1
|
Perens EA, Yelon D. Drivers of vessel progenitor fate define intermediate mesoderm dimensions by inhibiting kidney progenitor specification. Dev Biol 2025; 517:126-139. [PMID: 39307382 DOI: 10.1016/j.ydbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Proper organ formation depends on the precise delineation of organ territories containing defined numbers of progenitor cells. Kidney progenitors reside in bilateral stripes of posterior mesoderm that are referred to as the intermediate mesoderm (IM). Previously, we showed that the transcription factors Hand2 and Osr1 act to strike a balance between the specification of the kidney progenitors in the IM and the vessel progenitors in the laterally adjacent territory. Recently, the transcription factor Npas4l - an early and essential driver of vessel and blood progenitor formation - was shown to inhibit kidney development. Here we demonstrate how kidney progenitor specification is coordinated by hand2, osr1, and npas4l. We find that npas4l and the IM marker pax2a are transiently co-expressed in the posterior lateral mesoderm, and npas4l is necessary to inhibit IM formation. Consistent with the expression of npas4l flanking the medial and lateral sides of the IM, our findings suggest roles for npas4l in defining the IM boundaries at each of these borders. At the lateral IM border, hand2 promotes and osr1 inhibits the formation of npas4l-expressing lateral vessel progenitors, and hand2 requires npas4l to inhibit IM formation and to promote vessel formation. Meanwhile, npas4l appears to have an additional role in suppressing IM fate at the medial border: npas4l loss-of-function enhances hand2 mutant IM defects and results in excess IM generated outside of the lateral hand2-expressing territory. Together, our findings reveal that establishment of the medial and lateral boundaries of the IM requires inhibition of kidney progenitor specification by the neighboring drivers of vessel progenitor fate.
Collapse
Affiliation(s)
- Elliot A Perens
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, Division of Pediatric Nephrology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Deborah Yelon
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Ming Z, Liu F, Moran HR, Lalonde RL, Adams M, Restrepo NK, Joshi P, Ekker SC, Clark KJ, Friedberg I, Sumanas S, Yin C, Mosimann C, Essner JJ, McGrail M. Lineage labeling with zebrafish hand2 Cre and CreERT2 recombinase CRISPR knock-ins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626907. [PMID: 39677658 PMCID: PMC11643050 DOI: 10.1101/2024.12.04.626907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background The ability to generate endogenous Cre recombinase drivers using CRISPR-Cas9 knock-in technology allows lineage tracing, cell type specific gene studies, and in vivo validation of inferred developmental trajectories from phenotypic and gene expression analyses. This report describes endogenous zebrafish hand2 Cre and CreERT2 drivers generated with GeneWeld CRISPR-Cas9 precision targeted integration. Results hand2-2A-cre and hand2-2A-creERT2 knock-ins crossed with ubiquitous loxP-based Switch reporters led to broad labeling in expected mesodermal and neural crest-derived lineages in cardiac, pectoral fins, pharyngeal arch, liver, intestine, and mesothelial tissues, as well as enteric neurons. Novel patterns of hand2 lineage tracing appeared in venous blood vessels. CreERT2 induction at 24 hours reveals late emerging hand2 progenitors in the 24 - 48 hour embryo contribute to the venous and intestinal vasculature. Induction in 3 dpf larva restricts hand2 lineage labeling to mesoderm-derived components of the branchial arches, heart, liver and enteric neurons. Conclusions hand2 progenitors from the lateral plate mesoderm and ectoderm contribute to numerous lineages in the developing embryo. Later emerging hand2 progenitors become restricted to a subset of lineages in the larva. The hand2 Cre and CreERT2 drivers establish critical new tools to investigate hand2 lineages in zebrafish embryogenesis and larval organogenesis.
