrogen Generation. Catalysts 2022. [DOI: 10.3390/catal12121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Design and fabrication of efficient and stable photocatalysts are critically required for practical applications of solar water splitting. Herein, a series of WSe2/TiO2 nanocomposites were constructed through a facile mechanical grinding method, and all of the nanocomposites exhibited boosted photocatalytic hydrogen evolution. It was discovered that the enhanced photocatalytic performance was attributed to the efficient electron transfer from TiO2 to WSe2 and the abundant active sites provided by WSe2 nanosheets. Moreover, the intimate heterojunction between WSe2 nanosheets and TiO2 favors the interfacial charge separation. As a result, a highest hydrogen evolution rate of 2.28 mmol/g·h, 114 times higher than pristine TiO2, was obtained when the weight ratio of WSe2/(WSe2 + TiO2) was adjusted to be 20%. The designed WSe2/TiO2 heterojunctions can be regarded as a promising photocatalysts for high-throughput hydrogen production.
Collapse
|
26
|
Zhou Y, Ye Q, Shi X, Zhang Q, Song Q, Zhou C, Li D, Jiang D. Ni 3B as p-Block Element-Modulated Cocatalyst for Efficient Photocatalytic CO 2 Reduction. Inorg Chem 2022; 61:17268-17277. [PMID: 36259672 DOI: 10.1021/acs.inorgchem.2c02850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to the multiple electron and proton transfer processes involved, the photogenerated charges are easily recombined during the photocatalytic reduction of CO2, making the generation of the eight-electron product CH4 kinetically more difficult. Herein, Ni3B nanoparticles modulated by p-block element were combined with TiO2 nanosheets to construct a novel Schottky junction photocatalyst (Ni3B/TiO2) for the selective photocatalytic conversion of CO2 to CH4. The formed Ni3B/TiO2 photocatalyst with Schottky junction ensures a transfer pathway of photogenerated electrons from TiO2 to Ni3B, which facilitates the accumulation of electrons on the surface of Ni3B and subsequently improves the activity of photocatalytic CO2 reduction to CH4. The optimized Ni3B/TiO2 Schottky junction shows an improved CH4 yield of 30.03 μmol g-1 h-1, which was much higher than those of TiO2 (1.62 μmol g-1 h-1), NiO/TiO2 (2.44 μmol g-1 h-1), and Ni/TiO2 (4.3 μmol g-1 h-1). This work demonstrated that the introduction of p-block elements can alleviate the scaling relationship effect of pure metal cocatalysts to a certain extent, and the modified Ni3B can be used as a promising new cocatalyst to effectively improve the selective photocatalytic of CO2 to CH4.
Collapse
Affiliation(s)
- Yimeng Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangli Shi
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qiong Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qi Song
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changjian Zhou
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
27
|
Carbon-based nanostructures for emerging photocatalysis: CO2 reduction, N2 fixation, and organic conversion. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Zhou Y, Zou Z, Han Q, Shen Y, Jiang C, Zhang YC, Xiong Y, Ye J, Li Z, Gao W. State-of-the-Art Advancements of Atomically Thin Two-Dimensional Photocatalysts for Energy Conversion. Chem Commun (Camb) 2022; 58:9594-9613. [DOI: 10.1039/d2cc02708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excessive use of fossil fuels leads to energy shortages and environmental pollution, threatening human health and social development. As a clean, green, and sustainable technology, generation of renewable energy from...
Collapse
|