Collapse
Affiliation(s)
- Zhitao Ming
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011-1101 USA
| | - Fang Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011-1101 USA
| | - Hannah R. Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Robert L. Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Megan Adams
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039 USA
| | - Nicole K. Restrepo
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33612 USA
| | - Parnal Joshi
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011-1134 USA
| | - Stephen C. Ekker
- Department of Pediatrics, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712 USA
| | - Karl J. Clark
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471 USA
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011-1134 USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33612 USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039 USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Jeffrey J. Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011-1101 USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011-1101 USA
| |
Collapse
|
3
|
Xu Y, Gehlot R, Capon SJ, Albu M, Gretz J, Bloomekatz J, Mattonet K, Vucicevic D, Talyan S, Kikhi K, Günther S, Looso M, Firulli BA, Sanda M, Firulli AB, Lacadie SA, Yelon D, Stainier DYR. PDGFRA is a conserved HAND2 effector during early cardiac development. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1531-1548. [PMID: 39658721 PMCID: PMC11634778 DOI: 10.1038/s44161-024-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
The basic helix-loop-helix transcription factor HAND2 has multiple roles during vertebrate organogenesis, including cardiogenesis. However, much remains to be uncovered about its mechanism of action. Here, we show the generation of several hand2 mutant alleles in zebrafish and demonstrate that dimerization-deficient mutants display the null phenotype but DNA-binding-deficient mutants do not. Rescue experiments with Hand2 variants using a newly identified hand2 enhancer confirmed these observations. To identify Hand2 effectors critical for cardiogenesis, we analyzed the transcriptomes of hand2 loss- and gain-of-function embryonic cardiomyocytes and tested the function of eight candidate genes in vivo; pdgfra was most effective in rescuing myocardial migration in hand2 mutants. Accordingly, we identified a putative Hand2-binding region in the zebrafish pdgfra locus that is important for its expression. In addition, Hand2 loss- and gain-of-function experiments in mouse embryonic stem cell-derived cardiac cells decreased and increased Pdgfra expression, respectively. Altogether, these results further our mechanistic understanding of HAND2 function during early cardiogenesis.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rupal Gehlot
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Samuel J Capon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jonas Gretz
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Joshua Bloomekatz
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, University of Mississippi, University, MS, USA
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Dubravka Vucicevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sweta Talyan
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Beth A Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Miloslav Sanda
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Scott Allen Lacadie
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
4
|
Lange M, Granados A, VijayKumar S, Bragantini J, Ancheta S, Kim YJ, Santhosh S, Borja M, Kobayashi H, McGeever E, Solak AC, Yang B, Zhao X, Liu Y, Detweiler AM, Paul S, Theodoro I, Mekonen H, Charlton C, Lao T, Banks R, Xiao S, Jacobo A, Balla K, Awayan K, D'Souza S, Haase R, Dizeux A, Pourquie O, Gómez-Sjöberg R, Huber G, Serra M, Neff N, Pisco AO, Royer LA. A multimodal zebrafish developmental atlas reveals the state-transition dynamics of late-vertebrate pluripotent axial progenitors. Cell 2024; 187:6742-6759.e17. [PMID: 39454574 DOI: 10.1016/j.cell.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 05/02/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Elucidating organismal developmental processes requires a comprehensive understanding of cellular lineages in the spatial, temporal, and molecular domains. In this study, we introduce Zebrahub, a dynamic atlas of zebrafish embryonic development that integrates single-cell sequencing time course data with lineage reconstructions facilitated by light-sheet microscopy. This atlas offers high-resolution and in-depth molecular insights into zebrafish development, achieved through the sequencing of individual embryos across ten developmental stages, complemented by reconstructions of cellular trajectories. Zebrahub also incorporates an interactive tool to navigate the complex cellular flows and lineages derived from light-sheet microscopy data, enabling in silico fate-mapping experiments. To demonstrate the versatility of our multimodal resource, we utilize Zebrahub to provide fresh insights into the pluripotency of neuro-mesodermal progenitors (NMPs) and the origins of a joint kidney-hemangioblast progenitor population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bin Yang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Xiang Zhao
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Yang Liu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Sheryl Paul
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | - Tiger Lao
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Sheng Xiao
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Keir Balla
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Kyle Awayan
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Robert Haase
- Cluster of Excellence "Physics of Life," TU Dresden, Dresden, Germany
| | - Alexandre Dizeux
- Institute of Physics for Medicine Paris, ESPCI Paris-PSL, Paris, France
| | | | | | - Greg Huber
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mattia Serra
- University of California, San Diego, San Diego, CA, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | |
Collapse
|
5
|
Hike D, Liu X, Xie Z, Zhang B, Choi S, Zhou XA, Liu A, Murstein A, Jiang Y, Devor A, Yu X. High-resolution awake mouse fMRI at 14 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570803. [PMID: 38106227 PMCID: PMC10723470 DOI: 10.1101/2023.12.08.570803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
High-resolution awake mouse fMRI remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radiofrequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion induced artifacts. Using a 14T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100×100×200μm resolution with a 2s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust BOLD responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 seconds prior to the air-puff in awake mice with repetitive stimulation, which was not detected using a randomized stimulation paradigm. This early BC activation indicated a learned anticipation through the vibrissa system and association cortices in awake mice under continuous training of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.
Collapse
Affiliation(s)
- David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Zeping Xie
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Bei Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Andy Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Graduate program in Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Alyssa Murstein
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Graduate program in Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
- Department of Biomedical Engineering, Boston University, 610 Commonwealth Avenue, Boston, Massachusetts, USA, 02215
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts, USA 02129
| |
Collapse
|
6
|
Kuroda S, Lalonde RL, Mansour TA, Mosimann C, Nakamura T. Multiple embryonic sources converge to form the pectoral girdle skeleton in zebrafish. Nat Commun 2024; 15:6313. [PMID: 39060278 PMCID: PMC11282072 DOI: 10.1038/s41467-024-50734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The morphological transformation of the pectoral/shoulder girdle is fundamental to the water-to-land transition in vertebrate evolution. Although previous studies have resolved the embryonic origins of tetrapod shoulder girdles, those of fish pectoral girdles remain uncharacterized, creating a gap in the understanding of girdle transformation mechanisms from fish to tetrapods. Here, we identify the embryonic origins of the zebrafish pectoral girdle, including the cleithrum as an ancestral girdle element lost in extant tetrapods. Our combinatorial approach of photoconversion and genetic lineage tracing demonstrates that cleithrum development combines four adjoining embryonic populations. A comparison of these pectoral girdle progenitors with extinct and extant vertebrates highlights that cleithrum loss, indispensable for neck evolution, is associated with the disappearance of its unique developmental environment at the head/trunk interface. Overall, our study establishes an embryological framework for pectoral/shoulder girdle formation and provides evolutionary trajectories from their origin in water to diversification on land.
Collapse
Affiliation(s)
- Shunya Kuroda
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1164, Japan.
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas A Mansour
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Lalonde RL, Wells HH, Kemmler CL, Nieuwenhuize S, Lerma R, Burger A, Mosimann C. pIGLET: Safe harbor landing sites for reproducible and efficient transgenesis in zebrafish. SCIENCE ADVANCES 2024; 10:eadn6603. [PMID: 38838146 PMCID: PMC11152119 DOI: 10.1126/sciadv.adn6603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Standard zebrafish transgenesis involves random transgene integration with resource-intensive screening. While phiC31 integrase-based attP/attB recombination has streamlined transgenesis in mice and Drosophila, validated attP-based landing sites for universal applications are lacking in zebrafish. Here, we developed phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET) as transgenesis approach, with two attP landing sites pIGLET14a and pIGLET24b from well-validated Tol2 transgenes. Both sites facilitate diverse transgenesis applications including reporters and Cre/loxP transgenes. The pIGLET14a and pIGLET24b landing sites consistently yield 25 to 50% germline transmission, substantially reducing the resources needed for transgenic line generation. Transgenesis into these sites enables reproducible expression patterns in F0 zebrafish embryos for enhancer discovery and testing of gene regulatory variants. Together, our new landing sites streamline targeted, reproducible zebrafish transgenesis as a robust platform for various applications while minimizing the workload for generating transgenic lines.
Collapse
Affiliation(s)
| | | | - Cassie L. Kemmler
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Raymundo Lerma
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | | | | |
Collapse
|
8
|
Newton AH, Smith CA. Resolving the mechanisms underlying epithelial-to-mesenchymal transition of the lateral plate mesoderm. Genesis 2024; 62:e23531. [PMID: 37443419 DOI: 10.1002/dvg.23531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Formation of the vertebrate limb buds begins with a localized epithelial-to-mesenchymal transition (EMT) of the somatic lateral plate mesoderm (LPM). While the processes that drive proliferation and outgrowth of the limb mesenchyme are well established, the fundamental mechanisms that precede this process and initiate EMT are less understood. In this review, we outline putative drivers of EMT of the LPM, drawing from analyses across a range of vertebrates and developmental models. We detail the expression patterns of key EMT transcriptional regulators in the somatic LPM of the presumptive limb fields, and their potential role in producing a mesenchymal cell fate. These include a putative cooperative role between the EMT inducers PRRX1 and TWIST1, supported by evidence in zebrafish and chicken models but unconfirmed data from mice. As such, additional functional data are required to definitively determine the mechanisms that initiate and drive EMT of the somatic LPM, a critical transition preceding formation of the limb bud mesenchyme.
Collapse
Affiliation(s)
- Axel H Newton
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Smith
- Department of Anatomy and Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Vazana-Netzarim R, Elmalem Y, Sofer S, Bruck H, Danino N, Sarig U. Distinct HAND2/HAND2-AS1 Expression Levels May Fine-Tune Mesenchymal and Epithelial Cell Plasticity of Human Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:16546. [PMID: 38003736 PMCID: PMC10672054 DOI: 10.3390/ijms242216546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
We previously developed several successful decellularization strategies that yielded porcine cardiac extracellular matrices (pcECMs) exhibiting tissue-specific bioactivity and bioinductive capacity when cultured with various pluripotent and multipotent stem cells. Here, we study the tissue-specific effects of the pcECM on seeded human mesenchymal stem cell (hMSC) phenotypes using reverse transcribed quantitative polymerase chain reaction (RT-qPCR) arrays for cardiovascular related gene expression. We further corroborated interesting findings at the protein level (flow cytometry and immunological stains) as well as bioinformatically using several mRNA sequencing and protein databases of normal and pathologic adult and embryonic (organogenesis stage) tissue expression. We discovered that upon the seeding of hMSCs on the pcECM, they displayed a partial mesenchymal-to-epithelial transition (MET) toward endothelial phenotypes (CD31+) and morphologies, which were preceded by an early spike (~Day 3 onward after seeding) in HAND2 expression at both the mRNA and protein levels compared to that in plate controls. The CRISPR-Cas9 knockout (KO) of HAND2 and its associated antisense long non-coding RNA (HAND2-AS1) regulatory region resulted in proliferation arrest, hypertrophy, and senescent-like morphology. Bioinformatic analyses revealed that HAND2 and HAND2-AS1 are highly correlated in expression and are expressed in many different tissue types albeit at distinct yet tightly regulated expression levels. Deviation (downregulation or upregulation) from these basal tissue expression levels is associated with a long list of pathologies. We thus suggest that HAND2 expression levels may possibly fine-tune hMSCs' plasticity through affecting senescence and mesenchymal-to-epithelial transition states, through yet unknown mechanisms. Targeting this pathway may open up a promising new therapeutic approach for a wide range of diseases, including cancer, degenerative disorders, and aging. Nevertheless, further investigation is required to validate these findings and better understand the molecular players involved, potential inducers and inhibitors of this pathway, and eventually potential therapeutic applications.
Collapse
Affiliation(s)
- Rachel Vazana-Netzarim
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
| | - Yishay Elmalem
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Shachar Sofer
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Hod Bruck
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| | - Naama Danino
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
| | - Udi Sarig
- The Dr. Miriam and Sheldon Adelson School of Medicine, Department of Morphological Sciences and Teratology, Ariel University, Ariel 4070000, Israel; (R.V.-N.); (N.D.)
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4070000, Israel (S.S.); (H.B.)
| |
Collapse
|
10
|
Tzung KW, Lalonde RL, Prummel KD, Mahabaleshwar H, Moran HR, Stundl J, Cass AN, Le Y, Lea R, Dorey K, Tomecka MJ, Zhang C, Brombacher EC, White WT, Roehl HH, Tulenko FJ, Winkler C, Currie PD, Amaya E, Davis MC, Bronner ME, Mosimann C, Carney TJ. A median fin derived from the lateral plate mesoderm and the origin of paired fins. Nature 2023; 618:543-549. [PMID: 37225983 PMCID: PMC10266977 DOI: 10.1038/s41586-023-06100-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.
Collapse
Affiliation(s)
- Keh-Weei Tzung
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karin D Prummel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Harsha Mahabaleshwar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Hannah R Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Amanda N Cass
- Biology Department, Wesleyan University, Middletown, CT, USA
| | - Yao Le
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Robert Lea
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Karel Dorey
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monika J Tomecka
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Changqing Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Eline C Brombacher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - William T White
- CSIRO National Research Collections Australia, Australia National Fish Collection, Hobart, Tasmania, Australia
| | - Henry H Roehl
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Frank J Tulenko
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Christoph Winkler
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, Australia
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Marcus C Davis
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Tom J Carney
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
11
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Defining and targeting tumor-associated macrophages in malignant mesothelioma. Proc Natl Acad Sci U S A 2023; 120:e2210836120. [PMID: 36821580 PMCID: PMC9992826 DOI: 10.1073/pnas.2210836120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Defining the ontogeny of tumor-associated macrophages (TAM) is important to develop therapeutic targets for mesothelioma. We identified two distinct macrophage populations in mouse peritoneal and pleural cavities, the monocyte-derived, small peritoneal/pleural macrophages (SPM), and the tissue-resident large peritoneal/pleural macrophages (LPM). SPM rapidly increased in tumor microenvironment after tumor challenge and contributed to the vast majority of M2-like TAM. The selective depletion of M2-like TAM by conditional deletion of the Dicer1 gene in myeloid cells (D-/-) promoted tumor rejection. Sorted SPM M2-like TAM initiated tumorigenesis in vivo and in vitro, confirming their capacity to support tumor development. The transcriptomic and single-cell RNA sequencing analysis demonstrated that both SPM and LPM contributed to the tumor microenvironment by promoting the IL-2-STAT5 signaling pathway, inflammation, and epithelial-mesenchymal transition. However, while SPM preferentially activated the KRAS and TNF-α/NFkB signaling pathways, LPM activated the IFN-γ response. The importance of LPM in the immune response was confirmed by depleting LPM with intrapleural clodronate liposomes, which abrogated the antitumoral memory immunity. SPM gene signature could be identified in pleural effusion and tumor from patients with untreated mesothelioma. Five genes, TREM2, STAB1, LAIR1, GPNMB, and MARCO, could potentially be specific therapeutic targets. Accordingly, Trem2 gene deletion led to reduced SPM M2-like TAM with compensatory increase in LPM and slower tumor growth. Overall, these experiments demonstrate that SPM M2-like TAM play a key role in mesothelioma development, while LPM more specifically contribute to the immune response. Therefore, selective targeting of monocyte-derived TAM may enhance antitumor immunity through compensatory expansion of tissue-resident TAM.
Collapse
|
13
|
The Pattern of RNA Editing Changes in Pleural Mesothelioma upon Epithelial-Mesenchymal Transition. Int J Mol Sci 2023; 24:ijms24032874. [PMID: 36769192 PMCID: PMC9917482 DOI: 10.3390/ijms24032874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Pleural mesothelioma (PM) is a cancer where epithelioid, biphasic and sarcomatoid histotypes are observed. Sarcomatoid PM is characterized by mesenchymal features. Multi-omics have been used to characterize the epithelial-to-mesenchymal (EMT) phenotype at the molecular level. We contribute to this effort by including the analysis of RNA editing. We extracted samples with the highest vs. lowest Epithelial score from two PM cohorts and observed increased RNA editing in introns and decreased RNA editing in 3'UTR upon EMT. The same was observed in primary PM primary cultures stratified by transcriptomics analysis into two groups, one of them enriched with mesenchymal features. Our data demonstrate that, as has been observed in other cancer types, RNA editing associates to EMT phenotype in PM.
Collapse
|
14
|
Moradi A, Shahsavari M, Gowdini E, Mohammadian K, Alizamir A, Khalilollahi M, Abgarmi ZM, Ganji SM. Consequences of aberrated DNA methylation in Colon Adenocarcinoma: a bioinformatic-based multi-approach. BMC Genom Data 2022; 23:83. [PMID: 36443682 PMCID: PMC9706923 DOI: 10.1186/s12863-022-01100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION The biology of colorectal cancer (CRC) is remained to be elucidated. Numerous genetic and epigenetic modifications are in concert to create and progress CRC. DNA methylation as a principal epigenetic factor has gained increased attention and could be utilized for biological studies. This study aims to find novel methylated and downregulated genes with a focus on HAND2 in CRC and decipher the biological consequences. MATERIAL AND METHOD Data on DNA methylation from GEO and SMART databases and the expression GEPIA2 database were downloaded. Afterward, a set of hypermethylated and downregulated genes in CRC was chosen by overlapping genes. Consequently, HAND2 was selected as a key gene for further investigation and confirmed with cell lines methylation and expression data. The functions of HAND2 were further analyzed using gene ontology analyses and the protein-protein interaction network. RESULTS The methylation (p < 0.01) and expression (p < 0.01) of HAND2 are significantly varied in CRC compared to normal control. The correlation analysis (Pearson's correlation coefficient = -0.44, p = 6.6e-14) conveys that HAND2 significantly downregulated and has a reverse correlation with the methylation status of CpG islands. The biological process analysis of HAND2 target genes conveyed that disruption in HAND2 expression could dysregulate ERK1 and ERK2 signaling pathways. CONCLUSION Together, the findings showed that DNA hypermethylation of HAND2 was critical evidence in CRC. Further validation and prospective studies are needed to utilize HAND2 methylation as a promising biomarker.
Collapse
Affiliation(s)
- Arash Moradi
- grid.419420.a0000 0000 8676 7464Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran - Karaj Highway, Tehran, Iran
| | - Milad Shahsavari
- grid.411463.50000 0001 0706 2472Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Erfan Gowdini
- grid.419420.a0000 0000 8676 7464Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran - Karaj Highway, Tehran, Iran
| | - Kamal Mohammadian
- grid.411950.80000 0004 0611 9280Department of Radiation Oncology, Hamadan University of Medical Sciences, Mahdieh Center, Hamadan, Iran
| | - Aida Alizamir
- grid.411950.80000 0004 0611 9280Department of Pathology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Khalilollahi
- grid.411463.50000 0001 0706 2472Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Zahara Mohammadi Abgarmi
- grid.412266.50000 0001 1781 3962Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Shahla Mohammad Ganji
- grid.419420.a0000 0000 8676 7464Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran - Karaj Highway, Tehran, Iran
| |
Collapse
|
15
|
Mansour F, Hinze C, Telugu NS, Kresoja J, Shaheed IB, Mosimann C, Diecke S, Schmidt-Ott KM. The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife 2022; 11:e80165. [PMID: 36222666 PMCID: PMC9629839 DOI: 10.7554/elife.80165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Narasimha Swamy Telugu
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jelena Kresoja
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Sebastian Diecke
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
16
|
Charlie-Silva I, Feitosa NM, Pontes LG, Fernandes BH, Nóbrega RH, Gomes JMM, Prata MNL, Ferraris FK, Melo DC, Conde G, Rodrigues LF, Aracati MF, Corrêa-Junior JD, Manrique WG, Superio J, Garcez AS, Conceição K, Yoshimura TM, Núñez SC, Eto SF, Fernandes DC, Freitas AZ, Ribeiro MS, Nedoluzhko A, Lopes-Ferreira M, Borra RC, Barcellos LJG, Perez AC, Malafaia G, Cunha TM, Belo MAA, Galindo-Villegas J. Plasma proteome responses in zebrafish following λ-carrageenan-Induced inflammation are mediated by PMN leukocytes and correlate highly with their human counterparts. Front Immunol 2022; 13:1019201. [PMID: 36248846 PMCID: PMC9559376 DOI: 10.3389/fimmu.2022.1019201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.
Collapse
Affiliation(s)
| | - Natália M. Feitosa
- Integrated Laboratory of Translational Bioscience, Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Macaé, Brazil
| | | | - Bianca H. Fernandes
- Laboratório de Controle Genético e Sanitário, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rafael H. Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Juliana M. M. Gomes
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana N. L. Prata
- Department of Pharmacology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Fausto K. Ferraris
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniela C. Melo
- Laboratory of Zebrafish from Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Letícia F. Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Mayumi F. Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - José D. Corrêa-Junior
- Department of Morphology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Wilson G. Manrique
- Veterinary College, Federal University of Rondonia, Rolim de Moura, Brazil
| | - Joshua Superio
- Department of Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Katia Conceição
- Peptide Biochemistry Laboratory, Universidade Federal de São Paulo (UNIFESP), Sao Jose Dos Campos, Brazil
| | - Tania M. Yoshimura
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Silvia C. Núñez
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Silas F. Eto
- Development and Innovation Laboratory, Center of Innovation and Development, Butantan Institute, São Paulo, Brazil
| | - Dayanne C. Fernandes
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Anderson Z. Freitas
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Ricardo C. Borra
- Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
| | - Leonardo J. G. Barcellos
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
- Postgraduate Program in Bioexperimentation. University of Passo Fundo, Rio Grande do Sul, Brazil
| | - Andrea C. Perez
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Guilheme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, Brazil
| | - Thiago M. Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marco A. A. Belo
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
17
|
Mattonet K, Riemslagh FW, Guenther S, Prummel KD, Kesavan G, Hans S, Ebersberger I, Brand M, Burger A, Reischauer S, Mosimann C, Stainier DYR. Endothelial versus pronephron fate decision is modulated by the transcription factors Cloche/Npas4l, Tal1, and Lmo2. SCIENCE ADVANCES 2022; 8:eabn2082. [PMID: 36044573 PMCID: PMC9432843 DOI: 10.1126/sciadv.abn2082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/11/2022] [Indexed: 05/17/2023]
Abstract
Endothelial specification is a key event during embryogenesis; however, when, and how, endothelial cells separate from other lineages is poorly understood. In zebrafish, Npas4l is indispensable for endothelial specification by inducing the expression of the transcription factor genes etsrp, tal1, and lmo2. We generated a knock-in reporter in zebrafish npas4l to visualize endothelial progenitors and their derivatives in wild-type and mutant embryos. Unexpectedly, we find that in npas4l mutants, npas4l reporter-expressing cells contribute to the pronephron tubules. Single-cell transcriptomics and live imaging of the early lateral plate mesoderm in wild-type embryos indeed reveals coexpression of endothelial and pronephron markers, a finding confirmed by creERT2-based lineage tracing. Increased contribution of npas4l reporter-expressing cells to pronephron tubules is also observed in tal1 and lmo2 mutants and is reversed in npas4l mutants injected with tal1 mRNA. Together, these data reveal that Npas4l/Tal1/Lmo2 regulate the fate decision between the endothelial and pronephron lineages.
Collapse
Affiliation(s)
- Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- DZL (German Center for Lung Research), partner site, 43, D-61231 Bad Nauheim
| | - Fréderike W. Riemslagh
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Stefan Guenther
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Karin D. Prummel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Gokul Kesavan
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Ingo Ebersberger
- Goethe University Frankfurt am Main, Institute of Cell Biology and Neuroscience, Frankfurt 60438, Germany
- Senckenberg Biodiversity and Climate Research Center (S-BIKF), Frankfurt 60325, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt 60325, Germany
| | - Michael Brand
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- DZL (German Center for Lung Research), partner site, 43, D-61231 Bad Nauheim
| |
Collapse
|
18
|
Song M, Yuan X, Racioppi C, Leslie M, Stutt N, Aleksandrova A, Christiaen L, Wilson MD, Scott IC. GATA4/5/6 family transcription factors are conserved determinants of cardiac versus pharyngeal mesoderm fate. SCIENCE ADVANCES 2022; 8:eabg0834. [PMID: 35275720 PMCID: PMC8916722 DOI: 10.1126/sciadv.abg0834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
GATA4/5/6 transcription factors play essential, conserved roles in heart development. To understand how GATA4/5/6 modulates the mesoderm-to-cardiac fate transition, we labeled, isolated, and performed single-cell gene expression analysis on cells that express gata5 at precardiac time points spanning zebrafish gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic gata5/6 expression. In the absence of Gata5/6, the population structure of mesendoderm-derived cells was substantially altered. In addition to the expected absence of cardiac mesoderm, we confirmed a concomitant expansion of cranial-pharyngeal mesoderm. Moreover, Gata5/6 loss led to extensive changes in chromatin accessibility near cardiac and pharyngeal genes. Functional analyses in zebrafish and the tunicate Ciona, which has a single GATA4/5/6 homolog, revealed that GATA4/5/6 acts upstream of tbx1 to exert essential and cell-autonomous roles in promoting cardiac and inhibiting pharyngeal mesoderm identity. Overall, cardiac and pharyngeal mesoderm fate choices are achieved through an evolutionarily conserved GATA4/5/6 regulatory network.
Collapse
Affiliation(s)
- Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nathan Stutt
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anastasiia Aleksandrova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| |
Collapse
|